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Abstract-This paper develops a model for studying the optimal 
allocation of cache memory among two or more competing pro- 
cesses. I t  uses this model to show that, for the examples studied, 
the least recently used (LRU) replacement strategy produces 
cache allocations that are very close to optimal. The optimal fixed 
allocation of cache among two or  more processes is an allocation 
for which the miss-rate derivative with respect to cache size is 
equal for all processes. 

The paper also investigates the transient in cache allocation 
that occurs when program behavior changes, and shows that LRU 
replacement moves quickly toward the steady-state allocation if 
it is far from optimal, but converges slowly as the allocation 
approaches the steady-state allocation. It describes an efficient 
combinatorial algorithm for determining the optimal steady-state 
allocation, which, in theory, could be used to reduce the length 
of the transient. The algorithm generalizes to multilevel cache 
memories. 

For multiprogrammed systems, the paper describes a cache- 
replacement policy better than LRU replacement. The policy 
increases the memory available to the running process until 
the allocation reaches a threshold time that depends both on 
remaining quantum time and the marginal reduction in miss 
rate due to an increase in cache allocation. Beyond the threshold 
time, the replacement policy does not increase the cache memory 
allocated to the running process. 

For all of the questions studied in this paper, the examples 
shown here illustrate near-optimal performance of LRU replace- 
ment, but in the absence of a bound on near optimality the 
question remains open whether or not LRU replacement is near- 
optimal in all situations likely to arise in practice. 

Index Terms-Cache footporint, cache memory, LRU replace- 
ment, memory allocation, memory hierarchy, miss rate, miss 
ratio, multilevel cache memory, power-law model. 

I. INTRODUCTION 

HIS paper studies the optimal allocation of cache memory T among competing processes. Cache memories are high- 
speed buffer memories whose contents tend to be the most 
frequently used items accessed by a program. The contents 
are normally determined by bringing in new items on demand 
and by using a replacement policy that discards items that 
are unlikely to be accessed in the near future. When the 
replacement policy removes the least recently used (LRU) 
item, caches tend to be very effective, provided that they are 
large enough to hold the majority of the items that are likely 
to be active concurrently. 

Practical implementations of LRU replacement algorithms 
do not usually search all entries in a cache, but instead search 
a small region of the cache that depends on the address 
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reference. The region searched is a called a set, and the 
search is said to be set associative. When the region searched 
contains only a single item, the cache is said to be direct 
mapped. When a new item is brought into the set, some item 
in the same set is discarded. If the replacement algorithm 
discards the least recently used item in the set, we designate the 
replacement algorithm to be an LRU algorithm, and thus both 
set associative and fully associative caches can be managed 
by LRU replacement algorithms according to this terminology. 
Additional information on set-associative and fully associative 
caches can be found in Smith [13] and Hill [9]. 

The question of interest is to determine just how well caches 
behave. We introduce two cache-allocation problems in which 
processes that have different miss-rate behaviors compete for 
cache allocation. We find that for neither problem does LRU 
replacement produce optimal allocations, but the examples 
in this paper exhibit LRU allocations that are very close to 
optimal. The data in this paper endorses the almost universal 
practice of managing cache with LRU replacement. All of the 
results stated here hold both for set-associative caches and 
fully associative caches. 

The first of the problems studied is the allocation of inter- 
laced data and instruction processes to cache memory. This 
formulation of the problem was described in Thiebaut, Stone, 
and Wolf [22]. The paper derives a mathematical model that 
describes optimal and LRU allocations and gives a validation 
of the model by means of a trace-driven simulation. Although 
we are not able to bound the suboptimality of LRU allocations, 
the evidence presented indicates that they are very good. Our 
approach is to develop the model of a simpler modified-LRU 
replacement strategy first, and then embellish this model to 
obtain a model of pure LRU replacement. The modified-LRU 
strategy can produce better allocations than those produced by 
pure LRU for some reference strings. 

The measure of optimality used here is the overall miss rate 
of a cache memory, and an optimal partition is a partition 
of cache memory among competing processes that achieves a 
minimum miss rate. Belady [2] introduced an algorithm that 
is optimal among demand-replacement algorithms. Among all 
possible ways to choose which cache line to replace on a miss, 
Belady’s algorithm produces the lowest miss rate. Belady’s 
algorithm does not indicate how to partition cache among 
competing processes, so it cannot be applied directly to the 
problem addressed in this paper. 

For the first allocation problem, the paper also develops a 
model for the transient behavior of a cache as it moves from 
one allocation to another in response to a change in the char- 
acteristics of data and instruction processes. The differential 
equation obtained generally cannot be solved neatly in closed 
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form, but can be solved numerically. The model is validated 
by a trace-driven simulation and by a statistical simulation of 
the competing processes. Both simulations produce data that 
fit the mathematical characterization of dynamic behavior. Of 
related interest in the literature is the paper by Strecker [18], 
which describes a differential equation to model the dynamics 
of cache occupancy in the absence of competition. 

As a potential means for reducing the allocation transient, 
we describe an algorithm that first appeared in Thiebaut, Stone, 
and Wolf [22] for computing the optimal cache allocation. 
The algorithm allocates lines of cache sequentially among N 
processes in a way that maintains the miss-rate derivatives as 
equal as possible, and terminates when the cache memory is 
fully allocated. We also show how this algorithm generalizes 
to multilevel cache memory systems. 

The second allocation problem treated in this paper is 
the allocation of cache memory among processes in a mul- 
tiprogrammed environment. This problem differs from the 
first because the first scheme deals with interlaced streams, 
whereas in the second problem, one address-reference stream 
has exclusive access to cache for a quantum of time, and then 
yields to a new address-reference stream that has exclusive 
access for another quantum of time. For the second problem, 
there tends to be a cache-reload transient each time a new 
process takes over the processor. The miss rate tends to be 
high during the early part of the transient, and then drops as 
the working set of the process becomes resident in cache. A 
statistical model of the transient that gives an accurate measure 
of the number of lines reloaded appears in Thiebaut and Stone 

For large caches a better replacement policy than LRU 
replacement is to increase the cache allocation of a running 
process until the marginal improvement in miss rate multiplied 
by the time remaining in the quantum is less than some 
threshold. From this point until the end of the quantum, no 
additional cache memory should be allocated to the running 
process. The modified policy tends to retain in cache some 
items that belong to the next process to run on the machine. 
When cache is too small to be likely to retain pages of the 
next process to run, the modified policy is the same as LRU 
replacement. Thus, the modified policy only makes sense to 
use when caches are large enough to retain lines of a process 
in cache through periods when other processes have exclusive 
use of the processor. 

We briefly note some related work. Specifically, Ghanem 
[7] has studied dynamic partitioning of main memory among 
competing programs, and his work is the precursor of this 
work. Replacement strategies for cache have been studied by 
many people, with notable work by Smith and Goodman [15] 
and by So and Rechtschaffen [16] among others. Kirk [ l l ]  
has analyzed the partitioning of an instruction cache into a 
static partition and an LRU partition. Multilevel caches and 
the inclusion principle were studied by Baer and Wang [l] .  
Vernon, Jog, and Sohi [23] have studied performance of hier- 
archical caches, and proposed optimal multilevel topologies. 
Przybylski, Horowitz, and Hennessy [ 121 have also studied 
optimal multilevel cache hierarchies. 

