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Summary of Last Week’s Lectures
n Shared Cache Management

n Making Caching More Effective

n Heterogeneous Multi-Core Systems

n Bottleneck Acceleration
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Today
n Quick Heterogeneous Systems Wrap-Up

n Memory Latency Tolerance

n Prefetching
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Asymmetry via Frequency Boosting



Recall: How to Achieve Asymmetry
n Static

q Type and power of cores fixed at design time
q Two approaches to design “faster cores”:

n High frequency
n Build a more complex, powerful core with entirely different uarch

q Is static asymmetry natural? (chip-wide variations in frequency)

n Dynamic
q Type and power of cores change dynamically
q Two approaches to dynamically create “faster cores”:

n Boost frequency dynamically (limited power budget) 
n Combine small cores to enable a more complex, powerful core 
n Is there a third, fourth, fifth approach?
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Asymmetry via Boosting of Frequency
n Static

q Due to process variations, cores might have different 
frequency

q Simply hardwire/design cores to have different frequencies

n Dynamic
q Annavaram et al., “Mitigating Amdahl’s Law Through EPI 

Throttling,” ISCA 2005.
q Dynamic voltage and frequency scaling
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EPI Throttling
n Goal: Minimize execution time of parallel programs while 

keeping power within a fixed budget 

n For best scalar and throughput performance, vary energy 
expended per instruction (EPI) based on available 
parallelism 
q P = EPI •IPS 
q P = fixed power budget 
q EPI = energy per instruction 
q IPS = aggregate instructions retired per second 

n Idea: For a fixed power budget 
q Run sequential phases on high-EPI processor 
q Run parallel phases on multiple low-EPI processors
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EPI Throttling via DVFS
n DVFS: Dynamic voltage frequency scaling

n In phases of low thread parallelism
q Run a few cores at high supply voltage and high frequency

n In phases of high thread parallelism
q Run many cores at low supply voltage and low frequency
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Possible EPI Throttling Techniques
n Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.
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Boosting Frequency of a Small Core vs. Large Core

n Frequency boosting implemented on Intel Nehalem, IBM 
POWER7

n Advantages of Boosting Frequency
+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

n Disadvantages
- Does not improve performance if thread is memory bound
- Does not reduce Cycles per Instruction (remember the 

performance equation?)
- Changing frequency/voltage can take longer than switching to a 

large core 
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Memory Latency Tolerance



Readings on Memory Latency Tolerance
n Required

q Mutlu et al., “Runahead Execution: An Alternative to Very 
Large Instruction Windows for Out-of-order Processors,” HPCA 
2003.

q Srinath et al., “Feedback directed prefetching”, HPCA 2007.

n Optional
q Mutlu et al., “Efficient Runahead Execution: Power-Efficient 

Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Remember: Latency Tolerance
n An out-of-order execution processor tolerates latency of 

multi-cycle operations by executing independent 
instructions concurrently
q It does so by buffering instructions in reservation stations and 

reorder buffer 
q Instruction window: Hardware resources needed to buffer all 

decoded but not yet retired/committed instructions

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue 

decoding?
q How many cycles of latency can OoO tolerate?
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Stalls due to Long-Latency Instructions
n When a long-latency instruction is not complete,               

it blocks instruction retirement. 
q Because we need to maintain precise exceptions 

n Incoming instructions fill the instruction window (reorder 
buffer, reservation stations).

n Once the window is full, processor cannot place new 
instructions into the window. 
q This is called a full-window stall.

n A full-window stall prevents the processor from making 
progress in the execution of the program.
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ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8
BEQ R1, R0, target
LOAD R1 ß mem[R5]

Full-window Stall Example

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order, 
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for 
most full-window stalls.

LOAD R3 ß mem[R2]



16

Cache Misses Responsible for Many Stalls
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The Memory Latency Problem
n Problem: Memory latency is long

n And, it is not very easy to reduce it…
q We looked at methods for reducing DRAM latency

n Lee et al. “Tiered-Latency DRAM,” HPCA 2013.
n Lee et al., “Adaptive-Latency DRAM,” HPCA 2015.
n …

n And, even if we reduce memory latency, it is still long
q Remember the fundamental capacity-latency tradeoff
q Contention for memory increases latencies 
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How Do We Tolerate Stalls Due to Memory?
n Two major approaches

q Reduce/eliminate stalls
q Tolerate the effect of a stall when it happens

n Four fundamental techniques to achieve these
q Caching
q Prefetching
q Multithreading
q Out-of-order execution

n Many techniques have been developed to make these four 
fundamental techniques more effective in tolerating 
memory latency
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Memory Latency Tolerance Techniques

n Caching [initially by Bloom+, 1962 and later Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates irregular cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies
q Runahead execution alleviates this problem (as we will see today)



Runahead Execution
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ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8
BEQ R1, R0, target
LOAD R1 ß mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order, 
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for most 
full-window stalls.

