
Pipeline Gating:
Speculation Control For Energy Reduction

Srilatha Manne
University of Colorado

Dept. of Electrical and Computer Engineering
Boulder, CO 80309

srilatha.manne@colorado.edu

Artur Klauser, Dirk Grunwald
University of Colorado

Department of Computer Science
Boulder, CO 80309

grunwald,klauser@cs.colorado.edu

Abstract

Branch prediction has enabled microprocessors to increasein-
struction level parallelism (ILP) by allowing programs to specula-
tively execute beyond control boundaries. Although speculative ex-
ecution is essential for increasing the instructions per cycle (IPC),
it does come at a cost. A large amount of unnecessary work results
from wrong-path instructions entering the pipeline due to branch
misprediction. Results generated with the SimpleScalar tool set us-
ing a 4-way issue pipeline and various branch predictors show an
instruction overhead of 16% to 105% for every instruction commit-
ted. The instruction overhead will increase in the future asproces-
sors use more aggressive speculation and wider issue widths[9].

In this paper, we present an innovative method for power re-
duction which, unlike previous work that sacrificed flexibility or
performance, reduces power in high-performance microprocessors
without impacting performance. In particular, we introduce a hard-
ware mechanism calledpipeline gatingto control rampant specu-
lation in the pipeline. We present inexpensive mechanisms for de-
termining when a branch is likely to mispredict, and for stopping
wrong-path instructions from entering the pipeline. Results show
up to a 38% reduction in wrong-path instructions with a negligible
performance loss (� 1%). Best of all, even in programs with a
high branch prediction accuracy, performance does not noticeably
degrade. Our analysis indicates that there is little risk inimple-
menting this method in existing processors since it does notimpact
performance and can benefit energy reduction.

1 Introduction

There has been considerable work onlow powerprocessors. Most
of this work focuses on reducing power in applications wherebat-
tery life is paramount. The focus of our research is to reducethe en-
ergy demands of high performance microprocessors without com-
promising performance. Such reductions will greatly reduce pack-
aging costs and will allow the computer architect to better balance
an overall “power budget” across different parts of the chip.

Existing low power work has focused on reducing energy in the
memory subsystem [3, 8, 4]. In embedded processors, such as the
StrongArm [11], the memory subsystem is the dominant sourceof

Permissions to make digital/hard copy of part or all this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permis-
sion of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee.
ISCA ’98 Barcelona, Spain
c1998 ACM $3.50

Inst Fetch
14%

REST
24%

F
P

 E
xe

c
5%

CLOCK
5%

Reg Alias Table
4%

Mem Order Buf 4%

Ext
Bus L

ogic
5%

R
es

er
va

tio
n

St
at

io
n

5%

Int Exec
6%

Data Cache
7%

Reorder Buf
7%

Inst Dec
14%

Figure 1: Power consumption for PentiumPro chip, broken down
by individual processor components.

area and power because the rest of the processor has been simpli-
fied to reduce power. State-of-the-art microprocessors have a high
degree of control complexity and a large amount of area dedicated
to structures that are essential for high-performance, speculative,
out-of-order execution, such as branch prediction units, branch tar-
get buffers, TLBs, instruction decoders, integer and floating point
queues, register renaming tables, and load-store queues. For exam-
ple,� 30% of the core die area on the DECchip 21264 is devoted
to cache structures, while the StrongARM processor uses� 60%
of the core die area for memory. Figure 1 shows a distributionof
the power dissipated in a PentiumPro processor [6] during a test
designed to consume the most power, which is when the proces-
sor is committing each instruction that it fetches. The fetch and
decode stages, along with components necessary to perform dy-
namic scheduling and out-of-order execution, account for asignif-
icant portion of the power budget. Therefore, pipeline activity is
a dominant portion of the overall power dissipation for complex
microprocessors.

Performance is the primary goal of state-of-the-art micropro-
cessor design. Architectural improvements for performance have
centered on increasing the amount of instruction level parallelism

CommitIssueDecodeFetch

1 2 3 4 5 6 7

Low Confidence

Branch Counter

If Low Confidence Branch

Resolved, Decrement Counter

Current Value of

M > N

 If
Counter (M)

2 Cycle Backward Edge Latency for Branch Misprediction

If Low Conf Branch,

Increment CounterGate Fetch

Instructions
Writeback

ICache

Figure 2: Pipeline with a two fetch and decode cycles, showing additional hardware required for pipeline gating. The low-confidence branch
counter records the number of unresolved branches that reported as low-confidence. The counter value is compared against a threshold value
(“N”). The processor ceases instruction fetch if there are more than N unresolved low-confident branches in the pipeline..

through aggressive speculation and out-of-order execution. Al-
though these advances have increased the number of instructions
per cycle (IPC), they have come at the cost of wasted work. Most
processors use branch prediction for speculative control flow exe-
cution, and recent work has examined value and memory specula-
tion [14]. Branch prediction is used to execute beyond the control
boundaries in the code. With high branch prediction accuracy, most
issued instructions will actually commit. However, many programs
have a high branch misprediction rate, and these programs issue
many instructions that never commit. Each of those instructions
uses many processor resources. If we can decrease the percentage
of uncommitted instructions actually issued, we can decrease the
power demands of the processor as a whole.

