
Computer Architecture
Lecture 17:

Latency Tolerance and Prefetching

Prof. Onur Mutlu
ETH Zürich
Fall 2017

22 November 2017

Summary of Last Week’s Lectures
n Shared Cache Management

n Making Caching More Effective

n Heterogeneous Multi-Core Systems

n Bottleneck Acceleration

2

Today
n Quick Heterogeneous Systems Wrap-Up

n Memory Latency Tolerance

n Prefetching

3

Asymmetry via Frequency Boosting

Recall: How to Achieve Asymmetry
n Static

q Type and power of cores fixed at design time
q Two approaches to design “faster cores”:

n High frequency
n Build a more complex, powerful core with entirely different uarch

q Is static asymmetry natural? (chip-wide variations in frequency)

n Dynamic
q Type and power of cores change dynamically
q Two approaches to dynamically create “faster cores”:

n Boost frequency dynamically (limited power budget)
n Combine small cores to enable a more complex, powerful core
n Is there a third, fourth, fifth approach?

5

Asymmetry via Boosting of Frequency
n Static

q Due to process variations, cores might have different
frequency

q Simply hardwire/design cores to have different frequencies

n Dynamic
q Annavaram et al., “Mitigating Amdahl’s Law Through EPI

Throttling,” ISCA 2005.
q Dynamic voltage and frequency scaling

6

EPI Throttling
n Goal: Minimize execution time of parallel programs while

keeping power within a fixed budget

n For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism
q P = EPI •IPS
q P = fixed power budget
q EPI = energy per instruction
q IPS = aggregate instructions retired per second

n Idea: For a fixed power budget
q Run sequential phases on high-EPI processor
q Run parallel phases on multiple low-EPI processors

7

EPI Throttling via DVFS
n DVFS: Dynamic voltage frequency scaling

n In phases of low thread parallelism
q Run a few cores at high supply voltage and high frequency

n In phases of high thread parallelism
q Run many cores at low supply voltage and low frequency

8

Possible EPI Throttling Techniques
n Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.

9

Boosting Frequency of a Small Core vs. Large Core

n Frequency boosting implemented on Intel Nehalem, IBM
POWER7

n Advantages of Boosting Frequency
+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

n Disadvantages
- Does not improve performance if thread is memory bound
- Does not reduce Cycles per Instruction (remember the

performance equation?)
- Changing frequency/voltage can take longer than switching to a

large core
10

Memory Latency Tolerance

Readings on Memory Latency Tolerance
n Required

q Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA
2003.

q Srinath et al., “Feedback directed prefetching”, HPCA 2007.

n Optional
q Mutlu et al., “Efficient Runahead Execution: Power-Efficient

Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.

12

Remember: Latency Tolerance
n An out-of-order execution processor tolerates latency of

multi-cycle operations by executing independent
instructions concurrently
q It does so by buffering instructions in reservation stations and

reorder buffer
q Instruction window: Hardware resources needed to buffer all

decoded but not yet retired/committed instructions

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue

decoding?
q How many cycles of latency can OoO tolerate?

13

14

Stalls due to Long-Latency Instructions
n When a long-latency instruction is not complete,

it blocks instruction retirement.
q Because we need to maintain precise exceptions

n Incoming instructions fill the instruction window (reorder
buffer, reservation stations).

n Once the window is full, processor cannot place new
instructions into the window.
q This is called a full-window stall.

n A full-window stall prevents the processor from making
progress in the execution of the program.

15

ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8
BEQ R1, R0, target
LOAD R1 ß mem[R5]

Full-window Stall Example

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order,
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for
most full-window stalls.

LOAD R3 ß mem[R2]

16

Cache Misses Responsible for Many Stalls

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

128-entry window

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

The Memory Latency Problem
n Problem: Memory latency is long

n And, it is not very easy to reduce it…
q We looked at methods for reducing DRAM latency

n Lee et al. “Tiered-Latency DRAM,” HPCA 2013.
n Lee et al., “Adaptive-Latency DRAM,” HPCA 2015.
n …

n And, even if we reduce memory latency, it is still long
q Remember the fundamental capacity-latency tradeoff
q Contention for memory increases latencies

17

How Do We Tolerate Stalls Due to Memory?
n Two major approaches

q Reduce/eliminate stalls
q Tolerate the effect of a stall when it happens

n Four fundamental techniques to achieve these
q Caching
q Prefetching
q Multithreading
q Out-of-order execution

n Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency

18

19

Memory Latency Tolerance Techniques

n Caching [initially by Bloom+, 1962 and later Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates irregular cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies
q Runahead execution alleviates this problem (as we will see today)

Runahead Execution

21

ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8
BEQ R1, R0, target
LOAD R1 ß mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order,
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for most
full-window stalls.

