Agenda for Today

- GPUs
- Introduction to GPU Programming

Digitaltechnik (Spring 2017) YouTube videos
Lecture 21: GPUs
https://youtu.be/MUPTdxlJKs?t=23m17s
GPUs (Graphics Processing Units)
The instruction pipeline operates like a SIMD pipeline (e.g., an array processor)

However, the programming is done using threads, NOT SIMD instructions

To understand this, let’s go back to our parallelizable code example

But, before that, let’s distinguish between
- Programming Model (Software)
- Execution Model (Hardware)
Programming Model vs. Hardware Execution Model

- Programming Model refers to **how the programmer expresses the code**
 - E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, Multi-threaded (MIMD, SPMD), ...

- Execution Model refers to **how the hardware executes the code underneath**
 - E.g., Out-of-order execution, Vector processor, Array processor, Dataflow processor, Multiprocessor, Multithreaded processor, ...

- Execution Model can be very different from the Programming Model
 - E.g., von Neumann model implemented by an OoO processor
 - E.g., SPMD model implemented by a SIMD processor (a GPU)
How Can You Exploit Parallelism Here?

Scalar Sequential Code

Let's examine three programming options to exploit instruction-level parallelism present in this sequential code:

1. Sequential (SISD)
2. Data-Parallel (SIMD)
3. Multithreaded (MIMD/SPMD)
Prog. Model 1: Sequential (SISD)

Scalar Sequential Code

- Can be executed on a:
 - Pipelined processor
 - Out-of-order execution processor
 - Independent instructions executed when ready
 - Different iterations are present in the instruction window and can execute in parallel in multiple functional units
 - In other words, the loop is dynamically unrolled by the hardware
 - Superscalar or VLIW processor
 - Can fetch and execute multiple instructions per cycle

```
for (i=0; i < N; i++)
  C[i] = A[i] + B[i];
```
Prog. Model 2: Data Parallel (SIMD) for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Scalar Sequential Code

Vector Instruction

Vectorized Code

VLD A \rightarrow V1
VLD B \rightarrow V2
VADD V1 + V2 \rightarrow V3
VST V3 \rightarrow C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD instruction to execute the same instruction from all iterations across different data

Best executed by a SIMD processor (vector, array)
Prog. Model 3: Multithreaded

Scalar Sequential Code

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

Iter. 1

Iter. 2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread to execute each iteration. Each thread does the same thing (but on different data)

Can be executed on a MIMD machine
Prog. Model 3: Multithreaded

```c
for (i=0; i < N; i++)
    C[i] = A[i] + B[i];
```

Iter. 1

Realization: Each iteration is independent

Iter. 2

This particular model is also called:

- **SPMD**: Single Program Multiple Data
- Can be executed on a SIMT machine
 - Single Instruction Multiple Thread
A GPU is a SIMD (SIMT) Machine

- Except it is **not** programmed using SIMD instructions

- It is programmed using threads (SPMD programming model)
 - Each thread executes the same code but operates a different piece of data
 - Each thread has its own context (i.e., can be treated/restarted/executed independently)

- A set of threads executing the same instruction are dynamically grouped into a **warp (wavefront)** by the hardware
 - A warp is essentially a SIMD operation formed by hardware!
for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Warp: A set of threads that execute the same instruction (i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:
Single Instruction Multiple Thread
Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)
SIMD vs. SIMT Execution Model

- **SIMD**: A single sequential instruction stream of SIMD instructions → each instruction specifies multiple data inputs
 - [VLD, VLD, VADD, VST], VLEN

- **SIMT**: Multiple instruction streams of scalar instructions → threads grouped dynamically into warps
 - [LD, LD, ADD, ST], NumThreads

- **Two Major SIMT Advantages:**
 - Can treat each thread separately → i.e., can execute each thread independently (on any type of scalar pipeline) → MIMD processing
 - Can group threads into warps flexibly → i.e., can group threads that are supposed to truly execute the same instruction → dynamically obtain and maximize benefits of SIMD processing
Multithreading of Warps

- Assume a warp consists of 32 threads
- If you have 32K iterations, and 1 iteration/thread → 1K warps
- Warps can be interleaved on the same pipeline → Fine grained multithreading of warps

```c
for (i=0; i < N; i++)
C[i] = A[i] + B[i];
```

![Diagram showing multithreading of warps]
Warps and Warp-Level FGMT

- Warp: A set of threads that execute the same instruction (on different data elements) → SIMT (Nvidia-speak)
- All threads run the same code
- Warp: The threads that run lengthwise in a woven fabric ...

