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Abstract—Hierarchical ring networks, which hierarchically connect
multiple levels of rings, have been proposed in the past to improve
the scalability of ring interconnects, but past hierarchical ring designs
sacrifice some of the key benefits of rings by reintroducing more complex
in-ring buffering and buffered flow control. Our goal in this paper is to
design a new hierarchical ring interconnect that can maintain most of
the simplicity of traditional ring designs (i.e., no in-ring buffering or
buffered flow control) while achieving high scalability as more complex
buffered hierarchical ring designs.

To this end, we revisit the concept of a hierarchical-ring network-
on-chip. Our design, called HiRD (Hierarchical Rings with Deflection),
includes critical features that enable us to mostly maintain the simplicity
of traditional simple ring topologies while providing higher energy
efficiency and scalability. First, HiRD does not have any buffering or
buffered flow control within individual rings, and requires only a small
amount of buffering between the ring hierarchy levels. When inter-ring
buffers are full, our design simply deflects flits so that they circle the ring
and try again, which eliminates the need for in-ring buffering. Second,
we introduce two simple mechanisms that together provide an end-to-end
delivery guarantee within the entire network (despite any deflections that
occur) without impacting the critical path or latency of the vast majority
of network traffic.

Our experimental evaluations on a wide variety of multiprogrammed
and multithreaded workloads and synthetic traffic patterns show that
HiRD attains equal or better performance at better energy efficiency
than multiple versions of both a previous hierarchical ring design and a
traditional single ring design. We also extensively analyze our design’s
characteristics and injection and delivery guarantees. We conclude that
HiRD can be a compelling design point that allows higher energy
efficiency and scalability while retaining the simplicity and appeal of
conventional ring-based designs.

I. INTRODUCTION

Interconnect scalability, performance, and energy efficiency are
first-order concerns in the design of future CMPs (chip multiproces-
sors). As CMPs are built with greater numbers of cores, centralized
interconnects (such as crossbars or shared buses) are no longer scal-
able. The Network-on-Chip (NoC) is the most commonly-proposed
solution [11]: cores exchange packets over a network consisting of
network switches and links arranged in some topology.

Mainstream commercial CMPs today most commonly use ring-
based interconnects. Rings are a well-known network topology [10],
and the idea behind a ring topology is very simple: all routers (also
called “ring stops”) are connected by a loop that carries network
traffic. At each router, new traffic can be injected into the ring, and
traffic in the ring can be removed from the ring when it reaches
its destination. When traffic is traveling on the ring, it continues
uninterrupted until it reaches its destination. A ring router thus needs
no in-ring buffering or flow control because it prioritizes on-ring
traffic. In addition, the router’s datapath is very simple compared to
a mesh router, because the router has fewer inputs and requires no
large, power-inefficient crossbars; typically it consists only of several
MUXes to allow traffic to enter and leave, and one pipeline register.
Its latency is typically only one cycle, because no routing decisions
or output port allocations are necessary (other than removing traffic
from the ring when it arrives). Because of these advantages, several
prototype and commercial multicore processors have utilized ring
interconnects: the Intel Larrabee [45], IBM Cell [42], and more
recently, the Intel Sandy Bridge [24].

Unfortunately, rings suffer from a fundamental scaling problem
because a ring’s bisection bandwidth does not scale with the number
of nodes in the network. Building more rings, or a wider ring, serves
as a stopgap measure but increases the cost of every router on the
ring in proportion to the bandwidth increase. As commercial CMPs
continue to increase core counts, a new network design will be
needed that balances the simplicity and low overhead of rings with
the scalability of more complex topologies.

Global Ring

Bridge Routers

Local RingsNode Routers
(Ring Stops)

Fig. 1: A traditional hierarchical ring design [43, 51, 21, 44, 19] allows
“local rings” with simple node routers to scale by connecting to a “global
ring” via bridge routers.

A hybrid design is possible: rings can be constructed in a hier-
archy such that groups of nodes share a simple ring interconnect,
and these “local” rings are joined by one or more “global” rings.
Figure 1 shows an example of such a hierarchical ring design.
Past works [43, 51, 21, 44, 19] proposed hierarchical rings as a
scalable network. These proposals join rings with bridge routers,
which reside on multiple rings and transfer traffic between rings. This
design was shown to yield good performance and scalability [43].
The state-of-the-art design [43] requires flow control and buffering at
every node router (ring stop), because a ring transfer can make one
ring back up and stall when another ring is congested. While this
previously proposed hierarchical ring is much more scalable than
a single ring [43], the reintroduction of in-ring buffering and flow
control nullifies one of the primary advantages of using ring networks
in the first place (i.e., the lack of buffering and buffered flow control
within each ring).

Our goal in this work is to design a ring-based topology that is
simpler and more efficient than prior ring-based topologies. To this
end, our design uses simple ring networks that do not introduce any
in-ring buffering or flow control. Like past proposals, we utilize a
hierarchy-of-rings topology to achieve higher scalability. However,
beyond the topological similarities, our design is very different in
how traffic is handled within individual rings and between different
levels of rings. We introduce a new bridge router microarchitecture
that facilitates the transfer of packets from one ring to another. It is
in these, and only these, limited number of bridge routers where we
require any buffering.

Our key idea is to allow a bridge router with a full buffer to
deflect packets. Rather than requiring buffering and flow control in
the ring, packets simply cycle through the network and try again.
While deflection-based, bufferless networks have been proposed and
evaluated in the past [4, 23, 46, 2, 38, 17], our approach is effectively
an elegant hybridization of bufferless (rings) and buffered (bridge
routers) styles. To prevent packets from potentially deflecting around
a ring arbitrarily many times (i.e., to prevent livelock), we introduce
two new mechanisms, the injection guarantee and the transfer guar-
antee, that ensure packet delivery even for adversarial/pathological
conditions (as we discuss in §III and evaluate with worst-case traffic
in §V-C).

