
Computer Architecture (263-2210-00L), Fall 2017

HW 5: Multicore Execution, Runahead Execution, Prefetching

SOLUTIONS
Instructor: Prof. Onur Mutlu

TAs: Hasan Hassan, Arash Tavakkol, Mohammad Sadr, Lois Orosa, Juan Gomez Luna

Assigned: Sunday, Nov 26, 2017
Due: Wednesday, Dec 13, 2017

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:

//safari.ethz.ch/review/architecture/. Please check your inbox. You should have
received an email with the password you can use to login to the paper review system. If you
have not received any email, please contact comparch@lists.ethz.ch. In the first page after
login, you should click in “Architecture - Fall 2017 Home”, and then go to “any submitted
paper” to see the list of papers.
• Handin - Questions (2-6). Please upload your solution to the Moodle (https://moodle-
app2.let.ethz.ch/) as a single PDF file. Please use a typesetting software (e.g.,
LaTeX) or a word processor (e.g., MS Word, LibreOfficeWriter) to generate
your PDF file. Feel free to draw your diagrams either using an appropriate
software or by hand, and include the diagrams into your solutions PDF.

1 Critical Paper Reviews [200 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5% of your total grade for each good review.

• Lecture slides on guidelines for reviewing papers. Please follow this format.
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-

how-to-do-the-paper-reviews.pdf

• Some sample reviews can be found here: https://safari.ethz.ch/architecture/fall2017/doku.

php?id=readings

(a) Write a one-page critical review for the first paper of the following list and at least one of the other 3
papers:

• O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA 2003. https://people.inf.ethz.
ch/omutlu/pub/mutlu_hpca03.pdf

• M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive Insertion Policies for High
Performance Caching” ISCA 2007. https://safari.ethz.ch/architecture/fall2017/lib/exe/

fetch.php?media=p381-qureshi.pdf

• N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,” ISCA 1990. https://safari.ethz.ch/architecture/

fall2017/lib/exe/fetch.php?media=1-jouppi.pdf

• D. Josephand and D. Grunwald, “Prefetching using Markov Predictors,” ISCA 1997. https://

safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=18-2-joseph-prefetching.

pdf

1/13

https://safari.ethz.ch/review/architecture/
https://safari.ethz.ch/review/architecture/
https://moodle-app2.let.ethz.ch/
https://moodle-app2.let.ethz.ch/
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=p381-qureshi.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=p381-qureshi.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=1-jouppi.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=1-jouppi.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=18-2-joseph-prefetching.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=18-2-joseph-prefetching.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=18-2-joseph-prefetching.pdf


2 Running Ahead [200 points]

Consider the following program, running on an in-order processor with no pipelining:

LD R1 ← (R3) // Load A

ADD R2 ← R4, R6

LD R9 ← (R5) // Load B

ADD R4 ← R7, R8

LD R11 ← (R16) // Load C

ADD R7 ← R8, R10

LD R12 ← (R11) // Load D

ADD R6 ← R8, R15

Assume that all registers are initialized and available prior to the beginning of the shown code. Each load
takes 1 cycle to execute, and each add takes 2 cycles to execute. Loads A through D are all cache misses. In
addition to the 1 cycle taken to execute each load, these cache misses take 6, 9, 12, and 3 cycles, respectively
for Loads A through D, to complete. For now, assume that no penalty is incurred when entering or exiting
runahead mode.

Note: Please show all your work for partial credit.

(a) For how many cycles does this program run without runahead execution?

42 cycles.

(b) For how many cycles does this program run with runahead execution?

27 cycles. See Table 1.

(c) How many additional instructions are executed in runahead execution mode?

14 instructions. See Table 1.

(d) Next, assume that exiting runahead execution mode incurs a penalty of 3 cycles. In this case, for how
many cycles does this program run with runahead execution?

4 runahead periods in total. 27 + 4× 3 = 39 cycles

(e) At least how many cycles should the runahead exit penalty be, such that enabling runahead execution
decreases performance? Please show your work.