LOAD R3 ß mem[R2]

22

Impact of Long-Latency Cache Misses

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

128-entry window

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

23

Impact of Long-Latency Cache Misses

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

128-entry window 2048-entry window

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Non-stall (compute) time

Full-window stall time

500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

24

The Problem
n Out-of-order execution requires large instruction windows

to tolerate today’s main memory latencies.

n As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

n Building a large instruction window is a challenging task
if we would like to achieve
q Low power/energy consumption (tag matching logic, ld/st

buffers)
q Short cycle time (access, wakeup/select latencies)
q Low design and verification complexity

Efficient Scaling of Instruction Window Size
n One of the major research issues in out of order execution

n How to achieve the benefits of a large window with a small
one (or in a simpler way)?

n How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?

25

Memory Level Parallelism (MLP)
n Idea: Find and service multiple cache misses in parallel so

that the processor stalls only once for all misses

q Enables latency tolerance: overlaps latency of different misses

n How to generate multiple misses?
q Out-of-order execution, multithreading, prefetching, runahead

26

time

A
B

C

isolated miss parallel miss

Runahead Execution (I)
n A technique to obtain the memory-level parallelism benefits

of a large instruction window

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

27

Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

n Hardware prefetcher and branch predictor tables are trained
using future access information.

Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.

L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and
store buffer.

n INV values are not used for prefetching/branch resolution.

Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to
dependent loads.

Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.

A Runahead Processor Diagram

36

Mutlu+, “Runahead Execution,”
HPCA 2003.

Runahead Execution Pros and Cons
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

n Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in IBM POWER6, Sun “Rock”
37

38

12%

35%

13%

15%
22% 12%

16% 52%

22%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

No prefetcher, no runahead
Only prefetcher (baseline)
Only runahead
Prefetcher + runahead

Performance of Runahead Execution

39

Runahead Execution vs. Large Windows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

128-entry window (baseline)
128-entry window with Runahead
256-entry window
384-entry window
512-entry window

Runahead vs. A (Real) Large Window
n When is one beneficial, when is the other?
n Pros and cons of each

n Which can tolerate floating-point operation latencies better?
n Which leads to less wasted execution?

40

41

Runahead on In-order vs. Out-of-order

39%

50%28%

14%
20%

17%

73%

73%

15%

20%

47%15%

12%
22%

13%

16%

23%

10%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

pe
ra

tio
ns

 P
er

 C
yc

le

in-order baseline
in-order + runahead
out-of-order baseline
out-of-order + runahead

Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.

42

Generalizing the Idea
n Runahead on different long-latency operations?

43

More on Runahead Execution

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

44

More on Runahead Execution (Short)

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

45

Runahead Enhancements

Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.

47

Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]

The Efficiency Problem

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

AV
G

% Increase in IPC
% Increase in Executed Instructions

235%

22%
27%

Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.

Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit

Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient

Useless Runahead Periods
n Periods that do not result in prefetches for normal mode

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

AV
G

In
cr

ea
se

 in
 E

xe
cu

te
d

In
st

ru
ct

io
ns

baseline runahead
all techniques

235%

Overall Impact on Executed Instructions

26.5%

6.2%

Overall Impact on IPC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

AV
G

In
cr

ea
se

 in
 IP

C

baseline runahead
all techniques

116%

22.6%
22.1%

More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines"
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)

56

More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,
January/February 2006.

57

Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the
highest benefit?

n Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

n How?
58

Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]

n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer)
loads

n Address load: loads an address into its destination register,
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO

2005.

Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative
Instructions

Miss

AVD Prediction [MICRO’05]

n Address-value delta (AVD) of a load instruction defined as:
AVD = Effective Address of Load – Data Value of Load

n For some address loads, AVD is stable
n An AVD predictor keeps track of the AVDs of address loads
n When a load is an L2 miss in runahead mode, AVD

predictor is consulted

n If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

Predicted Value = Effective Address – Predicted AVD

Why Do Stable AVDs Occur?
n Regularity in the way data structures are

q allocated in memory AND
q traversed

n Two types of loads can have stable AVDs
q Traversal address loads

n Produce addresses consumed by address loads
q Leaf address loads

n Produce addresses consumed by data loads

Traversal Address Loads
Regularly-allocated linked list:

A

A+k

A+2k

A+3k...

A traversal address load loads the
pointer to next node:

node = nodeànext

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k
A+2k A+3k -k

Stable AVDStriding
data value

AVD = Effective Addr – Data Value

Leaf Address Loads
Sorted dictionary in parser:
Nodes point to strings (words)
String and node allocated consecutively

A+k

A C+k

C

B+k

B
D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word.

A leaf address load loads the pointer to
the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k
F+k F k

lookup (node, input) { // ...
ptr_str = nodeàstring;
m = check_match(ptr_str, input);
// …

}

Stable AVDNo stride!

