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ABSTRACT 
Many applications written in garbage collected languages have large 
dynamic working sets and poor data locality. We present a new 
system for continuously improving program data locality at run time 
with low overhead. Our system proactively reorganizes the heap by 
leveraging the garbage collector and uses profile information 
collected through a low-overhead mechanism to guide the 
reorganization at run time. The key contributions include making a 
case that garbage collection should be viewed as a proactive 
technique for improving data locality by triggering garbage 
collection for locality optimization independently of normal garbage 
collection for space, combining page and cache locality 
optimization in the same system, and demonstrating that sampling 
provides sufficiently detailed data access information to guide both 
page and cache locality optimization with low runtime overhead. 
We present experimental results obtained by modifying a 
commercial, state-of-the-art garbage collector to support our claims. 
Independently triggering garbage collection for locality 
optimization significantly improved optimizations benefits. 
Combining page and cache locality optimizations in the same 
system provided larger average execution time improvements (17%) 
than either alone (page 8%, cache 7%). Finally, using sampling 
limited profiling overhead to less than 3%, on average.  

Categories and Subject Descriptors D.3.4 [Programming 
Languages]: Processors – code generation, memory management 
(garbage collectors), optimization, run-time environments 

General Terms  Measurement, Performance, Experimentation. 

Keywords   data locality, garbage collectors, cache optimization, 
page optimization, memory optimization 

1. INTRODUCTION 
Many programs, especially those that manipulate pointer data 
structures, are memory performance limited due to the growing 
disparity between processor speeds and memory access times [10]. 
Large, multi-level caches help hide some of the memory access 
latency and translation look-aside buffers (TLBs) mitigate the page 
translation costs. Unfortunately, caches and TLBs are expensive and 
unlikely to grow at the same rate as application workloads, 

especially on-chip caches. Perhaps most importantly, these 
hardware mechanisms are often limited by poor program data 
layout, which rarely takes full advantage of the multi-word data 
transfer granularity that cache lines (64 – 128 bytes) and pages (4 – 
8K bytes) provide.  

Two useful layout metrics are page and cache line density, which 
indicate how well program elements are laid out and packed 
together. Unfortunately, as Figure 1 indicates1, many programs have 
poor page density. In addition, programs also have poor cache line 
utilization, averaging around 30% [24]. This provides an 
opportunity to make more efficient use of caches and TLBs by 
packing contemporaneously accessed data elements together and 
reducing a program’s page and cache footprint.  
Newer mainstream languages such as C# and Java support 
automatic memory management, which is implemented with a 
garbage collector that, when necessary, automatically examines the 
program heap and recycles space occupied by dead data for use in 
subsequent allocations. To avoid heap fragmentation, many garbage 
collectors either copy all live objects or compact the heap by 
moving some live objects into the space freed up by dead data. 
Garbage collectors maintain fairly elaborate infrastructure to 
accomplish this task. Prior research has leveraged this infrastructure 
to combine this object movement with intelligent placement to 
optimize either program page or cache locality [6,7,8,13,16,20,22]. 
This paper describes a locality optimizing system that leverages the 
garbage collector with three key differences from earlier work. First, 
it uses sampled profiles of data accesses to drive both page and 
cache locality optimizations. Second, it proactively triggers garbage 
collection for locality optimization rather than passively performing 
locality optimization only when garbage collection is invoked due to 
memory space constraints. In addition, it implements an automatic 
online throttling scheme that limits performance degradation for 
applications that do not benefit from locality optimization. Finally, 
it combines page and cache locality optimization in the same 
system. 
 Placing contemporaneously accessed objects together at the page 
and cache level requires accurate data access information. While 
static analysis techniques continue to improve, they are still unable 
to provide sufficiently detailed data access information for this 
purpose, especially for large programs that manipulate pointer data 
structures. Hence we monitor data accesses at run time and use this 

                                                                 
1 These numbers were obtained by running these applications 

using a dynamic translator and logging all memory reads and 
writes. References to stack pages were filtered out. 
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information to guide data placement. Unfortunately, the runtime 
overhead can sometimes be too high. To address this, we use bursty 
tracing [2][5], which is a form of sampling that captures fine-grain 
temporal data access information, to reduce our profiling overhead 
to less than 3% on average, yet produce sufficiently detailed data 
access profiles to guide locality optimization. While previous 
research on using garbage collection to improve cache locality in 
the Cecil system found profiling without sampling had sufficiently 
low-overhead [6], our experience with a commercial system 
indicates otherwise. While several differences between the two 
systems makes comparison difficult (different languages, SPARC 
(32 registers) Vs. x86 (only 8 registers)), a possible reason for this is 
our implementation platform is a highly-tuned commercial system 
that is less tolerant of instrumentation overhead than the Cecil 
research prototype. 