Section I1 poses the allocation problem for interlaced data 

P I .  

and instruction streams, and shows that the miss-rate deriva- 
tives are equal when the allocation is optimal. Section I11 
discusses the characteristics of LRU replacement, and shows 
that it does not converge to the optimal allocation. I1 also 
describes a modified-LRU replacement policy and compares 
its allocations to the LRU allocations. In Section IV, we derive 
the dynamics for the allocation of memory as it converges to 
its equilibrium allocation. The efficient algorithm for finding 
the optimum allocation of cache also appears in Scction 
IV. The results of Sections I1 through IV rely on sweral 
assumptions that are validated in Section V by a trace-clriven 
simulation based on actual data. Section VI treats the allocation 
of memory to processes in a multiprogrammed system. The 
generalization of the allocation algorithm to multilevel caches 
appears in Section VII. An example in Section VI1 shows 
that LRU replacement for multilevel cache can come very 
close to optimal. The last section poses several related research 
questions that remain open at this time. 

11. ALLOCATION OF CACHE MEMORY 
BETWEEN DATA AND INSTRUCTION STREAMS 

The model of cache allocation in this section deals with 
interlaced instruction and data streams that exhibit different 
cache behaviors. For this idealized form of the model, we show 
the optimal allocation occurs at a point where the miss-rate 
derivatives of the competing processes are equal. 

For practical reasons, cache implementations at the fastest 
level of a memory hierarchy do not use fully associative search 
when seeking a match or an item to replace. Instead they 
search a small set of items, and replace the least recently used 
item in the set searched if replacement is necessary. Ilf the 
set has four or more lines, typical replacement algorithms are 
further simplified and they only approximate LRU replacement 
because the complexity of maintaining LRU informaticin for 
four or more items becomes excessive. At slower levtrls of 
a memory hierarchy, such as cache memories associated with 
large disks, the caches tend to be searched in a fully associative 
manner. In such caches, true LRU replacement is used for most 
references, with exceptions made for sequentially accessed 
data and other reference patterns that are highly predictable. 

The focus of this paper is miss rate as a function of tiache 
allocation of individual competing processes. Central to this 
paper is the assumption that competing processes cain be 
characterized as having a miss rate as a function of allociation 
size. For fully associative caches, the miss rate for a given 
reference stream as a function of allocation is indeed a one- 
parameter function and depends only on the number of lines 
allocated to a process, since the entire cache is searched for a 
match during a cache lookup. For set-associative caches, the 
miss rate depends not only on how many lines are allocated 
to a process, but where they are in the cache, since only a set 
of a few lines is actually searched during a lookup. 

Because a model that accounts for the physical locations of 
lines allocated in cache is extremely complicated, this paper 
uses a simplified model of set-associative caches in which 
the miss rate is a one-parameter function, and that parameter 
is the number of lines allocated, regardless of the physical 



1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992 

distribution of lines per set. We ignore the effect of the actual 
distribution of cache lines on miss rate. Thus, set-associative 
caches are treated in the same way as fully associative caches, 
and the model is applicable to both types of caches. Section 
V validates this assumption by demonstrating the agreement 
between the model and a trace-driven cache simulation. Hence, 
we use the notation  MA(^) to denote the miss rate of a 
process, process A,  in a cache for which process A has a 
current allocation of z lines. The miss rate is also a function 
of the cache structure parameters, which include the number of 
sets, the set associativity, and the line size. For the purposes 
of this paper, we fix the structure of a cache, and vary the 
allocation of a process within that structure. Hence, we do 
not explicitly identify the cache-structure parameters on which 
M . A ( ~ )  depends when we use this notation. 

Now we examine the processes that generate the cache refer- 
ences. Assume that an address-reference stream is composed 
of two interlaced streams of addresses. One stream consists 
of instruction fetches, and the second stream consists of data 
fetches. The composite stream is an interleaving of the two 
streams so that its address references alternate between data 
and instructions. That is, the stream has the form I ,  D ,  I ,  
D ,  . . . , where I and D are instruction and data references, 
respectively. Each component stream has a known cache 
behavior given by a miss rate for that stream as a function 
of the cache memory allocated to the process. Let MI(IL.)  be 
the miss rate for the I stream as a function of cache size z, 
and, similarly, let M D ( ~ )  be the miss rate for the data stream. 
We assume that both the instruction and data processes are 
stationary in time, so that the miss rates are not time varying 
functions. 

Although this is a highly idealized model of the I and D 
processes, the results are not sensitive to the precise way 
in which the processes are interleaved, provided that the 
frequencies of the process accesses are equal and long strings 
of consecutive accesses of one type occur only rarely. The 
trace-driven validation has approximately equal frequencies 
of I and D references, but some strings of consecutive D 
references are hundreds of references long because of the 
execution of block-move instructions. We also assume that the 
miss-rate functions are convex functions of cache size. Later 
in the paper, we examine the case in which the frequencies of 
the two types of accesses are unequal. 

To illustrate the use of the model on representative data, 
we use the published data from Smith [14] as the source of 
a running example. Smith’s data are design target miss ratios 
for caches of varying total size and line size, and the data used 
appear in Figs. 1 and 2. The plots are the miss-rate functions 
for I and D streams averaged over many different workloads 
and instruction repertoires. The line sizes in those figures are 
measured in bytes per line. The log/log plots do not show the 
convexity of the curves, but the corresponding linear/linear 
plots demonstrate that these functions are convex except for 
data caches with 4-byte line sizes in the region between 1K 
and 4K bytes. We do not claim that Smith’s data represent 
any specific cache design and workload. Therefore, the running 
example in this section based on Smith’s data does not validate 
the model. The validation appears later. 

Miss Ratio vs. Cache Size, Data 
Smith’s Design Target Miss Ratios 
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Fig. 1. Smith’s design target miss ratios for data cache. (a) Linilin scaling. 
Line size in bytes. (b) Logilog scaling. 

To determine the optimal fixed allocation of cache for the I 
and D streams, we find an expression for the misses in a period 
of time that has exactly T references, and find an allocation 
at which the derivative of the miss rate function goes to zero. 
Because we take derivatives, we assume that miss-rate func- 
tions  MI(^) and M D ( x )  are continuous and differentiable, 
although, in reality, they are measurable only at discrete points 
on the x-axis. For this derivation we approximate the actual 
functions by continuous functions. 

Assume that we must allocate C bytes of memory between 
D and I references so that the I stream uses z bytes of 
memory, and the D stream uses the remaining C - x bytes 
of memory. Each cache partition is used exclusively by the 
process that owns it. What value of z achieves the overall 
minimum miss-rate? 

The total number of misses in a time period with T 
references is the composite miss rate times the length of the 
period. Since we assume that I and D references occur with 
equal frequency in the interval T ,  the total number of misses 
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Miss Ratio vs. Cache Size, Instructions 
Smith’s Design Target Miss Ratios 
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Fig. 2. Smith’s design target miss ratios for instruction cache. (a) Lin/lin 
scaling. (b) Logilog scaling. 

is given by 

Total misses = (M1(x) + MD(C - z) )T/2 .  (1) 

To minimize the overall miss rate, we minimize the total 
misses given in (1) by setting the derivative of the right-hand 
side of (1) to 0, which occurs at a value of x that satisfies 

By convexity of the miss-rate functions, such a point is indeed 
a minimum. If either of the miss-rate functions is strictly 
convex, the point is unique. If the D process occurs r times 
as frequently in the composite reference stream as the I 
process, then at the minimum miss-rate the derivative of MO 
is weighted by a factor of r .  To simplify the discussion, in the 
remainder of the paper we assume that the factor r is unity, but 
if not, it should appear as a multiplier of MD or its derivative 
wherever they appear. The fact that the optimum allocation 
appears at a point where the miss-rate derivatives are equal 

was observed by Ghanem [7] in the context of page fault5 in a 
system in which multiple processes compete for main memory. 
The report by Thiebaut, Stone, and Wolf [22] derived (2) for 
I and D processes competing for cache memory. 