4 cycles. (27 + 4×X > 42)

(f) Which load instructions cause runahead periods? Circle all that did:

LoadA LoadB LoadC LoadD

For each load that caused a runahead period, tell us if the period generated a prefetch request. If it did
not, explain why it did not and what type of a period it caused.
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Table 1: Execution timeline for Problem 2(b), using runahead execution with no exit penalty and no opti-
mizations.

Table 1: Execution timeline for Problem 6(b), using runahead execution with no exit penalty and no opti-
mizations

Cycle Operations Enter/Exit
Runahead
Mode

Runahead
Mode?

Is Additional
Runahead
Instruction?

1 Load 1 Issue enter RA
2 Add 1 Yes Yes
3 Add 1 Yes Yes
4 Load 2 Issue Yes Yes
5 Add 2 Yes Yes
6 Add 2 Yes Yes
7 Load 1 Finish Load 3 Issue exit RA Yes Yes
8 Add 1
9 Add 1
10 Load 2 Issue,

already issued
enter RA

11 Add 2 Yes Yes
12 Add 2 Yes Yes
13 Load 2 Finish Load 3 Issue, already issued exit RA Yes Yes
14 Add 2
15 Add 2
16 Load 3 Issue,

already issued
enter RA

17 Add 3 Yes Yes
18 Add 3 Yes Yes
19 Load 3 Finish Load 4 Issue, dependent on R11

from Load 3. Load 3 finishes at
the end of cycle 19, so R11 isn’t
available now.

exit RA Yes Yes

20 Add 3
21 Add 3
22 Load 4 Issue enter RA
23 Add 4 Yes Yes
24 Add 4 Yes Yes
25 Load 4 Finish exit RA Yes
26 Add 4
27 Add 4

5/23
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Load A: This period generated prefetches

Load B: Short runahead period. / Overlapping runahead periods.

Load C: Dependent loads. / Short runahead period.

Load D: No loads to prefetch in this period. (Useless runahead period)

(g) For each load that caused a runahead period that did not result in a prefetch, explain how you would
best mitigate the inefficiency of runahead execution.

Load A: N/A. Prefetch was generated.

Load B:
Do not enter runahead mode if only a few cycles are left before the corresponding
cache miss will be filled. Do not enter runahead mode if the subsequent instruction(s)
have already been executed during a previous runahead period.

Load C: Predict the value of cache-miss address loads.

Load D:
Predict if a period will generate useful cache misses, and do not execute that period
if it’s deemed useless.

(h) If all useless runahead periods were eliminated, how many additional instructions would be executed in
runahead mode?

Since only the first runahead period generated prefetches, only that runahead period will be
executed. According to Table 1, 6 instructions are executed in the first runahead period.

How does this number compare with your answer from part (c)?

Less.

(i) Assume still that the runahead exit penalty is 3 cycles, as in part (d). If all useless runahead execution
periods were eliminated (i.e., runahead execution is made efficient), for how many cycles does the
program run with runahead execution?

One runahead period, so 27 + 1× 3 = 30 cycles.

How does this number compare with your answer from part (d)?

Less.

(j) At least how many cycles should the runahead exit penalty be such that enabling efficient runahead
execution decreases performance? Please show your work.
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16 cycles. (27 + 1×X > 42)
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3 Prefetching [150 points]

An architect is designing the prefetch engine for his machine. He first runs two applications A and B on the
machine, with a stride prefetcher.

Application A:

uint8_t a[1000];

sum = 0;

for (i = 0; i < 1000; i += 4)

{

sum += a[i];

}

Application B:

uint8_t a[1000];

sum = 0;

for (i = 1; i < 1000; i *= 4)

{

sum += a[i];

}

i and sum are in registers, while the array a is in memory. A cache block is 4 bytes in size.

(a) What is the prefetch accuracy and coverage for applications A and B using a stride prefetcher. This
stride prefetcher detects the stride between two consecutive memory accesses and prefetches the cache
block at this stride distance from the currently accessed block.

