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Lab 3: Simulating Caches and Branch Prediction
Assigned: Mon., 13.11; Due: Mon., 27.11 (Midnight)

Instructor: Onur Mutlu
TAs: Hasan Hassan, Arash Tavakkol, Mohammad Sadr, Lois Orosa, Juan Gomez Luna

1. Introduction

In this lab, you will implement a timing simulator (written in C) to model instruction/data caches
and a branch predictor. Unlike the RTL that you have developed in previous labs, a timing simulator
is not a direct or synthesizable implementation of the processor. Rather, it is a higher-level, abstract
model designed to allow quick architectural exploration. Describing and simulating hardware at a
higher level of abstraction allows the designer to quickly see how design choices (e.g., caches or branch
predictors) would impact performance.

We will give you the base simulator (it has been developed to match the processor that we have used
in previous labs). We will also fully specify the behavior of the caches and the branch predictor. Your
job is to extend the simulator so that it implements the caches and the branch predictor as specified.

2. Timing Simulator

Unlike in previous labs, where we worked with a pipeline in Verilog, we are not constrained to logic-
level implementation in a C-based timing simulator. Our main goal is to compute the number of cycles
a program execution would take on the simulated processor. Because of this, many simplifications are
possible. We do not actually need to model control logic and datapath details in each block of the
processor; we only need to write code for each stage that performs the relatively high-level function of
that pipeline stage (read the register file, access memory, etc.). In general, the simulator’s algorithms
and structures do not need to exactly match the processor’s algorithms and structures, as long as the
result is the same. While we no longer have a low-level implementation, and thus cannot determine
the critical path (or other cost metrics that we care about, such as area taken on a silicon chip, or
power consumed during operation), we can know how many cycles a program would take (assuming
we model the cycle-level solution accurately).

3. Your Task: Additions to the Baseline Timing Simulator

Your goal is to implement the timing simulator so that it models a MIPS machine with (i) instruc-
tion/data caches, and (ii) a branch predictor. In the following, we will fully specify the microarchi-
tecture of the MIPS machine that you will simulate.

3.1. Instruction Cache

The instruction cache is accessed every cycle by the fetch stage.

Organization. It is a four-way set-associative cache that is 8 KB in size with 32-byte blocks (this
implies that the cache has 64 sets). When accessing the cache, the set index is calculated using bits
[10:5] of the PC.

Miss Timing. When the fetch stage misses in the instruction cache, the block must be retrieved
from main memory. An access to main memory takes 50 cycles. On the 50th cycle, the new block is
inserted into the cache. In total, an instruction cache miss stalls the pipeline for 50 cycles.

Replacement. When a new block is retrieved from main memory, it is inserted into the appropriate
set within the instruction cache. If any way within the set is empty (i.e., invalid), the new block



Computer Architecture (263-2210-00L), Fall 2017 2/7

is simply inserted into the invalid way. However, if none of the ways in the set are empty, the new
block replaces the least-recently-used block in the set. For both cases, the new block becomes the
most-recently-used block.

Control-Flow. While the fetch stage is stalled due to a miss in the instruction cache, a control-flow
instruction further down the pipeline may redirect the PC. As a result, the pending miss may turn
out to be unnecessary: it is retrieving the wrong block from main memory. In this case, the pending
miss is canceled: the block that is eventually returned by main memory is not inserted into the cache
– even if the redirection happens on the very last stall cycle.1 Finally, note that when the PC is
redirected to an address pointing to the same block as the pending miss, the pending miss should not
be cancelled.

3.2. Data Cache

The data cache is accessed whenever a load or store instruction is in the memory stage.

Organization. It is an eight-way set-associative cache that is 64 KB in size with 32 byte blocks
(this implies that the cache has 256 sets). When accessing the cache, the set index is calculated using
bits [12:5] of the data address that is being loaded/stored.

Miss Timing & Replacement. Miss timing and replacement of the data cache are identical to
those of the instruction cache.