Goals and Contributions It is the goal of this paper to con-
trol speculation and reduce the amount of unnecessary work in
high-performance, wide-issue, super-scalar processors.We accom-
plish this by using a particular form of speculation control, called
pipeline gating, to limit speculation and reduce energy consump-
tion. In many processor implementations, functional unitsand
clocks are gated to restrict spurious signals from producing un-
necessary activity in circuits. Similarly, the pipeline can also be
gated to restrict spurious or wrong-path instructions fromentering
the pipeline. Although a thorough power analysis is beyond the
scope of this paper, the reduction in fetch and decode activity re-
sulting from pipeline gating can clearly be exploited to reduce the
power needs of a complex microprocessor. This paper makes the
following contributions:� We presentpipeline gating, a method to reduce the number

of speculatively issued instructions, and demonstrate theben-
efits of that method using a detailed pipeline-level simula-
tion of a wide-issue, out-of-order, super-scalar microproces-
sor. By reducing the number of instructions fetched, decoded,
issued and executed, we reduce the average activity in the
processor without reducing performance, and thus reduce the
total energy.� We compare the effectiveness and cost of this design using
various confidence estimationmechanisms, and show how
to increase the effectiveness of these confidence estimation
mechanisms for pipeline gating.� We present results which show a significant reduction in un-
necessary work with a negligible performance loss.

The rest of the paper discusses work reduction and the pipeline
gating method in more detail. Section 2 describes the gating
method and the work reduction metric used throughout the paper.
An overview of the pipeline model, confidence estimators andchar-
acterization of the estimators for pipeline gating are presented in
Section 3. Section 4 presents results for pipeline gating and Sec-
tion 5 concludes the papers.

2 Processor Pipeline Gating for Work Reduction

The energy consumed by a processor is a function of the amount
of work the processor performs to accomplish a given task. Ina
non-speculative processor all work performed is necessary. In a
speculative, multi-issue, dynamically scheduled processor, a large
amount of extra work is performed without realizing any perfor-
mance benefits. We define theExtra Workof a given pipeline stage
to beEw = �SeenInsn�CommittedInsnCommittedInsn �

. There is a different EW
value for each stage of the pipeline. For example, if only 100out of
130 instructions fetched by the processor actually commit,the EW
of the fetch stage is 30%. If 120 of the 130 instructions actually
execute, the EW of the execution stage is 20%. The EW parameter
has a lower bound of zero when no extra work is performed, but
has no upper bound.

The goal of pipeline gating is to reduce the amount of extra
work performed to complete a task without affecting the overall
performance of the system. Since performance drives the mar-
ket for these processors, it is difficult to justify a performance
loss without extraordinary savings in power. Secondly, overall en-
ergy consumption is dependent on performance. SinceEnergy =Power � T ime, simply reducing the power in a processor may
not decrease the energy demands if the task now takes longer to
execute. In [3], Frommet al noted a correlation between energy
and performance. Reducing performance does not always reduce
the overall energy consumed by the processor because of the qui-
escent energy consumed in the system [1]. In this paper, we reduce
work while retaining performance and thus reduce the overall en-
ergy consumption of the processor.

2.1 Pipeline Gating

We will use the schematic of the processor pipeline shown in Fig-
ure 2 to describe pipeline gating. Like many high-performance
processors, such as the DEC AXP-21164 or Intel PentiumPro, our
sample pipeline uses two fetch and decode cycles to allow theclock

2

rate to be increased. We assume the fetch stage has a small instruc-
tion buffer to allow instruction fetch to run ahead of decode. Branch
prediction occurs when instructions are fetched to reduce the mis-
fetch penalty. The actual instruction type may not be known until
the end of decode. Conditional branches are resolved in the exe-
cution stage, and branch prediction logic is updated in the commit
stage. Since the processor uses out-of-order execution, instructions
may sit in the issue window for many cycles, and there may be
several unresolved branches in the processor.

We use aconfidence estimatorto assess the quality of each
branch prediction. A “high confidence” estimate means we believe
the branch predictor is likely to be correct. A “low confidence” es-
timate means we believe the branch predictor has incorrectly pre-
dicted the branch. We use these confidence estimates to decide
when the processor is likely to be executing instructions that will
not commit; once that decision has been reached, we “gate” the
pipeline, stalling specific pipeline stages.

In our study, we vary a number of parameters, including the
branch predictor, the confidence estimator, the stage at which a gat-
ing decision is made, the stage that is actually gated and thenum-
ber of outstanding low-confident branches needed to engage gating.
The decision to gate can occur in the fetch, decode or issue stages.
Equally important is the decision aboutwhat to gate andhow long
to gate. Gating the fetch or decode stages would appear to make
the most sense, and we examined both cases. We used the num-
ber of unresolved low-confident branches to determine when and
how long to gate. For example, if the instruction window includes
one low-confident branch, and another low-confident branch exits
the fetch (or, alternatively, decode or issue) stage, gating would be
engaged until one or the other low-confident branch resolves. Fig-
ure 2 illustrates this process for a specific configuration. We add a
counter that is incremented whenever the decode encountersa low-
confident branch and is decremented when a low-confident branch
resolves. If the counter exceeds a threshold, the fetch stage is gated.
Instructions in the fetch-buffer continue to be decoded andissued,
but no new instructions are fetched.

We have found that gating the processor typically stalls thepro-
cessor for a very short duration. Figure 3 shows the number of
times a specific configuration of our pipeline model is stalled while
executing different programs. Generally, gating stalls occur for
about 2-4 processor cycles. Most processor configurations exhibit
a similar distribution, and indicate that our mechanism is exhibiting
fine control over the speculative state of the processor.

