
1054 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

Optimal Partitioning of Cache Memory
Harold S. Stone, Fellow, IEEE, John Turek, Member, IEEE, and Joel L. Wolf

Abstract-This paper develops a model for studying the optimal
allocation of cache memory among two or more competing pro-
cesses. I t uses this model to show that, for the examples studied,
the least recently used (LRU) replacement strategy produces
cache allocations that are very close to optimal. The optimal fixed
allocation of cache among two or more processes is an allocation
for which the miss-rate derivative with respect to cache size is
equal for all processes.

The paper also investigates the transient in cache allocation
that occurs when program behavior changes, and shows that LRU
replacement moves quickly toward the steady-state allocation if
it is far from optimal, but converges slowly as the allocation
approaches the steady-state allocation. It describes an efficient
combinatorial algorithm for determining the optimal steady-state
allocation, which, in theory, could be used to reduce the length
of the transient. The algorithm generalizes to multilevel cache
memories.

For multiprogrammed systems, the paper describes a cache-
replacement policy better than LRU replacement. The policy
increases the memory available to the running process until
the allocation reaches a threshold time that depends both on
remaining quantum time and the marginal reduction in miss
rate due to an increase in cache allocation. Beyond the threshold
time, the replacement policy does not increase the cache memory
allocated to the running process.

For all of the questions studied in this paper, the examples
shown here illustrate near-optimal performance of LRU replace-
ment, but in the absence of a bound on near optimality the
question remains open whether or not LRU replacement is near-
optimal in all situations likely to arise in practice.

Index Terms-Cache footporint, cache memory, LRU replace-
ment, memory allocation, memory hierarchy, miss rate, miss
ratio, multilevel cache memory, power-law model.

I. INTRODUCTION

HIS paper studies the optimal allocation of cache memory T among competing processes. Cache memories are high-
speed buffer memories whose contents tend to be the most
frequently used items accessed by a program. The contents
are normally determined by bringing in new items on demand
and by using a replacement policy that discards items that
are unlikely to be accessed in the near future. When the
replacement policy removes the least recently used (LRU)
item, caches tend to be very effective, provided that they are
large enough to hold the majority of the items that are likely
to be active concurrently.

Practical implementations of LRU replacement algorithms
do not usually search all entries in a cache, but instead search
a small region of the cache that depends on the address

Manuscript received March 29, 1989; revised January 12, 1990 and May

The authors are with IBM T. J . Watson Research Center, Yorktown Heights,

IEEE Log Number 9200307.

8, 1991.

NY 10598.

reference. The region searched is a called a set, and the
search is said to be set associative. When the region searched
contains only a single item, the cache is said to be direct
mapped. When a new item is brought into the set, some item
in the same set is discarded. If the replacement algorithm
discards the least recently used item in the set, we designate the
replacement algorithm to be an LRU algorithm, and thus both
set associative and fully associative caches can be managed
by LRU replacement algorithms according to this terminology.
Additional information on set-associative and fully associative
caches can be found in Smith [13] and Hill [9].

The question of interest is to determine just how well caches
behave. We introduce two cache-allocation problems in which
processes that have different miss-rate behaviors compete for
cache allocation. We find that for neither problem does LRU
replacement produce optimal allocations, but the examples
in this paper exhibit LRU allocations that are very close to
optimal. The data in this paper endorses the almost universal
practice of managing cache with LRU replacement. All of the
results stated here hold both for set-associative caches and
fully associative caches.

The first of the problems studied is the allocation of inter-
laced data and instruction processes to cache memory. This
formulation of the problem was described in Thiebaut, Stone,
and Wolf [22]. The paper derives a mathematical model that
describes optimal and LRU allocations and gives a validation
of the model by means of a trace-driven simulation. Although
we are not able to bound the suboptimality of LRU allocations,
the evidence presented indicates that they are very good. Our
approach is to develop the model of a simpler modified-LRU
replacement strategy first, and then embellish this model to
obtain a model of pure LRU replacement. The modified-LRU
strategy can produce better allocations than those produced by
pure LRU for some reference strings.

The measure of optimality used here is the overall miss rate
of a cache memory, and an optimal partition is a partition
of cache memory among competing processes that achieves a
minimum miss rate. Belady [2] introduced an algorithm that
is optimal among demand-replacement algorithms. Among all
possible ways to choose which cache line to replace on a miss,
Belady’s algorithm produces the lowest miss rate. Belady’s
algorithm does not indicate how to partition cache among
competing processes, so it cannot be applied directly to the
problem addressed in this paper.

For the first allocation problem, the paper also develops a
model for the transient behavior of a cache as it moves from
one allocation to another in response to a change in the char-
acteristics of data and instruction processes. The differential
equation obtained generally cannot be solved neatly in closed

0018-9340/92$03.00 0 1992 IEEE

STONE er al.: OPTIMAL PARTITIONING OF CACHE MEMORY 1055

form, but can be solved numerically. The model is validated
by a trace-driven simulation and by a statistical simulation of
the competing processes. Both simulations produce data that
fit the mathematical characterization of dynamic behavior. Of
related interest in the literature is the paper by Strecker [18],
which describes a differential equation to model the dynamics
of cache occupancy in the absence of competition.

As a potential means for reducing the allocation transient,
we describe an algorithm that first appeared in Thiebaut, Stone,
and Wolf [22] for computing the optimal cache allocation.
The algorithm allocates lines of cache sequentially among N
processes in a way that maintains the miss-rate derivatives as
equal as possible, and terminates when the cache memory is
fully allocated. We also show how this algorithm generalizes
to multilevel cache memory systems.

The second allocation problem treated in this paper is
the allocation of cache memory among processes in a mul-
tiprogrammed environment. This problem differs from the
first because the first scheme deals with interlaced streams,
whereas in the second problem, one address-reference stream
has exclusive access to cache for a quantum of time, and then
yields to a new address-reference stream that has exclusive
access for another quantum of time. For the second problem,
there tends to be a cache-reload transient each time a new
process takes over the processor. The miss rate tends to be
high during the early part of the transient, and then drops as
the working set of the process becomes resident in cache. A
statistical model of the transient that gives an accurate measure
of the number of lines reloaded appears in Thiebaut and Stone

For large caches a better replacement policy than LRU
replacement is to increase the cache allocation of a running
process until the marginal improvement in miss rate multiplied
by the time remaining in the quantum is less than some
threshold. From this point until the end of the quantum, no
additional cache memory should be allocated to the running
process. The modified policy tends to retain in cache some
items that belong to the next process to run on the machine.
When cache is too small to be likely to retain pages of the
next process to run, the modified policy is the same as LRU
replacement. Thus, the modified policy only makes sense to
use when caches are large enough to retain lines of a process
in cache through periods when other processes have exclusive
use of the processor.

We briefly note some related work. Specifically, Ghanem
[7] has studied dynamic partitioning of main memory among
competing programs, and his work is the precursor of this
work. Replacement strategies for cache have been studied by
many people, with notable work by Smith and Goodman [15]
and by So and Rechtschaffen [16] among others. Kirk [l l]
has analyzed the partitioning of an instruction cache into a
static partition and an LRU partition. Multilevel caches and
the inclusion principle were studied by Baer and Wang [l] .
Vernon, Jog, and Sohi [23] have studied performance of hier-
archical caches, and proposed optimal multilevel topologies.
Przybylski, Horowitz, and Hennessy [121 have also studied
optimal multilevel cache hierarchies.

Section I1 poses the allocation problem for interlaced data

P I .

and instruction streams, and shows that the miss-rate deriva-
tives are equal when the allocation is optimal. Section I11
discusses the characteristics of LRU replacement, and shows
that it does not converge to the optimal allocation. I1 also
describes a modified-LRU replacement policy and compares
its allocations to the LRU allocations. In Section IV, we derive
the dynamics for the allocation of memory as it converges to
its equilibrium allocation. The efficient algorithm for finding
the optimum allocation of cache also appears in Scction
IV. The results of Sections I1 through IV rely on sweral
assumptions that are validated in Section V by a trace-clriven
simulation based on actual data. Section VI treats the allocation
of memory to processes in a multiprogrammed system. The
generalization of the allocation algorithm to multilevel caches
appears in Section VII. An example in Section VI1 shows
that LRU replacement for multilevel cache can come very
close to optimal. The last section poses several related research
questions that remain open at this time.