LOAD R3 ß mem[R2]
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Impact of Long-Latency Cache Misses

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

128-entry window

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model 

L2 Misses



23

Impact of Long-Latency Cache Misses
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The Problem
n Out-of-order execution requires large instruction windows 

to tolerate today’s main memory latencies.

n As main memory latency increases, instruction window size 
should also increase to fully tolerate the memory latency.

n Building a large instruction window is a challenging task       
if we would like to achieve 
q Low power/energy consumption (tag matching logic, ld/st

buffers)
q Short cycle time (access, wakeup/select latencies)
q Low design and verification complexity



Efficient Scaling of Instruction Window Size
n One of the major research issues in out of order execution

n How to achieve the benefits of a large window with a small 
one (or in a simpler way)?

n How do we efficiently tolerate memory latency with the 
machinery of out-of-order execution (and a small 
instruction window)?
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Memory Level Parallelism (MLP)
n Idea: Find and service multiple cache misses in parallel so 

that the processor stalls only once for all misses

q Enables latency tolerance: overlaps latency of different misses

n How to generate multiple misses?
q Out-of-order execution, multithreading, prefetching, runahead

26
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Runahead Execution (I)
n A technique to obtain the memory-level parallelism benefits 

of a large instruction window

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example



Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss 
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

n Hardware prefetcher and branch predictor tables are trained
using future access information. 



Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as                
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated 
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.



L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and 
store buffer.

n INV values are not used for prefetching/branch resolution.



Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to       
dependent loads.



Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a  
dedicated memory, called runahead cache. 

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is 
very small.



Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong 
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.



A Runahead Processor Diagram
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Runahead Execution Pros and Cons 
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

n Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses 
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in IBM POWER6, Sun “Rock”
37
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Runahead Execution vs. Large Windows
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Runahead vs. A (Real) Large Window
n When is one beneficial, when is the other?
n Pros and cons of each

n Which can tolerate floating-point operation latencies better?
n Which leads to less wasted execution?
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Runahead on In-order vs. Out-of-order
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Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.
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Generalizing the Idea
n Runahead on different long-latency operations?
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More on Runahead Execution

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)
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More on Runahead Execution (Short)

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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Runahead Enhancements



Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



The Efficiency Problem
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Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006.



Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2 

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods  
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit



Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient



Useless Runahead Periods
n Periods that do not result in prefetches for normal mode 

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that 

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit
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Overall Impact on IPC
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More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution 
Engines"
Proceedings of the 32nd International Symposium on Computer 
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides 
(ppt) Slides (pdf)
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More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would 
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the 
highest benefit?

n Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

n How?
58



Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this 
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV



Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache 

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer) 
loads

n Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 

2005.



Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative 
Instructions

Miss



AVD Prediction [MICRO’05]

n Address-value delta (AVD) of a load instruction defined as:
AVD = Effective Address of Load – Data Value of Load

n For some address loads, AVD is stable
n An AVD predictor keeps track of the AVDs of address loads
n When a load is an L2 miss in runahead mode, AVD 

predictor is consulted

n If the predictor returns a stable (confident) AVD for that 
load, the value of the load is predicted

Predicted Value = Effective Address – Predicted AVD



Why Do Stable AVDs Occur?
n Regularity in the way data structures are 

q allocated in memory AND
q traversed

n Two types of loads can have stable AVDs
q Traversal address loads

n Produce addresses consumed by address loads
q Leaf address loads

n Produce addresses consumed by data loads



Traversal Address Loads
Regularly-allocated linked list:

A

A+k

A+2k

A+3k...

A traversal address load loads the 
pointer to next node:

node = nodeànext

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k
A+2k A+3k -k

Stable AVDStriding 
data value

AVD = Effective Addr – Data Value



Leaf Address Loads
Sorted dictionary in parser:           
Nodes point to strings (words)        
String and node allocated consecutively            

A+k

A C+k

C

B+k

B
D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word. 

A leaf address load loads the pointer to 
the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k
F+k F k

lookup (node, input) {     // ...                               
ptr_str = nodeàstring;
m = check_match(ptr_str, input);             
// …                                                       

}

Stable AVDNo stride!