Application Pages touched 
per interval 

Average Page 
Density 

Web page renderer 1 600 7.7%
Web page renderer 2 588 6.5%
XamlParserTest 602 6.0%
Sat Solver 1703 28.0%
Compress 102 28.0%

(a) C# applications 

Application Pages touched 
per interval 

Average Page 
Density 

Multimedia App 1 519 7.1%
Multimedia App 2 264 35.4%
Desktop App 1 368 7.3%
Desktop App 2 367 9.5%
Desktop App 3 315 13.2%
Internet App 478 11.2%

(b) C/C++ applications 

Figure 1. Application page density (combination of Microsoft 
and non-Microsoft applications). The density of a page = 
numbers of unique bytes read/written on a page per interval / 
size of page. An interval is chosen to be 106 references.   
 
Garbage collection is typically triggered in response to an allocation 
request when the amount of free space falls below a certain 
threshold. This can often coincide with a program phase boundary 
especially if the new phase starts by allocating many new objects. If 
locality optimization (LO) is passively combined with garbage 
collection (GC), it would incorrectly place objects that were 
contemporaneously accessed in the previous phase together, 
possibly reducing program locality for the current phase. To avoid 
this problem and to be able to continuously reorganize the data 
layout in response to changes in data access patterns caused by 
program phase behavior, we decouple LO from GC and enable 
triggering LO independently of GC. We use metrics such as cache 
and TLB miss rates obtained from hardware performance counters 
as well as allocation behavior to trigger LO.  In addition, we have 
implemented an automatic online throttling scheme that limits 
performance degradation for applications that do not benefit from 
LO. Our results indicate that actively triggering LO independently 
of GC provides significant performance benefits.  

Our LO system addresses both page and cache locality. To optimize 
page locality, object accesses are recorded by setting a bit in the 
object header. In addition, to optimize cache locality we record the 
object address in a fixed size circular object access buffer. During 
LO, live objects that have their access bit set are copied and placed 
contiguously according to a hierarchical decomposition order [20] 
(called page locality placement herein), which improves page 
locality, and for some of the applications we studied, also improves 
cache locality. To specifically improve cache locality, we use a 
similar scheme to that described in [6], which uses the object 
address buffer information to place contemporaneously accessed 
objects together (called cache locality placement herein). Since the 
object address buffer is of fixed size, it only contains a subset of 
objects that were accessed since the last LO. Our LO combines page 
and cache locality optimization by first performing the cache 
locality placement for objects in the object address buffer followed 
by the page locality placement for objects whose access bit was set 
but did not appear in the object address buffer. 
We implemented our LO system in the Common Language Runtime 
v2.0 (CLR) of Microsoft’s .Net Framework. Our choice of 
implementation platform and benchmarks was driven by our goal of 
transferring this technology to Microsoft’s commercial platform. All 
of the applications we used for benchmarking are written in C#; 
however, the results are applicable to any language that targets 
MSIL (Microsoft Intermediate Language) binaries. 
The main contributions of the paper are:  
1) Decoupling LO from GC and demonstrating benefits of 

triggering these independently. In addition, we implemented an 
automatic online throttling scheme that limits performance 
degradation for applications that do not benefit from LO. We 
show that this technique significantly improves average 
optimization benefits due to improved mutator locality. 

2) Combining cache and page locality optimizations in the same 
system and demonstrating performance gains. Earlier research 
either performed cache or page optimization, but not both. For 
the C# applications we studied, combining page and cache 
locality optimization in the same system provides larger 
average improvements (17%) than either alone (page 8%, 
cache 7%). 