Handling Stores. Both load and store misses stall the pipeline for 50 cycles. They both retrieve a
new block from main memory and insert it into the cache.

Dirty Evictions. When a “dirty” block is replaced by a new block from main memory, it must be
written back into main memory. For the purpose of this lab, we will assume that such dirty evictions
are handled instantaneously – i.e., they are written immediately into main memory in the same cycle
as when the new block is inserted into the cache.

3.3. Assumptions about Instruction & Data Caches

• Assume that both caches are initially empty (i.e., all blocks are invalid).

• In both caches, every block has a separate tag that stores information about the block: e.g.,
address, valid, recency, etc. Tags are initialized to 0.

• Assume that the program that runs on the processor never modifies its own code (referred to as
self-modifying code): a given block cannot reside in both the caches.

3.4. Branch Predictor

Organization. The branch predictor consists of (i) a gshare direction predictor and (ii) a branch
target buffer.

Gshare Direction Predictor. The gshare predictor uses an 8-bit global branch history register
(GHR). The most recent branch is stored in the least-significant-bit of the GHR and a value of
‘1’ denotes a taken branch. The predictor XORs the GHR with bits [9:2] of the PC and uses
this 8-bit value to index into a 256-entry pattern history table (PHT). Each entry of the PHT is
a 2-bit saturating counter that operates as discussed in class: a taken branch increments whereas a
not-taken branch decrements; the four values of the counter correspond to strongly not-taken (00),
weakly not-taken (01), weakly taken (10), strongly taken (11).

Branch Target Buffer. The branch target buffer (BTB) contains 1024 entries indexed by bits
[11:2] of the PC. Each entry of the BTB contains (i) an address tag, indicating bits [31:12] of the

1Note that this might not be a good idea, but this is our specification of the processor. If you are interested in the
effects of “wrong-path” execution on processor performance, please see Mutlu et al. [1, 2].
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PC; (ii) a valid bit; (iii) a bit indicating whether this branch is unconditional ; and (iv) the target of
the branch.

Prediction. At every fetch cycle, control logic in the predictor indexes into both the BTB and the
PHT. If the predictor misses in the BTB (i.e., address tag != PC[31:12] or valid bit = 0), then the
next PC is predicted as PC+4. If the predictor hits in the BTB, then the next PC is predicted as
the target supplied by the BTB entry when either of the following two conditions are met: (i) the
BTB entry indicates that the branch is unconditional, or (ii) the gshare predictor indicates that the
branch should be taken. Otherwise, the next PC is predicted as PC+4.

Update. The GHR is updated immediately after the prediction without waiting for the branch to
resolve.2 The correct GHR should be restored upon a flush. The rest of branch predictor structures
are updated in the execute stage, where all branches are resolved. This part of the update consists
of: (i) updating the PHT, which is indexed using the value of the GHR that was used for prediction
and (ii) updating the BTB. Unconditional branches do not update the PHT or the GHR, but they
update the BTB (setting the unconditional bit in the corresponding entry).

Initial State. All branch predictor structures are initialized to 0.

3.5. Flushing the Pipeline

When resolving a branch, the pipeline is flushed under any of the following conditions:

• The instruction is a branch, but the predicted direction does not match the actual direction.

• The instruction is a branch, and it is taken, but the predicted destination (target) does not
match the actual destination

• The instruction is a branch, but it was not recognized as a branch (i.e., BTB miss)

• You will need to ensure the correct value of GHR and the correct value of PC are restored upon
a flush (i.e., a redirection of the fetch stage).

4. Lab Resources

4.1. Source Code

Do NOT modify any files or folders unless explicitly specified in the list below.