The notion of “optimal” is with respect to the ensemble of 
possible address-reference streams as represented by the miss- 
rate functions. Among the possible address-reference st reams 
described by the miss-rate functions are some streams whose 
optimal allocations can be different from the optimal alloc.ation 
of the ensemble. 

As an example of the application of this theory, we uie the 
miss-rate functions shown in Figs. 1 and 2. Note that the curves 
in Figs. 1 and 2 have a strong linear structure when plotted on 
a log/log graph. When using linear regression to fit a straight 
line to the data points, the quality of the fit as indicated by the 
correlation coefficient p varies between 0.942 and 0.9#2 for 
the instruction caches and between 0.987 and 0.999 foi data 
caches. These measures show that the straight line fit captures 
the majority of the behavior of the miss ratio with respect to 
cache size for Smith’s data. The second derivative of the fitted 
function is positive, and the fitted function itself is a sirictly 
convex function of the cache allocation x.  

For the running example in this section, we use Smith’s 
data for a 32 K-byte cache and a line size of 32 bytes The 
p measures for the curve fitted to line sizes of 32 bytcs are 
0.999 and 0.959, respectively, for data and instruction caches. 
A straight line fitted to the log/log data produces the follciwing 
expressions for MI(.) and M D ( ~ ) :  

loglo M I ( x )  = 0.1177 - 0.1148410g2 (x), 

log,, M D ( x )  = 0.5570 - 0.1422310g2 (x).  

(3) 

(4) 

The logs of miss rates are base 10 and the logs of cache sizes 
are base 2 to simplify the interpretation of the display (If the 
data. The precision required for the exponents in the model is 
greater than the precision of Smith’s data because the mrve 
fit is very sensitive to small variations of the exponent of 
the cache size. For the running example, we assume that this 
precision is available to us. Taking exponents in (3) antd (4) 
produces 

M~(.) = 1.311.~-0 1148410g2 10 

= 1.311x-038151. (5 )  

M D ( ~ )  = 3 . 6 0 6 ~ - ~ ’ ~ ~ ~ ~ ~ .  (6) 

Taking the derivatives of (5 )  and (6) yields 

(7) d M I ( x )  = 0,ij00x1.38151, 
dx 

The miss-rate derivatives in (7) and (8) are plotted in Fig. 3. 
Also, the argument of (8) in Fig. 3 is C - x rather th!an x 
where C is 32K bytes. The crossing point of the curves is 
the point at which the miss-rate derivatives are equal. The 
optimal allocation occurs at the point where the I allocation 
i is approximately equal to 14432 (to the nearest multiple 
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Miss-Rate Derivatives vs. Cache Allocation 
Smith's Data, 32K, 32-Byte Line Size 
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Fig. 3. Miss-rate derivatives as a function of cache allocation. 

of 32). At this point the composite miss-rate is equal to the 
average of (5)  and (6), which is 

Maximum Miss-Rate = (MI (? )  + M D ( C  - ? ) ) / 2  

= (0.0340 + 0.0349)/2 

N 0.0344. (9) 

This completes the discussion of the derivation of the optimal 
allocation of cache memory. In the next section we show that 
a conventional LRU-replacement policy has a most probable 
state that is not the optimal allocation of memory between 
the I and D references streams, but for the example data it 
produces very good allocations. It does extremely well for the 
trace-derived data in Section V. 

111. THE MOST PROBABLE STATE 
FOR LRU REPLACEMENT POLICIES 

Consider a cache managed by a normal LRU replacement 
policy. What is the most probable allocation of cache memory 
between the I and D processes and what is the average allo- 
cation between these processes? Are these distinct? Is either 
allocation equal to the optimal allocation? The development of 
this section begins with a simplified version of LRU replace- 
ment that we call modified-LRU replacement. Subsequently, 
the model is embellished to approximate LRU replacement 
more closely. For the running example, the modified policy 
produces better allocations than LRU allocations in some 
cases, and poorer allocations in many more. In all cases among 
these examples, LRU allocations are very close to optimal, but 
are always suboptimal. 

To obtain the results of interest, consider the behavior of 
a program in execution over a long time. We assume that 
the allocation of memory between data and instructions varies 
randomly, and is controlled by the statistics of the miss 
rates M I ( z )  and M D ( x ) ,  where z is the amount of memory 
allocated to the I and D processes, respectively. We define the 
state of the cache to be the number of bytes allocated to the I 
process. That is, a cache of size C is in state IC if IC bytes are 
allocated to instructions and C - :I: bytes are allocated to data. 

The state z of cache is a time varying random variable. To 
characterize the state of a cache we need to be able to quantify 
state probabilities, a most-probable allocation, and an average 
allocation. If the random process is stationary, then we assume 
that i t  has been running long enough for transients to have 
died out. If the random process is nonstationary but varying 
slowly, as is the most likely case for cache allocations, we 
assume that measurements of averages and probabilities have 
significance if they are done during periods when the processes 
are locally stationary. This permits us to define for each state 
2,  the probability of being in state 5,  which is denoted as S(z). 
Given that the state probabilities are well-defined, a cache is in 
statistical equilibrium during a period of time if at each state 
z the rate of entering state z from state z + 1 by decreasing 
the cache allocation is equal to the rate of leaving state :I: by 
increasing the allocation and causing the cache to enter state 
z + 1. Fig. 4 illustrates this model. 

Consider a replacement policy in which an instruction 
miss increases the number of instructions in the cache unless 
there are no data lines to replace, and similarly a data miss 
increases the number of data lines in the cache unless there 
are no instruction lines to replace. The item replaced is the 
least recently used item from among the items eligible for 
replacement. We call this policy the modified-LRU policy. 
An LRU-replacement policy does not distinguish between 
data and instructions. For fully associative caches, modified- 
LRU and LRU replacement choose to replace the same item 
if the globally least recently used item happens to belong 
to the other process. For set-associative caches, they also 
choose to replace the same item when all of the items of a 
set belong to one process. For this reason, the two policies 
are less distinguishable as associativity diminishes from full 
associativity to direct mapped. The two policies are identical 
for direct-mapped caches. 

For the modified-LRU policy, the rate at which a cache of 
size C in state z increases the allocation of of instructions 
is S(z)M1(3:) ,  and the rate at which state z + 1 decreases 
its allocation of instructions is S(x + l )MD(C - (z + I)) .  
Because the rates are in balance at equilibrium, we have for 
each :I; in the interval 0 5 .I: < C ,  

S(IC)M1(3:) = S(IC + l)MD(C - (z + 1)). (10) 

The boundary conditions are S(z) = 0 for z < 0 and for 
z > C. The probability ratio of S(z + l)/S(z) at equilibrium 
is given by 

for 0 5 .E < C. Equations (10) and (11) are quite accurate 
for fully associative caches, and become less accurate as 
associativity diminishes. For direct mapped caches, these 
equations should not be used, because the modified-LRU 
policy becomes identical to LRU as described later in this 
section. 

Since both M I ( x )  and MD(x) are nonincreasing functions 
of I', MD(C - I.) is a nondecreasing function of L. Therefore 
(11) is a nonincreasing function of r. This and the fact that 
S ( T )  is greater than unity at .r = 0 together imply that S(.r) is 
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Fig. 4. State diagram and state transitions for cache allocations. 

a unimodal function. That is, S(z) grows monotonically with 
z to some peak value, and then diminishes monotonically with 
z for larger z. The peak occurs where the probability ratio in 
(11) falls below unity. The probability ratio might actually 
qttain the value of unity at some slate z, and it might be equal 
to unity over a contiguous interval of states. In this case, the 
peak value of S(z) is attained at several contiguous values of 
z. Let 4 denote the largest value of z for which the following 
inequality holds: 

MI(z) 2 M D ( c  - (z f 1)). (12) 

Then S ( f )  is the maximum state probability over all z. 
For the example of the priox section, Fig. 5 plots the 

probability of state J as a function of z for the two differ- 
ent replacement policies. The curve that describes the state 
probabilities for (1 1) is labeled “modified-LRU replacement.” 
The calculation that produced the curves in Fig. 5 is a standard 
calculation in which the probability of each state is expressed 
as a multiple of S(0)  and the value of S(0)  is set to a value that 
forces the sum of the probability coefficients over all states to 
be equal to unity. 