AVD = Effective Addr – Data Valuestring

node

AVD Prediction 67

Identifying Address Loads in Hardware
n Insight:

q If the AVD is too large, the value that is loaded is likely not an
address

n Only keep track of loads that satisfy:
-MaxAVD ≤ AVD ≤ +MaxAVD

n This identification mechanism eliminates many loads from
consideration for prediction
q No need to value- predict the loads that will not generate

addresses
q Enables the predictor to be small

68

An Implementable AVD Predictor

n Set-associative prediction table
n Prediction table entry consists of

q Tag (Program Counter of the load)
q Last AVD seen for the load
q Confidence counter for the recorded AVD

n Updated when an address load is retired in normal mode
n Accessed when a load misses in L2 cache in runahead mode
n Recovery-free: No need to recover the state of the processor

or the predictor on misprediction
q Runahead mode is purely speculative

69

AVD Update Logic

AVD Prediction 70

AVD Prediction Logic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

bis
ort

he
alt

h
mst

pe
rim

ete
r

tre
ea

dd tsp

vo
ron

oi mcf

pa
rse

r
tw

olf vp
r

AVG

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
an

d
Ex

ec
ut

ed
 In

st
ru

ct
io

ns

Execution Time

Executed Instructions

Performance of AVD Prediction
runahead

14.3%
15.5%

More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the
Effectiveness of Runahead Execution by Exploiting Regular
Memory Allocation Patterns"
Proceedings of the 38th International Symposium on
Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November
2005. Slides (ppt)Slides (pdf)

72

More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

73

Wrong Path Events

An Observation and A Question
• In an out-of-order processor, some

instructions are executed on the
mispredicted path (wrong-path instructions).

• Is the behavior of wrong-path instructions
different from the behavior of correct-path
instructions?
– If so, we can use the difference in behavior for

early misprediction detection and recovery.

What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1

Why Does a WPE Occur?

• A wrong-path instruction may be executed
before the mispredicted branch is
executed.
– Because the mispredicted branch may be

dependent on a long-latency instruction.

• The wrong-path instruction may consume
a data value that is not properly initialized.

WPE Example from eon:
NULL pointer dereference

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Beginning of the loop

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Loop branch correctly predicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Loop exit branch mispredicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Third iteration on wrong path

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2
ptr = 0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Wrong Path Event

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

NULL pointer dereference!

i = 2
ptr = 0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Types of WPEs

• Due to memory instructions
– NULL pointer dereference
– Write to read-only page
– Unaligned access (illegal in the Alpha ISA)
– Access to an address out of segment range
– Data access to code segment
– Multiple concurrent TLB misses

Types of WPEs (continued)
• Due to control-flow instructions

– Misprediction under misprediction
• If three branches are executed and resolved as mispredicts

while there are older unresolved branches in the processor, it
is almost certain that one of the older unresolved branches is
mispredicted.

– Return address stack underflow
– Unaligned instruction fetch address (illegal in Alpha)

• Due to arithmetic instructions
– Some arithmetic exceptions

• e.g. Divide by zero

Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?

More on Wrong Path Events

n David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 37th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

91

Why Is This Important?
n A modern processor spends significant amount of time

fetching/executing instructions on the wrong path

92

A Lot of Time Spent on The Wrong Path
n A runahead processor, much more so…

93

Is Wrong-Path Execution Useless/Useful/Harmful?

94

Wrong Path Is Often Useful for Performance

95

More So In Runahead Execution

96

Why is Wrong Path Useful? (I)

97

n Control-independence: e.g., wrong-path execution of future
loop iterations

Why is Wrong Path Useful? (II)

98

Why is Wrong Path Useful? (III)

99

n Same data used in different control flow paths

More on Wrong Path Execution (I)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance"
Proceedings of the 3rd Workshop on Memory Performance
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides
(pdf)

100

More on Wrong Path Execution (II)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"
IEEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

101

What If …
n The system learned from wrong-path execution and used

that learning for better execution of the program/system?

n An open research problem…

102

Computer Architecture
Lecture 17:

Latency Tolerance and Prefetching

Prof. Onur Mutlu
ETH Zürich
Fall 2017

22 November 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Prefetching

Outline of Prefetching Lecture(s)
n Why prefetch? Why could/does it work?
n The four questions

q What (to prefetch), when, where, how
n Software prefetching
n Hardware prefetching algorithms
n Execution-based prefetching
n Prefetching performance

q Coverage, accuracy, timeliness
q Bandwidth consumption, cache pollution

n Prefetcher throttling
n Issues in multi-core (if we get to it)

106

Readings in Prefetching
n Required:

q Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

q Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA
1997.

n Recommended:
q Mowry et al., “Design and Evaluation of a Compiler Algorithm for

Prefetching,” ASPLOS 1992.
q Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

q Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

107

Prefetching
n Idea: Fetch the data before it is needed (i.e. pre-fetch) by

the program

n Why?
q Memory latency is high. If we can prefetch accurately and

early enough we can reduce/eliminate that latency.
q Can eliminate compulsory cache misses
q Can it eliminate all cache misses? Capacity, conflict?

n Involves predicting which address will be needed in the
future
q Works if programs have predictable miss address patterns

108

Prefetching and Correctness
n Does a misprediction in prefetching affect correctness?

n No, prefetched data at a “mispredicted” address is simply
not used

n There is no need for state recovery
q In contrast to branch misprediction or value misprediction