![Diagram showing thread warps and SIMD pipeline](image-url)
High-Level View of a GPU
Latency Hiding via Warp-Level FGMT

- Warp: A set of threads that execute the same instruction (on different data elements)

- Fine-grained multithreading
 - One instruction per thread in pipeline at a time (No interlocking)
 - Interleave warp execution to hide latencies
- Register values of all threads stay in register file
- FGMT enables long latency tolerance
 - Millions of pixels

Slide credit: Tor Aamodt
Warp Execution (Recall the Slide)

32-thread warp executing ADD $A[tid],B[tid] \rightarrow C[tid]$

Execution using one pipelined functional unit

Execution using four pipelined functional units

Slide credit: Krste Asanovic
SIMD Execution Unit Structure

- **Functional Unit**
- **Memory Subsystem**
- **Registers for each Thread**
- **Lane**

- Registers for thread IDs 0, 4, 8, ...
- Registers for thread IDs 1, 5, 9, ...
- Registers for thread IDs 2, 6, 10, ...
- Registers for thread IDs 3, 7, 11, ...

Slide credit: Krste Asanovic
Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
- Example machine has 32 threads per warp and 8 lanes
- Completes 24 operations/cycle while issuing 1 warp/cycle

Slide credit: Krste Asanovic
SIMT Memory Access

- Same instruction in different threads uses thread id to index and access different data elements

Let’s assume $N=16$, 4 threads per warp $→$ 4 warps

Slide credit: Hyesoon Kim
Sample GPU SIMT Code (Simplified)

CPU code

```c
for (ii = 0; ii < 100000; ++ii) {
}
```

CUDA code

```c
// there are 100000 threads
__global__ void KernelFunction(...) {
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    int varA = aa[tid];
    int varB = bb[tid];
    C[tid] = varA + varB;
}
```
Sample GPU Program (Less Simplified)

CPU Program

```c
void add matrix
( float *a, float* b, float *c, int N) {
  int index;
  for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j) {
      index = i + j*N;
      c[index] = a[index] + b[index];
    }
}

int main () {
  add matrix (a, b, c, N);
}
```

GPU Program

```c
__global__ add_matrix
( float *a, float *b, float *c, int N) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  int index = i + j*N;
  if (i < N && j < N)
    c[index] = a[index] + b[index];
}

int main() {
  dim3 dimBlock( blocksize, blocksize);
  dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
  add_matrix<<<dimGrid, dimBlock>>>( a, b, c, N);
}
```
Warp-based SIMD vs. Traditional SIMD

- Traditional SIMD contains a single thread
 - Sequential instruction execution; lock-step operations in a SIMD instruction
 - Programming model is SIMD (no extra threads) → SW needs to know vector length
 - ISA contains vector/SIMD instructions

- Warp-based SIMD consists of multiple scalar threads executing in a SIMD manner (i.e., same instruction executed by all threads)
 - Does not have to be lock step
 - Each thread can be treated individually (i.e., placed in a different warp) → programming model not SIMD
 - SW does not need to know vector length
 - Enables multithreading and flexible dynamic grouping of threads
 - ISA is scalar → SIMD operations can be formed dynamically
 - Essentially, it is SPMD programming model implemented on SIMD hardware
SPMD

- Single procedure/program, multiple data
 - This is a programming model rather than computer organization

- Each processing element executes the same procedure, except on different data elements
 - Procedures can synchronize at certain points in program, e.g. barriers