Although the modified-LRU pi obability function in Fig. 5 
shows a distinct peak, in the region of the peak the probability 
function is almost constant from state to state. Thus, at the 
peak, the following approximation holds because S(4) % 

S(4 + 1): 

MI(?) 2( MD(C - (4 + 1)). (13) 

Equation (13) indicates that M I ( z )  M D ( C -  (z+ 1)) at the 
most probable state, which is a stalement regarding the equality 
of the miss-rate functions rather than a statement regarding the 
equality of the derivatives of the miss-rate functions. We can 
conclude that a replacement policy that produces an allocation 
that satisfies (13) is not optimal. in general, because this is 
not the equation satisfied by an optimal policy. Since an 
optimal allocation occurs when m iss-rate derivatives are equal, 
a policy that produces an optimiil allocation must somehow 
perform replacement as a function of observations of miss- 
rate derivatives. How this can be implemented efficiently is a 
subject of a separate paper by Stone, Thiebaut, and Wolf [17]. 

For the example problem, using the assumption that cache 
allocations are multiples of 32 bytes, we find that the most 
probable allocation state for modified-LRU replacement is 
cache state 13916 whereas the optimal allocation state is 
cache state 14 432. The miss rate for state 13 916 is 0.03443. 
The miss rate for the optimal state, 14432, is 0.03442. The 
probability of being in state z changes from 0.01632 to 
0.01635 to 0.01637 to 0.01635 as z changes from 13856 to 
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Fig. 5.  State probabilities for two replacement policies. 

13952 in steps of 32. Consequently, the probability is very 
nearly flat at this point, and the approximation in (13) is valid 
for the example. From the probability of being in state z as 
expressed in Fig. 5, we find the average allocation for that 
probability density to be 13 921. Since allocations have to be 
multiples of 32 bytes when the line size is 32 bytes, the most 
probable state is the state closest to the average allocation for 
this particular example. If the probability density is narrowly 
concentrated as is the case in Fig. 5, the average allocdtion 
tends to be the same as the most probable allocation. 

Because we are interested in LRU replacement, we em- 
bellish the model slightly to reflect the behavior of LRU 
replacement. For LRU replacement, the probability that an 
instruction replaces a datum by an instruction is equal to 
the probability that an instruction reference is a miss times 
the probability that the LRU item is a datum. Regardless of 
whether a cache is fully associative, set associative, or direct 
mapped, we assume that the probability that the item lo be 
replaced is a datum is equal to the proportion of data lines 
in the cache. This same assumption was made by Strecker 
[18] for characterizing the cache-fill rate. (The assumption is 
validated in Section V.) Thus, the probability that z increases 
to z + 1 is given by 

Prob[z increases to z + 11 = (1 - ” ) s ( z ) M ~ ( z ) ,  (14) 

and, conversely, in state z + 1, the probability thar the 
allocation decreases to z is 

C 

Prob[z + 1 decreases to z] 

= (G) S(Z + l)MD(C - (z + 1)). (15) 

When we equate these probabilities, which is the equilibrium 
condition, we find 

The monotonicity discussion that follows (11) holds as well 
for (16). Thus the ratio in (16) is a nonincreasing function of 
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LRU Policy Modified-LRU 
Policy 

I-Cache I Miss I Standard /-Cache 1 Miss 1 Standard 

TABLE I 
C A C H E  ALLOCATION DATA: COMPARISON OF A N A L Y r l C A L  AND ~ I M u A T I U K  MODFI .~  

/-Cache 
Size 

22,080 

20,608 

r Value 

0.2500 

Miss 
Rate 

0.0321 

0.0328 0.333 
Model 

0.500 

29,355 0.0387 456.5 21,719 0.0329 403.1 

0.750 

1.000 

2.000 

3.000 

4.000 

Optimal 
Policy 

1 Size I Rate I Deviation I Size I Rate I Deviation 

Modcl I 30,815 I 0.0404 I 350.3 I 23,127 I 0.0322 I 3X8.0 
I I I I I I I 

Simulation 1 30,820 I 0.0403 I 305.8 I 23,045 I 0.0324 I 368.0 I 
I 

5 ,  and the most probable allocation for the LRU policy occurs 
at the value i, which is the greatest value of .x for which the 
following inequality holds: 

Because (17) is different from (12), the most probable al- 
location for LRU replacement is not the same as the most 
probable allocation for the modified-LRU replacement. We 
have no basis to judge which replacement strategies produce 
better allocations in general, but for the running example, the 
modified-LRU replacement policy produces a slightly better 
allocation. 

For the running example, the most probable state for LRU 
replacement is 15 648, and the average allocation is 15 645. 
The miss rate for the most probable allocation is 0.03448 as 
compared to 0.03442 for the optimal allocation. These results 
together with simulation results are summarized in Table I. The 
table shows, respectively, the optimal allocation, the average 
modified-LRU allocation, and the average LRU allocation for 
various values of the ratio I'. The most probable allocations are 
very nearly equal to the average allocations in all cases, and 
have been omitted from the table. With each allocation is the 
miss ratio at that allocation. The average miss ratios are very 
nearly equal to the tabulated miss ratios in every case, and 
have also been omitted from the table. The standard deviation 
shown in the table gives some idea of the width of the peak 
of the probability density function for the allocation. 

The simulation data in Table I are drawn from simulations 
of the Markov process model of the cache allocation. The 
simulations are based on the statistics collected for 125000 
time steps after the system reached the expected steady-state 
allocation. They controlled the miss-rate function as a function 

of allocation, and they also rigidly alternated between I and D 
processes. Thus the simulations confirm the analytical model, 
but do not necessarily model actual cache behavior. 

The simulation results show what happens when two pro- 
cesses compete for cache and those processes have miss rates 
expressed by the functions M1(.l;) and M D ( X ) .  The LRU 
simulation used the weights : r / C  and (1 - x/C) to control 
the probability of increasing or decreasing the cache allocation. 
The modified-LRU simulation forced the instruction allocation 
to increase on an instruction miss and forced the data allocation 
to increase on a data miss, and thus models the behavior of a 
fully associative cache, and approximates the behavior of set- 
associative caches. The observed most probable and average 
allocations for both LRU and modified-LRU simulations are 
within a standard deviation of the corresponding model alloca- 
tions for the two policies obtained from the derivations above. 

For the running example, because the optimal allocation 
occurs very close to the point of equal allocation of storage 
between D and I processes, the weights x / C  and (1 - x / C )  
are very nearly equal, and thus the weights do not shift the 
position of :i. far from the position of 2.  Fig. 6 gives a plot of 
relative miss rate as a function of allocation for the running 
example, and we see that miss rate is not very sensitive to the 
exact allocation. The instruction allocation can be anywhere 
between 8K and 20K, and still produce a miss rate that is 
not greater than 10% above the minimum. Since the absolute 
miss-rate is less than 5% in this range, a difference of less 
than 10% in miss-rate contributes to a performance difference 
no more than 0.5% across this range of allocations. 

Recall that 7' is the ratio of data references to instruction 
references. The running example assumes r = 1. LRU pro- 
duces better allocations for most values of r' in Table I with 
the exception being I'  = 1. 
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Fig. 6. Relative miss-rate v m u s  cache allocation. 