109

Basics
n In modern systems, prefetching is usually done in cache

block granularity

n Prefetching is a technique that can reduce both
q Miss rate
q Miss latency

n Prefetching can be done by
q hardware
q compiler
q programmer

110

How a HW Prefetcher Fits in the Memory System

111

Prefetching: The Four Questions
n What

q What addresses to prefetch

n When
q When to initiate a prefetch request

n Where
q Where to place the prefetched data

n How
q Software, hardware, execution-based, cooperative

112

Challenges in Prefetching: What
n What addresses to prefetch

q Prefetching useless data wastes resources
n Memory bandwidth
n Cache or prefetch buffer space
n Energy consumption
n These could all be utilized by demand requests or more accurate

prefetch requests
q Accurate prediction of addresses to prefetch is important

n Prefetch accuracy = used prefetches / sent prefetches
n How do we know what to prefetch

q Predict based on past access patterns
q Use the compiler’s knowledge of data structures

n Prefetching algorithm determines what to prefetch
113

Challenges in Prefetching: When
n When to initiate a prefetch request

q Prefetching too early
n Prefetched data might not be used before it is evicted from

storage
q Prefetching too late

n Might not hide the whole memory latency

n When a data item is prefetched affects the timeliness of the
prefetcher

n Prefetcher can be made more timely by
q Making it more aggressive: try to stay far ahead of the

processor’s access stream (hardware)
q Moving the prefetch instructions earlier in the code (software)

114

Challenges in Prefetching: Where (I)
n Where to place the prefetched data

q In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data à cache pollution

q In a separate prefetch buffer
+ Demand data protected from prefetches à no cache pollution
-- More complex memory system design

- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

n Many modern systems place prefetched data into the cache
q Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …

115

Challenges in Prefetching: Where (II)
n Which level of cache to prefetch into?

q Memory to L2, memory to L1. Advantages/disadvantages?
q L2 to L1? (a separate prefetcher between levels)

n Where to place the prefetched data in the cache?
q Do we treat prefetched blocks the same as demand-fetched

blocks?
q Prefetched blocks are not known to be needed

n With LRU, a demand block is placed into the MRU position

n Do we skew the replacement policy such that it favors the
demand-fetched blocks?
q E.g., place all prefetches into the LRU position in a way?

116

Challenges in Prefetching: Where (III)
n Where to place the hardware prefetcher in the memory

hierarchy?
q In other words, what access patterns does the prefetcher see?
q L1 hits and misses
q L1 misses only
q L2 misses only

n Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching
-- Prefetcher needs to examine more requests (bandwidth

intensive, more ports into the prefetcher?)

117

Challenges in Prefetching: How
n Software prefetching

q ISA provides prefetch instructions
q Programmer or compiler inserts prefetch instructions (effort)
q Usually works well only for “regular access patterns”

n Hardware prefetching
q Hardware monitors processor accesses
q Memorizes or finds patterns/strides
q Generates prefetch addresses automatically

n Execution-based prefetchers
q A “thread” is executed to prefetch data for the main program
q Can be generated by either software/programmer or hardware

118

Software Prefetching (I)
n Idea: Compiler/programmer places prefetch instructions into

appropriate places in code

n Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

n Prefetch instructions prefetch data into caches
n Compiler or programmer can insert such instructions into the

program

119

X86 PREFETCH Instruction

120

microarchitecture
dependent
specification

different instructions
for different cache
levels

Software Prefetching (II)

n Can work for very regular array-based access patterns. Issues:
-- Prefetch instructions take up processing/execution bandwidth
q How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) à portability?

-- Going too far back in code reduces accuracy (branches in between)
q Need “special” prefetch instructions in ISA?

n Alpha load into register 31 treated as prefetch (r31==0)
n PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

121

for (i=0; i<N; i++) {
__prefetch(a[i+8]);
__prefetch(b[i+8]);
sum += a[i]*b[i];

}

while (p) {
__prefetch(pànext);
work(pàdata);
p = pànext;

}

while (p) {
__prefetch(pànextànextànext);
work(pàdata);
p = pànext;

}
Which one is better?

Software Prefetching (III)
n Where should a compiler insert prefetches?

q Prefetch for every load access?
n Too bandwidth intensive (both memory and execution bandwidth)

q Profile the code and determine loads that are likely to miss
n What if profile input set is not representative?

q How far ahead before the miss should the prefetch be inserted?
n Profile and determine probability of use for various prefetch

distances from the miss
q What if profile input set is not representative?
q Usually need to insert a prefetch far in advance to cover 100s of cycles

of main memory latency à reduced accuracy

122

Hardware Prefetching (I)
n Idea: Specialized hardware observes load/store access

patterns and prefetches data based on past access behavior

n Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

123

Next-Line Prefetchers
n Simplest form of hardware prefetching: always prefetch next

N cache lines after a demand access (or a demand miss)
q Next-line prefetcher (or next sequential prefetcher)
q Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?
- What if the program is traversing memory from higher to lower
addresses?
- Also prefetch “previous” N cache lines?