11. ALLOCATION OF CACHE MEMORY
BETWEEN DATA AND INSTRUCTION STREAMS

The model of cache allocation in this section deals with
interlaced instruction and data streams that exhibit different
cache behaviors. For this idealized form of the model, we show
the optimal allocation occurs at a point where the miss-rate
derivatives of the competing processes are equal.

For practical reasons, cache implementations at the fastest
level of a memory hierarchy do not use fully associative search
when seeking a match or an item to replace. Instead they
search a small set of items, and replace the least recently used
item in the set searched if replacement is necessary. Ilf the
set has four or more lines, typical replacement algorithms are
further simplified and they only approximate LRU replacement
because the complexity of maintaining LRU informaticin for
four or more items becomes excessive. At slower levtrls of
a memory hierarchy, such as cache memories associated with
large disks, the caches tend to be searched in a fully associative
manner. In such caches, true LRU replacement is used for most
references, with exceptions made for sequentially accessed
data and other reference patterns that are highly predictable.

The focus of this paper is miss rate as a function of tiache
allocation of individual competing processes. Central to this
paper is the assumption that competing processes cain be
characterized as having a miss rate as a function of allociation
size. For fully associative caches, the miss rate for a given
reference stream as a function of allocation is indeed a one-
parameter function and depends only on the number of lines
allocated to a process, since the entire cache is searched for a
match during a cache lookup. For set-associative caches, the
miss rate depends not only on how many lines are allocated
to a process, but where they are in the cache, since only a set
of a few lines is actually searched during a lookup.

Because a model that accounts for the physical locations of
lines allocated in cache is extremely complicated, this paper
uses a simplified model of set-associative caches in which
the miss rate is a one-parameter function, and that parameter
is the number of lines allocated, regardless of the physical

1056 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

distribution of lines per set. We ignore the effect of the actual
distribution of cache lines on miss rate. Thus, set-associative
caches are treated in the same way as fully associative caches,
and the model is applicable to both types of caches. Section
V validates this assumption by demonstrating the agreement
between the model and a trace-driven cache simulation. Hence,
we use the notation MA(^) to denote the miss rate of a
process, process A, in a cache for which process A has a
current allocation of z lines. The miss rate is also a function
of the cache structure parameters, which include the number of
sets, the set associativity, and the line size. For the purposes
of this paper, we fix the structure of a cache, and vary the
allocation of a process within that structure. Hence, we do
not explicitly identify the cache-structure parameters on which
M . A (~) depends when we use this notation.

Now we examine the processes that generate the cache refer-
ences. Assume that an address-reference stream is composed
of two interlaced streams of addresses. One stream consists
of instruction fetches, and the second stream consists of data
fetches. The composite stream is an interleaving of the two
streams so that its address references alternate between data
and instructions. That is, the stream has the form I , D , I ,
D , . . . , where I and D are instruction and data references,
respectively. Each component stream has a known cache
behavior given by a miss rate for that stream as a function
of the cache memory allocated to the process. Let MI(IL.) be
the miss rate for the I stream as a function of cache size z,
and, similarly, let M D (~) be the miss rate for the data stream.
We assume that both the instruction and data processes are
stationary in time, so that the miss rates are not time varying
functions.

Although this is a highly idealized model of the I and D
processes, the results are not sensitive to the precise way
in which the processes are interleaved, provided that the
frequencies of the process accesses are equal and long strings
of consecutive accesses of one type occur only rarely. The
trace-driven validation has approximately equal frequencies
of I and D references, but some strings of consecutive D
references are hundreds of references long because of the
execution of block-move instructions. We also assume that the
miss-rate functions are convex functions of cache size. Later
in the paper, we examine the case in which the frequencies of
the two types of accesses are unequal.

To illustrate the use of the model on representative data,
we use the published data from Smith [14] as the source of
a running example. Smith’s data are design target miss ratios
for caches of varying total size and line size, and the data used
appear in Figs. 1 and 2. The plots are the miss-rate functions
for I and D streams averaged over many different workloads
and instruction repertoires. The line sizes in those figures are
measured in bytes per line. The log/log plots do not show the
convexity of the curves, but the corresponding linear/linear
plots demonstrate that these functions are convex except for
data caches with 4-byte line sizes in the region between 1K
and 4K bytes. We do not claim that Smith’s data represent
any specific cache design and workload. Therefore, the running
example in this section based on Smith’s data does not validate
the model. The validation appears later.

Miss Ratio vs. Cache Size, Data
Smith’s Design Target Miss Ratios

- - s

0

m

U) U)

.-
c

a

I
.-

0 f .1. ,1. , ,1. , , , , . .__1
0 4K OK l Z K 1OK 2OK ZkK Z8K 32K

Cache Size, bytes

Miss Ratio vs. Cache Size, Data
Smith’s Design Target Miss Ratios

75

50

25

10
7.5

5

2.5

Line Size
l , , , ,

64 250 1 K 4 K 1 OK

Cache Size, bytes

(b)

Fig. 1. Smith’s design target miss ratios for data cache. (a) Linilin scaling.
Line size in bytes. (b) Logilog scaling.

To determine the optimal fixed allocation of cache for the I
and D streams, we find an expression for the misses in a period
of time that has exactly T references, and find an allocation
at which the derivative of the miss rate function goes to zero.
Because we take derivatives, we assume that miss-rate func-
tions MI(^) and M D (x) are continuous and differentiable,
although, in reality, they are measurable only at discrete points
on the x-axis. For this derivation we approximate the actual
functions by continuous functions.

Assume that we must allocate C bytes of memory between
D and I references so that the I stream uses z bytes of
memory, and the D stream uses the remaining C - x bytes
of memory. Each cache partition is used exclusively by the
process that owns it. What value of z achieves the overall
minimum miss-rate?

The total number of misses in a time period with T
references is the composite miss rate times the length of the
period. Since we assume that I and D references occur with
equal frequency in the interval T , the total number of misses

I I ”

STONE et al.: OPTIMAL PARTITIONING OF CACHE MEMORY 1057

Miss Ratio vs. Cache Size, Instructions
Smith’s Design Target Miss Ratios

Line Size
60

4 0 s
0
I

.- -
30 a

m m

I 20

10

0
0 4K 8K 12K 16K 2Gil 24K 2M 32K

Cache Size, bytes

(a)

75

50

2 5

1 s -
0 1 0

7.5
.-
c

a

I
m 5
m

2.5

1
0.75

Miss Ratio vs. Cache Size, Instructions

- 4 I

Line Size

8 4 256 1K 4K 1 6K

Cache Size, bytes
(b)

Fig. 2. Smith’s design target miss ratios for instruction cache. (a) Lin/lin
scaling. (b) Logilog scaling.

is given by

Total misses = (M1(x) + MD(C - z))T/2 . (1)

To minimize the overall miss rate, we minimize the total
misses given in (1) by setting the derivative of the right-hand
side of (1) to 0, which occurs at a value of x that satisfies

By convexity of the miss-rate functions, such a point is indeed
a minimum. If either of the miss-rate functions is strictly
convex, the point is unique. If the D process occurs r times
as frequently in the composite reference stream as the I
process, then at the minimum miss-rate the derivative of MO
is weighted by a factor of r . To simplify the discussion, in the
remainder of the paper we assume that the factor r is unity, but
if not, it should appear as a multiplier of MD or its derivative
wherever they appear. The fact that the optimum allocation
appears at a point where the miss-rate derivatives are equal

was observed by Ghanem [7] in the context of page fault5 in a
system in which multiple processes compete for main memory.
The report by Thiebaut, Stone, and Wolf [22] derived (2) for
I and D processes competing for cache memory.

The notion of “optimal” is with respect to the ensemble of
possible address-reference streams as represented by the miss-
rate functions. Among the possible address-reference st reams
described by the miss-rate functions are some streams whose
optimal allocations can be different from the optimal alloc.ation
of the ensemble.

As an example of the application of this theory, we uie the
miss-rate functions shown in Figs. 1 and 2. Note that the curves
in Figs. 1 and 2 have a strong linear structure when plotted on
a log/log graph. When using linear regression to fit a straight
line to the data points, the quality of the fit as indicated by the
correlation coefficient p varies between 0.942 and 0.9#2 for
the instruction caches and between 0.987 and 0.999 foi data
caches. These measures show that the straight line fit captures
the majority of the behavior of the miss ratio with respect to
cache size for Smith’s data. The second derivative of the fitted
function is positive, and the fitted function itself is a sirictly
convex function of the cache allocation x.