The LRU policy introduces a weighting factor that tends 
to force allocations to be more nearly equal than does the 
modified-LRU policy. In our example, for T = 1 the correc- 
tion factor moves the LRU allocation too close to an equal 
allocation, and leaves the modified LRU allocation closer 
to the optimal allocation. For the other values of T ,  the 
allocations produced by the mod ified-LRU policy tend to be 
fairly extreme, and the LRU policy introduces a correction 
factor that produces a more nearly balanced allocation that 
happens to be closer to the optinial allocation. 

In general, we find that LRU replacement produces near- 
optimal allocations provided that: 

1) 3 is close to C/2  to reduce the effects of weights x / C  
and (1 - x / C )  in (17), and 

2) the miss rate is not very sensitive to the cache allocation 
in the vicinity of the optimum allocation. 

Both of these characteristics hold for the running example, 
and it is quite possible that they hold for most workloads. 
However, the near-optimality of the LRU allocation has not 
been thoroughly investigated for real workloads and real cache 
designs, so the question is still a matter of future research. 

It is rather curious that a small change in the LRU replace- 
ment policy can produce a cache allocation that is markedly 
different than that produced by LRU replacement. Although 
we have shown that LRU replacement is not optimal, the point 
of this study is to determine why LRU replacement appears 
to be so close to optimal. 

Occasionally, system designers consider an alternative of 
allocating a fixed amount of cache to instructions and a fixed 
amount to data, instead of letting data and instructions compete 
for cache. If the sole criterion for the allocation is to minimize 
the long-term miss rate, then the results above indicate that a 
fixed partition is probably not a good idea because, in practice, 
cache memory automatically becomes partitioned in a near- 
optimal way. However, other coiisiderations may force cache 
to be partitioned, such as to support simultaneous access to 
data and instructions. The fact that an optimum allocation of 
memory occurs when the weighted miss-rate derivatives are 
equal should be helpful to designers of such caches. 
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IV. CACHE ALLOCATION DYNAMICS 

Thus far, we have shown that that LRU replacement can 
produce near-optimal allocations. This suggests that the LRU 
policy is a good one to use in general for managing a cache. 
But LRU is not optimal, and there may some advantages in 
using a non-LRU policy. What are those advantages? 

One possible reason for managing cache with a policy 
other than LRU replacement is to avoid the transient in 
cache allocation when the components of a composite address- 
reference stream change their characteristics. For example, the 
data process may change from low locality to high locality. As 
locality characteristics change, the optimum partition of cache 
between data and instructions changes, and the allocation of 
an LRU-managed cache moves to a new, hopefully, near- 
optimum allocation. If by some external means the cache- 
management algorithm is given the new steady-state allo- 
cation, it may be able to impose that allocation on cache 
immediately, and avoid the transient that a cache would 
normally experience. 

This section shows that during the initial phase of a tran- 
sient, cache allocation changes rapidly if the new allocation 
is quite different from the present allocation. The rate of 
change slows considerably as the current allocation comes 
close to the steady-state allocation, and in this region it may be 
possible to improve performance by using another strategy to 
hasten convergence. We outline a combinatorial approach for 
finding the steady-state allocation directly, which, if possible 
to implement in practice, can eliminate the transient. 

The question at hand, then, is what is the dynamic behavior 
of memory allocation of an LRU-managed cache? We start by 
modeling the dynamics of modified-LRU replacement because 
it is somewhat simpler, and then embellish the model to deal 
with LRU replacement. 

If we treat x, the amount of memory allocated to the I 
process, as a state variable of the cache then the rate at which 
the state of the cache changes is given by 

dx 
- = Rate of increasing z - Rate of decreasing x. dt (18) 

For a cache managed by the modified-LRU replacement pol- 
icy, we have the following differential equation that describes 
the dynamics of the cache allocation: 

dx = MI(2)  - MD(C - x). 
dt 
- 

Strecker's model of cache dynamics captures the fill rate of 
a process in the absence of competition. Thus, his differential 
equation uses only the first term of (19), and his characteriza- 
tion of a cache transient is very different from the dynamics 
of cache allocation in the presence of competition. 

For the running example, we substitute (5 )  and (6) into (19) 
and we find 

There is no neat closed-form solution for this differential 
equation. But it can be solved numerically, and its solution is 
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plotted in Fig. 7. To find the dynamics for LRU replacement, 
we have to include the weights x / C  and 1 - x /C .  Equation 
(19) becomes 

d x  X 

d t  - = (1 - ; ) M I ( x )  - (&fD(C - x). (21) 

After substituting (5) and (6) in (21), we obtain 

The solution to this equation is also plotted in Fig. 7. 
For comparison purposes, the dynamics produced from the 
simulations are also plotted, and they track the numerical 
predictions reasonably well. The simulations, of course, are 
subject to statistical variations that are not captured by the 
dynamic model. For this simulation, as time increases beyond 
the right edge of the graph, the allocation varies over a range 
centered on the long-term asymptote. 

Note that both replacement policies produce rapid conver- 
gence when the current value of x is far from steady state but 
the convergence becomes much slower as x nears the steady- 
state region. The maximum convergence rate is r M ~ ( x ) / ( l +  
r) and M I ( x ) / ( l  + T )  when D and I ,  respectively, are the 
minority and majority cache owners, and D references occur 
T times as frequently as 1 references. This follows because 
the minority owner increases cache occupancy with every 
miss and the majority owner does not alter occupancy on its 
misses. 

If the current steady-state allocation is not optimal, can a 
cache manager move quickly to an optimal allocation to avoid 
the transient in allocation? We assume that a cache manager 
is given the parameters of the competing processes, and the 
goal is to find the optimal allocation without solving (16) 
numerically. The following discussion presents an efficient 
solution to this problem. It treats the more general situation in 
which there are N processes competing for cache, not just two 
processes. It relies on the fact that at an optimal allocation, all 
of the miss-rate derivatives are equal. This is a generalization 
of the result given in (2), and it is proved in Thiebaut, Stone, 
and Wolf [22], but it follows directly from the arguments used 
to derive (2) for two competing processes. 

To introduce the allocation problem for N competing pro- 
cesses, suppose they are to use a cache of size C. Let MI 
denote the miss rate for process i as a function of allocated 
cache. Suppose that each process i generates Pi references, 
giving a total of 

N 

T = C P ,  
2=1 

references in all. If each process i is allocated a portion of the 
cache of size Ci, then the overall miss rate is then given by 

i=l 

Cache Dynamics, I Allocation vs. Time 
Smith’s Data, 32K, 32-byte line size 
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Fig. 7. Dynamic behavior of computed and simulated cache allocations. 

We wish to minimize this function subject to the constraint 
that 

N 

c c i = c  (26) 
i=l 

by giving or taking cache away from a competing process. 
The least possible overall miss rate occurs when miss-rate 
derivatives with respect to cache size are equal. 

We assume that the cache miss-rate for each process is a 
(decreasing) strictly convex function of cache size. Thus the 
functions F;(C) = PiM;(C) /T ,  the fraction of the total miss 
rate attributed to process i, are also (decreasing) strictly convex 
functions of cache size C allocated to a process. We wish to 
minimize the sum of N such functions. The values of the 
functions &(IC) are computed for discrete integer values of z 
in the range 0 5 x 5 C.  

This problem fits into the category of separable convex 
resource allocation problems. A greedy algorithm due to 
Fox [4] ’solves such problems in time O ( N  + Clog N ) .  
While we base our discussion on this work, we note that 
the subsequent results due to Galil and Megiddo [1979] and 
Frederickson and Johnson [6] are more efficient, the latter 
having complexity O(max(N, N log(C/N))). This bound was 
shown by Frederickson and Johnson to be optimal to within a 
constant multiplicative factor. We would therefore recommend 
that an implementation of this approach actually be based on 
the Frederickson and Johnson algorithm. 