This simple hierarchical ring design, which we call HiRD (for Hi-
erarchical Rings with Deflection), provides a more scalable network
architecture while retaining the key simplicities of ring networks
(no buffering or flow control within each ring). We show in our
evaluations that HiRD provides better performance, lower power, and
better energy efficiency with respect to the buffered hierarchical ring
design [43].

In summary, our major contributions are:

• We propose a new, low-cost, hierarchical ring NoC design based
on very simple router microarchitectures that achieve single-
cycle latencies. This design, HiRD, places an ordinary ring
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router (without flow control or buffering) at every network node,
connects local rings with global rings using bridge routers,
which have minimal buffering and use deflection rather than
buffered flow control for inter-ring transfers.

• We provide new mechanisms for guaranteed delivery of traffic
ensuring that inter-ring transfers do not cause livelock or dead-
lock, even in the worst case.

• We qualitatively and quantitatively compare HiRD to several
state-of-the-art NoC designs. We show competitive performance
to these baselines, with better energy efficiency than all prior
designs, including, most importantly, the hierarchical ring de-
sign with in-ring buffering and buffered flow control [43]. We
conclude that HiRD represents a compelling design point for
future many-core interconnects by achieving higher performance
while maintaining most of the simplicity of traditional ring-based
designs.

II. HIRD: SIMPLE HIERARCHICAL RINGS WITH DEFLECTION

In this section, we describe the operation of our network design
HiRD, or Hierarchical Rings with Deflection. HiRD is built on several
basic operation principles:

1) Every node (e.g., CPU, cache slice, or memory controller)
resides on one local ring, and connects to one node router
on that ring.

2) Node routers operate exactly like routers (ring stops) in a
single-ring interconnect: locally-destined flits are removed from
the ring, other flits are passed through, and new flits can inject
whenever there is a free slot (no flit present in a given cycle).
There is no buffering or flow control within any local ring; flits
are buffered only in ring pipeline registers. Node routers have
a single-cycle latency.

3) Local rings are connected to one or more levels of global rings
to form a tree hierarchy.

4) Rings are joined via bridge routers. A bridge router has a node-
router-like interface on each of the two rings it connects, and
has a set of transfer FIFOs (one in each direction) between the
rings.

5) Bridge routers consume flits that require a transfer whenever
the respective transfer FIFO has available space. The head flit
in a transfer FIFO can inject into its new ring whenever there
is a free slot (exactly as with new flit injections). When a flit
requires a transfer but the respective transfer FIFO is full, the
flit remains in its current ring. It will circle the ring and try
again next time it encounters the correct bridge router (this is
a deflection).

By using deflections rather than buffering and blocking flow control
to manage ring transfers, HiRD retains node router simplicity, unlike
past hierarchical ring network designs. This change comes at the
cost of potential livelock (if flits are forced to deflect forever). We
introduce two mechanisms to provide a deterministic guarantee of
livelock-free operation in §III.

While deflection-based bufferless routing has been previously
proposed and evaluated for a variety of off-chip and on-chip inter-
connection networks (e.g., [4, 38, 17, 15, 16, 40, 41]), deflections
are trivially implementable in a ring: if deflection occurs, the flit1

continues circulating in the ring. Contrast this to past deflection-based
schemes that operated on mesh networks where multiple incoming
flits may need to be deflected among a multitude of possible out-
bound ports, leading to much more circuit complexity in the router
microarchitecture, as shown by [15, 22, 37]. Our application of
deflection to rings leads to a simple and elegant embodiment of
bufferless routing.

A. Node Router Operation
At each node on a local ring, we place a single node router, shown

in Figure 2. A node router is very simple: it passes through circulating
traffic, allows new traffic to enter the ring through a MUX, and allows
traffic to leave the ring when it arrives at its destination. Each router

1All operations in the network happen in a flit level similar to previous
works [38, 17, 15, 16, 40, 41].

contains one pipeline register for the router stage, and one pipeline
register for link traversal, so the router latency is exactly one cycle
and the per-hop latency is two cycles. Such a design is very common
in ring-based and ring-like designs (e.g., [28]).

injection FIFO Ejector

counter-clockwise ring

clockwise ring

Fig. 2: Node router.

As flits enter the router on the ring, they first travel to the
ejector. Because we use bidirectional rings, each node router has
two ejectors, one per direction.2 Note that the flits constituting a
packet may arrive out-of-order and at widely separated times. Re-
assembly into packets is thus necessary. Packets are re-assembled and
reassembly buffers are managed using the Retransmit-Once scheme,
borrowed from the CHIPPER bufferless router design [15]. With
this scheme, receivers reassemble packets in-place in MSHRs (Miss-
Status Handling Registers [33]), eliminating the need for separate
reassembly buffers. The key idea in Retransmit-Once is to avoid
ejection backpressure-induced deadlocks by ensuring that all arriving
flits are consumed immediately at their receiver nodes. When a flit
from a new packet arrives, it allocates a new reassembly buffer slot
if available. If no slot is available, the receiver drops the flit and
sets a bit in a retransmit queue which corresponds to the sender and
transaction ID of the dropped flit. Eventually, when a buffer slot
becomes available at the receiver, the receiver reserves the slot for a
sender/transaction ID in its retransmit queue and requests a retransmit
from the sender. Thus, all traffic arriving at a node is consumed
(or dropped) immediately, so ejection never places backpressure on
the ring. Retransmit-Once hence avoids protocol-level deadlock [15].
Furthermore, it ensures that a ring full of flits always drains, thus
ensuring forward progress (as we will describe more fully in §III).

After locally-destined traffic is removed from the ring, the remain-
ing traffic travels to the injection stage. At this stage, the router looks
for “empty slots,” or cycles where no flit is present on the ring, and
injects new flits into the ring whenever they are queued for injection.
The injector is even simpler than the ejector, because it only needs to
find cycles where no flit is present and insert new flits in these slots.
Note that we implement two separate injection buffers (FIFOs), one
per ring direction; thus, two flits can be injected into the network
in a single cycle. A flit enqueues for injection in the direction that
yields a shorter traversal toward its destination.