For the running example in this section, we use Smith’s
data for a 32 K-byte cache and a line size of 32 bytes The
p measures for the curve fitted to line sizes of 32 bytcs are
0.999 and 0.959, respectively, for data and instruction caches.
A straight line fitted to the log/log data produces the follciwing
expressions for MI(.) and M D (~) :

loglo M I (x) = 0.1177 - 0.1148410g2 (x),

log,, M D (x) = 0.5570 - 0.1422310g2 (x).

(3)

(4)

The logs of miss rates are base 10 and the logs of cache sizes
are base 2 to simplify the interpretation of the display (If the
data. The precision required for the exponents in the model is
greater than the precision of Smith’s data because the mrve
fit is very sensitive to small variations of the exponent of
the cache size. For the running example, we assume that this
precision is available to us. Taking exponents in (3) antd (4)
produces

M~(.) = 1.311.~-0 1148410g2 10

= 1.311x-038151. (5)

M D (~) = 3 . 6 0 6 ~ - ~ ’ ~ ~ ~ ~ ~ . (6)

Taking the derivatives of (5) and (6) yields

(7) d M I (x) = 0,ij00x1.38151,
dx

The miss-rate derivatives in (7) and (8) are plotted in Fig. 3.
Also, the argument of (8) in Fig. 3 is C - x rather th!an x
where C is 32K bytes. The crossing point of the curves is
the point at which the miss-rate derivatives are equal. The
optimal allocation occurs at the point where the I allocation
i is approximately equal to 14432 (to the nearest multiple

1058 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

Miss-Rate Derivatives vs. Cache Allocation
Smith's Data, 32K, 32-Byte Line Size

0 ,

Q
m
-
5:
I
0) m

I Sire 4~ 8K 12K 18K 2OK 24K 28K
D SIZO 28K 24K 20K 16K 12K OK 4K

Cache Size, bytes

Fig. 3. Miss-rate derivatives as a function of cache allocation.

of 32). At this point the composite miss-rate is equal to the
average of (5) and (6), which is

Maximum Miss-Rate = (MI (?) + M D (C - ?)) / 2

= (0.0340 + 0.0349)/2

N 0.0344. (9)

This completes the discussion of the derivation of the optimal
allocation of cache memory. In the next section we show that
a conventional LRU-replacement policy has a most probable
state that is not the optimal allocation of memory between
the I and D references streams, but for the example data it
produces very good allocations. It does extremely well for the
trace-derived data in Section V.

111. THE MOST PROBABLE STATE
FOR LRU REPLACEMENT POLICIES

Consider a cache managed by a normal LRU replacement
policy. What is the most probable allocation of cache memory
between the I and D processes and what is the average allo-
cation between these processes? Are these distinct? Is either
allocation equal to the optimal allocation? The development of
this section begins with a simplified version of LRU replace-
ment that we call modified-LRU replacement. Subsequently,
the model is embellished to approximate LRU replacement
more closely. For the running example, the modified policy
produces better allocations than LRU allocations in some
cases, and poorer allocations in many more. In all cases among
these examples, LRU allocations are very close to optimal, but
are always suboptimal.

To obtain the results of interest, consider the behavior of
a program in execution over a long time. We assume that
the allocation of memory between data and instructions varies
randomly, and is controlled by the statistics of the miss
rates M I (z) and M D (x) , where z is the amount of memory
allocated to the I and D processes, respectively. We define the
state of the cache to be the number of bytes allocated to the I
process. That is, a cache of size C is in state IC if IC bytes are
allocated to instructions and C - :I: bytes are allocated to data.

The state z of cache is a time varying random variable. To
characterize the state of a cache we need to be able to quantify
state probabilities, a most-probable allocation, and an average
allocation. If the random process is stationary, then we assume
that i t has been running long enough for transients to have
died out. If the random process is nonstationary but varying
slowly, as is the most likely case for cache allocations, we
assume that measurements of averages and probabilities have
significance if they are done during periods when the processes
are locally stationary. This permits us to define for each state
2, the probability of being in state 5, which is denoted as S(z).
Given that the state probabilities are well-defined, a cache is in
statistical equilibrium during a period of time if at each state
z the rate of entering state z from state z + 1 by decreasing
the cache allocation is equal to the rate of leaving state :I: by
increasing the allocation and causing the cache to enter state
z + 1. Fig. 4 illustrates this model.

Consider a replacement policy in which an instruction
miss increases the number of instructions in the cache unless
there are no data lines to replace, and similarly a data miss
increases the number of data lines in the cache unless there
are no instruction lines to replace. The item replaced is the
least recently used item from among the items eligible for
replacement. We call this policy the modified-LRU policy.
An LRU-replacement policy does not distinguish between
data and instructions. For fully associative caches, modified-
LRU and LRU replacement choose to replace the same item
if the globally least recently used item happens to belong
to the other process. For set-associative caches, they also
choose to replace the same item when all of the items of a
set belong to one process. For this reason, the two policies
are less distinguishable as associativity diminishes from full
associativity to direct mapped. The two policies are identical
for direct-mapped caches.

For the modified-LRU policy, the rate at which a cache of
size C in state z increases the allocation of of instructions
is S(z)M1(3:) , and the rate at which state z + 1 decreases
its allocation of instructions is S(x + l)MD(C - (z + I)) .
Because the rates are in balance at equilibrium, we have for
each :I; in the interval 0 5 .I: < C ,

S(IC)M1(3:) = S(IC + l)MD(C - (z + 1)). (10)

The boundary conditions are S(z) = 0 for z < 0 and for
z > C. The probability ratio of S(z + l)/S(z) at equilibrium
is given by

for 0 5 .E < C. Equations (10) and (11) are quite accurate
for fully associative caches, and become less accurate as
associativity diminishes. For direct mapped caches, these
equations should not be used, because the modified-LRU
policy becomes identical to LRU as described later in this
section.

Since both M I (x) and MD(x) are nonincreasing functions
of I', MD(C - I.) is a nondecreasing function of L. Therefore
(11) is a nonincreasing function of r. This and the fact that
S (T) is greater than unity at .r = 0 together imply that S(.r) is

I II

STONE ef al.: OPTIMAL PARTITIONING OF CACHE MEMORY

Fig. 4. State diagram and state transitions for cache allocations.

a unimodal function. That is, S(z) grows monotonically with
z to some peak value, and then diminishes monotonically with
z for larger z. The peak occurs where the probability ratio in
(11) falls below unity. The probability ratio might actually
qttain the value of unity at some slate z, and it might be equal
to unity over a contiguous interval of states. In this case, the
peak value of S(z) is attained at several contiguous values of
z. Let 4 denote the largest value of z for which the following
inequality holds:

MI(z) 2 M D (c - (z f 1)). (12)

Then S (f) is the maximum state probability over all z.
For the example of the priox section, Fig. 5 plots the

probability of state J as a function of z for the two differ-
ent replacement policies. The curve that describes the state
probabilities for (1 1) is labeled “modified-LRU replacement.”
The calculation that produced the curves in Fig. 5 is a standard
calculation in which the probability of each state is expressed
as a multiple of S(0) and the value of S(0) is set to a value that
forces the sum of the probability coefficients over all states to
be equal to unity.

Although the modified-LRU pi obability function in Fig. 5
shows a distinct peak, in the region of the peak the probability
function is almost constant from state to state. Thus, at the
peak, the following approximation holds because S(4) %

S(4 + 1):

MI(?) 2(MD(C - (4 + 1)). (13)

Equation (13) indicates that M I (z) M D (C - (z+ 1)) at the
most probable state, which is a stalement regarding the equality
of the miss-rate functions rather than a statement regarding the
equality of the derivatives of the miss-rate functions. We can
conclude that a replacement policy that produces an allocation
that satisfies (13) is not optimal. in general, because this is
not the equation satisfied by an optimal policy. Since an
optimal allocation occurs when m iss-rate derivatives are equal,
a policy that produces an optimiil allocation must somehow
perform replacement as a function of observations of miss-
rate derivatives. How this can be implemented efficiently is a
subject of a separate paper by Stone, Thiebaut, and Wolf [17].

For the example problem, using the assumption that cache
allocations are multiples of 32 bytes, we find that the most
probable allocation state for modified-LRU replacement is
cache state 13916 whereas the optimal allocation state is
cache state 14 432. The miss rate for state 13 916 is 0.03443.
The miss rate for the optimal state, 14432, is 0.03442. The
probability of being in state z changes from 0.01632 to
0.01635 to 0.01637 to 0.01635 as z changes from 13856 to

~

I I I l l 1 1 , , , , , , -- .I

1059

State Probability vs. I Cache Allocation
- 0.03 , A

12K 14K 16K

I Cache Allocation, Bytes

Fig. 5. State probabilities for two replacement policies.