Ibaraki and Katoh [ 101 treat resource allocation problems of 
this type in depth, and provide excellent background for the 
optimization problem treated here. Also note that generaliza- 
tions of the optimization algorithm described above have been 
solved and employed by Tantawi, Towsley, and Wolf [ 191, by 
Wolf, Dias, and Yu [24], and by Wolf, Iyer, Pattipati, and Turek 
[25]  to solve other optimization problems in computer science. 

Define for each 1 5 i 5 N and each 1 5 j 5 C the 
“marginal return” = Fi(j - I) - Fi(j). This function is 
essentially the first-difference discrete analog of the negative 
of the miss-rate derivative for process 1; with cache allocation 
j .  Note that for each i, the values gi,l;...;gz,c are positive 
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and nonincreasing because the rnis rate of the process is a 
decreasing convex function of allocated cache. The trick is to 
allocate cache, chunk by chunk, 'to the collection of processes 
to maintain the miss-rate deriva1:ives as equal as possible as 
cache is added. Fox's algorithm can be defined inductively as 
follows: 

MISS RATIO VS. CACHE SIZE 
10 
7.5 - 

DATA REFERENCES 

0 1 -  
F 0.75 - 

Os - 1. Initialization: Set C1 = . . '  = C N - - 0. 
2. Induction Step: Given the kth assignment of values to 

the Ci, and noting that it s'atisfies 
N 

cci = k ,  
i=l 

1K 2K 4K 8K 16K 32K 64K 
the induction step produces a new assignment satisfying 

CACHE SIZE (BYTES) 

& , = : k + l  
i=l 

(28) Fig. 8. Miss-ratios as a function of cache size for trace data. 

workloads encountered in typical environments and has been 
used internally in IBM as a representative of such workloads. 

The model requires functions M l ( z )  and M D ( ~ ) .  To make 
the validation as similar as possible to the running example, 

by increasing Ci to Ci + 1 for some index a .  The step 
selects the first value of i such that 

a. Ci < C,  and 
b. gi,c,+l is maximum. 

3. That is, the step finds the value of the marginal return 
function gt,c% as each Ci is incremented in turn, and then 
retains the value of C, for which the marginal return is 
greatest. All other C, values remain unchanged. 

After C steps through the algorithm, the values C1, . . . , CN 
form an optimal assignment of cache to the competing pro- 
cesses such that process i receives Ci units of cache, and the 
total amount of cache allocated is C units. 

The algorithm amounts to computing a Cth smallest number 
in an N x C matrix whose rows are nondecreasing. This is a 
special case of the so-called "seleclion problem," and is solved, 
as noted above, with considerably greater speed using the 
algorithm proposed by Frederickson and Johnson [5 ] .  Details 
may be found there or in Ibaraki and Katoh [lo]. 

This completes the discussion of allocation strategies for 
interlaced processes. The next section presents the validation 
of the several assumptions in the "ode1 as obtained from actual 
trace data. 

V. EXPERIMENTAL VALIDATION 

The model presented in Sections I1 through IV relies on 
a number of assumptions that need to be validated. This 
section shows that a trace-driven simulation behaves almost 
precisely as predicted by the model. While Smith's data are 
useful in examples, the published data were created by taking 
a composite of many workloads and cache structures. The 
trace-driven validation in this section demonstrates that the 
predictions of the model hold true for the cache behavior for 
a specific workload and cache structure. 

The trace used comes from a single processor in a two- 
processor IBM System/370 archilecture complex executing 
a multiprogrammed workload. The workload is commercial, 
and contains a mixture of user code and operating-systems 
code. The trace contains over 18 ClOO 000 references in total. 
It was created with the intention of being representative of 

the cache structure was chosen to be 32 K-bytes, 4-way set- 
associative, with a line size of 32 bytes. The variation of miss 
rate with cache size was obtained by varying the number of 
sets while fixing the line size to 32 bytes and the associativity 
to 4-way. 

The data that characterizes these functions appears in Fig. 
8. The analysis of miss rates was performed by simulating the 
I or the D process in isolation. During the period when the 
cache was not fully initialized, the trace simulation filled the 
cache without recording miss-rate statistics. The simulation 
was continued without recording statistics until the reference 
count reached the next multiple of 100000, and at that point 
the recording of miss-rate statistics began. This eliminated 
the bias caused from initialization misses in the simulation. 
Because the I process did not touch all of the lines in a cache 
of size 32 K-bytes, this cache was declared to be filled when 
all but 10 lines (out of 1024) were initialized. In this case. 6.4 
million references were traced after the initialization point, 
and in all other cases the number of references traced after 
initialization exceeded 8 million. 

Note that the miss-rate curve for data misses is well ap- 
proximated by a straight line on a loflog scale. The miss-rate 
curve for instruction misses is straight for most of its length, 
but the data point for 32K lies below the straight-line trend. 
To fit the curves to the data shown, we used all of the points 
for data caches and dropped the point for the instruction 
cache of size 32K. The instruction occupancy does not reach 
32K in normal operation, and, hence, the region of interest 
for instruction occupancy is the region of the curve through 
which the straight-line trend is drawn. The equations for the 
fitted curves in Fig. 8 are M l ( z )  = 1.996x-0.60147 and 
M D ( ~ )  = 4 . 0 7 2 ~ - ~ . ~ ~ ~ " .  The respective p's are 0.994 and 
0.984, which indicate that the fits are excellent. 

The total number of references observed was approximately 
16 million, and the ratio T was 0.9606. The model for LRU 
replacement embodied in (16) predicts an average allocation 
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Fig. 9. Cache occupancy probability for trace and model data 

of 14 392 bytes and standard deviation of 400 bytes as plotted 
in Fig. 9. This compares with an observed average allocation 
of 14365 bytes and a standard deviation of 1100 bytes for 
the trace data. The optimum allocation for these parameters 
is 14150 bytes. The model for modified-LRU replacement 
produces an average allocation of 11364 with a standard 
deviation of 564 bytes. 

Note that the model for LRU replacement and the observed 
behavior of the cache give excellent agreement in their average 
values. The model variance is somewhat less than the observed 
variance of cache occupancy. Also note that LRU replacement 
produces an allocation that is essentially optimal. 

The wider variance of the trace-driven process is attributed 
in part to long sequences of references of one type, particu- 
larly to long sequences of data references. Nevertheless, the 
predicted average allocation for LRU replacement lies almost 
directly where the actual average allocation appears, because 
the trace-driven allocations lie in a narrow range, even though 
that range is somewhat larger than the allocation range of the 
model. 

The respective miss rates for the data depicted in Fig. 9 
are 0.0074 observed for the trace, 0.0072 for the LRU model, 
0.0072 for the optimai allocation, and 0.0073 for the modified 
LRU-replacement policy. 

Equation (16) reflects the assumption that the probability 
of increasing an allocation is proportional to the fraction of 
cache currently occupied by the competing process. The trace- 
driven experiment gathered data that confirmed this hypothesis 
as well. This is shown in Fig. 10. The data plotted shows 
the actual probability of increasing allocation as a function of 
current allocation, and the straight line shows the model. For 
occupancies less than 36%, there were fewer than 10 misses 
observed in each state, and thus the data are very noisy and 
not statistically significant. Above 36%, the data plotted in the 
graph follow the model closely except that they fall slightly 
above the model. However, the error in modeling is similar 
for data and instructions, and these errors tend to cancel in 
(16) because one error is a factor in the numerator and the 
other is a factor in the denominator. Hence, the model is an 
accurate predictor of cache allocation for LRU replacement in 
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Fig. 10. The probability of increasing instruction occupancy as a function 
of I cache allocation. 
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Fig. 11. The dynamics of data occupancy for the trace experiment. 

spite of the small inaccuracy. At this writing, it is not known 
what phenomenon causes the discrepancy between the model 
predictions and the observations shown in Fig. 10. 