AVD = Effective Addr – Data Valuestring

node



AVD Prediction 67

Identifying Address Loads in Hardware
n Insight: 

q If the AVD is too large, the value that is loaded is likely not an 
address

n Only keep track of loads that satisfy:
-MaxAVD ≤ AVD ≤ +MaxAVD

n This identification mechanism eliminates many loads from 
consideration for prediction
q No need to value- predict the loads that will not generate 

addresses
q Enables the predictor to be small
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An Implementable AVD Predictor

n Set-associative prediction table
n Prediction table entry consists of

q Tag (Program Counter of the load)
q Last AVD seen for the load
q Confidence counter for the recorded AVD

n Updated when an address load is retired in normal mode
n Accessed when a load misses in L2 cache in runahead mode
n Recovery-free: No need to recover the state of the processor 

or the predictor on misprediction
q Runahead mode is purely speculative
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AVD Update Logic



AVD Prediction 70

AVD Prediction Logic
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More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the 
Effectiveness of Runahead Execution by Exploiting Regular 
Memory Allocation Patterns"
Proceedings of the 38th International Symposium on 
Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November 
2005. Slides (ppt)Slides (pdf)
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More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique 
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508, 
December 2006.
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Wrong Path Events



An Observation and A Question
• In an out-of-order processor, some 

instructions are executed on the 
mispredicted path (wrong-path instructions).

• Is the behavior of wrong-path instructions 
different from the behavior of correct-path 
instructions? 
– If so, we can use the difference in behavior for 

early misprediction detection and recovery.



What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong 
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1



Why Does a WPE Occur?

• A wrong-path instruction may be executed 
before the mispredicted branch is 
executed.
– Because the mispredicted branch may be 

dependent on a long-latency instruction.

• The wrong-path instruction may consume 
a data value that is not properly initialized.



WPE Example from eon: 
NULL pointer dereference

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Beginning of the loop

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

*ptr

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {

4  :               // . . .

5  :         } 

6  :   } 



Loop branch correctly predicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

*ptr

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Loop exit branch mispredicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2 

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Third iteration on wrong path

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2
ptr = 0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Wrong Path Event

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

NULL pointer dereference!

i = 2
ptr = 0

*ptr

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Types of WPEs

• Due to memory instructions
– NULL pointer dereference
– Write to read-only page
– Unaligned access (illegal in the Alpha ISA)
– Access to an address out of segment range
– Data access to code segment
– Multiple concurrent TLB misses



Types of WPEs (continued)
• Due to control-flow instructions

– Misprediction under misprediction 
• If three branches are executed and resolved as mispredicts 

while there are older unresolved branches in the processor, it 
is almost certain that one of the older unresolved branches is 
mispredicted.

– Return address stack underflow
– Unaligned instruction fetch address (illegal in Alpha)

• Due to arithmetic instructions
– Some arithmetic exceptions

• e.g. Divide by zero



Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?



More on Wrong Path Events

n David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program 
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 37th International Symposium on 
Microarchitecture (MICRO), pages 119-128, Portland, OR, December 
2004. Slides (pdf)Slides (ppt)
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Why Is This Important?
n A modern processor spends significant amount of time 

fetching/executing instructions on the wrong path
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A Lot of Time Spent on The Wrong Path
n A runahead processor, much more so…
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Is Wrong-Path Execution Useless/Useful/Harmful?

94



Wrong Path Is Often Useful for Performance
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More So In Runahead Execution
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Why is Wrong Path Useful? (I)

97

n Control-independence: e.g., wrong-path execution of future 
loop iterations



Why is Wrong Path Useful? (II)

98



Why is Wrong Path Useful? (III)

99

n Same data used in different control flow paths



More on Wrong Path Execution (I)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on 
Processor Performance"
Proceedings of the 3rd Workshop on Memory Performance 
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides 
(pdf)
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More on Wrong Path Execution (II)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory 
References on Out-of-Order and Runahead Execution Processors"
IEEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571, 
December 2005.
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What If …
n The system learned from wrong-path execution and used 

that learning for better execution of the program/system?

n An open research problem…
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Computer Architecture
Lecture 17: 

Latency Tolerance and Prefetching

Prof. Onur Mutlu
ETH Zürich
Fall 2017

22 November 2017



We did not cover the following slides in lecture. 
These are for your preparation for the next lecture. 