13952 in steps of 32. Consequently, the probability is very
nearly flat at this point, and the approximation in (13) is valid
for the example. From the probability of being in state z as
expressed in Fig. 5, we find the average allocation for that
probability density to be 13 921. Since allocations have to be
multiples of 32 bytes when the line size is 32 bytes, the most
probable state is the state closest to the average allocation for
this particular example. If the probability density is narrowly
concentrated as is the case in Fig. 5, the average allocdtion
tends to be the same as the most probable allocation.

Because we are interested in LRU replacement, we em-
bellish the model slightly to reflect the behavior of LRU
replacement. For LRU replacement, the probability that an
instruction replaces a datum by an instruction is equal to
the probability that an instruction reference is a miss times
the probability that the LRU item is a datum. Regardless of
whether a cache is fully associative, set associative, or direct
mapped, we assume that the probability that the item lo be
replaced is a datum is equal to the proportion of data lines
in the cache. This same assumption was made by Strecker
[18] for characterizing the cache-fill rate. (The assumption is
validated in Section V.) Thus, the probability that z increases
to z + 1 is given by

Prob[z increases to z + 11 = (1 - ”) s (z) M ~ (z) , (14)

and, conversely, in state z + 1, the probability thar the
allocation decreases to z is

C

Prob[z + 1 decreases to z]

= (G) S(Z + l)MD(C - (z + 1)). (15)

When we equate these probabilities, which is the equilibrium
condition, we find

The monotonicity discussion that follows (11) holds as well
for (16). Thus the ratio in (16) is a nonincreasing function of

1060

Model or
Simulation

IEEE TRANSACTIONS ON COMPUTERS. VOI 41, NO 9. SEPTEMBER 19Y2

LRU Policy Modified-LRU
Policy

I-Cache I Miss I Standard /-Cache 1 Miss 1 Standard

TABLE I
C A C H E ALLOCATION DATA: COMPARISON OF A N A L Y r l C A L AND ~ I M u A T I U K MODFI .~

/-Cache
Size

22,080

20,608

r Value

0.2500

Miss
Rate

0.0321

0.0328 0.333
Model

0.500

29,355 0.0387 456.5 21,719 0.0329 403.1

0.750

1.000

2.000

3.000

4.000

Optimal
Policy

1 Size I Rate I Deviation I Size I Rate I Deviation

Modcl I 30,815 I 0.0404 I 350.3 I 23,127 I 0.0322 I 3X8.0
I I I I I I I

Simulation 1 30,820 I 0.0403 I 305.8 I 23,045 I 0.0324 I 368.0 I
I

5 , and the most probable allocation for the LRU policy occurs
at the value i, which is the greatest value of .x for which the
following inequality holds:

Because (17) is different from (12), the most probable al-
location for LRU replacement is not the same as the most
probable allocation for the modified-LRU replacement. We
have no basis to judge which replacement strategies produce
better allocations in general, but for the running example, the
modified-LRU replacement policy produces a slightly better
allocation.

For the running example, the most probable state for LRU
replacement is 15 648, and the average allocation is 15 645.
The miss rate for the most probable allocation is 0.03448 as
compared to 0.03442 for the optimal allocation. These results
together with simulation results are summarized in Table I. The
table shows, respectively, the optimal allocation, the average
modified-LRU allocation, and the average LRU allocation for
various values of the ratio I'. The most probable allocations are
very nearly equal to the average allocations in all cases, and
have been omitted from the table. With each allocation is the
miss ratio at that allocation. The average miss ratios are very
nearly equal to the tabulated miss ratios in every case, and
have also been omitted from the table. The standard deviation
shown in the table gives some idea of the width of the peak
of the probability density function for the allocation.

The simulation data in Table I are drawn from simulations
of the Markov process model of the cache allocation. The
simulations are based on the statistics collected for 125000
time steps after the system reached the expected steady-state
allocation. They controlled the miss-rate function as a function

of allocation, and they also rigidly alternated between I and D
processes. Thus the simulations confirm the analytical model,
but do not necessarily model actual cache behavior.

The simulation results show what happens when two pro-
cesses compete for cache and those processes have miss rates
expressed by the functions M1(.l;) and M D (X) . The LRU
simulation used the weights : r / C and (1 - x/C) to control
the probability of increasing or decreasing the cache allocation.
The modified-LRU simulation forced the instruction allocation
to increase on an instruction miss and forced the data allocation
to increase on a data miss, and thus models the behavior of a
fully associative cache, and approximates the behavior of set-
associative caches. The observed most probable and average
allocations for both LRU and modified-LRU simulations are
within a standard deviation of the corresponding model alloca-
tions for the two policies obtained from the derivations above.

For the running example, because the optimal allocation
occurs very close to the point of equal allocation of storage
between D and I processes, the weights x / C and (1 - x / C)
are very nearly equal, and thus the weights do not shift the
position of :i. far from the position of 2. Fig. 6 gives a plot of
relative miss rate as a function of allocation for the running
example, and we see that miss rate is not very sensitive to the
exact allocation. The instruction allocation can be anywhere
between 8K and 20K, and still produce a miss rate that is
not greater than 10% above the minimum. Since the absolute
miss-rate is less than 5% in this range, a difference of less
than 10% in miss-rate contributes to a performance difference
no more than 0.5% across this range of allocations.

Recall that 7' is the ratio of data references to instruction
references. The running example assumes r = 1. LRU pro-
duces better allocations for most values of r' in Table I with
the exception being I' = 1.

STONE et al.: OPTIMAL PARTITIONING OF CACHE MEMORY

Composite Miss-Rate vs. Cache Allocation
Smith's Data, 32K, 32-Byte Line Size

er
/ I

0
L

.E 1.1

a

c a
aJ -
3 1.0

4e
s 0.0

a

m
00

41(12K 1 OK 2M 24K 2k
Cache Size, bytes

Fig. 6. Relative miss-rate v m u s cache allocation.

The LRU policy introduces a weighting factor that tends
to force allocations to be more nearly equal than does the
modified-LRU policy. In our example, for T = 1 the correc-
tion factor moves the LRU allocation too close to an equal
allocation, and leaves the modified LRU allocation closer
to the optimal allocation. For the other values of T , the
allocations produced by the mod ified-LRU policy tend to be
fairly extreme, and the LRU policy introduces a correction
factor that produces a more nearly balanced allocation that
happens to be closer to the optinial allocation.

In general, we find that LRU replacement produces near-
optimal allocations provided that:

1) 3 is close to C/2 to reduce the effects of weights x / C
and (1 - x / C) in (17), and

2) the miss rate is not very sensitive to the cache allocation
in the vicinity of the optimum allocation.

Both of these characteristics hold for the running example,
and it is quite possible that they hold for most workloads.
However, the near-optimality of the LRU allocation has not
been thoroughly investigated for real workloads and real cache
designs, so the question is still a matter of future research.

It is rather curious that a small change in the LRU replace-
ment policy can produce a cache allocation that is markedly
different than that produced by LRU replacement. Although
we have shown that LRU replacement is not optimal, the point
of this study is to determine why LRU replacement appears
to be so close to optimal.

Occasionally, system designers consider an alternative of
allocating a fixed amount of cache to instructions and a fixed
amount to data, instead of letting data and instructions compete
for cache. If the sole criterion for the allocation is to minimize
the long-term miss rate, then the results above indicate that a
fixed partition is probably not a good idea because, in practice,
cache memory automatically becomes partitioned in a near-
optimal way. However, other coiisiderations may force cache
to be partitioned, such as to support simultaneous access to
data and instructions. The fact that an optimum allocation of
memory occurs when the weighted miss-rate derivatives are
equal should be helpful to designers of such caches.

1061

IV. CACHE ALLOCATION DYNAMICS

Thus far, we have shown that that LRU replacement can
produce near-optimal allocations. This suggests that the LRU
policy is a good one to use in general for managing a cache.
But LRU is not optimal, and there may some advantages in
using a non-LRU policy. What are those advantages?

One possible reason for managing cache with a policy
other than LRU replacement is to avoid the transient in
cache allocation when the components of a composite address-
reference stream change their characteristics. For example, the
data process may change from low locality to high locality. As
locality characteristics change, the optimum partition of cache
between data and instructions changes, and the allocation of
an LRU-managed cache moves to a new, hopefully, near-
optimum allocation. If by some external means the cache-
management algorithm is given the new steady-state allo-
cation, it may be able to impose that allocation on cache
immediately, and avoid the transient that a cache would
normally experience.