Fig. 11 shows the dynamics of data cache occupancy starting 
with a minimum allocation of data (10 lines). The dotted 
curve is the numerical solution of the dynamic model, and 
the horizontal line is the asymptote, which is the average 
allocation for LRU replacement. Note the good agreement 
between the mathematical model and actual trace behavior. 
The data were gathered by simulating a cache on a trace, 
using just the instruction references from the trace and ignoring 
the data references until 1014 out of 1024 lines were in the 
cache. Then the simulation treated both instruction and data 
references, and recorded the data occupancy in cache as a 
function of time measured in references. 

The validation in this section demonstrates that cache OC- 

cupancy of instructions and data can be predicted accurately 
from parameters for the individual processes, and that for 
this particular experiment, LRU replacement produced an 
allocation that was essentially optimal. The next section treats 
the case in which references by competing processes are not 
tightly interlaced. 
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VI. MULTIPROGRAMMING REPLACEMENT STRATEGIES 

In this section we revisit the allocation problem, but this 
time consider what happens when processes compete se- 
quentially for cache instead of being tightly intertwined. An 
example of the problem occurs in niultiprogrammed computers 
in which each process obtains exclusive access of the processor 
for a time quantum of length Q. For our purposes, we assume 
that there are two processes with miss rates M I ( T )  and 
M 2  (s). respectively. Each process makes precisely Q memory 
accesses in its time quantum. 

How good is an LRU replacement policy in this situation? 
Because one process runs after the other under an LRU 
replacement policy, while process 2 is running each cache 
miss discards items older than any items touched by process 2 
in its current quantum. This would usually be items that belong 
to process 1. Conversely, each miss during the execution of 
process 1 discards an item belonging to process 2 whenever 
this is possible. 

While this strategy is basically good, let us examine the 
quality of the decision to replace an item belonging to process 
1 when process 2 suffers a cache miss. The miss rate of process 
2 improves by an amount dM2(s),  but, if we assume that 
process 1 will reload the item displaced with probability p ,  
then for each item belonging to pocess 1 that is discarded, a 
fraction 11 of a miss will be recorded when process 1 resumes 
control. 

If a cache is small compared to the working set of process 2, 
the gain in adding a new item belonging to process 2 outweighs 
the cost of the miss that will be incurred when process 
1 regains control of the machine. Since LRU replacement 
continually adds to the allocation for process 2, for small 
caches LRU replacement is the algorithm of choice. 

But suppose that the cache is very large, and is large enough 
to hold the full working set of process 2 as well as lines 
belonging to process 1. The marginal reduction in misses 
obtained by increasing the cache allocation of process 2 is 
the product of the incremental change in miss rate due to the 
increased allocation times the number of references remaining 
in the time quantum. That is, if q references remain in the 
time quantum, then we expect 10 save qdM2(.~)/dx misses 
by increasing the allocation of memory to process 2. But we 
must also account for the p additional misses when changing 
back to process 1, because process 1 will reload the cache 
line displaced by increasing the allocation of process 2 with 
probability p .  Thus the net reduction in misses is equal to 
qdM,(x) /dr  - p .  The threshold q(z) is defined to be the 
remaining time at which the marginal gain is 0, and this is 
given by 

If the remaining time in a quantum is less than q(z)  for a 
cache allocation of x,  then the replacement policy should not 
increase the cache allocation of process 2. The replacement 
policy should replace the least recently used eligible line of 
process 2, and retain the lines of process 1 currently in cache. If 
the remaining time exceeds q(z) ,  then the replacement policy 

I065 

should replace the least recently used lines of process 1, and 
thereby increase the allocation of process 2. 

Clearly, if the marginal gain is very small or the time 
quantum is nearly over, then it is better to leave items of 
process 1 in cache because they will be likely to be referenced 
again in the near future. Small processor caches, typical of 
those in computers available through the end of the 1980’s, 
rarely hold much more than the working set of a process. 
In such caches very little of the last run process is left 
in cache as the currently running process nears the end of 
its quantum. A non-LRU policy cannot easily benefit by 
retaining items belonging to process 1 as the time quantum for 
process 2 runs out. This situation changes when caches become 
much larger than the working sets of typical processes. With 
caches in the early 1990’s approaching 1 megabyte in size, 
the possibility of improved performance makes the non-LRU 
policy an attractive candidate for closer study. 

As an example of the use of q ( J )  in a replacement policy, 
consider Fig. 10, which plots Q(T) ,  the inverse of the miss- 
rate derivative, for the I-cache miss-rate derivatives plotted 
in Fig. 3. Fig. 12 shows what the threshold would be for a 
hypothetical workload and cache structure whose miss rates 
fit Smith’s data for a line size of 32 and for p = 1. This is the 
threshold below which additional cache should not be allocated 
to the running process. In the middle range of the allocation, 
the remaining references in the time quantum should be on 
the order of 1 million for a process to continue to receive 
additional cache memory. Assume that a process governed by 
the miss-rate function of Fig. 2 initiates execution and quickly 
builds a cache allocation of 4K bytes. If the remaining quantum 
has 100 000 references or more, the allocation should increase, 
and in fact, under an LRU replacement policy it increases 
quickly. At some point depending on the time remaining, 
the miss-rate derivative is sufficiently small that no additional 
cache should be allocated to the running process. In Fig. 12, the 
additional allocation should stop when the current allocation 
is roughly half the cache if less than 1 million references 
remain. When the allocation is roughly 28K, additional cache 
allocation should cease if less than 2 million references remain 
in the quantum. If the initial time quantum is 1 million 
references, a non-LRU replacement policy will limit the cache 
allocation to roughly half of cache. 

If an interrupt process takes over the cache for a brief period, 
a non-LRU replacement policy will grant the process only a 
small initial allocation, and sharply curtail its acquisition of 
cache beyond this amount because its quantum is so short. 
This tends to give the interrupt process a small region of cache 
to hold its working set, and to retain the working set of the 
interrupted process in anticipation of the future use of that 
portion of cache memory. 

VII. MULTILEVEL CACHES 

Next, let us consider a common multilevel cache design, 
in which caches are arranged in hierarchical fashion. The 
fastest and smallest cache is at level one, the next fastest 
and smallest is at the level two, and so on. An example of 
a study of this type of hierarchy appears in Baer and Wang 
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Fig. 12. The quantum-length threshold as a function of allocation. 

[l]. In this section we shall extend our solution of the optimal 
cache-allocation problem to handle competing processes in 
multilevel hierarchies. An early formulation of a different 
cache-allocation problem for a cache-memory hierarchy is due 
to Chow [3]. 

For simplicity of exposition, we shall again assume that we 
are given the address streams of two competing processes, one 
corresponding to instructions and one to data, and that these 
occur with equal frequency. Furthermore, we shall attempt to 
allocate memory optimally for the two processes in each level 
of a two-level cache hierarchy. The extension to arbitrary num- 
bers of competing processes, arbitrary relative frequencies, and 
arbitrary numbers of cache levels is straightforward. We shall 
also assume that the line sizes of the caches at each level are 
equal. 