3) Demonstrating that sampling techniques can be used to collect 
sufficiently detailed data access information to guide cache and 
page locality optimizations with low overhead (less than 3% on 
average). 

4) Implementing and evaluating the system in a commercial 
managed runtime system. We implemented this in Version 2.0 
of the Common Language Runtime GC, which ships with 
Microsoft’s .NET Framework.  

We believe that automatic locality optimization techniques such as 
these are necessary for modern languages, such as C# and Java, to 
approach and perhaps even surpass the performance of C/C++ 
programs. 
The rest of the paper is organized as follows: Section 2 briefly 
discusses related work. Section 3 describes the design and a few 
implementation details of our technique. Section 4 contains 
experimental evaluation of our approach using several C# 
applications. Section 5 summarizes the main results and directions 
for future work.  

333



2. RELATED WORK 
The idea that garbage collection could be used to improve a 
program’s locality was proposed as early as in 1980 by White [18]. 
Zorn speculated on the possibility of doing garbage collection 
purely for program performance in [9]. Several researchers have 
proposed ingenious traversal algorithms for copying garbage 
collectors to improve the locality of references in the collected heap 
[16] [20].  Wilson [20] proposed hierarchical decomposition to 
group all structurally related objects together to improve locality. 
We similarly group only recently accessed objects for page locality 
optimization. Shuf et al [21] proposed a new allocation scheme to 
improve locality by placing objects based on the notion of prolific 
(frequently instantiated) types. These approaches are based on static 
or offline profile information, and the virtual machine or runtime 
involved is not active in observing the dynamic data access 
sequence and determining how objects should be placed in the heap. 
Thus the layout derived may not reflect actual data access patterns, 
and moreover, it is not possible to detect phase changes and react 
accordingly. 
Huang et al. [22] use a technique called online object reordering 
(OOR) that uses sampling to identify hot methods, and from these 
hot fields and their types.  At garbage collection time, the GC copies 
referents of hot fields together with their parent, guided by the hot 
types. Their work is complementary to ours. Since their work was 
done on a virtual machine with function profiling built in and they 
sample hot methods rather than contemporaneous data accesses, 
their overhead is low. However, they are limited to coarse-grained 
profiling information about data accesses and in the type of 
placement optimizations they can perform. In addition, they perform 
their placement optimization during normal GC traversal. We 
trigger locality optimization independent of normal GC and show 
that this benefits performance. In addition, we optimize separately 
for both cache and page locality in the same system.   
Courts described a dynamic approach in [8]. In his implementation, 
memory is divided into regions based on generation and activity. 
The GC copies inactive objects out of active space based on object 
accesses in the training period before each garbage collection. 
However, his implementation relied on the transporter, a micro-
coded system service, to bring the objects from inactive space to 
active space when they are first accessed. In his system, garbage 
collection is just a passive activity that is triggered based on 
memory pressure.   
Chilimbi and Larus proposed a scheme that uses online profiling to 
construct an object affinity graph from observed accesses, and then 
uses the GC to rearrange the objects for better cache locality [6][7]. 
We use their scheme to optimize cache locality but combine it with 
page locality optimization. We incur less runtime overhead since we 
sample data accesses. Finally, we trigger LO independently of GC 
while they perform cache optimization only when GC is invoked 
due to memory pressure.  
Adl-Tabatabai et al [1] insert prefetch instructions in JIT compiled 
code and use GC’s placement ability to maintain the distances of 
objects so that the prefetch is effective. They also use hardware 
performance monitoring counters to collect cache miss profiles to 
determine the prefetch sites. Our work is complementary as we 
instrument the application to detect hot objects and re-arrange these 
hot objects to improve their reference locality instead of trying to 
prefetch objects that will be accessed in the future. Our approach 
increases the spatial locality of frequently accessed objects and 
consequently increases the effectiveness of hardware prefetching.  

Hertz et al [11] describe a technique that avoids paging by 
integrating the garbage collector with the memory manager so the 
GC can make informed decisions about evicting pages. That 
approach is orthogonal to ours since they do not address the issue of 
intra-page layout.  
Our low overhead design relies on having cheap read barriers 
proposed by others [3], but the implementation we describe is quite 
different: the CLR implementation does not use null checks but 
implicit traps to detect null dereferences, the object headers do not 
have an extra to-pointer, and the heap implementation is quite 
different (for object headers that cannot be moved and the objects 
that are moved the to-space). Our compiler optimizations to reduce 
the number of read barriers are similar.  