124

Stride Prefetchers
n Two kinds

q Instruction program counter (PC) based
q Cache block address based

n Instruction based:
q Baer and Chen, “An effective on-chip preloading scheme to

reduce data access penalty,” SC 1991.
q Idea:

n Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

n Next time the same load instruction is fetched,
prefetch last address + stride

125

Instruction Based Stride Prefetching

n What is the problem with this?
q How far can the prefetcher get ahead of the demand access stream?
q Initiating the prefetch when the load is fetched the next time can be

too late
n Load will access the data cache soon after it is fetched!

q Solutions:
n Use lookahead PC to index the prefetcher table (decouple frontend of

the processor from backend)
n Prefetch ahead (last address + N*stride)
n Generate multiple prefetches

126

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load
Inst
PC

Cache-Block Address Based Stride Prefetching

n Can detect
q A, A+N, A+2N, A+3N, …
q Stream buffers are a special case of cache block address

based stride prefetching where N = 1

127

Address tag Stride Control/Confidence

……. ……

Block
address

Stream Buffers (Jouppi, ISCA 1990)
n Each stream buffer holds one stream of

sequentially prefetched cache lines

n On a load miss check the head of all
stream buffers for an address match
q if hit, pop the entry from FIFO, update the cache

with data
q if not, allocate a new stream buffer to the new

miss address (may have to replace a stream
buffer following LRU policy)

n Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

128

FIFO

FIFO

FIFO

FIFO

DCache

M
em

or
y

in
te

rfa
ce

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Stream Buffer Design

129

Stream Buffer Design

130

Tradeoffs in Stride Prefetching
n Instruction based stride prefetching vs.

cache block address based stride prefetching

n The latter can exploit strides that occur due to the
interaction of multiple instructions

n The latter can more easily get further ahead of the
processor access stream
q No need for lookahead PC

n The latter is more hardware intensive
q Usually there are more data addresses to monitor than

instructions
131

Locality Based Prefetchers
n In many applications access patterns are not perfectly

strided
q Some patterns look random to closeby addresses
q How do you capture such accesses?

n Locality based prefetching
q Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware
Prefetchers“, HPCA 2007.

132

Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

n Multiple tracking entries for a range of addresses
n Invalid: The tracking entry is not allocated a stream to keep track of. Initially,

all tracking entries are in this state.
n Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the

demand miss does not find any existing tracking entry for its cache-block address.
n Training: The prefetcher trains the direction (ascending or descending) of the

stream based on the next two L2 misses that occur +/- 16 cache blocks from the
first miss. If the next two accesses in the stream are to ascending (descending)
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions
to Monitor and Request state.

n Monitor and Request: The tracking entry monitors the accesses to a memory
region from a start pointer (address A) to an end pointer (address P). The maximum
distance between the start pointer and the end pointer is determined by Prefetch
Distance, which indicates how far ahead of the demand access stream the
prefetcher can send requests. If there is a demand L2 cache access to a cache block
in the monitored memory region, the prefetcher requests cache blocks [P+1, ...,
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1).
N is called the Prefetch Degree. After sending the prefetch requests, the tracking
entry starts monitoring the memory region between addresses A+N to P+N (i.e.
effectively it moves the tracked memory region by N cache blocks).

133

Limitations of Locality-Based Prefetchers
n Bandwidth intensive

q Why?
q Can be fixed by

n Stride detection
n Feedback mechanisms

n Limited to prefetching closeby addresses
q What about large jumps in addresses accessed?

n However, they work very well in real life
q Single-core systems
q Boggs et al., Intel Technology Journal, Feb 2004.

134

Prefetcher Performance (I)
n Accuracy (used prefetches / sent prefetches)
n Coverage (prefetched misses / all misses)
n Timeliness (on-time prefetches / used prefetches)

n Bandwidth consumption
q Memory bandwidth consumed with prefetcher / without

prefetcher
q Good news: Can utilize idle bus bandwidth (if available)

n Cache pollution
q Extra demand misses due to prefetch placement in cache
q More difficult to quantify but affects performance

135

Prefetcher Performance (II)
n Prefetcher aggressiveness affects all performance metrics
n Aggressiveness dependent on prefetcher type
n For most hardware prefetchers:

q Prefetch distance: how far ahead of the demand stream
q Prefetch degree: how many prefetches per demand access

136

Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)
n How do these metrics interact?
n Very Aggressive Prefetcher (large prefetch distance & degree)

q Well ahead of the load access stream
q Hides memory access latency better
q More speculative
+ Higher coverage, better timeliness
-- Likely lower accuracy, higher bandwidth and pollution

n Very Conservative Prefetcher (small prefetch distance & degree)
q Closer to the load access stream
q Might not hide memory access latency completely
q Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting
-- Likely lower coverage and less timely

137

Prefetcher Performance (IV)