B. Bridge Routers

The bridge routers connect a local ring and a global ring, or a
global ring with a higher-level global ring (if there are more than two
levels of hierarchy). A high-level block diagram of a bridge router is
shown in Figure 4. A bridge router resembles two node routers, one
on each of two rings, connected by FIFO buffers in both directions.
When a flit arrives on one ring that requires a transfer to the other
ring (according to the routing function described below in §II-C),
it can leave its current ring and wait in a FIFO as long as there is
space available. These transfer FIFOs exist so that a transferring flit’s
arrival need not be perfectly aligned with a free slot on the destination
ring. However, this transfer FIFO will sometimes fill. In that case, if
any flit arrives that requires a transfer, the bridge router simply does
not remove the flit from its current ring; the flit will continue to travel
around the ring, and will eventually come back to the bridge router,
at which point there may be an open slot available in the transfer
FIFO. This is analogous to a deflection in hot-potato routing [4],
also known as deflection routing, and has been used in recent on-chip
mesh interconnect designs to resolve contention [38, 15, 16, 49, 40,
41]. Note that to ensure that flits are eventually delivered, despite any
deflections that may occur, we introduce two guarantee mechanisms

2For simplicity, we assume that up to two ejected flits can be accepted by
the processor or reassembly buffers in a single cycle. For a fair comparison,
we also implement two-flit-per-cycle ejection in our baselines.

231



node router
bridge router

(a) 4-, 8-, and 16-bridge hierarchical ring designs. (b) Three-level hierarchy (8x8).

Fig. 3: Hierarchical ring design of HiRD.
in §III. Finally, note that deflections may cause flits to arrive out-
of-order (this is fundamental to any non-minimal adaptively-routed
network). Because we use Retransmit-Once [15], packet reassembly
works despite out-of-order arrival.
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Fig. 4: Bridge router.

The bridge router uses crossbars to allow a flit ejecting from
either ring direction in a bidirectional ring to enqueue for injection
in either direction in the adjoining ring. When a flit transfers, it
picks the ring direction that gives a shorter distance, as in a node
router. However, these crossbars actually allow for a more general
case: the bridge router can actually join several rings together by
using larger crossbars. For our network topology, we use hierarchical
rings. We use wider global rings than local rings (analogous to a
fat tree [23]) for performance reasons. These wider rings perform
logically as separate rings as wide as one flit. Although not shown
in the figure for simplicity, the bridge router in such a case uses a
larger crossbar and has one ring interface (including transfer FIFO)
per ring-lane in the wide global ring. The bridge router then load-
balances flits between rings when multiple lanes are available. (The
crossbar and transfer FIFOs are fully modeled in our evaluations.)

When building a two-level design, there are many different arrange-
ments of global rings and bridge routers that can efficiently link the
local rings together. Figure 3a shows three designs denoted by the
number of bridge routers in total: 4-bridge, 8-bridge, and 16-bridge.
We assume an 8-bridge design for the remainder of this paper. Also,
note that the hierarchical structure that we propose can be extended
to more than two levels. We use a 3-level hierarchy, illustrated in
Figure 3b, to build a 64-node network.

Finally, in order to address a potential deadlock case (which will
be explained more in §III), bridge routers implement a special Swap
Rule. The Swap Rule states that when the flit that just arrived on
each ring requires a transfer to the other ring, the flits can be
swapped, bypassing the transfer FIFOs altogether. This requires a
bypass datapath (which is fully modeled in our hardware evaluations).
It ensures correct operation in the case when transfer FIFOs in both
directions are full. Only one swap needs to occur in any given cycle,
even when the bridge router connects to a wide global ring. Note
that because the swap rule requires this bypass path, the behavior
is always active (it would be more difficult to definitively identify a
deadlock and enable the behavior only in that special case). The Swap
Rule may cause flits to arrive out-of-order when some are bypassed
in this way, but the network already delivers flits out-of-order, so
correctness is not compromised.

C. Routing
Finally, we briefly address routing. Because a hierarchical ring

design is fundamentally a tree, routing is very simple: when a flit is
destined for a node in another part of the hierarchy, it first travels up
the tree (to more global levels) until it reaches a common ancestor of
its source and its destination, and then it travels down the tree to its
destination. Concretely, each node’s address can be written as a series
of parts, or digits, corresponding to each level of the hierarchy (these

trivially could be bitfields in a node ID). A ring can be identified by
the common prefix of all routers on that ring; the root global ring
has a null (empty) prefix, and local rings have prefixes consisting of
all digits but the last one. If a flit’s destination does not match the
prefix of the ring it is on, it takes any bridge router to a more global
ring. If a flit’s destination does match the prefix of the ring it is on
(meaning that it is traveling down to more local levels), it takes any
bridge router which connects to the next level, until it finally reaches
the local ring of its destination and ejects at the node with a full
address match.

III. GUARANTEED DELIVERY:
CORRECTNESS IN HIERARCHICAL RING INTERCONNECTS

In order for the system to operate correctly, the interconnect must
guarantee that every flit is eventually delivered to its destination.
HiRD ensures correct operation through two mechanisms that provide
two guarantees: the injection guarantee and the transfer guarantee.
The injection guarantee ensures that any flit waiting to inject into a
ring will eventually be able to enter that ring. The transfer guarantee
ensures that any flit waiting to enter a bridge router’s transfer queue
will eventually be granted a slot in that queue.

To understand the need for each guarantee, let us consider an
example, shown in Figure 5. A flit is enqueued for network injection
at node N1 on the leftmost local ring. This flit is destined for node N2
on the rightmost local ring; hence, it must traverse the leftmost local
ring, then the global ring in the center of the figure, followed by the
rightmost local ring. The flit transfers rings twice, at the two bridge
routers B1 and B2 shown in the figure. The figure also indicates
the six points (labeled as 1 to 6 ) at which the flit moves from a
queue to a ring or vice-versa: the flit first enters N1’s injection queue,
transfers to the leftmost local ring 1 , the bridge router B1 2 , the
global ring 3 , the bridge router B2 4 , the rightmost local ring 5 ,
and finally the destination node N2 6 .

local
ring 1

local
ring 2

global
ring

N1

B1 B2

N2

2 3 4 5

1

6

Fig. 5: The need for the injection and transfer guarantees: contention
experienced by a flit during its journey.