3. DESIGN AND IMPLEMENTATION 
Our approach relies on a generational garbage collector that 
moves objects, and our prototype ties tightly with the CLR and 
MSIL (Microsoft Intermediate Language), but is otherwise 
agnostic of the implementation details of a virtual machine. In this 
section, we first provide a high-level overview of the approach, 
discussing various options and the rationale for our adopted 
design, and then describe the engineering optimizations necessary 
to provide a practical implementation.   
Figure 2 provides an architectural overview of our design. A JIT 
compiler takes an intermediate language representation (MSIL in 
our case) and compiles it into machine code for a particular 
architecture. We modify the JIT compiler to insert lightweight 
instrumentation in the compiled code. The CLR provides a tool 
called Ngen [25] that can compile modules ahead of time to 
provide more optimized code and improve startup performance.  

Figure 2. Overview of architectural modifications to the CLR.  
  
Our modifications to the compiler work seamlessly with Ngen, so 
there is no extra startup penalty for using our approach. The 
instrumented code marks objects that have been recently accessed 
and records their address in a fixed size circular object access 
buffer. We insert monitoring code in the CLR to gather certain 
metrics while the application is running and use the collected data 
and heuristics to trigger GC-for-locality, or Locality Optimization 
(LO). During LO, we use the Chilimbi-Larus scheme for 
combining cache locality optimization with GC. In addition, we 
perform page locality optimization for the objects that are not 
moved during cache locality optimization. To do this, we identify 
objects that have been marked as recently accessed (hot) and co-
locate them according to their inherent structural relationship onto 
pages separate from the rest of the heap. LO is triggered 

JIT Compiler

or NGen 

Machine 
Code 

Gen 2  
Heap 

Gen 1 
Heap 

Gen 0 
Heap 

Garbage 
Collector Monitor 

1 

4

1. Instrument  object 
referencing 
instructions 

2. Instrumented codes 
mark/record 
referenced objects 

3. Modify GC algorithm 
to improve locality 

4. Invoking GC based on 
events 

3

2

MSIL code 

Events 
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independently of a normal GC, which occurs when the allocation 
budget is about to be exceeded. To limit performance degradation 
for applications with poor algorithmic locality, we throttle LO 
when indicated. 

We first provide a brief review of the scheme used to optimize 
cache locality [6]. Then, we discuss some of the key design issues, 
design options that we considered, and our rationale for adopting the 
current design.  
 
3.1 Background: Cache Locality Optimization 
We record base object addresses in a fixed size circular buffer. 
During Locality Optimization (LO), these objects are processed to 
construct an object affinity graph. The object affinity graph includes 
edges between objects that are contemporaneously accessed, where 
objects accessed up to 3 unique accesses apart are considered 
contemporaneous. Graph edges are weighted to indicate how often 
the objects have been accessed together. The garbage collector 
performs a weighted DFS traversal of this object affinity graph and 
marks objects for copying to a temporary buffer in the order they 
are visited. Since these objects may include some garbage (though 
prior work indicates that the amount is miniscule [6]), they are 
removed when the objects are physically copied in a later phase of 
the same garbage collection. The object affinity graph is not 
maintained across LOs but is created from scratch at each LO. 
Further details are in [6]. Our page locality optimization, which is 
described in the next few sections, copies objects to the end of this 
temporary buffer used by cache optimization.  

3.2 Low-overhead Data Access Profiling 
Since the instrumentation for cache locality is virtually identical to 
that described in [6], we focus on the instrumentation needed for 
page locality optimization and discuss our use of sampling to reduce 
profiling overhead. 