- Essentially, multiple instruction streams execute the same program
 - Each program/procedure 1) works on different data, 2) can execute a different control-flow path, at run-time
 - Many scientific applications are programmed this way and run on MIMD hardware (multiprocessors)
 - Modern GPUs programmed in a similar way on a SIMD hardware
SIMD vs. SIMT Execution Model

- **SIMD:** A single *sequential instruction stream* of SIMD instructions → each instruction specifies multiple data inputs
 - [VLD, VLD, VADD, VST], VLEN

- **SIMT:** *Multiple instruction streams* of scalar instructions → threads grouped dynamically into warps
 - [LD, LD, ADD, ST], NumThreads

- **Two Major SIMT Advantages:**
 - Can treat each thread separately → i.e., can execute each thread independently on any type of scalar pipeline → MIMD processing
 - Can group threads into warps flexibly → i.e., can group threads that are supposed to *truly* execute the same instruction → dynamically obtain and maximize benefits of SIMD processing
Threads Can Take Different Paths in Warp-based SIMD

- Each thread can have conditional control flow instructions
- Threads can execute different control flow paths
Control Flow Problem in GPUs/SIMT

- A GPU uses a SIMD pipeline to save area on control logic.
 - Groups scalar threads into warps

- Branch divergence occurs when threads inside warps branch to different execution paths.

This is the same as conditional/predicated/masked execution. Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt
Remember: Each Thread Is Independent

- Two Major SIMT Advantages:
 - Can treat each thread separately → i.e., can execute each thread independently on any type of scalar pipeline → MIMD processing
 - Can group threads into warps flexibly → i.e., can group threads that are supposed to *truly* execute the same instruction → dynamically obtain and maximize benefits of SIMD processing

- If we have many threads
- We can find individual threads that are at the same PC
- And, group them together into a single warp dynamically
- This reduces “divergence” → improves SIMD utilization
 - SIMD utilization: fraction of SIMD lanes executing a useful operation (i.e., executing an active thread)
Dynamic Warp Formation/Merging

- Idea: Dynamically merge threads executing the same instruction (after branch divergence)
- Form new warps from warps that are waiting
 - Enough threads branching to each path enables the creation of full new warps
Dynamic Warp Formation/Merging

- **Idea:** Dynamically merge threads executing the same instruction (after branch divergence)

Dynamic Warp Formation Example

A new warp created from scalar threads of both Warp x and y executing at Basic Block D

Execution of Warp x at Basic Block A

Execution of Warp y at Basic Block A

Legend

Baseline

Dynamic Warp Formation

Slide credit: Tor Aamodt
Hardware Constraints Limit Flexibility of Warp Grouping

Can you move any thread flexibly to any lane?
An Example GPU
NVIDIA GeForce GTX 285

- **NVIDIA-speak:**
 - 240 stream processors
 - “SIMT execution”

- **Generic speak:**
 - 30 cores
 - 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian
NVIDIA GeForce GTX 285 “core”

= SIMD functional unit, control shared across 8 units

= multiply-add
= multiply

= instruction stream decode

= execution context storage

64 KB of storage for thread contexts (registers)

Slide credit: Kayvon Fatahalian
NVIDIA GeForce GTX 285 “core”

- Groups of 32 threads share instruction stream (each group is a Warp)
- Up to 32 warps are simultaneously interleaved
- Up to 1024 thread contexts can be stored

64 KB of storage for thread contexts (registers)

Slide credit: Kayvon Fatahalian
NVIDIA GeForce GTX 285

30 cores on the GTX 285: 30,720 threads
Introduction to GPGPU Programming

ETH Zürich
Fall 2017
19 October 2017
Agenda for Today

- **Traditional accelerator model**
 - Program structure
 - Bulk synchronous programming model
 - Memory hierarchy and memory management
 - Performance considerations
 - Memory access
 - SIMD utilization
 - Atomic operations
 - Data transfers

- **New programming features**
 - Dynamic parallelism
 - Collaborative computing
General Purpose Processing on GPU