In the worst case, when the network is heavily contended, the flit
could wait for an unbounded amount of time at 1 to 5 . First, recall
that to enter any ring, a flit must wait for an empty slot on that ring
(because the traffic on the ring continues along the ring once it has
entered, and thus has higher priority than any new traffic). Because of
this, the flit traveling from node N1 to N2 could wait for an arbitrarily
long time at 1 , 3 , and 5 if no other mechanism intercedes. This
first problem is one of injection starvation, and we address it with the
injection guarantee mechanism described below. Second, recall that a
flit that needs to transfer from one ring to another via a bridge router
enters that bridge router’s queue, but if the bridge router’s queue is
full, then the transferring flit must make another trip around its current
ring and try again when it next encounters a bridge router. Because
of this rule, the flit traveling from N1 to N2 could be deflected an
arbitrarily large number of times at 2 and 4 (at entry to bridge
routers B1 and B2) if no other mechanism intercedes. This second
problem is one of transfer starvation, and we address it with the
transfer guarantee mechanism described below.
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Our goal in this section is to demonstrate that HiRD provides both
the injection guarantee (§III-A) and the transfer guarantee (§III-B)
mechanisms. We show correctness in §III-C, and quantitatively
evaluate both mechanisms in §V-C and in [3].

A. Preventing Injection Starvation: Injection Guarantee
The injection guarantee ensures that every router on a ring can

eventually inject a flit. This guarantee is provided by a very simple
throttling-based mechanism: when any node is starved (cannot inject
a flit) past a threshold number of cycles, it asserts a signal to a
global controller, which then throttles injection from every other node.
No new traffic will enter the network while this throttling state is
active. All existing flits in the network will eventually drain, and
the starved node will be able to finally inject its new flit. At that
time, the starved node de-asserts its throttling request signal to the
global controller, and the global controller subsequently allows all
other nodes to resume normal operation.

Note that this injection guarantee can be implemented in a hi-
erarchical manner to improve scalability. In the hierarchical imple-
mentation, each individual local ring in the network monitors only
its own injection and throttles injection locally if any node in it is
starved. After a threshold number of cycles.3 if any node in the
ring still cannot inject, the bridge routers connected to that ring start
sending throttling signals to any other ring in the next level of the ring
hierarchy they are connected to. In the worst case, every local ring
stops accepting flits and all the flits in the network drain and eliminate
any potential livelock or deadlock. Designing the delivery guarantee
this way requires two wires in each ring and small design overhead
at the bridge router to propagate the throttling signal across hierarchy
levels. In our evaluation, we faithfully model this hierarchical design.

B. Ensuring Ring Transfers: Transfer Guarantee
The transfer guarantee ensures that any flit waiting to transfer from

its current ring to another ring via a bridge router will eventually
be able to enter that bridge router’s queue. Such a guarantee is
non-trivial because the bridge router’s queue is finite, and when
the destination ring is congested, a slot may become available in
the queue only infrequently. In the worst case, a flit in one ring
may circulate indefinitely, finding a bridge router to its destination
ring with a completely full queue each time it arrives at the bridge
router. The transfer guarantee ensures that any such circulating flit
will eventually be granted an open slot in the bridge router’s transfer
queue. Note in particular that this guarantee is separate from the
injection guarantee: while the injection guarantee ensures that the
bridge router will be able to inject flits from its transfer queue into
the destination ring (and hence, have open slots in its transfer queue
eventually), these open transfer slots may not be distributed fairly
to flits circulating on a ring waiting to transfer through the bridge
router. In other words, some flit may always be “unlucky” and never
enter the bridge router if slots open at the wrong time. The transfer
guarantee addresses this problem.

In order to ensure that any flit waiting to transfer out of a
ring eventually enters its required bridge router, each bridge router
observes a particular slot on its source ring and monitors for flits
that are “stuck” for more than a threshold number of retries. (To
observe one “slot,” the bridge router simply examines the flit in its
ring pipeline register once every N cycles, where N is the latency for
a flit to travel around the ring once.) If any flit circulates in its ring
more than this threshold number of times, the bridge router reserves
the next open available entry in its transfer queue for this flit (in
other words, it will refuse to accept other flits for transfer until the
“stuck” flit enters the queue). Because of the injection guarantee,
the head of the transfer queue must inject into the destination ring
eventually, hence an entry must become available eventually, and the
stuck flit will then take the entry in the transfer queue the next time
it arrives at the bridge router. Finally, the slot which the bridge router
observes rotates around its source ring: whenever the bridge router
observes a slot the second time, if the flit that occupied the slot on
first observation is no longer present (i.e., successfully transferred out
of the ring or ejected at its destination), then the bridge router begins

3In our evaluation, we set this threshold to be 100 cycles.

to observe the next slot (the slot that arrives in the next cycle). In
this way, every slot in the ring is observed eventually, and any stuck
flit will thus eventually be granted a transfer.

C. Putting it Together: Guaranteed Delivery
Before we prove the correctness of these mechanisms in detail, it is

helpful to summarize the basic operation of the network once more.
A flit can inject into a ring whenever a free slot is present in the ring
at the injecting router (except when the injecting router is throttled by
the injection guarantee mechanism). A flit can eject at its destination
whenever it arrives, and destinations always consume flits as soon as
they arrive (which is ensured despite finite reassembly buffers using
the Retransmit-Once mechanism [15], as already described in §II-A).
A flit transfers between rings via a transfer queue in a bridge router,
first leaving its source ring to wait in the queue and then injecting
into its destination ring when at the head of the queue, and can enter
a transfer queue whenever there is a free entry in that transfer queue
(except when the entry is reserved for another flit by the transfer
guarantee mechanism). Finally, when two flits at opposite ends of a
bridge router each desire to to transfer through the bridge router, the
Swap Rule allows these flits to exchange places directly, bypassing
the queues (and ensuring forward progress).