138

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e

IP
C

 c
ha

ng
e

ov
er

 N
o

P
re

fe
tc

hi
ng

Prefetcher Accuracy

Prefetcher Performance (V)

n Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

139

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip2 ga

p
mcf

pa
rse

r
vo

rte
x

vp
r

am
mp

ap
plu art

eq
ua

ke

fac
ere

c
ga

lge
l

mes
a

mgri
d

six
tra

ck
sw

im

wup
wise

gm
ea

n

In
st

ru
ct

io
ns

 p
er

 C
yc

le

No Prefetching
Very Conservative
Middle-of-the-Road
Very Aggressive

â48%
â 29%

Feedback-Directed Prefetcher Throttling (I)
n Idea:

q Dynamically monitor prefetcher performance metrics
q Throttle the prefetcher aggressiveness up/down based on past

performance
q Change the location prefetches are inserted in cache based on

past performance

140

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

n Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

n Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

141

á11%á13%

Feedback-Directed Prefetcher Throttling (III)
n BPKI - Memory Bus Accesses per 1000 retired Instructions

q Includes effects of L2 demand misses as well as pollution
induced misses and prefetches

n A measure of bus bandwidth usage

142

No. Pref. Very Cons Mid Very Aggr FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPKI 8.56 9.34 10.60 13.38 10.88

More on Feedback Directed Prefetching

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

143

How to Prefetch More Irregular Access Patterns?

n Regular patterns: Stride, stream prefetchers do well
n More irregular access patterns

q Indirect array accesses
q Linked data structures
q Multiple regular strides (1,2,3,1,2,3,1,2,3,…)
q Random patterns?
q Generalized prefetcher for all patterns?

n Correlation based prefetchers
n Content-directed prefetchers
n Precomputation or execution-based prefetchers

144

Address Correlation Based Prefetching (I)
n Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C
n After referencing a particular address (say A or E), are

some addresses more likely to be referenced next

145

A B C

D E F
1.0

.33 .5

.2

1.0.6.2

.67
.6

.5

.2

Markov
Model

Address Correlation Based Prefetching (II)

n Idea: Record the likely-next addresses (B, C, D) after seeing an address A
q Next time A is accessed, prefetch B, C, D
q A is said to be correlated with B, C, D

n Prefetch up to N next addresses to increase coverage
n Prefetch accuracy can be improved by using multiple addresses as key for

the next address: (A, B) à (C)
(A,B) correlated with C

n Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
q Also called “Markov prefetchers”

146

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……
….

Cache
Block
Addr

Address Correlation Based Prefetching (III)
n Advantages:

q Can cover arbitrary access patterns
n Linked data structures
n Streaming patterns (though not so efficiently!)

n Disadvantages:
q Correlation table needs to be very large for high coverage

n Recording every miss address and its subsequent miss addresses
is infeasible

q Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

q Can consume a lot of memory bandwidth
n Especially when Markov model probabilities (correlations) are low

q Cannot reduce compulsory misses
147

Content Directed Prefetching (I)
n A specialized prefetcher for pointer values
n Idea: Identify pointers among all values in a fetched cache

block and issue prefetch requests for them.
q Cooksey et al., “A stateless, content-directed data prefetching

mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

n How to identify pointer addresses:
q Compare address sized values within cache block with cache

block’s address à if most-significant few bits match, pointer
148

Content Directed Prefetching (II)

149

x40373551

L2 DRAM… …

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch
Virtual Address Predictor

X80022220

22220X800

11100x800

Making Content Directed Prefetching Efficient
n Hardware does not have enough information on pointers
n Software does (and can profile to get more information)

n Idea:
q Compiler profiles and provides hints as to which pointer

addresses are likely-useful to prefetch.
q Hardware uses hints to prefetch only likely-useful pointers.

n Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

150

151

Shortcomings of CDP – An example

HashLookup(int Key) {
…
for (node = head ; node -> Key != Key;

Struct node{
int Key;
int * D1_ptr;
int * D2_ptr;
node * Next;

}

node = node -> Next;
if (node) return node->D1;

}

…

Key
D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

152

Shortcomings of CDP – An example

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next
Cache Line Addr

…

Key
D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

153

Shortcomings of CDP – An example

HashLookup(int Key) {
…
for (node = head ; node = node -> Next;
if (node)

}

) ;

…

Key
D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;
return node -> D1;

Key

154

Shortcomings of CDP – An example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next
Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[31:20]

More on Content Directed Prefetching

n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009.Slides (ppt)

155

Hybrid Hardware Prefetchers
n Many different access patterns

q Streaming, striding
q Linked data structures
q Localized random

n Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive
-- Prefetchers start getting in each other’s way (contention,

pollution)
- Need to manage accesses from each prefetcher

156

Execution-based Prefetchers (I)
n Idea: Pre-execute a piece of the (pruned) program solely

for prefetching data
q Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can
be considered a “thread”

n Speculative thread can be executed
n On a separate processor/core
n On a separate hardware thread context (think fine-grained

multithreading)
n On the same thread context in idle cycles (during cache misses)

157

Execution-based Prefetchers (II)
n How to construct the speculative thread:

q Software based pruning and “spawn” instructions
q Hardware based pruning and “spawn” instructions
q Use the original program (no construction), but

n Execute it faster without stalling and correctness constraints

n Speculative thread
q Needs to discover misses before the main program

n Avoid waiting/stalling and/or compute less
q To get ahead, uses

n Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

q Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

158

Thread-Based Pre-Execution
n Dubois and Song, “Assisted

Execution,” USC Tech
Report 1998.

n Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

n Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

159

Thread-Based Pre-Execution Issues
n Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context

n When the main thread is stalled
n When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
n How far ahead?

q Too early: prefetch might not be needed
q Too late: prefetch might not be timely

2. When the main thread is stalled
n When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)

160

Thread-Based Pre-Execution Issues
n What, when, where, how

q Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

q Many issues in software-based pre-execution discussed

161

An Example

162

Example ISA Extensions

163

Results on a Multithreaded Processor

164

Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.