Prefetching



Outline of Prefetching Lecture(s)
n Why prefetch? Why could/does it work?
n The four questions

q What (to prefetch), when, where, how
n Software prefetching
n Hardware prefetching algorithms
n Execution-based prefetching
n Prefetching performance

q Coverage, accuracy, timeliness
q Bandwidth consumption, cache pollution

n Prefetcher throttling 
n Issues in multi-core (if we get to it)
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Readings in Prefetching
n Required:

q Jouppi, “Improving Direct-Mapped Cache Performance by the 
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

q Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 
1997.

n Recommended:
q Mowry et al., “Design and Evaluation of a Compiler Algorithm for 

Prefetching,” ASPLOS 1992.
q Srinath et al., “Feedback Directed Prefetching: Improving the 

Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

q Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by 

the program

n Why? 
q Memory latency is high. If we can prefetch accurately and 

early enough we can reduce/eliminate that latency.
q Can eliminate compulsory cache misses
q Can it eliminate all cache misses? Capacity, conflict?

n Involves predicting which address will be needed in the 
future
q Works if programs have predictable miss address patterns
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Prefetching and Correctness
n Does a misprediction in prefetching affect correctness?

n No, prefetched data at a “mispredicted” address is simply 
not used

n There is no need for state recovery
q In contrast to branch misprediction or value misprediction
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Basics
n In modern systems, prefetching is usually done in cache 

block granularity

n Prefetching is a technique that can reduce both
q Miss rate
q Miss latency

n Prefetching can be done by 
q hardware
q compiler
q programmer
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How a HW Prefetcher Fits in the Memory System
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Prefetching: The Four Questions
n What

q What addresses to prefetch

n When
q When to initiate a prefetch request

n Where
q Where to place the prefetched data

n How
q Software, hardware, execution-based, cooperative
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Challenges in Prefetching: What
n What addresses to prefetch

q Prefetching useless data wastes resources
n Memory bandwidth
n Cache or prefetch buffer space
n Energy consumption
n These could all be utilized by demand requests or more accurate 

prefetch requests
q Accurate prediction of addresses to prefetch is important

n Prefetch accuracy = used prefetches / sent prefetches
n How do we know what to prefetch

q Predict based on past access patterns
q Use the compiler’s knowledge of data structures

n Prefetching algorithm determines what to prefetch
113



Challenges in Prefetching: When
n When to initiate a prefetch request

q Prefetching too early
n Prefetched data might not be used before it is evicted from 

storage
q Prefetching too late

n Might not hide the whole memory latency

n When a data item is prefetched affects the timeliness of the 
prefetcher

n Prefetcher can be made more timely by
q Making it more aggressive: try to stay far ahead of the 

processor’s access stream (hardware)
q Moving the prefetch instructions earlier in the code (software)
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Challenges in Prefetching: Where (I)
n Where to place the prefetched data

q In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data à cache pollution

q In a separate prefetch buffer
+ Demand data protected from prefetches à no cache pollution
-- More complex memory system design

- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

n Many modern systems place prefetched data into the cache
q Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
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Challenges in Prefetching: Where (II)
n Which level of cache to prefetch into?

q Memory to L2, memory to L1. Advantages/disadvantages?
q L2 to L1? (a separate prefetcher between levels)

n Where to place the prefetched data in the cache?
q Do we treat prefetched blocks the same as demand-fetched 

blocks?
q Prefetched blocks are not known to be needed

n With LRU, a demand block is placed into the MRU position

n Do we skew the replacement policy such that it favors the 
demand-fetched blocks?
q E.g., place all prefetches into the LRU position in a way?

116



Challenges in Prefetching: Where (III)
n Where to place the hardware prefetcher in the memory 

hierarchy?
q In other words, what access patterns does the prefetcher see?
q L1 hits and misses
q L1 misses only 
q L2 misses only 

n Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching
-- Prefetcher needs to examine more requests (bandwidth 

intensive, more ports into the prefetcher?)
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Challenges in Prefetching: How
n Software prefetching

q ISA provides prefetch instructions
q Programmer or compiler inserts prefetch instructions (effort)
q Usually works well only for “regular access patterns”

n Hardware prefetching
q Hardware monitors processor accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses automatically

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program
q Can be generated by either software/programmer or hardware
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Software Prefetching (I)
n Idea: Compiler/programmer places prefetch instructions into 

appropriate places in code

n Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

n Prefetch instructions prefetch data into caches
n Compiler or programmer can insert such instructions into the 

program
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X86 PREFETCH Instruction

120

microarchitecture 
dependent
specification

different instructions
for different cache
levels



Software Prefetching (II)

n Can work for very regular array-based access patterns. Issues:
-- Prefetch instructions take up processing/execution bandwidth
q How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency, 
cache size, time between loop iterations) à portability?