This section shows that during the initial phase of a tran-
sient, cache allocation changes rapidly if the new allocation
is quite different from the present allocation. The rate of
change slows considerably as the current allocation comes
close to the steady-state allocation, and in this region it may be
possible to improve performance by using another strategy to
hasten convergence. We outline a combinatorial approach for
finding the steady-state allocation directly, which, if possible
to implement in practice, can eliminate the transient.

The question at hand, then, is what is the dynamic behavior
of memory allocation of an LRU-managed cache? We start by
modeling the dynamics of modified-LRU replacement because
it is somewhat simpler, and then embellish the model to deal
with LRU replacement.

If we treat x, the amount of memory allocated to the I
process, as a state variable of the cache then the rate at which
the state of the cache changes is given by

dx
- = Rate of increasing z - Rate of decreasing x. dt (18)

For a cache managed by the modified-LRU replacement pol-
icy, we have the following differential equation that describes
the dynamics of the cache allocation:

dx = MI(2) - MD(C - x).
dt
-

Strecker's model of cache dynamics captures the fill rate of
a process in the absence of competition. Thus, his differential
equation uses only the first term of (19), and his characteriza-
tion of a cache transient is very different from the dynamics
of cache allocation in the presence of competition.

For the running example, we substitute (5) and (6) into (19)
and we find

There is no neat closed-form solution for this differential
equation. But it can be solved numerically, and its solution is

1062 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

plotted in Fig. 7. To find the dynamics for LRU replacement,
we have to include the weights x / C and 1 - x /C . Equation
(19) becomes

d x X

d t - = (1 - ;) M I (x) - (&fD(C - x). (21)

After substituting (5) and (6) in (21), we obtain

The solution to this equation is also plotted in Fig. 7.
For comparison purposes, the dynamics produced from the
simulations are also plotted, and they track the numerical
predictions reasonably well. The simulations, of course, are
subject to statistical variations that are not captured by the
dynamic model. For this simulation, as time increases beyond
the right edge of the graph, the allocation varies over a range
centered on the long-term asymptote.

Note that both replacement policies produce rapid conver-
gence when the current value of x is far from steady state but
the convergence becomes much slower as x nears the steady-
state region. The maximum convergence rate is r M ~ (x) / (l +
r) and M I (x) / (l + T) when D and I , respectively, are the
minority and majority cache owners, and D references occur
T times as frequently as 1 references. This follows because
the minority owner increases cache occupancy with every
miss and the majority owner does not alter occupancy on its
misses.

If the current steady-state allocation is not optimal, can a
cache manager move quickly to an optimal allocation to avoid
the transient in allocation? We assume that a cache manager
is given the parameters of the competing processes, and the
goal is to find the optimal allocation without solving (16)
numerically. The following discussion presents an efficient
solution to this problem. It treats the more general situation in
which there are N processes competing for cache, not just two
processes. It relies on the fact that at an optimal allocation, all
of the miss-rate derivatives are equal. This is a generalization
of the result given in (2), and it is proved in Thiebaut, Stone,
and Wolf [22], but it follows directly from the arguments used
to derive (2) for two competing processes.

To introduce the allocation problem for N competing pro-
cesses, suppose they are to use a cache of size C. Let MI
denote the miss rate for process i as a function of allocated
cache. Suppose that each process i generates Pi references,
giving a total of

N

T = C P ,
2=1

references in all. If each process i is allocated a portion of the
cache of size Ci, then the overall miss rate is then given by

i=l

Cache Dynamics, I Allocation vs. Time
Smith’s Data, 32K, 32-byte line size

I
(I) a3
c

15 n
U-

0

on U c

U)
m

10

.c I- -
c 0 .-

.e- m - : : 5 -
U

Modified-LRU

Calculated ‘Y
Fig. 7. Dynamic behavior of computed and simulated cache allocations.

We wish to minimize this function subject to the constraint
that

N

c c i = c (26)
i=l

by giving or taking cache away from a competing process.
The least possible overall miss rate occurs when miss-rate
derivatives with respect to cache size are equal.

We assume that the cache miss-rate for each process is a
(decreasing) strictly convex function of cache size. Thus the
functions F;(C) = PiM;(C) /T , the fraction of the total miss
rate attributed to process i, are also (decreasing) strictly convex
functions of cache size C allocated to a process. We wish to
minimize the sum of N such functions. The values of the
functions &(IC) are computed for discrete integer values of z
in the range 0 5 x 5 C.

This problem fits into the category of separable convex
resource allocation problems. A greedy algorithm due to
Fox [4] ’solves such problems in time O (N + Clog N) .
While we base our discussion on this work, we note that
the subsequent results due to Galil and Megiddo [1979] and
Frederickson and Johnson [6] are more efficient, the latter
having complexity O(max(N, N log(C/N))). This bound was
shown by Frederickson and Johnson to be optimal to within a
constant multiplicative factor. We would therefore recommend
that an implementation of this approach actually be based on
the Frederickson and Johnson algorithm.

Ibaraki and Katoh [101 treat resource allocation problems of
this type in depth, and provide excellent background for the
optimization problem treated here. Also note that generaliza-
tions of the optimization algorithm described above have been
solved and employed by Tantawi, Towsley, and Wolf [191, by
Wolf, Dias, and Yu [24], and by Wolf, Iyer, Pattipati, and Turek
[25] to solve other optimization problems in computer science.

Define for each 1 5 i 5 N and each 1 5 j 5 C the
“marginal return” = Fi(j - I) - Fi(j). This function is
essentially the first-difference discrete analog of the negative
of the miss-rate derivative for process 1; with cache allocation
j . Note that for each i, the values gi,l;...;gz,c are positive

STONE et al.: OPTIMAL PARTITIONING OF CACHE MEMORY 1063

and nonincreasing because the rnis rate of the process is a
decreasing convex function of allocated cache. The trick is to
allocate cache, chunk by chunk, 'to the collection of processes
to maintain the miss-rate deriva1:ives as equal as possible as
cache is added. Fox's algorithm can be defined inductively as
follows:

MISS RATIO VS. CACHE SIZE
10
7.5 -

DATA REFERENCES

0 1 -
F 0.75 -

Os - 1. Initialization: Set C1 = . . ' = C N - - 0.
2. Induction Step: Given the kth assignment of values to

the Ci, and noting that it s'atisfies
N

cci = k ,
i=l

1K 2K 4K 8K 16K 32K 64K
the induction step produces a new assignment satisfying

CACHE SIZE (BYTES)

& , = : k + l
i=l

(28) Fig. 8. Miss-ratios as a function of cache size for trace data.

workloads encountered in typical environments and has been
used internally in IBM as a representative of such workloads.

The model requires functions M l (z) and M D (~) . To make
the validation as similar as possible to the running example,

by increasing Ci to Ci + 1 for some index a . The step
selects the first value of i such that

a. Ci < C, and
b. gi,c,+l is maximum.

3. That is, the step finds the value of the marginal return
function gt,c% as each Ci is incremented in turn, and then
retains the value of C, for which the marginal return is
greatest. All other C, values remain unchanged.

After C steps through the algorithm, the values C1, . . . , CN
form an optimal assignment of cache to the competing pro-
cesses such that process i receives Ci units of cache, and the
total amount of cache allocated is C units.

The algorithm amounts to computing a Cth smallest number
in an N x C matrix whose rows are nondecreasing. This is a
special case of the so-called "seleclion problem," and is solved,
as noted above, with considerably greater speed using the
algorithm proposed by Frederickson and Johnson [5] . Details
may be found there or in Ibaraki and Katoh [lo].

This completes the discussion of allocation strategies for
interlaced processes. The next section presents the validation
of the several assumptions in the "ode1 as obtained from actual
trace data.

V. EXPERIMENTAL VALIDATION

The model presented in Sections I1 through IV relies on
a number of assumptions that need to be validated. This
section shows that a trace-driven simulation behaves almost
precisely as predicted by the model. While Smith's data are
useful in examples, the published data were created by taking
a composite of many workloads and cache structures. The
trace-driven validation in this section demonstrates that the
predictions of the model hold true for the cache behavior for
a specific workload and cache structure.