Our proof is structured as follows: we first argue that if no new
flits enter the network, then the network will drain in finite time.
The injection guarantee ensures that any flit can enter the network.
Then, using the injection guarantee, transfer guarantee, the swap rule,
and the fact that the network is hierarchical, any flit in the network
can eventually reach any ring in the network (and hence, its final
destination ring). Because all flits in a ring continue to circulate that
ring, and any node on a ring must consume any flits that are destined
for that node, final delivery is ensured once a flit reaches its final
destination ring.
Network drains in finite time: Assume no new flits enter the
network (for now). A flit could only be stuck in the network
indefinitely if transferring flits create a cyclic dependence between
completely full rings. Otherwise, if there are no dependence cycles,
then if one ring is full and cannot accept new flits because other
rings will not accept its flits, then eventually there must be some ring
which depends on no other ring (e.g., a local ring with all locally-
destined flits), and this ring will drain first, followed by the others
feeding into it. However, because the network is hierarchical (i.e.,
a tree), the only cyclic dependences possible are between rings that
are immediate parent and child (e.g., global ring and local ring, in
a two-level hierarchy). The Swap Rule ensures that when a parent
and child ring are each full of flits that require transfer to the other
ring, then transfer is always possible, and forward progress will be
ensured. Note in particular that we do not require the injection or
transfer guarantee for the network to drain. Only the Swap Rule is
necessary to ensure that no deadlock will occur.
Any node can inject: Now that we have shown that the network will
drain if no new flits are injected, it is easy to see that the injection
guarantee ensures that any node can eventually inject a flit: if any
node is starved, then all nodes are throttled, no new flit enters the
network, and the network must eventually drain (as we just showed),
at which point the starved node will encounter a completely empty
network into which to inject its flit. (It likely will be able to inject
before the network is completely empty, but in the worst case, the
guarantee is ensured in this way.)
All flits can transfer rings and reach their destination rings: With
the injection guarantee in place, the transfer guarantee can be shown
to provide its stated guarantee as follows: because of the injection
guarantee, a transfer queue in a bridge router will always inject its
head flit in finite time, hence will have an open entry to accept a
new transferring flit in finite time. All that is necessary to ensure
that all transferring flits eventually succeed in their transfers is that
any flit stuck for long enough gets an available entry in the transfer
queue. The transfer guarantee does exactly this by observing ring
slots in sequence and reserving a transfer queue entry when a flit
becomes stuck in a ring. Because the mechanism will eventually
observe every slot in the ring, all flits will be allowed to make their
transfers eventually. Hence, all flits can continue to transfer rings until
reaching their destination rings (and thus, their final destinations).
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Parameter Setting
System topology CPU core and shared cache slice at every node
Core model Out-of-order, 128-entry ROB, 16 MSHRs (maximum simultaneous outstanding requests)
Private L1 cache 64 KB, 4-way associative, 32-byte block size
Shared L2 cache Perfect (always hits) to stress the network and penalize our reduced-capacity deflection-based design; cache-block-interleaved
Cache coherence Directory-based protocol (based on SGI Origin [34]), directory entries co-located with shared cache blocks
Simulation length 5M-instruction warm-up, 25M-instruction active execution per node [38, 15, 6, 16]

TABLE I: Simulation and system configuration parameters.
Parameter Network Setting

Interconnect Links

Single Ring Bidirectional, 4x4: 64-bit and 128-bit width, 8x8: 128-bit and 256-bit width
Buffered HRing Bidirectional, 4x4: 3-cycle per-hop latency (link+router); 64-bit local and 128-bit global rings, 8x8: three-level

hierarchy, 4x4 parameters, with second-level rings connected by a 256-bit third-level ring
HiRD 4x4: 2-cycle (local), 3-cycle (global) per-hop latency (link+router); 64-bit local ring, 128-bit global ring; 8x8:

4x4 parameters, with second-level rings connected by a 256-bit third-level ring

Router

Single Ring 1-cycle per-hop latency (as in [30])
Buffered HRing Node (NIC) and bridge (IRI) routers based on [43]; 4-flit in-ring and transfer FIFOs. Bidirectional links of

dual-flit width (for fair comparison with our design). Bubble flow control [5] for deadlock freedom.
HiRD Local-to-global buffer depth of 1, global-to-local buffer depth of 4

TABLE II: Network parameters.
D. Hardware Cost

Our injection and transfer guarantee mechanisms have low hard-
ware overhead. To implement the injection guarantee, one counter
is required for each injection point. This counter tracks how many
cycles have elapsed while injection is starved, and is reset whenever a
flit is successfully injected. Routers communicate with the throttling
arbitration logic with only two wires, one to signal blocked injection
and one control line that throttles the router. The wiring is done
hierarchically instead of globally to minimize the wiring cost (§III-A).
Because the correctness of the algorithm does not depend on the delay
of these wires, and the injection guarantee mechanism is activated
only rarely (in fact, never for our evaluated realistic workloads), the
signaling and central coordinator need not be optimized for speed.
To provide the transfer guarantee, each bridge router implements
“observer” functionality for each of the two rings it sits on, and the
observer consists only of three small counters (to track the current
timeslot being observed, the current timeslot at the ring pipeline
register in this router, and the number of times the observed flit has
circled the ring) and a small amount of control logic. Importantly,
note that neither mechanism impacts the router critical path nor
affects the router datapath (which dominates energy and area).

IV. EVALUATION METHODOLOGY

We perform our evaluations using a cycle-accurate simulator of
a CMP system with 1.6GHz interconnect to provide application-
level performance results. Details are given in Tables I and II. Our
methodology ensures a rigorous and isolated evaluation of NoC
capacity for especially cache-resident workloads, and has also been
used in other studies [38, 15, 40, 41, 16]. Instruction traces for the
simulator are taken using a Pintool [36] on representative portions of
SPEC CPU2006 workloads.