- **GPUs have democratized HPC**
 - Great FLOP/$, massively parallel chip on a commodity PC
- **However, this is not for free**
 - New programming model
 - New challenges
- **Algorithms need to be re-implemented and rethought**
- **Many workloads exhibit inherent parallelism**
 - Matrices
 - Image processing
- **Main bottlenecks**
 - CPU-GPU data transfers (PCIe, NVLINK)
 - DRAM memory (GDDR5, HBM2)
CPU vs. GPU

- Different design philosophies
 - CPU: A few out-of-order cores
 - GPU: Many in-order cores

Slide credit: Hwu & Kirk
GPU Computing

- Computation is **offloaded to the GPU**
- **Three steps**
 - CPU-GPU data transfer (1)
 - GPU kernel execution (2)
 - GPU-CPU data transfer (3)
CPU threads and GPU kernels

- Sequential or modestly parallel sections on CPU
- Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Slide credit: Hwu & Kirk
CUDA/OpenCL Programming Model

- **SIMT or SPMD**
- Bulk synchronous programming
 - Global (coarse-grain) synchronization between kernels
- The host (typically CPU) allocates memory, copies data, and launches kernels
- The device (typically GPU) executes kernels
 - **Grid** (NDRange)
 - **Block** (work-group)
 - Within a block, shared memory and synchronization
 - **Thread** (work-item)
Transparent Scalability

- Hardware is **free to schedule** thread blocks

Each block can execute in any order relative to other blocks.
CUDA/OpenCL Programming Model

- Memory hierarchy
Traditional Program Structure

- **Function prototypes**
  ```
  float serialFunction(...);
  __global__ void kernel(...);
  ```

- **main()**
 1. **Allocate memory** space on the device – `cudaMalloc(&d_in, bytes)`;
 2. Transfer data from **host to device** – `cudaMemCpy(d_in, h_in, ...)`;
 3. Execution configuration setup: #blocks and #threads
 4. **Kernel call** – `kernel<<<execution configuration>>>(args...)`;
 5. Transfer results from **device to host** – `cudaMemCpy(h_out, d_out, ...)`;

- **Kernel** – `__global__ void kernel(type args,...)`
 - Automatic variables transparently assigned to registers
 - Shared memory – `__shared__`
 - Intra-block synchronization – `__syncthreads()`;

Slide credit: Hwu & Kirk
CUDA Programming Language

- Memory allocation

cudamalloc((void**)&d_in, #bytes);

- Memory copy

cudamemcpy(d_in, h_in, #bytes,
 cudamemcpyHostToDevice);

- Kernel launch

kernel<<< #blocks, #threads >>>(args);

- Memory deallocation

cudafree(d_in);

- Explicit synchronization

cudadevicesynchronize();
Indexing and Memory Access

- Image layout in memory
 - height x width
 - Image[j][i], where $0 \leq j < \text{height}$, and $0 \leq i < \text{width}$
Indexing and Memory Access

- Image layout in memory
 - Row-major layout
 - \(\text{Image}[j][i] = \text{Image}[j \times \text{width} + i] \)

\[\begin{array}{c}
\text{Image}[0][1] = \text{Image}[0 \times 8 + 1] \\
\text{Image}[1][2] = \text{Image}[1 \times 8 + 2]
\end{array}\]
Indexing and Memory Access

- One GPU thread per pixel
- Grid of Blocks of Threads
 - blockIdx.x, threadIdx.x
 - gridDim.x, blockDim.x

blockIdx.x * blockDim.x + threadIdx.x

6 * 4 + 1 = 25
Indexing and Memory Access

- **2D blocks**
 - `gridDim.x, gridDim.y`

Row = blockIdx.y * blockDim.y + threadIdx.y
Row = 1 * 2 + 1 = 3

Col = blockIdx.x * blockDim.x + threadIdx.x
Col = 0 * 2 + 1 = 1

Image[3][1] = Image[3 * 8 + 1]
Brief Review of GPU Architecture

- Streaming Processor Array
 - Tesla architecture (G80/GT200)
Brief Review of GPU Architecture