The trace used comes from a single processor in a two-
processor IBM System/370 archilecture complex executing
a multiprogrammed workload. The workload is commercial,
and contains a mixture of user code and operating-systems
code. The trace contains over 18 ClOO 000 references in total.
It was created with the intention of being representative of

the cache structure was chosen to be 32 K-bytes, 4-way set-
associative, with a line size of 32 bytes. The variation of miss
rate with cache size was obtained by varying the number of
sets while fixing the line size to 32 bytes and the associativity
to 4-way.

The data that characterizes these functions appears in Fig.
8. The analysis of miss rates was performed by simulating the
I or the D process in isolation. During the period when the
cache was not fully initialized, the trace simulation filled the
cache without recording miss-rate statistics. The simulation
was continued without recording statistics until the reference
count reached the next multiple of 100000, and at that point
the recording of miss-rate statistics began. This eliminated
the bias caused from initialization misses in the simulation.
Because the I process did not touch all of the lines in a cache
of size 32 K-bytes, this cache was declared to be filled when
all but 10 lines (out of 1024) were initialized. In this case. 6.4
million references were traced after the initialization point,
and in all other cases the number of references traced after
initialization exceeded 8 million.

Note that the miss-rate curve for data misses is well ap-
proximated by a straight line on a loflog scale. The miss-rate
curve for instruction misses is straight for most of its length,
but the data point for 32K lies below the straight-line trend.
To fit the curves to the data shown, we used all of the points
for data caches and dropped the point for the instruction
cache of size 32K. The instruction occupancy does not reach
32K in normal operation, and, hence, the region of interest
for instruction occupancy is the region of the curve through
which the straight-line trend is drawn. The equations for the
fitted curves in Fig. 8 are M l (z) = 1.996x-0.60147 and
M D (~) = 4 . 0 7 2 ~ - ~ . ~ ~ ~ " . The respective p's are 0.994 and
0.984, which indicate that the fits are excellent.

The total number of references observed was approximately
16 million, and the ratio T was 0.9606. The model for LRU
replacement embodied in (16) predicts an average allocation

lEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992 1064

0.04

0.03

* c
n (D 0.02
B
2
n

- .-

0.01

0

State Occupancy Probability

TRACE AVG, 43.0% ~

LRU MOOEL AVG. 43.9% 7,
OPTIMUM 43.2%

MODEL -

instruction Occupancy of Cache (1)

Fig. 9. Cache occupancy probability for trace and model data

of 14 392 bytes and standard deviation of 400 bytes as plotted
in Fig. 9. This compares with an observed average allocation
of 14365 bytes and a standard deviation of 1100 bytes for
the trace data. The optimum allocation for these parameters
is 14150 bytes. The model for modified-LRU replacement
produces an average allocation of 11364 with a standard
deviation of 564 bytes.

Note that the model for LRU replacement and the observed
behavior of the cache give excellent agreement in their average
values. The model variance is somewhat less than the observed
variance of cache occupancy. Also note that LRU replacement
produces an allocation that is essentially optimal.

The wider variance of the trace-driven process is attributed
in part to long sequences of references of one type, particu-
larly to long sequences of data references. Nevertheless, the
predicted average allocation for LRU replacement lies almost
directly where the actual average allocation appears, because
the trace-driven allocations lie in a narrow range, even though
that range is somewhat larger than the allocation range of the
model.

The respective miss rates for the data depicted in Fig. 9
are 0.0074 observed for the trace, 0.0072 for the LRU model,
0.0072 for the optimai allocation, and 0.0073 for the modified
LRU-replacement policy.

Equation (16) reflects the assumption that the probability
of increasing an allocation is proportional to the fraction of
cache currently occupied by the competing process. The trace-
driven experiment gathered data that confirmed this hypothesis
as well. This is shown in Fig. 10. The data plotted shows
the actual probability of increasing allocation as a function of
current allocation, and the straight line shows the model. For
occupancies less than 36%, there were fewer than 10 misses
observed in each state, and thus the data are very noisy and
not statistically significant. Above 36%, the data plotted in the
graph follow the model closely except that they fall slightly
above the model. However, the error in modeling is similar
for data and instructions, and these errors tend to cancel in
(16) because one error is a factor in the numerator and the
other is a factor in the denominator. Hence, the model is an
accurate predictor of cache allocation for LRU replacement in

Probability of Increasing I Allocation
0.9

Trace Data ~

0.8

0.1
* c
n
- .-
2 0.8
L
0

0.5

I
0.4

35 40 45 50 55
0.3

Instruction Occupancy (X of cache)

Fig. 10. The probability of increasing instruction occupancy as a function
of I cache allocation.

Data Occupany vs. Time
--.. ,

c
(I) a3 c 15K

I= 0 .-
10K

0

/ LD-allocation asymptote I
/I

TRACE -
MODEL ~

0 ' I

Time (references)
0 50K lOOK 15OK 2 0 0 K 250K 300K

Fig. 11. The dynamics of data occupancy for the trace experiment.

spite of the small inaccuracy. At this writing, it is not known
what phenomenon causes the discrepancy between the model
predictions and the observations shown in Fig. 10.

Fig. 11 shows the dynamics of data cache occupancy starting
with a minimum allocation of data (10 lines). The dotted
curve is the numerical solution of the dynamic model, and
the horizontal line is the asymptote, which is the average
allocation for LRU replacement. Note the good agreement
between the mathematical model and actual trace behavior.
The data were gathered by simulating a cache on a trace,
using just the instruction references from the trace and ignoring
the data references until 1014 out of 1024 lines were in the
cache. Then the simulation treated both instruction and data
references, and recorded the data occupancy in cache as a
function of time measured in references.

The validation in this section demonstrates that cache OC-

cupancy of instructions and data can be predicted accurately
from parameters for the individual processes, and that for
this particular experiment, LRU replacement produced an
allocation that was essentially optimal. The next section treats
the case in which references by competing processes are not
tightly interlaced.

I I I 1 I I I 1 1 I

STONE et al.: OPTIMAL PARTITIONING OF CACHE MEMORY

VI. MULTIPROGRAMMING REPLACEMENT STRATEGIES

In this section we revisit the allocation problem, but this
time consider what happens when processes compete se-
quentially for cache instead of being tightly intertwined. An
example of the problem occurs in niultiprogrammed computers
in which each process obtains exclusive access of the processor
for a time quantum of length Q. For our purposes, we assume
that there are two processes with miss rates M I (T) and
M 2 (s). respectively. Each process makes precisely Q memory
accesses in its time quantum.

How good is an LRU replacement policy in this situation?
Because one process runs after the other under an LRU
replacement policy, while process 2 is running each cache
miss discards items older than any items touched by process 2
in its current quantum. This would usually be items that belong
to process 1. Conversely, each miss during the execution of
process 1 discards an item belonging to process 2 whenever
this is possible.

While this strategy is basically good, let us examine the
quality of the decision to replace an item belonging to process
1 when process 2 suffers a cache miss. The miss rate of process
2 improves by an amount dM2(s), but, if we assume that
process 1 will reload the item displaced with probability p ,
then for each item belonging to pocess 1 that is discarded, a
fraction 11 of a miss will be recorded when process 1 resumes
control.

If a cache is small compared to the working set of process 2,
the gain in adding a new item belonging to process 2 outweighs
the cost of the miss that will be incurred when process
1 regains control of the machine. Since LRU replacement
continually adds to the allocation for process 2, for small
caches LRU replacement is the algorithm of choice.

But suppose that the cache is very large, and is large enough
to hold the full working set of process 2 as well as lines
belonging to process 1. The marginal reduction in misses
obtained by increasing the cache allocation of process 2 is
the product of the incremental change in miss rate due to the
increased allocation times the number of references remaining
in the time quantum. That is, if q references remain in the
time quantum, then we expect 10 save qdM2(.~)/dx misses
by increasing the allocation of memory to process 2. But we
must also account for the p additional misses when changing
back to process 1, because process 1 will reload the cache
line displaced by increasing the allocation of process 2 with
probability p . Thus the net reduction in misses is equal to
qdM,(x) /dr - p . The threshold q(z) is defined to be the
remaining time at which the marginal gain is 0, and this is
given by

If the remaining time in a quantum is less than q(z) for a
cache allocation of x, then the replacement policy should not
increase the cache allocation of process 2. The replacement
policy should replace the least recently used eligible line of
process 2, and retain the lines of process 1 currently in cache. If
the remaining time exceeds q(z) , then the replacement policy

I065

should replace the least recently used lines of process 1, and
thereby increase the allocation of process 2.

