**Computer Architecture** Lecture 14: New Programming Features in Heterogeneous Systems

> Juan Gómez Luna ETH Zürich Fall 2017 8 November 2017

# Agenda for Today

Traditional accelerator model

- Review: Program structure
- Review: Memory hierarchy and memory management
- Review: Performance considerations
  - Memory access
  - SIMD utilization
- Atomic operations
- Data transfers
- New programming features
  - Collaborative computing
  - Dynamic parallelism

# Review: GPU Computing

- Computation is offloaded to the GPU
- Three steps
  - CPU-GPU data transfer (1)
  - □ GPU kernel execution (2)
  - GPU-CPU data transfer (3)



#### Review: Traditional Program Structure

- CPU threads and GPU kernels
  - Sequential or modestly parallel sections on CPU
  - Massively parallel sections on GPU



Slide credit: Hwu & Kirk

#### Review: CUDA/OpenCL Programming Model

#### Memory hierarchy



#### Review: Traditional Program Structure

Function prototypes

```
float serialFunction(...);
```

```
__global__ void kernel(...);
```

- main()
- □1) Allocate memory space on the device cudaMalloc(&d\_in, bytes);
- Description: Description:
- 3) Execution configuration setup: #blocks and #threads
- u4) Kernel call kernel << execution configuration >>> (args...);
- u5) Transfer results from device to host cudaMemCpy(h\_out, d\_out, ...);
- Kernel \_\_global\_\_\_ void kernel(type args,...)
  - Automatic variables transparently assigned to registers
  - Shared memory \_\_\_\_shared\_\_\_
  - Intra-block synchronization \_\_\_\_syncthreads();



# Review: CUDA Programming Language

Memory allocation

cudaMalloc((void\*\*)&d\_in, #bytes);

Memory copy

cudaMemcpy(d\_in, h\_in, #bytes,

cudaMemcpyHostToDevice);

Kernel launch

kernel<<< #blocks, #threads >>>(args);

Memory deallocation

cudaFree(d\_in);

Explicit synchronization

cudaDeviceSynchronize();

### Review: Indexing and Memory Access

- One GPU thread per pixel
- Grid of Blocks of Threads
  - blockIdx.x, threadIdx.x
  - gridDim.x, blockDim.x
  - blockIdx.x





#### Review: Performance Considerations

- Main bottlenecks
  - Global memory access
  - CPU-GPU data transfers
- Memory access
  - Latency hiding
    - Thread Level Parallelism (TLP)
    - Occupancy
  - Memory coalescing
  - Data reuse
    - Shared memory usage
- SIMD Utilization
- Atomic operations
- Data transfers between CPU and GPU
  - Overlap of communication and computation

### Review: Latency Hiding

Occupancy: ratio of active warps
 Not only memory accesses (e.g., SFU)



### Review: Occupancy

- SM resources (typical values)
  - Maximum number of warps per SM (64)
  - Maximum number of blocks per SM (32)
  - Register usage (256KB)
  - Shared memory usage (64KB)
- Occupancy calculation
  - Number of threads per block
  - Registers per thread
  - □ Shared memory per block
- The number of registers per thread is known in compile time

### Review: Memory Coalescing

When accessing global memory, peak bandwidth utilization occurs when all threads in a warp access one cache line



Slide credit: Hwu & Kirk

### Review: Memory Coalescing

AoS vs. SoA



#### Layout Conversion and Transposition 13

#### Review: Data Reuse

Same memory locations accessed by neighboring threads



```
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}</pre>
```

#### Review: Data Reuse

#### Shared memory tiling



```
__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
...
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
  for (int j = 0; j < 3; j++){
    sum += gauss[i][j] * l_data[(i+1_row-1)*(L_SIZE+2)+j+1_col-1];
  }
}
```

#### Review: Shared Memory

- Shared memory is an interleaved memory
  - Typically 32 banks
  - Each bank can service one address per cycle
  - Successive 32-bit words are assigned to successive banks
    - Bank = Address % 32
- Bank conflicts are only possible within a warp
  - No bank conflicts between different warps