Problem Instructions
n Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA

2001.
n Zilles and Sohi, ”Understanding the backward slices of performance degrading

instructions,” ISCA 2000.

165

Fork Point for Prefetching Thread

166

Pre-execution Thread Construction

167

Review: Runahead Execution
n A simple pre-execution method for prefetching purposes

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

168

Review: Runahead Execution (Mutlu et al., HPCA 2003)

169

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead as an Execution-based Prefetcher
n Idea of an Execution-Based Prefetcher: Pre-execute a piece

of the (pruned) program solely for prefetching data

n Idea of Runahead: Pre-execute the main program solely for
prefetching data

n Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

n Can you make runahead even better by pruning the
program portion executed in runahead mode?

170

Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the
highest benefit?

n Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

n How?
171

Execution-based Prefetchers: Pros and Cons
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy
- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful
-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
172

Multi-Core Issues in Prefetching

173

Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention

174

Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness

175

Some Ideas

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints)

[HPCA’09]

176

177

Motivation
n Aggressive prefetching improves

memory latency tolerance of
many applications when they run alone

n Prefetching for concurrently-executing
applications on a CMP can lead to
o Significant system performance degradation and

bandwidth waste

n Problem:
Prefetcher-caused inter-core interference
o Prefetches of one application contend with

prefetches and demands of other applications

178

Potential Performance
System performance improvement of ideally removing all
prefetcher-caused inter-core interference in shared resources

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

W
L1

W
L2

W
L3

W
L4

W
L5

W
L6

W
L7

W
L8

W
L9

W
L1

0

W
L1

1

W
L1

2

W
L1

3

W
L1

4

G
m

ea
n-

32Pe
rf

. N
or

m
al

iz
ed

 to
 N

o
Th

ro
ttl

in
g

56%

Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]

High Interference caused by
Accurate Prefetchers

179

DRAM

Memory Controller

Core2 Core3Core0

Dem 2
Addr:A

Dem 2
Addr:B

Pref 0
Addr:Z

Dem 0
Addr:X

Miss

Shared Cache

Pref 1
Addr:C

Pref 3
Addr:D

Dem 2
Addr:Y

Bank 0 Bank 1

Pref 3
Addr:D+64

Pref 1
Addr:C+64

Row
Buffers

Row:
C to C+8K

Row:
D to D+8K

Requests
Being

Serviced

Row Buffer
Hit

…

Dem 2
Addr:A

Core1Dem 1
Addr:C

Dem X
Addr: Y

Demand Request
From Core X

For AddrY

Legend:

Shortcoming of Local Prefetcher Throttling

180

…

Set 2

…

Core 0 Core 1 Core 2 Core 3

Dem 2 Dem 2 Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3

Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Pref 0Used_P Pref 0 Pref 1 Pref 1

Prefetcher
Degree:

Prefetcher
Degree:

Used_P Used_P Used_P

Pref 0Pref 0 Pref 1 Pref 1Used_P Used_P Used_P Used_P

FDP Throttle Up
24 24

Pref 0 Pref 0 Pref 0 Pref 0 Pref 1 Pref 1 Pref 1 Pref 1

Dem 2 Dem 3Dem 2 Dem 3

Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up

181

Shortcoming of Local-Only
Prefetcher Control

0

0.2

0.4

0.6

0.8

1
lb

m
_0

6

sw
im

_0
0

cr
af

ty
_0

0

bz
ip

2_
00

Sp
ee

du
p

ov
er

 A
lo

ne
 R

un

No Prefetching
Pref. + No Throttling
Feedback-Directed Prefetching
HPAC

0

0.1

0.2

0.3

0.4

0.5

Hspeedup

Our Approach: Use both global and per-core feedback
to determine each prefetcher’s aggressiveness

4-core workload example: lbm_06 + swim_00 + crafty_00 + bzip2_00

Prefetching in Multi-Core (II)
n Ideas for coordinating different prefetchers’ actions

q Utility-based prioritization
n Prioritize prefetchers that provide the best marginal utility on

system performance

q Cost-benefit analysis
n Compute cost-benefit of each prefetcher to drive prioritization

q Heuristic based methods
n Global controller overrides local controller’s throttling decision

based on interference and accuracy of prefetchers
n Ebrahimi et al., “Coordinated Management of Multiple Prefetchers

in Multi-Core Systems,” MICRO 2009.