Clearly, if the marginal gain is very small or the time
quantum is nearly over, then it is better to leave items of
process 1 in cache because they will be likely to be referenced
again in the near future. Small processor caches, typical of
those in computers available through the end of the 1980’s,
rarely hold much more than the working set of a process.
In such caches very little of the last run process is left
in cache as the currently running process nears the end of
its quantum. A non-LRU policy cannot easily benefit by
retaining items belonging to process 1 as the time quantum for
process 2 runs out. This situation changes when caches become
much larger than the working sets of typical processes. With
caches in the early 1990’s approaching 1 megabyte in size,
the possibility of improved performance makes the non-LRU
policy an attractive candidate for closer study.

As an example of the use of q (J) in a replacement policy,
consider Fig. 10, which plots Q(T) , the inverse of the miss-
rate derivative, for the I-cache miss-rate derivatives plotted
in Fig. 3. Fig. 12 shows what the threshold would be for a
hypothetical workload and cache structure whose miss rates
fit Smith’s data for a line size of 32 and for p = 1. This is the
threshold below which additional cache should not be allocated
to the running process. In the middle range of the allocation,
the remaining references in the time quantum should be on
the order of 1 million for a process to continue to receive
additional cache memory. Assume that a process governed by
the miss-rate function of Fig. 2 initiates execution and quickly
builds a cache allocation of 4K bytes. If the remaining quantum
has 100 000 references or more, the allocation should increase,
and in fact, under an LRU replacement policy it increases
quickly. At some point depending on the time remaining,
the miss-rate derivative is sufficiently small that no additional
cache should be allocated to the running process. In Fig. 12, the
additional allocation should stop when the current allocation
is roughly half the cache if less than 1 million references
remain. When the allocation is roughly 28K, additional cache
allocation should cease if less than 2 million references remain
in the quantum. If the initial time quantum is 1 million
references, a non-LRU replacement policy will limit the cache
allocation to roughly half of cache.

If an interrupt process takes over the cache for a brief period,
a non-LRU replacement policy will grant the process only a
small initial allocation, and sharply curtail its acquisition of
cache beyond this amount because its quantum is so short.
This tends to give the interrupt process a small region of cache
to hold its working set, and to retain the working set of the
interrupted process in anticipation of the future use of that
portion of cache memory.

VII. MULTILEVEL CACHES

Next, let us consider a common multilevel cache design,
in which caches are arranged in hierarchical fashion. The
fastest and smallest cache is at level one, the next fastest
and smallest is at the level two, and so on. An example of
a study of this type of hierarchy appears in Baer and Wang

1066

Quantum Length vs. Cache Allocation
I-Cache Statistics, 32K, 32-Byte l ine Size

/ Give more cache

s e 2 to process
m m

Give no more cache
to process

in this region

Give more cache 2.1 -

Give no more cache
to process

in this region

0 1
4K (I 12K i8K 2on 24K 28K

Cache Allocation, Bytes

Fig. 12. The quantum-length threshold as a function of allocation.

[l]. In this section we shall extend our solution of the optimal
cache-allocation problem to handle competing processes in
multilevel hierarchies. An early formulation of a different
cache-allocation problem for a cache-memory hierarchy is due
to Chow [3].

For simplicity of exposition, we shall again assume that we
are given the address streams of two competing processes, one
corresponding to instructions and one to data, and that these
occur with equal frequency. Furthermore, we shall attempt to
allocate memory optimally for the two processes in each level
of a two-level cache hierarchy. The extension to arbitrary num-
bers of competing processes, arbitrary relative frequencies, and
arbitrary numbers of cache levels is straightforward. We shall
also assume that the line sizes of the caches at each level are
equal.

An illustration of a two-level cache hierarchy is given in
Fig. 13. The first-level cache sees the full address stream
produced by the processor, and passes only its misses to the
second-level cache. The second-level cache responds to the
residual stream, and sends to main memory only the references
of its input stream that produce misses in this cache. Assume
that the first-level cache has size c and the second-level cache
has size C. In each level of the cache, we would like to use the
results of the previous sections to allocate memory optimally.
However, in order to deal with the second-level cache, we
need to understand how the size of the first-level cache affects
the miss rate in the second-level cache. Fortunately, this is
quite easy, and we proceed as follows.

Suppose that a fraction Q = Q(C, C) of the lines appearing
in the first-level cache also appear in the second-level cache.
Then the total number of distinct lines in the cache is given by
C + (1 - Q)C. The global miss-rate of the combined cache on
the full input stream is thus M (C + (1 - Q)c), while the local
miss-rate of the first-level cache alone is M (c) . (The terms
local and global miss rates are due to Hennessy and Patterson
[8].) A miss in the combined cache occurs when the reference
misses in both levels. In other words, if M(c , C) denotes the
miss rate of the second-level cache with respect to the input
stream that it receives, then M(c)M(c , C) = M(C+(l -a)c) ,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

ALL REFERENCES

r L E V E L 1 MISSES

MAIN
MEMORY

LEVEL 1
PROCESSOR CACHE

LEVEL 2
CACHE

I
LEVEL 2 MISSES -/

Fig. 13. A memory system with two levels of caches.

or, equivalently,

M (c , C) = M (C + (1 - a)c) /M(c) .

In general, the lines of the first-level cache are nearly com-
pletely contained in the much larger second-level cache, so
that cy N 1, or 1 - a E 0. (In fact, we could force a to
be 1 by imposing a cache inclusion condition.) Thus, the
approximation

M (c , C) = M(C)/Wc) (30)

is very good.
Now let t denote the access time for a hit in the first-level

cache of size c, T denote the total access time for a hit in the
second-level cache of size C, and r denote the total access time
for main memory. By definition we have t < T < r , and in
practice we can assume that t << T << r. We can also assume
that c << C. For any partition c = c1 + c2 of the first-level
cache, we can compute local miss rates Ml(c1) and M2(c2).

Given this first-level partition and any partition C = C1 + c 2

of the second-level cache, we can compute global miss rates
M I (cl, C1) and M2(c2, C2). Thus, the overall access time is
given by

T(c1, c2r c1, (72)

= ?[k(l - M i (c i)) t + ~ M a (c i) (l -Mi(Ci,C,))T
i= l i=l
2 1 + c M z (c i) M i (c , , Ci),

=il

We want to minimize this function subject to the constraints
c1+ cp = c and C1+ C2 = C. This can be done by repeated
application of the algorithm given in Section IV, but there
is a simplification that greatly limits the search effort. The
simplification relies on the presence of good lower and upper
bounds.

To derive a tight upper bound, note that in the region where
ai(ci, Ci) E 1, (26) reduces to

1 1
Ti = t+ 2(T - t) Mi(ci) + T (T - T)

k l i = l
Mi(Ci). (32)

In fact, TI provides an upper bound for T over the entire
feasible region, since r > T. Minimizing (27) is easy, since

1067 STONE et al.: OPTIMAL PARTITIONING OF CACHE MEMORY

the first summand is a constant, and t < T < T implies
that the second and third summands are positive. The problem
simply decouples into two disjoint separable convex resource-
allocation problems, one for the second summand and one for
the third. Both problems are solved by the technique given in
Section IV. Since, in practice, Q will almost surely be close
to 1 in this region, the optimal d u t i o n for (27) derived in
this manner will be an excellent approximation to the optimal
solution for (26).

The lower bound is obtained by investigating the behavior
of (26) under the assumption cy = 0. Equation (26) reduces to

2 2

T2 differs from T only in its third summand. We claim that
T2 provides a lower bound for T over the entire feasible
region, since T > T . (This optimization problem does not quite
decouple, but given any solution to the problem associated
with the second summand, optimal or not, one can solve
the problem with respect to the third summand, which is
again a separable convex resource-allocation problem.) The
corresponding exact reduction associated with T in (26),
namely,

2 2

+(1 - %(CZ, G)). 4. (34)

differs from T I and from T2 only in its third summand. This
summand does not give rise to a convex optimization problem,
but is tightly bound by two problems that are. By utilizing
these bounds one can restrict the search for the overall optimal
solution to (26) to a neighborhood very close to the optimal
solution of (27).

As an example of the application of this theory, we again use
the miss-rate functions shown in Figs. 1 and 2. Specifically,
we use an instruction stream whose miss rate is described by
(5) and a data stream whose miss rate is described by (6).
Assume a line size of 32 byte!<, with t = l , T = 10, and
T = 20. Assume that the first-level cache is of size 8K bytes,
so that c = 256 lines, and the second-level cache is of size
64K bytes, so that C = 2048 lines. The optimal partitioning
occurs at c1 = 104 lines, c2 = 152 lines, C1 = 924 lines, and
C2 = 1124 lines, and yields T' = 1.8171. Fig. 14 shows a
contour plot of the various partitioning choices. By contrast, a
cache simulation shows that LRU yields a time of T = 1.8189,
so that, once again, LRU is proven to be quite robust. The
contour line for the LRU average access-time is shown as the
innermost contour line in Fig. 14.