2.2 Confidence Estimation Metrics

A complete comparison of confidence estimation mechanisms [5]
is beyond the scope of this paper, but we implement several con-
fidence estimation methods and compare their performance for
pipeline gating. There are two important metrics to characterize
the performance of confidence estimators used by pipeline gating:
specificitySPECand thepredictive value of a negative test(PVN).
The specificity (SPEC) is the fraction of all mispredicted branches
actually detected by the confidence estimator as being low con-
fidence. The PVN is the probability of a low-confidence branch
being incorrectly predicted. A larger SPEC means that more mis-
predicted branches are marked as “low confidence”. A larger PVN
means that a given low-confidence branch is more likely to be mis-
predicted. A confidence estimator could have a perfect specificity
by markingall branches as low confidence, but the PVN would then
be no more than the branch misprediction rate.

In practice, a confidence estimator must balance SPECvs. PVN
to provide a good quality confidence estimate for many branches.
The confidence estimators we examined have an average SPECbe-
tween 17%-77%, and an average PVN between 19%-40%; typi-

Distribution of Number of Cycles Gated

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

1 5 9 13 17
Number of Cycles

N
u

m
be

r
o

f
G

at
in

g
 E

ve
n

ts

com gcc go ijp

li m88 perl vor

Figure 3: Distribution of gating events and the number of cycles
gated per event.

cally, estimators with a higher SPEChave a lower PVN. If we sim-
ply used the PVN of a single branch to control pipeline gating, we
would stall the pipeline too frequently, compromising performance.
However, if there wereN low-confident branches in the pipeline,
the probability thatat least oneof those branches is mispredicted
becomes1 � (1 � PVN)N . Thus, if the average PVN is 30%
and we gate when there are two or more low-confident branches
in the pipeline, the probability of at least one misprediction be-
comes51%. Since any subsequently fetched instructions would be
control dependent on both branches in the pipeline, this “boosting”
improves our gating decision.

3 Empirical Evaluation of Pipeline Gating

To properly understand the effects of stalling the pipeline, we used
the SimpleScalar tools [2] to develop a pipeline model of an out-
of-order, speculative, wide-issue processor. We modified thesim-
outorder processor model to produce the machine configuration
listed in Tables 1 and 2. Table 3 shows the latency of the different
operation types. Although we used a 32kByte instruction cache, it
is effectively equivalent to a 16kByte instruction cache because the
SimpleScalar instruction set uses 8-byte instructions. The proces-
sor can fetch, issue, and commit four instructions each cycle.

We used both McFarling combining branch predictor and
Gshare branch predictor to characterize the effect of branch pre-
dictor accuracy on pipeline gating. The McFarling combining pre-
dictor uses gshare and bimodal branch component predictorsalong
with a meta predictor. The meta predictor chooses one of the branch
predictors as the correct prediction for the branch. We chose the
combination of gshare and bimodal because McFarling [10] indi-
cated this combination had the best performance for the predictor
sizes used in this paper. In both the Gshare and McFarling pre-
dictors, the branch prediction counters are updated at commit, and
both predictors speculatively update the global history register, but
not the prediction counters. The penalty for a branch misprediction
is a minimum of seven cycles. Five of the cycles are incurred in
the pipeline stage for the new instruction to travel to the point of
execution, and the other 2 cycles are incurred for sending the mis-
prediction signal to the rest of the pipeline and to calculate a new
target address. The penalty will be larger than seven cyclesif the
new instruction is not available in the L1 instruction cache.

3

McFarling Gshare
Comm Inst/ Exec Fetch MisPred Exec Fetch MisPred

Name Inst Branch Cycles Inst Rate (%) Cycles Inst Rate (%)
compress 80.4 5.6 44.7 120.9 9.9 44.6 119.8 9.8
gcc 250.9 5.0 249.3 413.3 12.2 282.0 461.3 21.4
go 548.1 6.8 508.8 1043.2 23.9 544.1 1127.3 32.2
ijpeg 252.0 12.6 112.7 316.6 10.4 114.4 320.3 12.2
li 183.3 4.4 100.3 275.2 6.9 106.6 286.3 9.4
m88ksim 416.5 4.6 282.5 544.9 4.6 290.1 555.6 6.5
perl 227.5 5.2 276.8 361.3 11.3 305.0 403.4 21.3
vortex 180.9 6.2 119.7 192.8 1.7 127.7 211.1 5.0

Table 4: Baseline performance for McFarling and Gshare predictors. Instruction count and execution cycles are given inmillions. Also
shown in the number of instructions fetched (in millions) for each branch predictor.

Parameter Configuration
L1 Icache 256:64:2 (32 kB) - 1 cycle*
L1 Dcache 256:32:2 (16 kB) - 1 cycle
L2 Combined Cache 512:64:2 (64 kB) - 6 cycles
Memory 128 bit wide - 18 + 2 X chunks cycles
Branch Pred. (McFarling) 2k gshare + 2k bimodal + 2k meta
Branch Pred. (Gshare) 8k gshare entries
BTB 1024 entry, 4-way set associative
Return Address Stack 32 entry queue

ITLB 64 entry, fully associative

DTLB 128 entry, fully associative
Ifetch Queue 8 instructions

Table 1: Machine configuration parameters. Cache configurations
are described as Lines:Block Size:Associativity.� The 32kByte in-
struction cache is equivalent to a 16kByte cache because theSim-
pleScalar Tool Set uses 8 byte instructions.

Parameter Units
Fetch/Issue/Commit Width 4
Integer ALU 3
Integer Mult/Div 1
FP ALU 2
FP Mult/Div/Sqrt 1
Memory Ports 2
Instruction Window Entries 64
Load/Store Queue Entries 32

Minimum Mispredict Latency 7

Table 2: Resource and pipeline configuration for simulated archi-
tecture.

Resource Latency Occupancy
Integer ALU 1 1
Integer Mult 3 1
Integer Div 20 19
FP ALU 2 1
FP Mult 4 1
FP Div 12 12
FP Sqrt 24 24
Memory Ports 1 1

Table 3: Function unit configuration in terms of execution latency
and occupancy.