• Makefile

• run: Script that runs your simulator and compares it against the baseline simulator

• src/: Source code (Modifiable; feel free to add more files)

– pipe.c: Your simulator (Modifiable)

– pipe.h: Your simulator (Modifiable)

– mips.h: MIPS related pound defines

– shell.c: Interactive shell for your simulator

– shell.h: Interactive shell for your simulator

• inputs/: Example test inputs for your simulator (Modifiable; feel free to add more files)

4.2. Makefile

We provide a Makefile that automates the compilation and verification of your simulator.

2For reference, please see Hao et al [3].
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The first time you use the Makefile you should compile the baseline simulator:

$ make basesim

This will generate basesim, which is the baseline simulator corresponding to the code we provide.
You can use it to verify the output of a program you run on your simulator. Note that the output of a
program should always match the output obtained by running the program on the baseline simulator.
However, the execution time of a program on the two simulators will not be same after your changes
on the caches and the branch predictor.

To compile your simulator:

$ make

To compile your simulator and check it against the baseline simulator using one or more test inputs:

$ make run INPUT=inputs/inst/addiu.x

$ make run INPUT=inputs/inst/*.x

$ make run

5. Getting Started & Tips

5.1. The Goal

We provide you with a skeleton of the timing simulator that models a five-stage MIPS pipeline: pipe.c
and pipe.h. As it is, the simulator is already architecturally correct: it can correctly execute any
arbitrary MIPS program that only uses the implemented instructions.3 When the simulator detects
data dependences, it correctly handles them by stalling and/or bypassing. When the simulator detects
control dependences, it correctly handles them by stalling the pipeline as necessary.

By executing the following command, you can see that your simulator (sim) does indeed have identical
architectural outputs (e.g., register values) as the baseline simulator (basesim) for all the test inputs
that we provide in inputs/.

$ make run

Your job is to model accurately the timing effects of the caches, the branch predictor, and the main
memory in your timing simulator.

5.2. Studying the Timing Simulator

Please study pipe.c and pipe.h in detail.

The simulator models each pipeline stage as a separate function – e.g., pipe stage fetch(). The
simulator models the state of the pipeline as a collection of pointers to Pipe Op structures (defined
in pipe.h). Each Pipe Op represents one instruction in the pipeline by storing all of the necessary
information about the instruction that is needed by the simulator. A Pipe Op structure is allocated
when an instruction is fetched. It then flows through the pipeline and eventually arrives at the last
stage (writeback), where it is deallocated once the instruction completes. To elaborate, each stage
receives a Pipe Op from the previous stage, processes the Pipe Op, and passes it down to the next
stage. The simulator models pipeline stalls by stopping the flow of Pipe Op structures and pipeline
flushes by deallocating the Pipe Op structures at different stages.

3This is not entirely true since we pose the usual restrictions on system calls, exceptions, etc.
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5.3. Tips

• Please do not distribute the provided program files. These are for exclusive indi-
vidual use of each student of the Computer Architecture course. Distribution and
sharing violates the copyright of the software provided to you.

• Read this handout in detail.

• If needed, please ask questions to the TAs using the online Q&A forum in Moodle.

• When you encounter a technical problem, please first read the error messages. A search on the
web can usually solve many debugging issues, and error messages.

• The two major tasks of this lab – implementing caches, and implementing branch prediction –
are independent, so you may tackle them in either order. One way to approach this lab is to first
write a generic implementation of a set-associative cache, and then plug it into both the fetch
stage (instruction cache) and the memory stage (data cache). Once the caches are functional
and they also stall the pipeline correctly, you can implement the branch predictor.

6. Submission

Use the corresponding assignment in Moodle (https://moodle-app2.let.ethz.ch/). You should
submit all the files needed to compile and simulate your code in a single tarball (with the name
lab3 YourSurname YourName.tar.gz). Please include comments to explain what you have done in
the simulator code.

7. Extra Credit

We will offer up to 50% additional credit for this lab for exploring two different design aspects of the
cache, and another 50% additional credit for design aspects of the branch predictor.