An illustration of a two-level cache hierarchy is given in 
Fig. 13. The first-level cache sees the full address stream 
produced by the processor, and passes only its misses to the 
second-level cache. The second-level cache responds to the 
residual stream, and sends to main memory only the references 
of its input stream that produce misses in this cache. Assume 
that the first-level cache has size c and the second-level cache 
has size C. In each level of the cache, we would like to use the 
results of the previous sections to allocate memory optimally. 
However, in order to deal with the second-level cache, we 
need to understand how the size of the first-level cache affects 
the miss rate in the second-level cache. Fortunately, this is 
quite easy, and we proceed as follows. 

Suppose that a fraction Q = Q(C, C) of the lines appearing 
in the first-level cache also appear in the second-level cache. 
Then the total number of distinct lines in the cache is given by 
C + (1 - Q)C. The global miss-rate of the combined cache on 
the full input stream is thus M ( C  + (1 - Q)c), while the local 
miss-rate of the first-level cache alone is M ( c ) .  (The terms 
local and global miss rates are due to Hennessy and Patterson 
[8].) A miss in the combined cache occurs when the reference 
misses in both levels. In other words, if M(c ,  C) denotes the 
miss rate of the second-level cache with respect to the input 
stream that it receives, then M(c)M(c ,  C) = M(C+(l -a)c) ,  
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Fig. 13. A memory system with two levels of caches. 

or, equivalently, 

M ( c ,  C )  = M ( C  + (1 - a)c) /M(c) .  

In general, the lines of the first-level cache are nearly com- 
pletely contained in the much larger second-level cache, so 
that cy N 1, or 1 - a E 0. (In fact, we could force a to 
be 1 by imposing a cache inclusion condition.) Thus, the 
approximation 

M ( c ,  C )  = M(C)/Wc) (30) 

is very good. 
Now let t denote the access time for a hit in the first-level 

cache of size c, T denote the total access time for a hit in the 
second-level cache of size C, and r denote the total access time 
for main memory. By definition we have t < T < r ,  and in 
practice we can assume that t << T << r. We can also assume 
that c << C. For any partition c = c1 + c2 of the first-level 
cache, we can compute local miss rates Ml(c1) and M2(c2). 

Given this first-level partition and any partition C = C1 + c 2  

of the second-level cache, we can compute global miss rates 
M I  (cl, C1) and M2(c2, C2). Thus, the overall access time is 
given by 

T(c1,  c2r c1, (72) 

= ?[k(l - M i ( c i ) ) t + ~ M a ( c i ) ( l  -Mi(Ci,C,))T 
i= l  i=l 
2 1 + c M z ( c i ) M i ( c , ,  Ci), 

=il 

We want to minimize this function subject to the constraints 
c1+ cp = c and C1+ C2 = C. This can be done by repeated 
application of the algorithm given in Section IV, but there 
is a simplification that greatly limits the search effort. The 
simplification relies on the presence of good lower and upper 
bounds. 

To derive a tight upper bound, note that in the region where 
ai(ci, Ci) E 1, (26) reduces to 

1 1 
Ti = t+ 2(T - t )  Mi(ci) + T ( T  - T )  

k l  i = l  
Mi(Ci). (32) 

In fact, TI provides an upper bound for T over the entire 
feasible region, since r > T.  Minimizing (27) is easy, since 
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the first summand is a constant, and t < T < T implies 
that the second and third summands are positive. The problem 
simply decouples into two disjoint separable convex resource- 
allocation problems, one for the second summand and one for 
the third. Both problems are solved by the technique given in 
Section IV. Since, in practice, Q will almost surely be close 
to 1 in this region, the optimal d u t i o n  for (27) derived in 
this manner will be an excellent approximation to the optimal 
solution for (26). 

The lower bound is obtained by investigating the behavior 
of (26) under the assumption cy = 0. Equation (26) reduces to 

2 2 

T2 differs from T only in its third summand. We claim that 
T2 provides a lower bound for T over the entire feasible 
region, since T > T .  (This optimization problem does not quite 
decouple, but given any solution to the problem associated 
with the second summand, optimal or not, one can solve 
the problem with respect to the third summand, which is 
again a separable convex resource-allocation problem.) The 
corresponding exact reduction associated with T in (26), 
namely, 

2 2 

+(1 - %(CZ, G)). 4. (34) 

differs from T I  and from T2 only in its third summand. This 
summand does not give rise to a convex optimization problem, 
but is tightly bound by two problems that are. By utilizing 
these bounds one can restrict the search for the overall optimal 
solution to (26) to a neighborhood very close to the optimal 
solution of (27). 

As an example of the application of this theory, we again use 
the miss-rate functions shown in Figs. 1 and 2. Specifically, 
we use an instruction stream whose miss rate is described by 
(5 )  and a data stream whose miss rate is described by (6). 
Assume a line size of 32 byte!<, with t = l , T  = 10, and 
T = 20. Assume that the first-level cache is of size 8K bytes, 
so that c = 256 lines, and the second-level cache is of size 
64K bytes, so that C = 2048 lines. The optimal partitioning 
occurs at c1 = 104 lines, c2 = 152 lines, C1 = 924 lines, and 
C2 = 1124 lines, and yields T' = 1.8171. Fig. 14 shows a 
contour plot of the various partitioning choices. By contrast, a 
cache simulation shows that LRU yields a time of T = 1.8189, 
so that, once again, LRU is proven to be quite robust. The 
contour line for the LRU average access-time is shown as the 
innermost contour line in Fig. 14. 

VIII. SUMMARY AND CONCLUSIONS 

The major finding of this study is that the LRU replace- 
ment policy is good, but not optimal. We have shown that 
a modified-LRU replacement produces different allocations 
of data and instructions, and in some cases the modified 
policy produces marginally better performance than the LRU 

U 
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Fig. 14. A contour plot of average access-time as a function of cache 
allocations in a multilevel cache. 

policy. For tightly interlaced address streams generated by 
two competing processes, the examples in the paper indicate 
that the miss rates produced by LRU replacement are only 
negligibly different from the miss rates produced by an optimal 
cache partition. Because all of the evidence for the quality of 
LRU is based on examples rather than on firm bounds, we 
cannot be sure that LRU replacement is as near-optimal in 
practice as it has turned out to be for the examples used 
in the paper. Until bounds on the near-optimality of LRU 
replacement are available, it is an open question whether there 
is a realizable alternate policy that produces better allocations. 
While we cannot justify the implementation of non-LRU 
replacement policies for the examples given in the paper, it 
may be necessary to partition cache for other reasons. If so, the 
techniques of the paper are useful in determining the relative 
sizes of the partitions by showing how to achieve the least 
miss rate for partitions within a fixed chip area, a fixed board 
area, or for a fixed total cost. 

Research questions that remain open include the following: 
1) Is there a simple bound on the near optimality of LRU 

replacement with regard to its ability to allocate cache 
between data and instruction processes? 

2) Is there a simple replacement policy that actually 
achieves the optimum allocation between data and 
instructions? 

3) How can the transient associated with cache allocation 
be reduced without using detailed knowledge about the 
miss-rate functions? 

4) For multiprogrammed systems, what is a practical means 
for implementing a limit on cache allocation? Does 
such a scheme produce sufficient benefit to justify its 
implementation? 

5 )  For cache in a multiprogramming environment, it is clear 
that there is no justification for using a strategy other 
than LRU when there is little possibility for retaining 
lines belonging to other processes in the cache. As 
caches become large, this is no longer true. But how 
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large do caches have to be for non-LRU replacement to 
be worthwhile? 

Although LRU replacement is the cache-management al- 
gorithm of choice today, the paper has pointed out potential 
opportunities for improving performance by implementing a 
non-LRU strategy. On the other hand, the paper has shown 
that an LRU strategy is robust, near-optimal, and difficult to 
outperform in practice. Before adopting a non-LRU strategy, 
it is essential to explore the questions above to determine what 
strategies are most useful and what their benefits might be. 
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