#### Review: SIMD Utilization

#### Intra-warp divergence

```
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
   Do_this(threadIdx.x);
}
else{
   Do_that(threadIdx.x);
}
```



#### Review: SIMD Utilization

#### Intra-warp divergence

```
Compute(threadIdx.x);
if (threadIdx.x < 32){
   Do_this(threadIdx.x * 2);
}
else{
   Do_that((threadIdx.x%32)*2+1);
}</pre>
```



#### Atomic Operations

#### Shared memory atomic operations

- □ CUDA: int atomicAdd(int\*, int);
- PTX: atom.shared.add.u32 %r25, [%rd14], %r24;
- □ SASS:

#### Tesla, Fermi, Kepler

/\*00a0\*/ LDSLK P0, R9, [R8];
/\*00a8\*/ @P0 IADD R10, R9, R7;
/\*00b0\*/ @P0 STSCUL P1, [R8], R10;
/\*00b8\*/ @!P1 BRA 0xa0;

#### Maxwell

/\*01f8\*/ ATOMS.ADD RZ, [R7], R11;

Native atomic operations for 32-bit integer, and 32-bit and 64-bit atomicCAS

### Atomic Operations

#### Atomic conflicts

□ Intra-warp conflict degree from 1 to 32



### Histogram Calculation

Histograms count the number of data instances in disjoint categories (bins)

```
for (each pixel i in image I){
    Pixel = I[i]
    Pixel' = Computation(Pixel)
    Histogram[Pixel']++
}
```

```
// Read pixel
// Optional computation
// Vote in histogram bin
```



#### Histogram Calculation

#### Frequent conflicts in natural images



### Histogram Calculation

Privatization: Per-block sub-histograms in shared memory





### Data Transfers

- Synchronous and asynchronous transfers
- Streams (Command queues)
  - Sequence of operations that are performed in order
    - CPU-GPU data transfer
    - Kernel execution
      - D input data instances, B blocks
    - GPU-CPU data transfer
  - Default stream



## Asynchronous Transfers

- Computation divided into nStreams
  - D input data instances, B blocks
  - nStreams

- D/nStreams data instances
- B/nStreams blocks



### Asynchronous Transfers

Overlap of communication and computation (e.g., video processing)



### Summary

- Traditional accelerator model
  - Program structure
    - Bulk synchronous programming model
  - Memory hierarchy and memory management
  - Performance considerations
    - Memory access
      - Latency hiding: occupancy (TLP)
      - Memory coalescing
      - Data reuse: shared memory
    - SIMD utilization
    - Atomic operations
    - Data transfers

# Collaborative Computing





#### Review

- Device allocation, CPU-GPU transfer, and GPU-CPU transfer
  - □ cudaMalloc();
  - □ cudaMemcpy();

```
// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory
// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);
// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);
// Synchronize
cudaDeviceSynchronize();
// Copy output to host memory
cudaMemcpy(output, d output, ..., DeviceToHost);
```

# Unified Memory

- Unified Virtual Address
- CUDA 6.0: Unified memory
- CUDA 8.0 + Pascal: GPU page faults



**CUDA 6 Unified Memory** 

(Limited to GPU Memory Size)



#### Pascal Unified Memory

# Unified Memory

- Easier programming with Unified Memory
  - □ cudaMallocManaged();

```
// Allocate input
malloc(input, ...);
cudaMallocManaged(d_input, ...);
memcpy(d_input, input, ...); // Copy to managed memory
// Allocate output
cudaMallocManaged(d_output, ...);
// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);
// Synchronize
```

```
cudaDeviceSynchronize();
```

# Collaborative Computing Algorithms

- Case studies using CPU and GPU
- Kernel launches are asynchronous
  - CPU can work while waits for GPU to finish
  - Traditionally, this is the most efficient way to exploit heterogeneity

```
// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory
// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);
// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);
// CPU can do things here
// Synchronize
cudaDeviceSynchronize();
// Copy output to host memory
```

```
cudaMemcpy(output, d_output, ..., DeviceToHost);
```