We mainly compare to a single bidirectional ring and a state-of-
the-art buffered hierarchical ring [43]. Also, note that while there are
many possible ways to optimize each baseline (such as congestion
control [6, 40, 41], adaptive routing schemes, and careful parameter
tuning), we assume a fairly typical aggressive configuration for each.
Data Mapping: We map data in a cache-block-interleaved way to
different shared L2 cache slices. This mapping is agnostic to the
underlying locality. As a result, it does not exploit the low-latency
data access in the local ring. One can design systematically better
mapping in order to keep frequently used data in the local ring as
in [35, 8]. However, such a mapping mechanism is orthogonal to our
proposal and can be applied in all ring-based network designs.
Application & Synthetic Workloads: The system is run with a
set of 60 multiprogrammed workloads. Each workload consists of
one single-threaded instance of a SPEC CPU2006 benchmark on
each core, for a total of either 16 (4x4) or 64 (8x8) benchmark
instances per workload. Multiprogrammed workloads such as these
are representative of many common workloads for large CMPs.
Workloads are constructed at varying network intensities as follows:
first, benchmarks are split into three classes (Low, Medium and
High) by L1 cache miss intensity (which correlates directly with
network injection rate), such that benchmarks with less than 5 misses

per thousand instructions (MPKI) are “Low-intensity,” between 5
and 50 are “Medium-intensity,” and above 50 MPKI are “High-
intensity.” Workloads are then constructed by randomly selecting a
certain number of benchmarks from each category. We form workload
sets with four intensity mixes: High (H), Medium (M), Medium-
Low (ML), and Low (L), with 15 workloads in each (the average
network injection rates for each category are 0.47, 0.32, 0.18, and
0.03 flits/node/cycle, respectively).
Energy & Area: We measure the energy and area of routers and links
by individually modeling the crossbar, pipeline registers, buffers,
control logic, and other datapath components. For links, buffers
and datapath elements, we use DSENT 0.91 [48]. Control logic is
modeled in Verilog RTL. Both energy and area are calculated based
on a 45nm technology.

We assume a 2.5 mm link length for single-ring designs. For the
hierarchical ring design, we assume 1 mm links between local-ring
routers, because the four routers on a local ring can be placed at four
corners that meet in a tiled design. Global-ring links are assumed to
be 5.0 mm, because they span across two tiles on average if local
rings are placed in the center of each four-tile quadrant. Third-level
global ring links are assumed to be 10mm in the 8x8 evaluations.
This floorplan is illustrated in more detail in Figure 6.
Application Evaluation Metrics: For multiprogrammed workloads,
we present application performance results using the commonly-used
Weighted Speedup metric [47, 14].

2.5mm

20mm
Level-3 Global Ring (256 bits)
Level-2 Global Ring (128 bits)
              Local Ring (64 bits)

Fig. 6: Assumed floorplan for HiRD 3-level (64-node) network. Two-level
(16-node) network consists of one quadrant of this floorplan.

V. EVALUATION

We provide an evaluation of our proposed mechanism against
other ring baselines. Since our goal is to provide a better ring
design, our main comparisons are to ring networks. We have many
additional results and analyses, which we cannot present due to space
limitations. These are provided in our technical report [3]. Some of
these results show our mechanism works well with multithreaded
workloads and provides better worst-case latencies than the baselines.
Additional results also provide sensitivity analyses with different
system and design parameters. See [3] for details.
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Fig. 7: HiRD as compared to buffered hierarchical rings and a single-ring network.
A. Ring-based Network Designs

Figure 7 shows performance (weighted speedup normalized per
node), power (total network power normalized per node), and energy-
efficiency (perf./power) for 16-node and 64-node HiRD and buffered
hierarchical rings in [43], using identical topologies, as well as a
single ring (with different bisection bandwidths).

1. A hierarchical topology yields significant performance advan-
tages over a single ring (i) when network load is high and/or (ii)
when the network scales to many nodes. As shown, the buffered
hierarchical ring improves performance by 7% (and HiRD by 10%)
in high-load workloads at 16 nodes compared to a single ring with
128-bit links. The hierarchical design also reduces power because hop
count is reduced. Therefore, link power reduces significantly with
respect to a single ring. On average, in the 8x8 configuration, the
buffered hierarchical ring network obtains 15.6% better application
performance than the single ring with 256-bit links, while HiRD
attains 18.2% higher performance.

2. Compared to the buffered hierarchical ring, HiRD has signif-
icantly lower network power and better performance. On average,
HiRD reduces total network power (links and routers) by 46.5% (4x4)
and 14.7% (8x8) relative to this baseline. This reduction in turn yields
significantly better energy efficiency (lower energy consumption for
buffers and slightly higher for links). Overall, HiRD is the most
energy-efficient of the ring-based designs evaluated in this paper for
both 4x4 and 8x8 network sizes. HiRD also performs better than
Buffered HRing due to the reasons explained in the next section
(§V-B).

3. While scaling the link bandwidth increases the performance of
a single ring network, the network power increases 25.9% when the
link bandwidth increases from 64-bit to 128-bit and 15.7% when the
link bandwidth increases from 128-bit to 256-bit because of higher
dynamic energy due to wider links. In addition, scaling the link
bandwidth is not a scalable solution as a single ring network performs
worse than the bufferred hierarchical ring baseline even when a 256-
bit link is used.

Our technical report [3] contains more analyses and additional
evaluations on several multithreaded workloads. Our results show
that HiRD is more energy-efficient than both the single ring designs
and the buffered hierarchical ring design.