7.1. Cache Exploration

1. Cache size, block size, associativity: a sweep of cache parameters. You should write a set
of benchmarks that use significant amounts of memory (for example, accessing a large array
in streaming or random patterns), and run your simulator to measure IPC for various cache
parameters. Show how changing the associativity, block size, and cache size affect performance.

2. Replacement and insertion policies: an exploration of cache replacement and/or insertion
policies. The cache replacement policy specifies which cache block in a set is replaced when a new
block is inserted into the cache. The cache insertion policy specifies where in the list of blocks
the new block is placed. Up to now, we have used a replacement policy that evicts (replaces) the
least-recently-used block, and an insertion policy that places new blocks at the most-recently-
used position. However, other replacement and insertion policies have been studied, and some
have been shown to achieve significantly better performance (fewer cache misses) for certain
access patterns [4, 5]. You should experiment with a variety of test programs and optimize the
cache replacement/insertion policy.

3. Other: Optionally, you may also choose to experiment with other aspects of the cache. For
example, using more sophisticated hashing functions to map cache blocks to cache sets and/or
using more than one hashing function [6]. Implementing a victim cache is another possibility [7].
Since this part is open-ended, the instructor reserves the amount of extra credit that can be
obtained but 35% extra credit (in addition to the 50% mentioned above) is possible, depending
on the difficulty of the optimization and the goodness of the resulting design and implementation.

Please write a report (report cache.pdf) that briefly summarizes (i) your observations on the effect
of each cache parameter, (ii) your findings on cache replacement/insertion policies, and (iii) any other
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optimizations you implement. Your report does not need to be more than four pages, but feel free
to use more pages to present schematics, data, and graphs. Please also submit the version of your
simulator (src/) that implements the best performing cache designs. This version of the simulator
and the report should be submitted as a separate folder (called extra credit cache) within the same
tarball as the regular submission.

7.2. Branch Predictor Exploration

1. Reducing interference in the PHT: In the gshare predictor you implemented, the GHR is
hashed with the branch PC in order to achieve better utilization of the PHT. Other designs with
the same goal are:

(a) the agree predictor [8]

(b) the gskew predictor [9]

You may choose to implement either one of them or both, and compare them to your baseline
gshare predictor.

2. Other branch predictors: Implement other branch predictors to improve the branch predic-
tion accuracy of your processor and compare it to your baseline gshare predictor. We will hold a
competition on branch prediction accuracy. Among all submissions, the top students that have
the best branch prediction accuracy and the best branch predictor designs will receive up to
75% additional credit for this lab as well as “prizes” (at the discretion of the instructor). You
may choose any or all of the following:

(a) Perceptron branch predictor [10]

(b) TAGE branch predictor [11]

(c) Tournament branch predictor [12, 13]

(d) Any other branch prediction mechanism, including optimization of the gshare predic-
tor. You can find more branch prediction proposals in https://www.jilp.org/cbp2016/

program.html.

3. Other: Optionally, you can explore other control-flow handling mechanisms. For instance, you
may want to support predication [14, 15] in your pipeline. Implementing the conditional move
instruction (CMOV) in your machine might be a simple way to support predication. You will also
have to manually modify some programs to remove branches and include conditions evaluation.
Since this part is open-ended, the instructor reserves the amount of extra credit that can be
obtained but 35% extra credit is possible (in addition to the 50% mentioned above), depending
on the difficulty of the mechanism and the goodness of the resulting design and implementation.

Please write a clear and detailed-enough report (report branch.pdf) that summarizes your findings
for (i) the effectiveness of the different designs to reduce PHT interference, (ii) the comparison between
the baseline gshare predictor and the other branch predictors, and (iii) any other optimizations you
choose to implement and explore. Your report does not need to be more than four pages, but feel
free to use more pages for schematics, data, and graphs. Please also submit the versions of your
simulator (as many src/ folders as needed) that implement the different predictors. These versions
of the simulator and the report should be submitted as a separate folder (called extra credit branch)
within the same tarball as the regular submission.
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