182

Hierarchical Prefetcher Throttling

183

Memory Controller

Cache Pollution
Feedback

Accuracy

Bandwidth Feedback

Local control’s goal:
Maximize the
prefetching performance of
core i independently

Global control’s goal: Keep
track of and control
prefetcher-caused
inter-core interference in
shared memory system

Global
Control

Global Control: accepts or
overrides decisions made by
local control to improve
overall system performance

Core i

Local
Control

Pref. i

Shared Cache

Throttling Decision

Local
Throttling Decision

Final
Throttling Decision

Hierarchical Prefetcher Throttling Example

184

Memory Controller

Pol (i)

Acc (i)

BW (i)
BWNO (i)

Global
Control

Core i

Local
Control

Pref. i

Shared Cache

Local
Throttling Decision

Final
Throttling Decision

High Acc (i)

Local
Throttle Up High Pol (i)

High BW (i)
High BWNO (i)

Pol. Filter i

- High accuracy
- High pollution
- High bandwidth consumed
while other cores need bandwidth

Enforce
Throttle Down

185

HPAC Control Policies

Causing Low
Pollution

Inaccurate

Highly
Accurate

Others’ low
BW need

throttle
down

Causing High
Pollution

ActionInterference ClassBWNO (i)

High BW
Consumption

Low BW
Consumption Others’ high

BW need

Others’ low
BW need

Inaccurate
throttle
down

Highly
Accurate

High BW
Consumption

Low BW
Consumption

Others’ low
BW need

Others’ high
BW need

Others’ low
BW need

Others’ high
BW need

throttle
downSevere interference

Severe interference

Severe interference

Pol (i) Acc (i) BW (i)

HPAC Evaluation

186

15%

9%

Normalized to system with no prefetching

More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

187

More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

188

More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

189

More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

190

More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

191

Prefetching in GPUs
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides
(pdf)

192

We did not cover the following slides in
lecture. They are for your benefit.

More on Runahead Enhancements

Eliminating Short Periods
n Mechanism to eliminate short periods:

q Record the number of cycles C an L2-miss has been in flight
q If C is greater than a threshold T for an L2 miss, disable entry

into runahead mode due to that miss
q T can be determined statically (at design time) or dynamically

n T=400 for a minimum main memory latency of 500 cycles
works well

195

Eliminating Overlapping Periods
n Overlapping periods are not necessarily useless

q The availability of a new data value can result in the
generation of useful L2 misses

n But, this does not happen often enough

n Mechanism to eliminate overlapping periods:
q Keep track of the number of pseudo-retired instructions R

during a runahead period
q Keep track of the number of fetched instructions N since the

exit from last runahead period
q If N < R, do not enter runahead mode

196

AVD Prediction 197

n Stable AVDs can be captured with a stride value predictor
n Stable AVDs disappear with the re-organization of the data

structure (e.g., sorting)

n Stability of AVDs is dependent on the behavior of the
memory allocator
q Allocation of contiguous, fixed-size chunks is useful

Properties of Traversal-based AVDs

A

A+k

A+2k

A+3k

A+3k

A+k

A

A+2k

Sorting

Distance between
nodes NOT constant!û

AVD Prediction 198

Properties of Leaf-based AVDs

n Stable AVDs cannot be captured with a stride value predictor
n Stable AVDs do not disappear with the re-organization of

the data structure (e.g., sorting)

n Stability of AVDs is dependent on the behavior of the
memory allocator

A+k

A
B+k

B C

C+k
Sorting

Distance between
node and string
still constant!

C+k

C
A+k

A B

B+k
ü

AVD Prediction 199

An Implementable AVD Predictor

n Set-associative prediction table
n Prediction table entry consists of

q Tag (Program Counter of the load)
q Last AVD seen for the load
q Confidence counter for the recorded AVD

n Updated when an address load is retired in normal mode
n Accessed when a load misses in L2 cache in runahead mode
n Recovery-free: No need to recover the state of the processor

or the predictor on misprediction
q Runahead mode is purely speculative

AVD Prediction 200

AVD Update Logic

AVD Prediction 201

AVD Prediction Logic

AVD Prediction 202

Baseline Processor
n Execution-driven Alpha simulator
n 8-wide superscalar processor
n 128-entry instruction window, 20-stage pipeline
n 64 KB, 4-way, 2-cycle L1 data and instruction caches
n 1 MB, 32-way, 10-cycle unified L2 cache
n 500-cycle minimum main memory latency
n 32 DRAM banks, 32-byte wide processor-memory bus (4:1

frequency ratio), 128 outstanding misses
q Detailed memory model

n Pointer-intensive benchmarks from Olden and SPEC INT00

AVD Prediction 203

AVD vs. Stride VP Performance

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

16 entries 4096 entries

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
(e

xc
lu

di
ng

 h
ea

lth
)

AVD

stride

hybrid

5.1%

2.7%

6.5%
5.5%

4.7%

8.6%

16 entries 4096 entries