B. Synthetic-Traffic Network Behavior
Figure 8 shows the average packet latency as a function of

injection rate for buffered and bufferless mesh routers, a single-ring
design, the buffered hierarchical ring, and HiRD in 16 and 64-node
systems. We show uniform random, transpose and bit complement
traffic patterns [10]. Sweeps on injection rate terminate at network
saturation. The buffered hierarchical ring saturates at a similar point
to HiRD but maintains a slightly lower average latency because it
avoids transfer deflections. In contrast to these high-capacity designs,
the 256-bit single ring saturates at a lower injection rate. As network
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Fig. 8: Synthetic-traffic evaluations for 4x4 and 8x8 networks.

size scales to 8x8, HiRD performs significantly better than the 256-
bit single ring, because the hierarchy reduces the cross-chip latency
while preserving bisection bandwidth. HiRD also performs better
than Buffered HRing because of two reasons. First, HiRD is able
to allow higher peak utilization (91%) than Buffered HRing (71%)
on the global rings. We observed that when flits have equal distance
in a clock-wise and counter clock-wise direction, Buffered HRing
has to send flits to one direction in order to avoid deadlock while
deflections in HiRD allow flits to travel in both directions, leading
to better overall network utilization. Second, at high injection rates,
the transfer guarantee (§III) starts throttling the network, disallowing
future flits to be injected into the network until the existing flits arrive
at their destinations. This reduces congestion in the network and
allows HiRD to saturate at a higher injection rate than the buffered
hierarchical ring design.

C. Injection and Transfer Guarantees
In this subsection, we study HiRD’s behavior under a worst-

case synthetic traffic pattern that triggers the injection and transfer
guarantees and demonstrates that they are necessary for correct
operation, and that they work as designed.
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Configuration
Network Throughput

(flits/node/cycle)
Transfer FIFO Wait (cycles) Deflections/Retries

Ring A Ring B Ring C avg/max avg/max

Without Guarantees 0.164 0.000 0.163 2.5 / 299670 6.0 / 49983
With Guarantees 0.133 0.084 0.121 1.2 / 66 2.8 / 18

TABLE III: Results of worst-case traffic pattern without and with injection/transfer guarantees enabled.
Traffic Pattern: In the worst-case traffic pattern, all nodes on three
rings in a two-level (16-node) hierarchy inject traffic (we call these
rings Ring A, Ring B, and Ring C). Rings A, B, and C have bridge
routers adjacent to each other, in that order, on the single global ring.
All nodes in Ring A continuously inject flits to nodes in Ring C, and
all nodes in Ring C likewise inject flits to nodes in Ring A. This
creates heavy traffic on the global ring across the point at which Ring
B’s bridge router connects. All nodes on Ring B continuously inject
flits (whenever they are able) addressed to another ring elsewhere in
the network. However, because Rings A and C continuously inject
flits, Ring B’s bridge router will not be able to transfer any flits to
the global ring in the steady state (unless another mechanism such
as the throttling mechanism in §III intercedes).
Results: Table III shows three pertinent metrics on the network
running the described traffic pattern: average network throughput
(flits/node/cycle) for nodes on Rings A, B, and C, the maximum time
(in cycles) spent by any one flit at the head of a transfer FIFO, and
the maximum number of times any flit is deflected and has to circle
a ring to try again. These metrics are reported with the injection and
transfer guarantee mechanisms disabled and enabled. The experiment
is run with the synthetic traffic pattern for 300K cycles.

The results show that without the injection and transfer guarantees,
Ring B is completely starved and cannot transfer any flits onto the
global ring. This is confirmed by the maximum transfer FIFO wait
time, which is almost the entire length of the simulation. In other
words, once steady state is reached, no flit ever transfers out of
Ring B. Once the transfer FIFO in Ring B’s bridge router fills, the
local ring fills with more flits awaiting a transfer, and these flits
are continuously deflected. Hence, the maximum deflection count is
very high. Without the injection or transfer guarantees, the network
does not ensure forward progress for these flits. In contrast, when
the injection and transfer guarantees are enabled, (i) Ring B’s bridge
router is able to inject flits into the global ring and (ii) Ring B’s
bridge router fairly picks flits from its local ring to place into its
transfer FIFO. The maximum transfer FIFO wait time and maximum
deflection count are now bounded, and nodes on all rings receive
network throughput. Thus, the guarantees are both necessary and
sufficient to ensure deterministic forward progress for all flits in the
network.

Our technical report [3] provides similar worst-case analyses for
real workloads as well as additional network latency results. We have
shown in [3] that the injection and transfer guarantees also lower
network latency while deflections help to balance network load under
heavy traffic.

D. Router Area and Timing
We show both critical path length and normalized die area for

single-ring, buffered hierarchical ring, and HiRD, in Table IV. Area
results are normalized to the buffered hierarchical ring baseline, and
are reported for all routers required by a 16-node network (e.g., for
HiRD, 16 node routers and 8 bridge routers).

Metric Single-Ring Buffered HRing HiRD

Critical path (ns) 0.33 0.87 0.61
Normalized area 0.281 1 0.497

TABLE IV: Total router area (16-node network) and critical path.
Two observations are in order. First, HiRD reduces area relative

to the buffered hierarchical ring routers, because the node router
required at each network node is much simpler and does not require
complex flow control logic. HiRD reduces total router area by 50.3%
vs. the buffered hierarchical ring. Its area is higher than a single ring
router because it contains buffers in bridge routers. However, the
energy efficiency of HiRD and its performance at high load make up
for this shortcoming. Second, the buffered hierarchical ring router’s
critical path is 42.6% longer than HiRD because its control logic
must also handle flow control (it must check whether credits are
available for a downstream buffer). The single-ring network has a

higher operating frequency than HiRD because it does not need to
accommodate ring transfers (but recall that this simplicity comes at
the cost of poor performance at high load for the single ring).