Application A’s prefetch accuracy is 248/249 and coverage is 248/250.
Application A accesses a[0], a[4], a[8], ... a[996]. It has 1000/4 = 250 accesses to memory.
The first two accesses to a[0] and a[4] are misses. After observing these two accesses, the
prefetcher learns that the stride is 4 and starts prefetching a[8], a[12], a[16] and so on until
a[1000] (on the access to a[996], a[1000] is prefetched; however, it is not used). In all, 249
cache blocks are prefetched, while only 248 are used.
Hence, the prefetch accuracy is 248/249 and coverage is 248/250.

Application B’s prefetch accuracy is 0 and coverage is 0.
Application B accesses a[1], a[4], a[16], a[64] and a[256]. It has five accesses to memory.
However, there isn’t a constant stride between these accesses, as the array index is multiplied
by 4, rather than being incremented/decremented by a constant stride. Hence, the stride
prefetcher cannot prefetch any of the accessed cache blocks and the prefetch accuracy and
coverage are both 0.

(b) Suggest a prefetcher that would provide better accuracy and coverage for
i) application A?

A next block prefetcher would always prefetch the next cache block. Hence, the cache block
containing a[4] would also be prefetched. Therefore, the prefetch accuracy would be 249/250
and coverage would be 249/250.

ii) application B?

Most common prefetchers such as stride, stream, next block would not improve the prefetch
accuracy of application B, as it does not have an access pattern for which prefetchers are
commonly designed. Some form of pre-execution, such as runahead execution or dual-core
execution could help improve its prefetch accuracy.
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(c) Would you suggest using runahead execution for
i) application A. Why or why not?

No. While runahead execution could still provide good prefetch accuracy even for a regular
access pattern as in application A, it might not be possible to prefetch all cache blocks before
they are accessed, as runahead execution happens only when the application is stalled on a
cache miss. A stride prefetcher or next block prefetcher, on the other hand could possibly
prefetch all cache blocks before they are accessed, as prefetching happens in parallel with the
application’s execution.

ii) application B. Why or why not?

Yes. Application B’s memory access pattern does not have a regular access stride. Commonly
used prefetchers are not designed to prefetch an access pattern like this. However, runahead
execution could potentially prefetch some cache blocks, especially as the address of the cache
blocks does not depend on the data from a pending cache miss.
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4 More Prefetching [200 points]

A processor is observed to have the following access pattern to cache blocks. Note that the addresses are
cache block addresses, not byte addresses. This pattern is repeated for a large number of iterations.

Access Pattern P: A, A + 3, A + 6, A, A + 5

Each cache block is 8KB. The hardware has a fully associative cache with LRU replacement policy and a
total size of 24KB.

None of the prefetchers mentioned in this problem employ confidence bits, but they all start out with empty
tables at the beginning of the access stream shown above. Unless otherwise stated, assume that 1) each
access is separated long enough in time such that all prefetches issued can complete before the next access
happens, and 2) the prefetchers have large enough resources to detect and store access patterns.

(a) You have a stream prefetcher (i.e., a next-N-block prefetcher), but you dont know the prefetch degree
(N) of it. However, you have a magical tool that displays the coverage and accuracy of the prefetcher.
When you run a large number of repetitions of access pattern P, you get 40% coverage and 10% accuracy.
What is the degree of this prefetcher (how many next blocks does it prefetch)?

Next 4 blocks.
40% coverage with a stream prefetcher for this pattern means blocks A+3 and A+6 are
prefetched. Possible N at this point are 3 and 4. Accuracy 10% = 2/(N*5), so N is 4.

(b) You didnt like the performance of the stream prefetcher, so you switched to a PC-based stride prefetcher
that issues prefetch requests based on the stride detected for each memory instruction. Assume all
memory accesses are incurred by the same load instruction (i.e., the same PC value) and the initial
stride value for the prefetcher is set to 0.

Circle which of the cache block addresses are prefetched by this prefetcher:

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

Explain:

This prefetcher remembers the last stride and applies that to prefetch the next block from the
current access.