-- Going too far back in code reduces accuracy (branches in between)
q Need “special” prefetch instructions in ISA?

n Alpha load into register 31 treated as prefetch (r31==0)
n PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

121

for (i=0; i<N; i++) {
__prefetch(a[i+8]);
__prefetch(b[i+8]);
sum += a[i]*b[i];

}

while (p) {
__prefetch(pànext);
work(pàdata);
p = pànext;

}

while (p) {
__prefetch(pànextànextànext);
work(pàdata);
p = pànext;

}
Which one is better?



Software Prefetching (III)
n Where should a compiler insert prefetches?

q Prefetch for every load access? 
n Too bandwidth intensive (both memory and execution bandwidth)

q Profile the code and determine loads that are likely to miss
n What if profile input set is not representative?

q How far ahead before the miss should the prefetch be inserted?
n Profile and determine probability of use for various prefetch 

distances from the miss
q What if profile input set is not representative?
q Usually need to insert a prefetch far in advance to cover 100s of cycles 

of main memory latency à reduced accuracy
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Hardware Prefetching (I)
n Idea: Specialized hardware observes load/store access 

patterns and prefetches data based on past access behavior

n Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns

- Software can be more efficient in some cases
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Next-Line Prefetchers
n Simplest form of hardware prefetching: always prefetch next 

N cache lines after a demand access (or a demand miss)
q Next-line prefetcher (or next sequential prefetcher)
q Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?
- What if the program is traversing memory from higher to lower 
addresses?
- Also prefetch “previous” N cache lines?
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Stride Prefetchers
n Two kinds

q Instruction program counter (PC) based
q Cache block address based

n Instruction based:
q Baer and Chen, “An effective on-chip preloading scheme to 

reduce data access penalty,” SC 1991.
q Idea: 

n Record the distance between the memory addresses referenced by 
a load instruction (i.e. stride of the load) as well as the last address 
referenced by the load

n Next time the same load instruction is fetched,                     
prefetch last address + stride
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Instruction Based Stride Prefetching

n What is the problem with this?
q How far can the prefetcher get ahead of the demand access stream? 
q Initiating the prefetch when the load is fetched the next time can be 

too late 
n Load will access the data cache soon after it is fetched!

q Solutions:
n Use lookahead PC to index the prefetcher table (decouple frontend of 

the processor from backend)
n Prefetch ahead (last address + N*stride)
n Generate multiple prefetches
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Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load
Inst
PC



Cache-Block Address Based Stride Prefetching

n Can detect
q A, A+N, A+2N, A+3N, …
q Stream buffers are a special case of cache block address 

based stride prefetching where N = 1
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Address tag Stride Control/Confidence

……. ……

Block 
address



Stream Buffers (Jouppi, ISCA 1990)
n Each stream buffer holds one stream of 

sequentially prefetched cache lines 

n On a load miss check the head of all 
stream buffers for an address match
q if hit, pop the entry from FIFO, update the cache 

with data 
q if not, allocate a new stream buffer to the new 

miss address (may have to replace a stream 
buffer following LRU policy)

n Stream buffer FIFOs are continuously 
topped-off with subsequent cache lines 
whenever there is room and the bus is not 
busy
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Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of 
a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.



Stream Buffer Design
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Stream Buffer Design
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Tradeoffs in Stride Prefetching
n Instruction based stride prefetching vs.

cache block address based stride prefetching

n The latter can exploit strides that occur due to the 
interaction of multiple instructions

n The latter can more easily get further ahead of the 
processor access stream
q No need for lookahead PC

n The latter is more hardware intensive
q Usually there are more data addresses to monitor than 

instructions
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Locality Based Prefetchers
n In many applications access patterns are not perfectly 

strided
q Some patterns look random to closeby addresses
q How do you capture such accesses?

n Locality based prefetching
q Srinath et al., “Feedback Directed Prefetching: Improving the 

Performance and Bandwidth-Efficiency of Hardware 
Prefetchers“, HPCA 2007.
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Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

n Multiple tracking entries for a range of addresses
n Invalid: The tracking entry is not allocated a stream to keep track of. Initially, 

all tracking entries are in this state. 
n Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the 

demand miss does not find any existing tracking entry for its cache-block address.
n Training: The prefetcher trains the direction (ascending or descending) of the 

stream based on the next two L2 misses that occur +/- 16 cache blocks from the 
first miss. If the next two accesses in the stream are to ascending (descending) 
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions 
to Monitor and Request state.