E. Comparison Against Other Ring Configurations
Figure 9 highlights the energy-efficiency comparison of different

ring-based design configurations by showing weighted speedup (Y
axis) against power (X axis) for all evaluated 4x4 networks. HiRD is
shown with the three different bridge-router configurations (described
in §II-B). Every ring design is evaluated at various link bandwidths
(32-, 64-, 128- and 256-bit links). The top-left is the ideal corner
(high performance, low power). As the results show, at the same link
bandwidth, all three configurations of HiRD are more energy efficient
than the evaluated buffered hierarchical ring baseline designs at this
network size.
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Fig. 9: Weighted speedup (Y) vs. power (X) for 4x4 networks.
We also observe that increasing link bandwidth can sometimes

decrease router power as it reduces deflections in HiRD or lowers
contention at the buffers in a buffered hierarchical ring design.
However, once links are wide enough, this benefit diminishes for
two reasons: 1) links and crossbars consume more energy, 2) packets
arrive at the destination faster, leading to higher power as more energy
is consumed in less time.

Aside from the comparison against other ring configurations,
comparisons against other network topologies such as buffered [9]
and bufferless [15] meshes and flattened butterfly [29], are available
in our technical report [3]. We show in [3] that HiRD is more energy
efficient than these network topologies.

VI. RELATED WORK

To our knowledge, HiRD is the first hierarchical ring design that
uses simple, deflection-based ring transfers to eliminate the need for
buffering within rings while guaranteeing end-to-end packet delivery.
Hierarchical Interconnects: Hierarchical ring-based interconnect
was proposed in a previous line of work [43, 51, 21, 44, 19, 27].
We have already extensively compared to past hierarchical ring
proposals qualitatively and quantitatively. The major difference be-
tween our proposal and this previous work is that we propose
deflection-based bridge routers with minimal buffering, and node
routers with no buffering. In contrast, all of these previous works
use routers with in-ring buffering, wormhole switching and flow
control. Concurrent works by Kim et al. propose tNoCs, hybrid
packet-flit credit-based flow control [27] and Clumsy Flow Control
(CFC) [26]. However, these two designs add additional complexity
because tNoCs [27] requires an additional credit network to guarantee
forward progress while CFC requires coordination between cores and
memory controllers. In contrast, flow control in HiRD is lightweight
(with deflection based flow control, the Retransmit-Once mechanism,
and simpler local-to-global and global-to-local buffers). Additionally,
throttling decisions in HiRD can be made locally in each local ring
as opposed to global decisions in CFC [26] and tNoCs [27].

Udipi et al. proposed a hierarchical topology using global and local
buses [50]. While this work recognizes the benefits of hierarchy, our
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design builds upon a ring-based design instead of a bus-based design
because a ring-based design provides better scalability. Das et al. [12]
examined several hierarchical designs, including a concentrated mesh
(one mesh router shared by several nearby nodes).

A previous system, SCI (Scalable Coherent Interface) [20], also
uses rings, and can be configured in many topologies (including
hierarchical rings). However, to handle buffer-full conditions, SCI
NACKs and subsequently retransmits packets, whereas HiRD deflects
only single flits (within a ring), and does not require the sender to
retransmit its flits. SCI was designed for off-chip interconnect, where
tradeoffs in power and performance are very different than in on-chip
interconnects. The KSR (Kendall Square Research) machine [13] uses
a hierarchical ring design that resembles HiRD, yet these techniques
are not disclosed in detail and, to our knowledge, have not been
publicly evaluated in terms of energy efficiency.
Other Ring-based Topologies: Spidergon [7] proposes a bidirec-
tional ring augmented with links that directly connect nodes opposite
each other on the ring. These additional links reduce the average hop
distance for traffic. However, the cross-ring links become very long
as the ring grows, preventing scaling past a certain point, whereas
our design has no such scaling bottleneck. Octagon [25] forms a
network by joining Spidergon units of 8 nodes each. Units are joined
by sharing a “bridge node” in common. Such a design scales linearly.
However, it it does not make use of hierarchy, while our design makes
use of global rings to join local rings.
Other Low Cost Router Designs: Kim [28] proposes a low-cost
router design. However, this design is explicitly designed for meshes,
hence would not be directly usable in our ring-based design because
of potential livelock as we discussed in §III. Additionally, this design
does not use deflections when there is contention. Mullins et al. [39]
propose a buffered mesh router with single-cycle arbitration. Our
work differs in that our focus is on hierarchical rings rather than
meshes. Abad et al. [1] propose the Rotary Router. Their design
fundamentally differs from ours because each router has an internal
ring, and the network as a whole is a mesh. In contrast, HiRD’s
routers are simpler as they are designed for hierarchical rings. Kodi
et al. [31] propose an orthogonal mechanism that reduces buffering
by using links as buffer space when necessary.
Bufferless Mesh-based Interconnects: While we focus on ring-
based interconnects to achieve simpler router design and lower power,
other work modifies conventional buffered mesh routers by removing
buffers and using deflection [4, 18, 22, 32, 38, 15, 6, 16, 40, 41].
Applying bufferless routing principles to rings leads to inherently
simpler designs, as there is only one option for deflection in a
ring (i.e., continue circulating around the ring). Other works pro-
pose dropping packets under contention [18, 17]. SCARAB [22]
adds a dedicated circuit-switch network to send retransmit requests.
Several machines such as HEP [46], Tera [2] and the Connection
Machine [23] also use deflection routing to connect different chips.

VII. CONCLUSION

We introduced HiRD, which is a simple hierarchical ring-based
NoC design. Past work has shown that a hierarchical ring design
yields good performance and scalability relative to both a single
ring and a mesh. HiRD has two new contributions: (1) a simple
router design that enables ring transfers without in-ring buffering or
flow control, instead using limited deflections (retries) when a flit
cannot transfer to a new ring, and (2) two guarantee mechanisms
that ensure deterministically guaranteed forward progress despite
deflections. Our evaluations show that HiRD enables a simpler and
lower-cost implementation of a hierarchical ring network. Although
an exhaustive topology comparison is not the goal of this work, our
evaluations [3] also show that HiRD is more energy-efficient than
several other topologies while providing competitive performance.
We conclude that HiRD represents a compelling interconnect design
point to bring additional scalability to existing ring-based designs at
high energy efficiency.
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