We used the SPECint95 applications to evaluate the different
pipeline gating techniques. The applications were compiled with
the Gcc compiler with full optimization. We used scaled downin-
puts to reduce the runtime of some applications, but each applica-
tion was run to completion. Relevant information for the bench-
marks, along with the conditional branch misprediction rates for
Gshare and McFarling branch predictors, are shown in Table 4. The
misprediction measurements use the base processor configuration
with no pipeline gating. The misprediction rate across our applica-
tions ranges from 2% to 32%. We used the SPECint95 benchmarks
for our performance evaluation and did not simulate the SPECfp95
since those programs typically pose few difficulties for branch pre-
dictors.

A schematic model of the pipeline was given in Figure 2, and
both fetch and decode take two cycles to complete. This model
should highlight flaws in pipeline gating, because the time to re-
cover from an incorrect pipeline gating decision is a function of the
number of cycles it takes for the gated instructions to reachthe is-
sue stage. Hence, the longer the front end of the pipeline, the larger
the penalty for incorrect gating. Figure 2 also shows the signals
for the pipeline gating mechanism we found to be most effective.
The decision to gate and the actual gating is performed during the
first fetch cycle. Our performance results show that most of the ex-
tra work in the pipeline occurs at the fetch and decode stages, and
gating at the fetch stage will have the largest impact. The number
of unresolved, low-confidence branches were measured at decode.
This insures some “slip” between the fetch and decode stagesif we
made an incorrect gating decision. This increases the extrawork
(EW) of the stages beyond fetch, but also reduces the performance
loss by providing the issue stage with a few instructions from the
correct-path while the pipeline catches up from an incorrect gating
decision.

Pipeline gating is engaged when the number of low confidence
branches exceeds thegating threshold (N). As mentioned, this is
used to improve the likelihood that at least one mispredicted branch
is being processed. Gating is disengaged when the number of low
confidence branches is less than or equal to the gating threshold.
As was shown in Figure 3, gating is triggered a number of times,
but for very few cycles each time. Therefore, pipeline gating ef-
fectively slows the injection of instructions into the pipeline rather
than stopping instructions altogether.

3.1 Confidence Estimators

Although branch predictors have been widely studied, confidence
estimators have only recently been discussed [7, 5]. Thus, we will
describe the mechanics of confidence estimation and the confidence
estimators we used in more detail. Confidence estimation is adiag-

4

nostic test that attempts to classify each branch prediction as having
“high confidence”, meaning that the branch was likely predicted
correctly, or “low confidence”, meaning the branch was likely mis-
predicted. We used the SPECand PVN metrics defined in the previ-
ous section to classify the confidence estimators discussedbelow.

Perfect Confidence Estimation: Although a perfect confidence
estimator is unattainable in practice, we used precise information
from the pipeline state to evaluate the potential of pipeline gating,
and to determine how much of that potential performance was ex-
ploited by other configurations.

Static Confidence Estimation: Static confidence estimation as-
sociates a confidence estimate with each conditional branchin-
struction. The confidence is determined by running the program
through a branch prediction simulator and recording the branch
misprediction rate of individual branch sites. Branch instructions
with a misprediction rate above a specified threshold were consid-
ered to have low confidence. Static confidence estimation hasthe
benefit that it can be “customized” for a specific SPEC and PVN.
For the experiments in this paper, we wanted to demonstrate the
best performance that a static confidence estimator could provide.
Thus, we use the same input to select and evaluate the static confi-
dence sites, and we varied the selection threshold across each pro-
gram to report the best performance. We used the static method for
both Gshare and McFarling predictors.

JRS Confidence Estimation: Jacobsenet al [7] proposed a con-
fidence estimator that paralleled the structure of the gshare branch
predictor. This estimator uses a table ofmiss distance coun-
ters (MDC) to keep track of branch prediction correctness. Each
MDC entry is a “saturating resetting counter”. Correctly predicted
branches increment the corresponding MDC, while incorrectly pre-
dicted branches set the MDC to zero. A branch is considered to
have “high confidence” only when the MDC has reached a partic-
ular confidence threshold value referred to as theMDC-threshold.
For this simulation, we used a table of 4096 entries of 2-bit satu-
rating/resetting counters. We also discuss the effectiveness of dif-
ferent JRS configurations for pipeline gating in future sections. We
use the JRS method for both Gshare and McFarling predictors.

Saturating Counters: Most branch predictors use some form of
saturating counters to predict the likely branch outcome. Smith [13]
mentioned that it may be possible to use these counters as branch
confidence estimators. We used this mechanism with the McFarling
predictor to produce the “Both Strong” estimation method which
marks a branch as high confidence only if the saturating counters
for both gshare and bimodal predictors are in a strong state and
have the same predicted direction (taken or not-taken). We tried
a number of other variants with the McFarling counters and found
that the “Both Strong” configuration provided the best results for
our needs because it produced a high SPECvalue with a reasonable
PVN. The saturating counters method did not work well for Gshare.

Distance: In [5], we found that branch mispredictions were clus-
tered and that this clustering could be used to build an inexpensive
confidence estimator. The conditional probability of a mispredic-
tion for branches that issued branches after a mispredicted branch
is resolved is higher for smaller values ofd. Varying the distanced affects the SPECand PVN – smaller values increase the PVN (but
reduce the SPEC). We found a value ofd = 4 worked best for
pipeline gating in our model. We used the Distance method as an
inexpensive confidence mechanism for Gshare.