n Monitor and Request: The tracking entry monitors the accesses to a memory 
region from a start pointer (address A) to an end pointer (address P). The maximum 
distance between the start pointer and the end pointer is determined by Prefetch 
Distance, which indicates how far ahead of the demand access stream the 
prefetcher can send requests. If there is a demand L2 cache access to a cache block 
in the monitored memory region, the prefetcher requests cache blocks [P+1, ..., 
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1). 
N is called the Prefetch Degree. After sending the prefetch requests, the tracking 
entry starts monitoring the memory region between addresses A+N to P+N (i.e. 
effectively it moves the tracked memory region by N cache blocks).
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Limitations of Locality-Based Prefetchers
n Bandwidth intensive

q Why?
q Can be fixed by

n Stride detection
n Feedback mechanisms

n Limited to prefetching closeby addresses
q What about large jumps in addresses accessed?

n However, they work very well in real life
q Single-core systems
q Boggs et al., Intel Technology Journal, Feb 2004.
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Prefetcher Performance (I)
n Accuracy (used prefetches / sent prefetches)
n Coverage (prefetched misses / all misses)
n Timeliness (on-time prefetches / used prefetches)

n Bandwidth consumption
q Memory bandwidth consumed with prefetcher / without 

prefetcher
q Good news: Can utilize idle bus bandwidth (if available)

n Cache pollution
q Extra demand misses due to prefetch placement in cache
q More difficult to quantify but affects performance
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Prefetcher Performance (II)
n Prefetcher aggressiveness affects all performance metrics
n Aggressiveness dependent on prefetcher type
n For most hardware prefetchers:

q Prefetch distance: how far ahead of the demand stream 
q Prefetch degree: how many prefetches per demand access
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Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive
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Prefetch Degree
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Prefetcher Performance (III)
n How do these metrics interact?
n Very Aggressive Prefetcher (large prefetch distance & degree)

q Well ahead of the load access stream 
q Hides memory access latency better 
q More speculative
+ Higher coverage, better timeliness
-- Likely lower accuracy, higher bandwidth and pollution

n Very Conservative Prefetcher (small prefetch distance & degree)
q Closer to the load access stream
q Might not hide memory access latency completely
q Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting
-- Likely lower coverage and less timely
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Prefetcher Performance (IV)
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Prefetcher Performance (V)

n Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)
n Idea: 

q Dynamically monitor prefetcher performance metrics
q Throttle the prefetcher aggressiveness up/down based on past 

performance
q Change the location prefetches are inserted in cache based on 

past performance
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Feedback-Directed Prefetcher Throttling (II)

n Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

n Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (III)
n BPKI - Memory Bus Accesses per 1000 retired Instructions

q Includes effects of L2 demand misses as well as pollution 
induced misses and prefetches

n A measure of bus bandwidth usage
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No. Pref. Very Cons Mid Very Aggr FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPKI 8.56 9.34 10.60 13.38 10.88



More on Feedback Directed Prefetching

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
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How to Prefetch More Irregular Access Patterns?

n Regular patterns: Stride, stream prefetchers do well
n More irregular access patterns

q Indirect array accesses
q Linked data structures
q Multiple regular strides (1,2,3,1,2,3,1,2,3,…)
q Random patterns?
q Generalized prefetcher for all patterns?

n Correlation based prefetchers
n Content-directed prefetchers
n Precomputation or execution-based prefetchers
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Address Correlation Based Prefetching (I)
n Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C
n After referencing a particular address (say A or E), are 

some addresses more likely to be referenced next
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Address Correlation Based Prefetching (II)

n Idea: Record the likely-next addresses (B, C, D) after seeing an address A
q Next time A is accessed, prefetch B, C, D
q A is said to be correlated with B, C, D

n Prefetch up to N next addresses to increase coverage 
n Prefetch accuracy can be improved by using multiple addresses as key for 

the next address: (A, B) à (C)
(A,B) correlated with C

n Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
q Also called “Markov prefetchers”
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Cache
Block
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Address Correlation Based Prefetching (III)
n Advantages:

q Can cover arbitrary access patterns
n Linked data structures
n Streaming patterns (though not so efficiently!)