### Fine-Grained Heterogeneity

- Fine-grain heterogeneity becomes possible with Pascal/Volta architecture
- Pascal/Volta Unified Memory
  - CPU-GPU memory coherence
  - System-wide atomic operations

```
// Allocate input
cudaMallocManaged(input, ...);
// Allocate output
cudaMallocManaged(output, ...);
// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (output, input, ...);
// CPU can do things here
output[x] = input[y];
output[x+1].fetch_add(1);
```

#### CUDA 8.0

#### Unified memory

```
cudaMallocManaged(&h_in, in_size);
```

System-wide atomics

```
old = atomicAdd_system(&h_out[x], inc);
```

# OpenCL 2.0

#### Shared virtual memory

XYZ \* h\_in = (XYZ \*)clSVMAlloc(

ocl.clContext, CL\_MEM\_SVM\_FINE\_GRAIN\_BUFFER, in\_size, 0);

#### More flags:

CL\_MEM\_READ\_WRITE

CL\_MEM\_SVM\_ATOMICS

C++11 atomic operations

(memory\_scope\_all\_svm\_devices)

old = atomic\_fetch\_add(&h\_out[x], inc);

# C++AMP (HCC)

Unified memory space (HSA)

XYZ \*h\_in = (XYZ \*)malloc(in\_size);

C++11 atomic operations

(memory\_scope\_all\_svm\_devices)

Platform atomics (HSA)

```
old = atomic_fetch_add(&h_out[x], inc);
```

## Collaborative Patterns



Device 1 Device 2

**Data Partitioning** 

## Collaborative Patterns



## Collaborative Patterns







Previous generations: separate CPU and GPU histograms are merged at the end



// Launch CPU threads
// Launch GPU kernel

cudaMemcpy(GPU histogram, DeviceToHost);

// Launch CPU threads for merging



System-wide atomic operations: one single histogram



cudaMallocManaged(Histogram); cudaMemset(Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd\_system)

Bézier surface: 4x4 net of control points



- Parametric non-rational formulation
  - Bernstein polynomials
  - Bi-cubic surface m = n = 3

$$\mathbf{S}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{P}_{i,j} B_{i,m}(u) B_{j,n}(v), \qquad (1)$$

$$B_{i,m}(u) = \binom{m}{i} (1-u)^{(m-i)} u^i,$$
 (2)

- Collaborative implementation
  - Tiles calculated by GPU blocks or CPU threads
  - Static distribution







3D Surface point processed in GPU

Tile of surface points processed in CPU



Tile of surface points processed in GPU

#### Without Unified Memory

```
// Allocate control points
malloc(control points, ...);
generate cp(control points);
cudaMalloc(d control points, ...);
cudaMemcpy(d control points, control points, ..., HostToDevice); // Copy to device memory
// Allocate surface
malloc(surface, ...);
cudaMalloc(d surface, ...);
// Launch CPU threads
std::thread main thread (run cpu threads, control points, surface, ...);
// Launch GPU kernel
gpu kernel<<<blocks, threads>>> (d surface, d control points, ...);
// Synchronize
main thread.join();
cudaDeviceSynchronize();
// Copy gpu part of surface to host memory
cudaMemcpy(&surface[end of cpu part], d surface, ..., DeviceToHost);
```

- Execution results
  - Bezier surface: 300x300, 4x4 control points
  - %Tiles to CPU
  - NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 17% speedup wrt GPU only



#### With Unified Memory (Pascal/Volta)

```
// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory
// Allocate surface
cudaMallocManaged(surface, ...);
// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);
// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (surface, d_control_points, ...);
// Synchronize
main_thread.join();
cudaDeviceSynchronize();
```

#### Static vs. dynamic implementation



#### Pascal/Volta Unified Memory: system-wide atomic operations

### Benefits of Collaboration

Data partitioning improves performance
 AMD Kaveri (4 CPU cores + 8 GPU CUs)



Bézier Surfaces (up to 47% improvement over GPU only)

# Padding

- Matrix padding
  - Memory alignment
  - Transposition of near-square matrices



Traditionally, it can only be performed out-of-place

# Padding

- Execution results
  - Matrix size:  $4000 \times 4000$ , padding = 1
  - NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 29% speedup wrt GPU only