Gshare
Conf Pred SPEC PVN

static 87.5 27.5
JRS 72.8 37.1
distance=4 71.9 25.8

McFarling
Conf Pred SPEC PVN

static 88.4 26.3
JRS 65.9 30.7
Both Strong 77.2 20.3

Table 5: Assorted confidence estimators with the Gshare and Mc-
Farling branch predictors. Values given are the arithmeticmean of
all committed branches for SpecInt95 benchmarks.

Table 5 shows the performance of the different confidence esti-
mators in terms of SPECand PVN using the Gshare and McFarling
branch predictors. A complete comparison of different confidence
estimation methods is beyond the scope of this paper. Instead, we
wanted to compare the performance of pipeline gating using in-
expensive implementations and more expensive implementations.
Unlike the JRS estimator, which has a considerable overhead, the
Distance estimator is very inexpensive to implement. Likewise, the
“Both Strong” method simply uses existing processor state,and in-
troduces negligible additional hardware cost. Although wetried
other estimators with the branch predictors, we found that the ones
presented in Table 5 performed the best by producing a high SPEC
and a reasonable PVN.

As we will see in later sections, it is more important, within
reason, to select an estimation mechanism with a good SPECvalue
as opposed to one with just a good PVN value. Effectively, using
a gating threshold boosts the effective PVN, and it becomes more
important to seemorelow-confident branches (i.e., a higher SPEC)
than to know that the low confident branches were truly mispre-
dicted (i.e., a higher PVN).

4 Results

The basic configuration used for pipeline gating is given in Fig-
ure 2. We evaluated the McFarling and Gshare branch predictors
using a variety of modifications. Analysis is performed across dif-
ferent confidence estimators, gating threshold values, andpipeline
configurations.

Figures 4 and 5 show the amount of extra work being performed
with the McFarling and Gshare predictors, respectively forthe base
case with no pipeline gating. The bars represent the amount of ex-
tra work (EW) performed in each stage of the pipeline. Most of
the extra work occurs in the front stages of the pipeline, at fetch
and decode. As we progress down the pipeline, the amount of ex-
tra work decreases dramatically. This is because most mispredicted
branches resolve in a reasonable amount of time, and the probabil-
ity is small that an instruction from the wrong-path has progressed
deep into the pipeline. As expected, the amount of unnecessary
work is generally correlated to the misprediction rate. Forexam-
ple,vortexhas a low misprediction rate, and there is very little extra
work being done for this program. On the other hand, the pipeline
performs twice the amount of necessary work forgo, which suffers
from a high misprediction rate. Fortunately, confidence mecha-
nisms inherently do better on programs with a large misprediction
rate [5], and are most effective in reducing the amount of extra work
in programs that have the largest overhead.

5

McFarling: Base Case

0
10
20
30
40
50
60
70
80
90

100
110

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

E
W

 (
%

)
Fetch Decode Issue WriteBack

Figure 4: Extra work for base case with the McFarling predictor.

Gshare: Base Case

0
10
20
30
40
50
60
70
80
90

100
110

co
m

pr
es

s
gc

c go
ijp

eg li

m
88

ks
im pe

rl

vo
rte

x

E
W

 (
%

)

Fetch Decode Issue WriteBack

Figure 5: Extra work for base case with the Gshare predictor.

McFarling/Perfect

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
d

u
p

0
10
20
30
40
50
60
70
80
90
100
110

E
W

 (
%

)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 6: Extra work (EW) and speedup for McFarling predictor
with a perfect confidence estimator. The entire thin bar shows EW

with “No Gating” while the dark portion shows EW with gating.
The wide, gray bar represents relative speedup.

Gshare/Perfect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110

E
W

 (
%

)

Speedup NotGated Gated

Fetch

Decode

Issue

WB

Figure 7: Extra work and speedup for Gshare predictor with a per-
fect confidence estimator. The entire thin bar shows EW with “No
Gating”, while the dark portion shows EW with gating. The wide,
gray bar represents relative speedup.

McFarling/Both Strong

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110

E
W

 (
%

)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 8: Results for McFarling and “Both Strong” using a gating
threshold value of2.

Gshare/Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110
E

W
 (

%
)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 9: Results for Gshare and Distance using a gating threshold
of 2.

6

4.1 Performance with Different Confidence Estimators

We first explore the effectiveness of pipeline gating as a function
of the confidence estimation mechanisms. We present resultsus-
ing perfect confidence estimation, inexpensive dynamic estimation,
static estimation, and a more expensive dynamic estimationbased
on the JRS estimator. For the analysis of different confidence es-
timators, we used the gating mechanism shown in Figure 2. The
pipeline is gated at fetch, and the number of unresolved branches is
measured at decode.

Perfect Confidence Estimation: Figures 6 and 7 show the ex-
tra work and speedup results when using McFarling and Gshare
branch predictors, respectively, with a perfect confidenceestima-
tor. The dark portion of the thinner bars represents the amount
of extra work with pipeline gating. The entire thin bar represents
the amount of extra work without any pipeline gating. The four
bars per group represent the four stages of the pipeline: fetch, de-
code, issue and writeback. We do not show the commit stage since
the number of committed instructions is the same with and without
pipeline gating. The wide, gray bars represent the speedup of the
pipeline gating method relative to the base case. For EW, lower is
better, whereas for speedup, higher is better. All speedup numbers
above 1.0 represent a performance improvement from pipeline gat-
ing, while numbers below 1.0 represent a performance loss. All the
data we present for pipeline gating is presented in a similarmanner.