n Disadvantages:
q Correlation table needs to be very large for high coverage

n Recording every miss address and its subsequent miss addresses 
is infeasible

q Can have low timeliness: Lookahead is limited since a prefetch 
for the next access/miss is initiated right after previous

q Can consume a lot of memory bandwidth
n Especially when Markov model probabilities (correlations) are low

q Cannot reduce compulsory misses
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Content Directed Prefetching (I) 
n A specialized prefetcher for pointer values 
n Idea: Identify pointers among all values in a fetched cache 

block and issue prefetch requests for them.
q Cooksey et al., “A stateless, content-directed data prefetching 

mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

n How to identify pointer addresses:
q Compare address sized values within cache block with cache 

block’s address à if most-significant few bits match, pointer
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Content Directed Prefetching (II)
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Making Content Directed Prefetching Efficient
n Hardware does not have enough information on pointers
n Software does (and can profile to get more information)

n Idea:
q Compiler profiles and provides hints as to which pointer 

addresses are likely-useful to prefetch.
q Hardware uses hints to prefetch only likely-useful pointers.

n Ebrahimi et al., “Techniques for Bandwidth-Efficient 
Prefetching of Linked Data Structures in Hybrid Prefetching 
Systems,” HPCA 2009.
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Shortcomings of CDP – An example

HashLookup(int Key) {
…
for (node = head ; node -> Key != Key;

Struct node{
int Key;
int * D1_ptr;
int * D2_ptr;
node * Next;

}

node = node -> Next;
if (node) return node->D1;

}

…

Key
D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

)  ;

Key

Example from mst
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Shortcomings of CDP – An example

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next
Cache Line Addr

…

Key
D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key
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Shortcomings of CDP – An example

HashLookup(int Key) {
…
for (node = head ; node = node -> Next;
if (node) 

}

) ;

…

Key
D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;
return node -> D1;

Key
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Shortcomings of CDP – An example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next
Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[31:20]



More on Content Directed Prefetching

n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009.Slides (ppt)
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Hybrid Hardware Prefetchers
n Many different access patterns

q Streaming, striding
q Linked data structures
q Localized random

n Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive
-- Prefetchers start getting in each other’s way (contention, 

pollution)
- Need to manage accesses from each prefetcher
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Execution-based Prefetchers (I)
n Idea: Pre-execute a piece of the (pruned) program solely 

for prefetching data 
q Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can 
be considered a “thread”

n Speculative thread can be executed 
n On a separate processor/core
n On a separate hardware thread context (think fine-grained 

multithreading)
n On the same thread context in idle cycles (during cache misses)
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Execution-based Prefetchers (II)
n How to construct the speculative thread:

q Software based pruning and “spawn” instructions
q Hardware based pruning and “spawn” instructions
q Use the original program (no construction), but 

n Execute it faster without stalling and correctness constraints

n Speculative thread
q Needs to discover misses before the main program

n Avoid waiting/stalling and/or compute less
q To get ahead, uses

n Perform only address generation computation, branch prediction, 
value prediction (to predict “unknown” values) 

q Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect
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Thread-Based Pre-Execution
n Dubois and Song, “Assisted 

Execution,” USC Tech 
Report 1998.

n Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”
ISCA 1999.

n Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Thread-Based Pre-Execution Issues
n Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context 

n When the main thread is stalled
n When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
n How far ahead? 

q Too early: prefetch might not be needed
q Too late: prefetch might not be timely

2. When the main thread is stalled
n When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)
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Thread-Based Pre-Execution Issues
n What, when, where, how

q Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

q Many issues in software-based pre-execution discussed
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An Example
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Example ISA Extensions
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Results on a Multithreaded Processor
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Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in 
Simultaneous Multithreading Processors,” ISCA 2001.



Problem Instructions
n Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 

2001.
n Zilles and Sohi, ”Understanding the backward slices of performance degrading 

instructions,” ISCA 2000.
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Fork Point for Prefetching Thread
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Pre-execution Thread Construction
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Review: Runahead Execution
n A simple pre-execution method for prefetching purposes

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)
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Runahead as an Execution-based Prefetcher
n Idea of an Execution-Based Prefetcher: Pre-execute a piece 

of the (pruned) program solely for prefetching data 

n Idea of Runahead: Pre-execute the main program solely for 
prefetching data 

n Advantages and disadvantages of runahead vs. other 
execution-based prefetchers?

n Can you make runahead even better by pruning the 
program portion executed in runahead mode?
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Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would 
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the 
highest benefit?

n Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

n How?
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Execution-based Prefetchers: Pros and Cons
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction 
accuracy
- Mispredicted branches dependent on missing data throw the thread   
off the correct execution path 

-- Can be wasteful
-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
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Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to 

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness
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Some Ideas

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource 

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints) 

[HPCA’09]
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Motivation
n Aggressive prefetching improves 

memory latency tolerance of 
many applications when they run alone

n Prefetching for concurrently-executing 
applications on a CMP can lead to
o Significant system performance degradation and 

bandwidth waste

n Problem:
Prefetcher-caused inter-core interference
o Prefetches of one application contend with 

prefetches and demands of other applications
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Potential Performance
System performance improvement of ideally removing all 
prefetcher-caused inter-core interference in shared resources
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High Interference caused by  
Accurate Prefetchers
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DRAM
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Shortcoming of Local Prefetcher Throttling
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…
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…
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Shortcoming of Local-Only 
Prefetcher Control
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Prefetching in Multi-Core (II)
n Ideas for coordinating different prefetchers’ actions

q Utility-based prioritization 
n Prioritize prefetchers that provide the best marginal utility on 

system performance

q Cost-benefit analysis
n Compute cost-benefit of each prefetcher to drive prioritization

q Heuristic based methods
n Global controller overrides local controller’s throttling decision 

based on interference and accuracy of prefetchers
n Ebrahimi et al., “Coordinated Management of Multiple Prefetchers 

in Multi-Core Systems,” MICRO 2009.
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Hierarchical Prefetcher Throttling
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Memory Controller
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Hierarchical Prefetcher Throttling Example
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HPAC Control Policies
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HPAC Evaluation
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15%

9%

Normalized to system with no prefetching



More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)
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More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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Prefetching in GPUs 
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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We did not cover the following slides in 
lecture. They are for your benefit.



More on Runahead Enhancements



Eliminating Short Periods
n Mechanism to eliminate short periods:

q Record the number of cycles C an L2-miss has been in flight
q If C is greater than a threshold T for an L2 miss, disable entry 

into runahead mode due to that miss
q T can be determined statically (at design time) or dynamically

n T=400 for a minimum main memory latency of 500 cycles 
works well
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Eliminating Overlapping Periods
n Overlapping periods are not necessarily useless

q The availability of a new data value can result in the 
generation of useful L2 misses

n But, this does not happen often enough

n Mechanism to eliminate overlapping periods:
q Keep track of the number of pseudo-retired instructions R 

during a runahead period
q Keep track of the number of fetched instructions N since the 

exit from last runahead period
q If N < R, do not enter runahead mode 
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AVD Prediction 197

n Stable AVDs can be captured with a stride value predictor
n Stable AVDs disappear with the re-organization of the data 

structure (e.g., sorting)

n Stability of AVDs is dependent on the behavior of the 
memory allocator
q Allocation of contiguous, fixed-size chunks is useful

Properties of Traversal-based AVDs
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Sorting
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nodes NOT constant!û



AVD Prediction 198

Properties of Leaf-based AVDs

n Stable AVDs cannot be captured with a stride value predictor
n Stable AVDs do not disappear with the re-organization of  

the data structure (e.g., sorting)

n Stability of AVDs is dependent on the behavior of the  
memory allocator

A+k

A
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B C

C+k
Sorting

Distance between
node and string
still constant!
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AVD Prediction 199

An Implementable AVD Predictor

n Set-associative prediction table
n Prediction table entry consists of

q Tag (Program Counter of the load)
q Last AVD seen for the load
q Confidence counter for the recorded AVD

n Updated when an address load is retired in normal mode
n Accessed when a load misses in L2 cache in runahead mode
n Recovery-free: No need to recover the state of the processor 

or the predictor on misprediction
q Runahead mode is purely speculative



AVD Prediction 200

AVD Update Logic



AVD Prediction 201

AVD Prediction Logic



AVD Prediction 202

Baseline Processor
n Execution-driven Alpha simulator
n 8-wide superscalar processor
n 128-entry instruction window, 20-stage pipeline
n 64 KB, 4-way, 2-cycle L1 data and instruction caches
n 1 MB, 32-way, 10-cycle unified L2 cache
n 500-cycle minimum main memory latency
n 32 DRAM banks, 32-byte wide processor-memory bus (4:1 

frequency ratio), 128 outstanding misses
q Detailed memory model

n Pointer-intensive benchmarks from Olden and SPEC INT00



AVD Prediction 203

AVD vs. Stride VP Performance
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