- Blocks are divided into **warps**
 - SIMD unit (32 threads)
- Streaming Multiprocessors (SM)
 - Streaming Processors (SP)
Brief Review of GPU Architecture

- Streaming Multiprocessors (SM)
 - Compute Units (CU)

- Streaming Processors (SP) or CUDA cores
 - Vector lanes

- Number of SMs x SPs
 - Tesla (2007): 30 x 8
 - Fermi (2010): 16 x 32
 - Kepler (2012): 15 x 192
 - Maxwell (2014): 24 x 128
 - Pascal (2016): 56 x 64
 - Volta (2017): 80 x 64
Performance Considerations

- Main bottlenecks
 - Global memory access
 - CPU-GPU data transfers

- Memory access
 - Latency hiding
 - Thread Level Parallelism (TLP)
 - Occupancy
 - Memory coalescing
 - Data reuse
 - Shared memory usage

- SIMD Utilization

- Atomic operations

- Data transfers between CPU and GPU
 - Overlap of communication and computation
Latency Hiding

- **Occupancy**: ratio of active warps
 - Not only memory accesses (e.g., SFU)
Occupancy

- **SM resources (typical values)**
 - Maximum number of warps per SM (64)
 - Maximum number of blocks per SM (32)
 - Register usage (256KB)
 - Shared memory usage (64KB)

- **Occupancy calculation**
 - Number of threads per block
 - Registers per thread
 - Shared memory per block

- **The number of registers per thread is known in compile time**
Memory Coalescing

- When accessing global memory, **peak bandwidth** utilization occurs when all threads in a warp access **one cache line**.
Memory Coalescing

- Coalesced accesses

Slide credit: Hwu & Kirk
Memory Coalescing

- Uncoalesced accesses
Memory Coalescing

- AoS vs. SoA

```c
struct foo{
    float a[8];
    float b[8];
    float c[8];
    int d[8];
} A;
```

```c
struct foo{
    float a[4][2];
    float b[4][2];
    float c[4][2];
    int d[4][2];
} A[2];
```
Memory Coalescing

- Linear and strided accesses

![Graphs showing throughput vs stride for GPU and CPU](image)

AMD Kaveri A10-7850K
Data Reuse

- Same memory locations accessed by neighboring threads

```c
for (int i = 0; i < 3; i++) {
    for (int j = 0; j < 3; j++) {
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}
```
Data Reuse

- Shared memory tiling

```c
__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
...
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];
    }
}
```
Shared Memory

- Shared memory is an **interleaved memory**
 - Typically 32 banks
 - Each bank can service one address per cycle
 - Successive 32-bit words are assigned to successive banks
 - Bank = Address % 32

- Bank conflicts are **only possible within a warp**
 - No bank conflicts between different warps
Shared Memory

- Bank conflict free

Linear addressing: stride = 1

Random addressing 1:1

Slide credit: Hwu & Kirk
Shared Memory

- **N-way bank conflicts**

2-way bank conflict: stride = 2

8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk
Shared Memory

- Bank conflicts are only possible within a warp
 - No bank conflicts between different warps
- If strided accesses are needed, some optimization techniques can help
 - Padding
 - Hash functions
SIMD Utilization

- **Intra-warp divergence**

```cpp
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
    Do_this(threadIdx.x);
}
else{
    Do_that(threadIdx.x);
}
```
Intra-warp divergence

```c
Compute(threadIdx.x);
if (threadIdx.x < 32){
    Do_this(threadIdx.x * 2);
}
else{
    Do_that((threadIdx.x%32)*2+1);
}
```
Vector Reduction

- Naïve mapping

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

0 1 2 3 4 5 6 7 8 9 10 11

0+1 2+3 4+5 6+7 8+9 10+11

0...3 4..7 8..11

8..15

iterations

Slide credit: Hwu & Kirk
Vector Reduction

- Naïve mapping

```c
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {
    __syncthreads();
    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t + stride];
}
```
Vector Reduction