With a perfect confidence estimator, one would expect a 100%
reduction in extra work. This does not happen with the pipeline
gating configuration used because we do not “see” the low confi-
dence branch until it reaches thedecodestage. Therefore, some
extra instructions will “leak” into the pipeline before gating is ini-
tiated. Pipeline gating with perfect confidence estimationcan re-
sult in increased speedup for a number of programs, such asli and
m88ksim. Performance improves in the gated pipeline because op-
erations from the wrong path do not consume resources which cor-
rect path instructions might need. On the other hand, some pro-
grams, such asperl with the McFarling branch predictor, show
a performance loss with perfect confidence estimation. Specula-
tive execution has been shown to be beneficial for performance by
warming up instruction caches [12], and gating the pipelinereduces
the benefits of the warm-up effect. With more realistic confidence
estimation mechanisms, we do not gate as many of the incorrectly
predicted paths. Hence we still benefit from some of the warm-up
effects in the instruction caches.

Inexpensive Dynamic Confidence Estimation: Figures 8 and 9
show results for the “Both Strong” and Distance confidence estima-
tors, respectively. Gating is engaged when there are more than two
low-confident branches in the pipeline. Gshare uses the Distance
estimator, and McFarling uses the “Both Strong” estimator.These
were determined to be the best and least expensive dynamic con-
fidence mechanisms for pipeline gating for the respective branch
predictors. The figures show the reduction in extra work and rel-
ative speedup for each SpecInt95 program. The dynamic confi-
dence estimation mechanisms for both branch predictors perform
well enough to reduce approximately 30% of the extra work ingo,
and yet not hurt performance invortexthrough unnecessary gating.

Static Confidence Estimation: In Figures 10 and 11, we show
results for gating when using a best-case static confidence estima-
tor discussed in Section 3. The static confidence estimatorsdo well
for both McFarling and Gshare predictors. In the case of the Mc-
Farling predictor, a few programs, such ascompress, do better with
static profiling, but the results in general are about the same as the

“Both Strong” estimation mechanism. For Gshare, on the other
hand, there is marked reduction in extra work. Forgcc, the EW is
reduced from over 80% to just over 50% in the fetch stage. Withthe
Distance estimator, we were only able to reduce this to 65%. The
Distance estimator relies on the clustering behavior of mispredicted
branches. Some programs, such asgo, exhibit significant mispre-
diction clustering while others, such ascompressandm88ksimdo
not. Hence, the Distance method is not as consistent or accurate
in its confidence estimations for Gshare as the Saturating Counters
method is for McFarling.

Dynamic Confidence Estimation with JRS: Data for McFar-
ling and Gshare predictors with a small JRS estimation mechanism
is shown in Figures 12 and 13. We restricted ourselves to a JRSsize
of 1kByte or less because of area and power considerations. The
results shown use a 128 entry, 4-bit JRS table for both branchpre-
dictors. The JRS estimator for McFarling used a MDC-threshold of
15, while the JRS estimator for Gshare used a MDC-threshold of
12. As mentioned earlier, a branch is considered to have “high con-
fidence” only when the miss distance counters (MDC) have reached
a specified MDC-threshold value. The results for McFarling with
JRS are similar to those using the “Both Strong” estimator. Gshare
results, on the other hand, improve significantly with the JRS es-
timator. For example, the reduction in EW for compressimproves
from 6% to 32%. Results produced are similar to those generated
with the static estimation method. There are a couple of explana-
tions for this. First, as discussed earlier, the Distance predictor does
not do well for some types of programs. Secondly, the JRS estima-
tor is tuned to work well with the Gshare predictor [7, 5], anddoes
not perform as well with the McFarling predictor. If the hardware
can be justified, a small, multi-bit, JRS confidence estimator will
provide the best results of any dynamic estimation mechanism for
Gshare.

JRS Configurations For Pipeline Gating: The JRS configura-
tions that worked best for both Gshare and McFarling had a small
table size and a large counter size. The question that remains is why
such a small JRS table does so well. Figure 14 shows the geometric
mean of EW and speedup for a variety of JRS table configurations
with the Gshare predictor. The values of EW without pipeline gat-
ing does not change as a function of the JRS table, because the
JRS estimator does not affect the “Not Gated” case. Althoughthe
first two sets of data (128–4bit, 256–2bit) use the same size JRS ta-
ble, albeit different configurations, they show very different results.
Furthermore, the larger tables shown do not produce significantly
better results for the amount of hardware used. This is because
even the largest JRS table suffers from a relatively low PVN value,
and a gating threshold must be used to boost the effective PVN. As
noted earlier, the best PVN values are around 0.4, and even a small
increase in PVN requires considerable extra hardware. Therefore,
it is far less expensive to target a high SPECvalue and increase the
accuracy of the estimation with the aid of the gating threshold.

To verify this hypothesis, we ran the 128 entry JRS table with
different MDC-threshold values. Figure 15 shows the geometric
mean of EW and speedup for a range of MDC-threshold values
(which are labeledT) using a 128 entry JRS table with the Gshare
predictor. The gating threshold was set to2 for all of these simula-
tions, which means that gating is engaged when there are 3 or more
low confident branches in the pipeline. Figure 15 clearly shows the
reduction in extra work with larger MDC-threshold values. As we
increase the MDC-threshold, more branches are classified as“low
confidence”, resulting in a larger SPEC and lower PVN. With the
lower PVN, we see a corresponding reduction in performance be-
cause the confidence estimation is less accurate. However, the in-

7

McFarling/Static

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
co

m
pr

es
s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110

E
W

 (
%

)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 10: Extra work and speedup for McFarling with static con-
fidence estimation.

Gshare/Static

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110

E
W

 (
%

)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 11: Extra work and speedup for Gshare with static confi-
dence estimation.