(c) Stride prefetcher couldnt satisfy you either. You changed to a Markov prefetcher with a correlation
table of 12 entries (assume each entry can store a single address to prefetch, and remembers the most
recent correlation). When all the entries are filled, the prefetcher replaces the entry that is least-recently
accessed.

Circle which of the cache block addresses are prefetched by this prefetcher:

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5
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Explain:

All entries are filled after the first repetition, except the entry for A+5. Accesses to A+3 and
A+5 thrash each other for block As next-block entry, so they cannot be correctly prefetched.

(d) Just in terms of coverage, after how many repetitions of access pattern P does the Markov prefetcher
from part (c) start to outperform the stream prefetcher from part (a), if it can at all? Show your work.

5 repetitions.
Coverage for Markov prefetcher from part (c) is (0+2+3*(N-2))/(5N). This is equal to 40%
when N=4, so it outperforms 40% at the 5th repetition. We gave full credit if you wrote either
4 or 5, depending on the work shown

(e) You think having a correlation table of 12 entries makes the hardware too costly, and want to reduce the
number of correlation table entries for the Markov prefetcher. What is the minimum number of entries
that gives the same prefetcher performance as 12 entries? Similar to the last part, assume each entry
can store a single next address to prefetch, and remembers the most recent correlation. Show your work.

4 entries.
With 4 different accesses, we need at least 4 entries.

(f) Your friend is running the same program on a different machine that has a Markov prefetcher with 2
entries. The same assumptions from part (e) apply.

Circle which of the cache block addresses are prefetched by the prefetcher:

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

A, A + 3, A + 6, A, A + 5

Explain:

NONE. Not enough entries. Entries will be evicted before they are used again.

(g) As an avid computer architect, you decide to update the processor by increasing the cache size to 32KB
with the same cache block size. Assume you will be only running a program with the same access pattern
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P for a large number of iterations (i.e., one trillion), describe a prefetcher that provides smaller memory
bandwidth consumption than the baseline without a prefetcher.

Explain:

No prefetcher. Since all lines will sit in the cache after the first iteration, the prefetcher
needs to achieve 100% accuracy on the first iteration in order to consume the same amount
of memory bandwidth as the baseline, which is not possible without any training on the
prefetcher beforehand.
Note: We leave it up to you to think whether or not you can ever design a prefetcher that
leads to less memory consumption than the baseline without a prefetcher.
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5 Markov Prefetchers vs. Runahead Execution [100 points]

(a) Provide two advantages of runahead execution over Markov prefetchers.

(i) Does not require recording of miss addresses.
(ii) More accurate, as it executes actual code.
(iii) (Mostly) Uses pre-existing hardware.
(vi) Less bandwidth wasted. Markov will issue N prefetches/miss.
(v) Can prefetch compulsory misses (i.e. does not need to see an address previously as a miss
to be able to prefetch it)

(b) Provide two advantages of Markov prefetchers over runahead execution.

(i) Is not limited by the branch prediction accuracy as it is not pre-execution based.
(ii) Can prefetch dependent misses.
(iii) Does not need to execute instructions to generate prefetches.

(c) Describe one memory access pattern in which runahead execution performs better than Markov prefetch-
ers. Show pseudo-code.

If the access pattern did not repeat, runahead execution would perform better, as Markov
prefetchers cannot avoid compulsory misses.

uint8 t a[1000];

sum = 0;

for (i = 0; i < 1000; i ++)

{
sum += a[i];

}

(d) Describe one memory access pattern in which runahead execution performs worse than Markov prefetch-
ers. Show pseudo-code.

Linked list traversal that happens multiple times. Runahead cannot prefetch dependent misses
whereas markov is able to trigger the miss for the next node when the previous node is visited
(assuming that the linked list was traversed previously and the correlation table still contains
the correlations between node addresses).
while (node != NULL) {
...

node = node->next;

}
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6 Parallel Speedup [200 points]

You are a programmer at a large corporation, and you have been asked to parallelize an old program so that
it runs faster on modern multicore processors.