- Divergence-free mapping

Slide credit: Hwu & Kirk
Vector Reduction

- Divergence-free mapping

```c
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 1; stride >>= 1){
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t + stride];
}
```
We did not cover the following slides in lecture. These are for your preparation for the next lecture.
Atomic Operations

- **Shared memory atomic operations**
 - **CUDA:** `int atomicAdd(int*, int);`
 - **PTX:** `atom.shared.add.u32 %r25, [%rd14], %r24;`
 - **SASS:**

```
/*00a0*/ LDSLK P0, R9, [R8];
/*00a8*/ @P0 IADD R10, R9, R7;
/*00b0*/ @P0 STSCUL P1, [R8], R10;
/*00b8*/ @!P1 BRA 0xa0;
```

Tesla, Fermi, Kepler

Maxwell

```
/*01f8*/ ATOMS.ADD RZ, [R7], R11;
```

Native atomic operations for 32-bit integer, and 32-bit and 64-bit atomicCAS
Atomic Operations

- Atomic conflicts
 - Intra-warp conflict degree from 1 to 32

No atomic conflict = concurrent updates

Atomic conflict = serialized updates
Histogram Calculation

- Histograms count the number of data instances in disjoint categories (bins)

```plaintext
for (each pixel i in image I){
    Pixel = I[i]       // Read pixel
    Pixel’ = Computation(Pixel)  // Optional computation
    Histogram[Pixel’]++       // Vote in histogram bin
}
```

Input data

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>data[n]</td>
<td>data[n+1]</td>
<td>data[n+2]</td>
<td>...</td>
</tr>
<tr>
<td>data[0]</td>
<td>data[1]</td>
<td>data[2]</td>
<td>...</td>
</tr>
</tbody>
</table>
```

Atomic additions
Histogram Calculation

- Frequent conflicts in natural images
Histogram Calculation

- **Privatization**: Per-block sub-histograms in shared memory

![Diagram of histogram calculation with privatization]

- Block 0's sub-histogram
- Block 1's sub-histogram
- Block 2's sub-histogram
- Block 3's sub-histogram

Shared memory:
- b0, b1, b2, b3

Global memory:
- b0, b1, b2, b3

Final histogram:
- b0, b1, b2, b3
Data Transfers

- **Synchronous and asynchronous transfers**
- **Streams (Command queues)**
 - Sequence of operations that are performed in order
 - CPU-GPU data transfer
 - Kernel execution
 - D input data instances, B blocks
 - GPU-CPU data transfer
 - Default stream

![Diagram showing copy and execution times](image-url)
Asynchronous Transfers

- **Computation divided into nStreams**
 - D input data instances, B blocks
 - nStreams
 - D/nStreams data instances
 - B/nStreams blocks

- **Estimates**
 - \(t_E + \frac{t_T}{nStreams} \) for \(t_E \geq t_T \) (dominant kernel)
 - \(t_T + \frac{t_E}{nStreams} \) for \(t_T > t_E \) (dominant transfers)
Asynchronous Transfers

- **Overlap of communication and computation** (e.g., video processing)

<table>
<thead>
<tr>
<th>Non-streamed execution</th>
<th>Streamed execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A sequence of 6 frames is transferred to device</td>
<td>A chunk of 2 frames is transferred to device</td>
</tr>
<tr>
<td>6 x b blocks compute on the sequence of frames</td>
<td>2 x b blocks compute on the chunk, while the second chunk is being transferred</td>
</tr>
</tbody>
</table>

Execution time saved thanks to streams
Summary

- Traditional accelerator model
 - Program structure
 - Bulk synchronous programming model
 - Memory hierarchy and memory management
 - Performance considerations
 - Memory access
 - Latency hiding: occupancy (TLP)
 - Memory coalescing
 - Data reuse: shared memory
 - SIMD utilization
 - Atomic operations
 - Data transfers