McFarling/JRS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110

E
W

 (
%

)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 12: Results for gating using a 128 entry, 4-bit JRS table with
McFarling. A gating threshold value of3 was used.

Gshare/JRS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

S
p

ee
du

p

0

10

20

30

40

50

60

70

80

90

100

110

E
W

 (
%

)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 13: Results for gating using a 128 entry, 4-bit JRS table with
Gshare. A gating threshold value of2 was used.

Gshare/JRS With Various Sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

12
8-

4b
it

25
6-

2b
it

25
6-

4b
it

10
24

-2
bi

t

40
96

-2
bi

t

G
eo

 M
ea

n
 S

p
ee

du
p

0

5

10

15

20

25

30

35

40

45

50

55

G
eo

 M
ea

n
 E

W
 (

%
)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 14: The effectiveness of various JRS table sizes for work
reduction. The size of each table is given in<entries>–<bits per
entry>.

8

crease in SPECis much larger than the decrease in PVN. The SPEC
increases from a value 34.4 to 93.10 as the MDC-threshold changes
from 1 to 15, while the PVN decreases from 31.5 to 21.3. Since gat-
ing is engaged when there are 3 or more unresolved, low confident
branches in the pipeline, the probability that at least one of the three
low confident branches is mispredicted is1� (1� :315)3 = 68%
for a MDC-threshold of 1, and1�(1� :213)3 = 51% for a MDC-
threshold of 15. Although we are less accurate when the MDC-
threshold is large, the short duration of gating events and the “slip”
between instruction fetch and decode helps reduce the performance
penalty due to incorrect gating.

4.2 Varying the Gating Threshold

Figures 16 and 17 show EW and speedup for the McFarling and
Gshare predictors, respectively, as a function of the gating thresh-
old valueN. The gating threshold is used to determine the maxi-
mum number of low-confidence branches allowed in the pipeline
before gating is triggered. The “Both Strong” confidence mecha-
nism was used with McFarling, and the Distance mechanism was
used with Gshare. The data given is the geometric mean of EW and
speedup for different gating threshold values. Note that the value
of EW without pipeline gating does not change as a function ofN,
since the gating threshold does not affect the “Not Gated” case.

The leftmost set of bars show the results for a configuration
with a gating threshold of zero and all branches tagged as lowcon-
fidence. This effectively reduces the pipeline to a super-scalar,
non-speculative machine, which provides the best energy reduc-
tion albeit with a high performance penalty. This is not an exact
replica of a non-speculative machine, which would see a EW value
of zero. As with the perfect confidence estimation case, EW is not
zero because we only “see” a low-confidence branch at decode.The
speedup loss is over 35% for both predictors when approximating a
non-speculative machine, although we achieve a substantial reduc-
tion in EW. With a reasonable confidence estimator and a gating
threshold of zero, we still significantly reduce the amount of EW
without the performance loss seen in a non-speculative machine.
Although this loss in performance is not appropriate for power
reduction, other applications, such as bandwidth multi-threading,
might benefit from a zero gating threshold.

For work reduction with no performance loss, both figures
clearly show the need for a gating threshold to compensate for a low
PVN value. As the gating threshold (labeledN) increases, speedup
improves but EW also increases. Ideally, asN increases, the im-
provement in speedup should be greater than the increase in EW.
In both figures, this occurs forN = 2, given tight constraints on
performance. Using a gating threshold value of two, we are able to
reduce EW in the fetch and decode stages by approximately 25%
and 23% for McFarling, and 18% and 17% for Gshare with a neg-
ligible performance loss.

4.3 Varying the Pipeline Structure

So far, we have investigated various confidence estimation mecha-
nisms and gating threshold values, but have not changed the under-
lying structure of the gated pipeline. We decided to gate at fetch
and measure at decode so that we could 1) capture a large portion
of the wrong path instructions in fetch, and 2) allow some slip into
the pipeline, respectively. We explored moving the point ofgat-
ing to the decode and issue stages. All results in this section were
generated for the McFarling predictor using the “Both Strong” esti-
mation method. Table 6 shows results for no gating, for measuring
at decode and gating at fetch, and measuring and gating at decode.

Gating at decode produces worse results for EW at the fetch
stage than gating at fetch, although there is still an overall reduction

Gshare: Confidence Threshold Effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T
=

1

T
=

3

T
=

5

T
=

8

T
=

9

T
=

11

T
=

13

T
=

15

G
eo

 M
ea

n
 S

p
ee

d
u

p

0

5

10

15

20

25

30

35

40

45

50

55

G
eo

 M
ea

n
 E

W
 (

%
)

Speedup NotGated Gated

Fetch

Decode

Issue

WB

Figure 15: The effectiveness of a 128 entry JRS table as a function
of MDC-threshold value. T denotes the MDC-threshold.

McFarling: Secondary Filter Effects

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
S

N
=

0

N
=

1

N
=

2

N
=

3

N
=

4

G
eo

 M
ea

n
 S

p
ee

du
p

0

5

10

15

20

25

30

35

40

45

50

55

G
eo

 M
ea

n
 E

W
 (

%
)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 16: EW and speedup as a function of gating threshold values
(denotedN) for the McFarling predictor. Also shown is the non-
speculative version of the processor (NS).

Gshare: Secondary Filter Effects

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
S

N
=

0

N
=

1

N
=

2

N
=

3

N
=

4

G
eo

 M
ea

n
 S

p
ee

du
p

0

5

10

15

20

25

30

35

40

45

50

55

G
eo

 M
ea

n
 E

W
 (

%
)

Speedup Not Gated Gated

Fetch

Decode

Issue

WB

Figure 17: EW and speedup as a function of gating threshold val-
ues for Gshare. Also shown is the non-speculative version ofthe
processor (NS).