# In-Place Padding

#### Pascal/Volta Unified Memory



## Benefits of Collaboration

Optimal number of devices is not always max
 AMD Kaveri (4 CPU cores + 8 GPU CUs)



## Stream Compaction

- Stream compaction
  - Saving memory storage in sparse data
  - Similar to padding, but local reduction result (non-zero element count) is propagated



## Stream Compaction

- Execution results
  - □ Array size: 2 MB, Filtered items = 50%
  - NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 25% speedup wrt GPU only



### Benefits of Collaboration

Data partitioning improves performance
 AMD Kaveri (4 CPU cores + 8 GPU CUs)



(up to 82% improvement over GPU only)

## Breadth-First Search

- Small-sized and big-sized frontiers
  - Top-down approach
  - Kernel 1 and Kernel 2
- Atomic-based block synchronization
  - Avoids kernel re-launch
- Very small frontiers
  - Underutilize GPU resources
- Collaborative implementation

## Atomic-Based Block Synchronization

- Combine Kernel 1 and Kernel 2
- We can avoid kernel re-launch
- We need to use persistent thread blocks
  - Kernel 2 launches (frontier\_size / block\_size) blocks
  - Persistent blocks: up to (number\_SMs x max\_blocks\_SM)





| 51    | //#U  | 5IVI# I |       |  |  |  |  |
|-------|-------|---------|-------|--|--|--|--|
| Block | Block | Block   | Block |  |  |  |  |
| 0     | 1     | 2       | 3     |  |  |  |  |

| Block 0 | Block 1 | Block 2 | Block 3 | Block 4 | Block 5 | BI | ock m-2<br> <──> | Block m- | Block 0 | Block 1 | Block 2 | Block 3 | Block 0 | Block 1 | E | Block 2 | Block 3 |
|---------|---------|---------|---------|---------|---------|----|------------------|----------|---------|---------|---------|---------|---------|---------|---|---------|---------|
| 0       | 1       | 2       | 3       | 4       | 5       |    | m-2              | m-1      | 0       | 1       | 2       | 3       | 4       | 5       |   | m-2     | m-1     |

## Atomic-Based Block Synchronization

#### Code (simplified)

```
// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
while(frontier_size != 0){
   for(node = gtid; node < frontier_size; node += blockDim.x*gridDim.x){
      // Visit neighbors
      // Visit neighbors
      // Enqueue in output queue if needed (global or local queue)
   }
   // Update frontier_size
   // Global synchronization
}
```

## Atomic-Based Block Synchronization

- Global synchronization (simplified)
  - At the end of each iteration

```
const int tid = threadIdx.x:
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr threads run, 0);
atomicExch(ptr threads end, 0);
int frontier = 0;
 . . .
frontier++;
if(tid == 0){
    atomicAdd(ptr threads end, 1); // Thread block finishes iteration
}
if(qtid == 0){
    while(atomicAdd(ptr threads end, 0) != gridDim.x) {; } // Wait until all blocks finish
    atomicExch(ptr threads end, 0); // Reset
    atomicAdd(ptr threads run, 1); // Count iteration
}
if(tid == 0 && gtid != 0){
    while(atomicAdd(ptr threads run, 0) < frontier) {; } // Wait until ptr threads run is updated
}
syncthreads(); // Rest of threads wait here
. . .
```

#### Motivation

- Small-sized frontiers underutilize GPU resources
  - NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
  - New York City roads



Choose the most appropriate device



#### Choose CPU or GPU depending on frontier size

```
// Host code
while(frontier_size != 0){
    if(frontier_size < LIMIT){
        // Launch CPU threads
    }
    else{
        // Launch GPU kernel
    }
}</pre>
```

 CPU threads or GPU kernel keep running while the condition is satisfied

#### Execution results



Without Unified Memory
 Explicit memory copies

```
// Host code
while(frontier_size != 0){
    if(frontier_size < LIMIT){
        // Launch CPU threads
    }
    else{
        // Copy from host to device (queues and synchronization variables)
        // Launch GPU kernel
        // Copy from device to host (queues and synchronization variables)
    }
}</pre>
```