(a) You parallelize the program and discover that its speedup over the single-threaded version of the same
program is significantly less than the number of processors. You find that many cache invalidations are
occuring in each core’s data cache. What program behavior could be causing these invalidations (in 20
words or less)?

Cache ping-ponging due to (inefficient or poorly-designed) data sharing.

(b) You modify the program to fix this first performance issue. However, now you find that the program
is slowed down by a global state update that must happen in only a single thread after every parallel
computation. In particular, your program performs 90% of its work (measured as processor-seconds)
in the parallel portion and 10% of its work in this serial portion. The parallel portion is perfectly
parallelizable. What is the maximum speedup of the program if the multicore processor had an infinite
number of cores?

Use Amdahl’s Law: for n processors, Speedup(n) = 1
0.1+ 0.9

n

As n→∞, Speedup(n) → 10

(c) How many processors would be required to attain a speedup of 4?

6 processors.
Let Speedup(n) = 4 (from above) and solve:
4 = 1/(0.1 + 0.9

n )
0.25 = 0.1 + 0.9

n
0.15 = 0.9

n
n = 6

(d) In order to execute your program with parallel and serial portions more efficiently, your corporation
decides to design a custom heterogeneous processor.

• This processor will have one large core (which executes code more quickly but also takes greater
die area on-chip) and multiple small cores (which execute code more slowly but also consume less
area), all sharing one processor die.

• When your program is in its parallel portion, all of its threads execute only on small cores.

• When your program is in its serial portion, the one active thread executes on the large core.

• Performance (execution speed) of a core is proportional to the square root of its area.

• Assume that there are 16 units of die area available. A small core must take 1 unit of die area. The
large core may take any number of units of die area n2, where n is a positive integer.

• Assume that any area not used by the large core will be filled with small cores.

(i) How large would you make the large core for the fastest possible execution of your program?

4 units.
For a given large core size of n2, then the large core yields a speedup of n on the serial
section, and there are 16 − n2 small cores to parallelize the parallel section. Speedup is thus
1/( 0.1

n + 0.9
16−n2 ). To maximize speedup, minimize the denominator. One can find that for n = 1,

the denominator is 0.16. For n = 2, the denominator is 0.125. For n = 3, the denominator is
0.1619 (this can be approximated without a calculator: 0.0333 plus 0.90/7 > 0.12 is greater
than 0.15, thus worse than n = 2.) Hence, n = 2 is optimal, for a large core of n2 = 4 units.
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(ii) What would the same program’s speedup be if all 16 units of die area were used to build a homo-
geneous system with 16 small cores, the serial portion ran on one of the small cores, and the parallel
portion ran on all 16 small cores?

Speedup = 1/(0.1 + 0.9
16 ) = 6.4

(iii) Does it make sense to use a heterogeneous system for this program which has 10% of its work in
serial sections?
Why or why not?

Yes.
The serial portion of the program is large enough that speedup of the serial portion with the
large core speedup outweighs loss in parallel throughput due to the large core.

(e) Now you optimize the serial portion of your program and it becomes only 4% of total work (the parallel
portion is the remaining 96%).

(i) What is the best choice for the size of the large core in this case?

4 units.
Same as above, we can calculate n2. Now the speedup is 1/( 0.04

n + 0.96
16−n2 ). Again, n = 2

maximizes the speedup.

(ii) What is the program’s speedup for this choice of large core size?

1/( 0.04
2 + 0.96

12 ) = 10

(iii) What would the same program’s speedup be for this 4%/96% serial/parallel split if all 16 units of
die area were used to build a homogeneous system with 16 small cores, the serial portion ran on one of
the small cores, and the parallel portion ran on all 16 small cores?

1/(0.04 + 0.96
16 ) = 1/0.1 = 10

(iv) Does it make sense to use a heterogeneous system for this program which has 4% of its work in
serial sections?
Why or why not?

No.
The heterogeneous system is more complex to design, but the performance is the same for this
program.
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