VIII. SUMMARY AND CONCLUSIONS

The major finding of this study is that the LRU replace-
ment policy is good, but not optimal. We have shown that
a modified-LRU replacement produces different allocations
of data and instructions, and in some cases the modified
policy produces marginally better performance than the LRU

U

COWTOUR PLOT OF AVERAGE ACCESS-- FOR wmem. C A C ~
I I I 2.SO' I I I I

\
2.00 Y

Fig. 14. A contour plot of average access-time as a function of cache
allocations in a multilevel cache.

policy. For tightly interlaced address streams generated by
two competing processes, the examples in the paper indicate
that the miss rates produced by LRU replacement are only
negligibly different from the miss rates produced by an optimal
cache partition. Because all of the evidence for the quality of
LRU is based on examples rather than on firm bounds, we
cannot be sure that LRU replacement is as near-optimal in
practice as it has turned out to be for the examples used
in the paper. Until bounds on the near-optimality of LRU
replacement are available, it is an open question whether there
is a realizable alternate policy that produces better allocations.
While we cannot justify the implementation of non-LRU
replacement policies for the examples given in the paper, it
may be necessary to partition cache for other reasons. If so, the
techniques of the paper are useful in determining the relative
sizes of the partitions by showing how to achieve the least
miss rate for partitions within a fixed chip area, a fixed board
area, or for a fixed total cost.

Research questions that remain open include the following:
1) Is there a simple bound on the near optimality of LRU

replacement with regard to its ability to allocate cache
between data and instruction processes?

2) Is there a simple replacement policy that actually
achieves the optimum allocation between data and
instructions?

3) How can the transient associated with cache allocation
be reduced without using detailed knowledge about the
miss-rate functions?

4) For multiprogrammed systems, what is a practical means
for implementing a limit on cache allocation? Does
such a scheme produce sufficient benefit to justify its
implementation?

5) For cache in a multiprogramming environment, it is clear
that there is no justification for using a strategy other
than LRU when there is little possibility for retaining
lines belonging to other processes in the cache. As
caches become large, this is no longer true. But how

I o m IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9. SEPTEMBER 1992

large do caches have to be for non-LRU replacement to
be worthwhile?

Although LRU replacement is the cache-management al-
gorithm of choice today, the paper has pointed out potential
opportunities for improving performance by implementing a
non-LRU strategy. On the other hand, the paper has shown
that an LRU strategy is robust, near-optimal, and difficult to
outperform in practice. Before adopting a non-LRU strategy,
it is essential to explore the questions above to determine what
strategies are most useful and what their benefits might be.

ACKNOWLEDGMENT

The authors are indebted to the referees for their perceptive
comments and suggestions which led to material improve-
ments in this paper. The authors would also like to thank Dr.
T. Puzak of the IBM T. J. Watson Research Laboratory for
access to the traces used in the simulation.

REFERENCES

J. L. Baer and W.-H. Wang, “On the inclusion properties of multilevel-
cache hierarchies,” in Proc. 15th Annu. Int. Symp. Comput. Architecture,
IEEE Cat. 88CH2545-2, June 1988, pp. 73-80.
L. Belady, “A study of replacement algorithms for a virtual-store
computer,” IBM Syst. J. , vol. 5, no. 2, pp. 78-101, 1966.
C. K. Chow, “On optimization of storage hierarchy,” IBM J . Res.
Develop., vol. 18, pp. 194-203, May 1974.
B. Fox, “Discrete optimization via marginal analysis,” Management Sci.,
vol. 13, pp. 909-918, 1966.
G. N. Frederickson and D. B. Johnson, “The complexity of selection
and ranking in S + lr and matrices with sorted columns,” J . Comput.
Syst. Sci., vol. 24, pp. 197-208, 1982.
Z. Galil and N. Megiddo, “A fast selection algorithm and the problem
of optimum distribution of effort,”J. ACM, vol. 26, pp. 58-64, 1979.
M. Z. Ghanem, “Dynamic partitioning of the main memory using the
working set concept,” I B M J . Res. Develop., pp, 445-450, Sept. 1975.
J. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approuch.
M. D. Hill, “A case for direct-mapped caches,” IEEE Comput. Mag.,
vol. 21, no. 12, pp. 25-40, Dec. 1988.
T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic
Approaches.
D. B. Kirk, “Process dependent static cache partitioning for real time
systems,” in Proc. Real Time Sysr. Symp., 1988, pp. 181- 190.
S. Przybylski, M. Horowitz, and J. Hennessy, “Characteristics of per-
formance optimal multilevel cache hierarchies,” in Proc. 16th Annu. Int.
Symp. Comput. Architecture, 1989, pp. 114-121.
A. Smith, “Cache memories,” ACM Comput. Surveys, vol. 14, no. 3, pp.
473-530, Sept. 1982.
A. J. Smith, “Line (block) size choice for CPU cache memories.” IEEE
Trans. Compuf., vol. C-36, no. 9, pp, 1063-3075, Sept. 1987.

San Mateo, CA: Morgan Kaufman, 1990.

Cambridge MA: M.I.T. Press, 1988.

1151 J. E. Smith and J . R. Goodman, “Instruction cache replacement policies
and organizations,” IEEE Trans. Comput., vol. C-34, no. 3, pp. 234-241,
Mar. 1985.

[16] K. So and R. N. Rechtschaffen, “Cache operations by MRU change,”
/E€€ Trans. Comput., vol. 37, no. 6 , pp, 700-709, June 1988.

[17] H. S. Stone, D. F. Thiebaut, and J. L. Wolf, “Improving disk cache hit-
ratios through cache partitioning,” IEEE Trans. Comput., vol. 41, no.
6, pp. 665-676. 1992. The paper originally appeared as IBM Research
Report RC 15072, Oct. 26, 1989.

[18] W. Strecker, “Transient behavior of cache memories.” ACM Truns.
Comput. Sysr., vol. 1, no. 4, pp. 281-293, Nov. 1983.

[19] A. N. Tantawi, D. Towsley, and J . L. Wolf, “An algorithm for a class-
constrained resource allocation problem,” in Proc. 1988ACM Sigmetrics
ConJ, May 1988, pp. 253-260.

[20] D. F. Thiebaut, “On the fractal dimension of computer programs and
its application to the prediction of the cache miss ratio,” IEEE Trans.
Compul., vol. 38, no. 7, pp. 1012-1026, July 1989.

1211 D. F. Thiebaut and H. S. Stone, “Footprints in the cache,” ACM Trans.
Comput., vol. 5 , no. 4. pp, 305-329, Nov. 1987.

I221 D. F. Thiebaut, H. S. Stone, and J. L. Wolf, “A theory of cache
behavior,” IBM Res. Rep. RC 13309. Nov. 10, 1987.

1231 M. K. Vernon, R. Jog, and G. S. Sohi, “Performance analysis of
hierarchical cache consistent multiprocessors,” in Perform. Distributed
and Parallel Systems, Proc. IFIP TC 7iWG 7.3, 1989, pp. 11 1 - 126.

[24] J. L. Wolf, D. M. Dias, and P. S. Yu, “An effective algorithm for
parallelizing sort merge joins in the presence of data skew,” in Proc. 2nd
In t . Symp. Databases in Parullel Distributed Syst., pp. 103-115, 1990.

[25] J. L. Wolf, B. R. Iyer, K. R. Pattipati, and J . Turek, “Optimal buffer
partitioning for the nested block join algorithm,” in Proc. 7th Int. Data
Eng. Conf , 1991, pp. 510-519.

Harold S. Stone (S’61-M’63-SM’81 -F’87), for a photograph and biogra-
phy, see the April 1992 issue of this TRANSACTIONS, p. 410.

John Turek (S’88-M’91) received BSc. degree
from the Massachusetts Institute of Technology in
1984 and the Ph.D. and M.S. degrees from the
Courant Institute of Mathematical Sciences of New
York University in 1991 and 1990, respectively.

He is a Research Staff Member at IBM T. J.
Watson Laboratories. His current interests include
database systems, distributed computing, and the
study of optimization problems in computer science.

Joel L. Wolf, for a photograph and biography, see the April 1992 issue of
this TRANSACTIONS, p. 410.