9

McFarling
Case Fetch Decode Issue WriteBack

Base 45.12 34.96 11.11 10.64
Gate at
Fetch 34.74 27.10 9.66 9.23
Gate at
Decode 39.24 27.83 9.77 9.33

Table 6: Geometric Mean of EW for base case (No Gating), gating
at fetch, and gating at decode for McFarling.

in work when compared to the base case. This is reasonable since
we are allowing the fetch stage to continue fetching until the fetch
buffer is full. Therefore, more instructions will enter thepipeline;
this would not happen if gating disabled instruction fetch.We ex-
pected to see an improvement in performance with gating at decode
since the recovery penalty for incorrect gating would be less than
gating at fetch. It takes only three cycles for an instruction to “catch
up” and issue after an incorrect gating event with gating at decode
as opposed to five cycles with gating at fetch. Results show noreal
performance benefit from moving the gating point from fetch to de-
code. As shown in Figure 3, the pipeline is generally not gated for
more than a few cycles. The current pipeline model has a 64-entry
register update unit, and results show that it usually has enough in-
structions in the issue queue to keep the execution units occupied
while the pipeline catches up from gating.

We also tried other gating configurations such as measuring low
confidence branches at the second decode cycle, and gating atis-
sue. None of these configurations performed as well as gatingat
fetch and measuring at decode. Measuring at the second decode
cycle did not change the results in any significant manner. Gating at
issue resulted in very little savings since most of the wrong-path in-
structions do not reach the issue stage. Due to space limitations, we
will not present results for these configurations. Of all thepipeline
gating configurations attempted, gating at fetch and measuring at
decode produced the best results.

5 Conclusion

We have looked at speculation control to reduce the amount ofen-
ergy consumed in a speculative, multi-issue, out-of-orderproces-
sor. We introduced a new mechanism, pipeline gating, which re-
sults in a reduction of instructions in the pipeline withoutsignifi-
cantly altering performance. We have shown results for different
branch predictors and confidence estimators, and implemented in-
expensive dynamic confidence estimation methods that do a rea-
sonable job of reducing unnecessary work. Furthermore, we pre-
sented a practical configuration for the JRS confidence estimator
that successfully reduces energy without a large hardware penalty.
Most importantly, we showed that inexpensive, dynamic confi-
dence estimation mechanisms exist which, at worst, do not impact
performance for highly predictable programs, and at best, reduce
work by a measurable amount for programs with a large mispredic-
tion rate.

Architectural level power reduction in high performance pro-
cessors is a broad field and one that is in its infancy. We have
presented an innovative method for reducing power, and there is
much work left to be done in this area. With wider width proces-
sors and hyper speculation in the foreseeable future [9], pipeline
gating methods will become even more essential for no-risk energy
reduction in high performance processors.

Acknowledgments: We would like to thank Steve Gunther for
many invaluable conversations on power dissipation in micro-
processors, Doug Burger and Todd Austin for supporting Sim-
pleScalar, and Todd Austin for his help in developing the ideas
presented in this paper. We would also like to thank the referees
for their helpful comments. This work was conducted on equip-
ment provided by a Digital Equipment Corporation grant, andwas
partially supported by a grant from Hewlett-Packard, NSF grants
No. CCR-9401689, No. MIP-9706286 and in part by ARPA con-
tract ARMY DABT63-94-C-0029.

References

[1] Thomas D. Burd and Robert W. Brodersen. Processor de-
sign for portable systems.Journal ov VLSI Signal Processing,
13(2/3):203–222, August 1996.

[2] D. Burger and T. M. Austin. The simplescalar tool set, version
2.0. TR 1342, University of Wisconson, June 1997.

[3] Richard Fromm, Stylianos Perissakis, Neal Cardwell,
Christoforos Kozyrakis, Bruce McGaughy, and David Patter-
son. The Energy Efficiency of IRAM Architectures. Techni-
cal report, May 1997.

[4] Ricardo Gonzalez and Mark Horowitz. Energy Dissipation
in General Purpose Microprocessors.IEEE Journal of Solid-
State Circuits, 31(9):1277–1284, September 1996.

[5] Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andrew
Pleszkun. Confidence esimation for speculation control. In
Proceedings 25th Annual International Symposium on Com-
puter Architecture, SIGARCH Newsletter, Barcelona, Spain,
June 1998. ACM.

[6] Steve Gunther and Suresh Rajgopal. Personal communica-
tion.

[7] E. Jacobsen, E. Rotenberg, and J.E. Smith. Assigning Con-
fidence to Conditional Branch Predictions. InInternational
Symposium on Microarchitecture, pages 142–152, December
1996.

[8] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache:
An Energy Efficient Memory Structure.IEEE Micro, Decem-
ber 1997.

[9] M. H. Lipasti and J. P. Shen. Superspeculative microarchitec-
ture for beyond ad 2000.IEEE Computer, 30(9), 1997.

[10] S. McFarling. Combining branch predictors. TN 36, DEC-
WRL, June 1993.

[11] J. Montanaro andet. all. A 160-MHz, 32-b, 0.5-W CMOS
RISC Microprocessor. InDigital Technical Journal, vol-
ume 9. Digital Equipment Corporation, 1997.

[12] J. Pierce and T. Mudge. Wrong-Path Instruction Prefetching.
IEEE Micro, December 1996.

[13] J.E. Smith. A Study of Branch Prediction Strategies. In
Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, pages 135–148, May 1981.

[14] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In
Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, pages 194–205. IEEE, June 1997.

10