#### Unified Memory

- □ cudaMallocManaged();
- Easier programming
- No explicit memory copies

```
// Host code
while(frontier_size != 0){
    if(frontier_size < LIMIT){
        // Launch CPU threads
    }
    else{
        // Launch GPU kernel
        cudaDeviceSynchronize();
    }
}</pre>
```

- Pascal/Volta Unified Memory
  - CPU/GPU coherence
  - System-wide atomic operations
  - No need to re-launch kernel or CPU threads
  - Possibility of CPU and GPU working on the same frontier

### Benefits of Collaboration

#### SSSP performs more computation than BFS



(up to 22% improvement over GPU only)

#### Egomotion Compensation and Moving Objects Detection

- Hexapod robot OSCAR
  - Rescue scenarios
  - Strong egomotion on uneven terrains



#### Algorithm

Random Sample Consensus (RANSAC): F-o-F model



#### Egomotion Compensation and Moving Objects Detection

Fast moving object in strong egomotion scenario detected by vector clustering



## SISD and SIMD phases

#### RANSAC (Fischler et al. 1981)

```
While (iteration < MAX_ITER){
    Fitting stage (Compute F-o-F model) // SISD phase
    Evaluation stage (Count outliers) // SIMD phase
    Comparison to best model // SISD phase
    Check if best model is good enough and iteration >= MIN_ITER // SISD phase
}
```

- Fitting stage picks two flow vectors randomly
- Evaluation generates motion vectors from F-o-F model, and compares them to real flow vectors



Randomly picked vectors: Iterations are independent
 We assign one iteration to one CPU thread and one GPU block



## Chai Benchmark Suite

- Collaboration patterns
  - a 8 data partitioning benchmarks
  - 3 coarse-grain task partitioning benchmarks
  - a 3 fine-grain task partitioning benchmarks

#### https://chai-benchmarks.github.io



| Collaboration        |                  | Short | Benchmark                             |  |  |  |  |  |
|----------------------|------------------|-------|---------------------------------------|--|--|--|--|--|
| Pattern              |                  | Name  |                                       |  |  |  |  |  |
|                      |                  | BS    | Bézier Surface                        |  |  |  |  |  |
|                      |                  | CEDD  | Canny Edge Detection                  |  |  |  |  |  |
|                      |                  | HSTI  | Image Histogram (Input Partitioning)  |  |  |  |  |  |
| Doto Dortitio        | nina             | HSTO  | Image Histogram (Output Partitioning) |  |  |  |  |  |
| Data Partitioning    |                  | PAD   | Padding                               |  |  |  |  |  |
|                      |                  | RSCD  | Random Sample Consensus               |  |  |  |  |  |
|                      |                  | SC    | Stream Compaction                     |  |  |  |  |  |
|                      |                  | TRNS  | In-place Transposition                |  |  |  |  |  |
| Task<br>Partitioning | Fine-            | RSCT  | Random Sample Consensus               |  |  |  |  |  |
|                      |                  | TQ    | Task Queue System (Synthetic)         |  |  |  |  |  |
|                      | grain            | TQH   | Task Queue System (Histogram)         |  |  |  |  |  |
|                      | Coarse-<br>grain | BFS   | Breadth-First Search                  |  |  |  |  |  |
|                      |                  | CEDT  | Canny Edge Detection                  |  |  |  |  |  |
|                      |                  | SSSP  | Single-Source Shortest Path           |  |  |  |  |  |

## Benefits of Unified Memory



## Benefits of Unified Memory



## Benefits of Unified Memory



### Benefits of Collaboration on FPGA



<u>Source:</u> Collaborative Computing for Heterogeneous Integrated Systems. *ICPE'17 Vision Track.* 

### Benefits of Collaboration on FPGA



## Conclusions

- Possibility of having CPU threads and GPU blocks collaborating on the same workload
- Or having the most appropriate cores for each workload
- Easier programming with Unified Memory or Shared Virtual Memory
- System-wide atomic operations in NVIDIA Pascal/Volta and HSA
  - Fine-grain collaboration

**Computer Architecture** Lecture 14: New Programming Features in Heterogeneous Systems

> Juan Gómez Luna ETH Zürich Fall 2017 8 November 2017