3.2.1 Instrumentation for Page Locality Optimization 
For page locality, we do not need to determine precise temporal 
affinity between data elements. We record objects that are 
frequently accessed during a time interval; these objects are 
considered hot and we group them during optimization according to 
their inherent structural relationship into a set of pages in a separate 
section of the heap. A counter is used to decide which objects are 
hot.  
We use the JIT compiler to insert read barriers for certain critical 
instructions that access heap data. The read barrier code consists of 
a single call instruction to a helper routine which updates the 
counter if necessary. Write barriers are automatically generated by 
the compiler to support the generational GC, and we simply modify 
those to insert a conditional update of the counter.  
The key engineering decisions we had to make were: 

• Implementation of the counter 
• Implementation of the read barrier 
• Optimizing the instrumentation  

 
We considered two ways to implement the object reference counter: 
embed it in the object or implement it as a separate table. Our 
current implementation uses a 1-bit counter that is embedded in the 
object. The CLR already has a four-byte object header for each 
object that is used for various purposes (e.g. to implement a 
lightweight lock or to store a hash code for the object). We modified 
this layout to steal one bit for our purposes. Although this reduces 
the number of bits available for other purposes, we feel that this is a 

good performance tradeoff. The main impact of stealing the bit is 
reducing the number of objects whose hash can be stored in the 
object header (from 27 to 26 bits) and reducing the number of 
concurrent threads that can be supported with lightweight locks. 
When the bits overflow they are repurposed to index into a table that 
points to larger object headers.  
The read barrier code is shown in Figure 3. 
    test       dword ptr[rg-4], OBJECT_ACCESSED_BIT 
    jnz        Bit_set 
    lock or  dword ptr[rg-4], OBJECT_ACCESSED_BIT;  atomic update 
Bit_set :  
    ret 
Figure 3. Profiling code used to mark accessed objects for page locality 
optimization. rg is the register that holds the object address. The object 
header is at offset -4 from the start of the object. OBJECT_ACCESSED_BIT 
is a bit mask used to set a single bit in the object header.  
We use an interlocked operation to set the bit since the object header 
could be concurrently modified by other threads on an SMP 
machine. The interlocked operation is expensive on x86 
architectures (20-30 clock cycles). In addition, it dirties a cache line 
during a read operation that could hurt scalability of applications on 
multi-processors. Therefore we implement a conditional read barrier 
instead of an unconditional one even though it bloats the read 
barrier code quite a bit. To minimize code bloat we do not inline the 
read barrier but implement it as a helper routine (one for each 
register). 2 
Algorithms used for optimizing access barriers can be directly 
applied here to further reduce the number of read barriers, and 
hence, the amount of code bloat. The read barrier used here is 
different from typical access (read or write) barriers in that we do 
not need to insert a call to it at every access point, because it does 
not affect the correctness of the generated code. This allows us to 
perform more aggressive optimizations. In our prototype 
implementation, we use common sub-expression elimination (CSE) 
to optimize away redundant calls to the read barrier routines. 
Furthermore, since occurrences of exceptions are rare, no profiling 
calls are inserted into exception handling code. Similarly, we also 
ignore constructors that are not inlined.  
One policy decision we had to make was when to reset the counter. 
Because of our decision to embed the counter in the object, we 
cannot clear the bit without a scan over the whole heap, which is 
expensive. The only natural opportunity for clearing the counter is 
when we do a GC. We experimented with a few different schemes 
and found that the simple strategy of clearing the counter every time 
we encounter a hot object during a GC (no matter whether for 
locality or for space) works well for objects in lower generations 
(generation 0 and 1). For higher generations (generation 2 in CLR) 
this does not work as well because those generations are collected 
infrequently and the reference bit gets stale over time. In our 
prototype, since the collector does need to check generation 2 
objects that contain cross-generation pointers, we use this 
opportunity to clear the counters embedded in them, which 
alleviates the problem to some extent. An alternative would be to 
store the counters in a card table, which would make clearing the 
counters relatively cheap.  

                                                                 
2 The code bloat is < 3% for the applications we studied. 
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3.2.2 Sampling Data Accesses 
The page locality instrumentation model described above has low 
overhead and is enough to speed up some benchmarks that we 
describe later. But there are several scenarios where dynamic heap 
reorganization does not help improve the performance of an 
application, e.g., if the dataset is small enough to fit in the available 
memory or the algorithm has poor locality. For such applications the 
cost of the read barrier can be very high (in some cases degrading 
the application by as much as 40%). In addition, the overhead of the 
instrumentation needed by our cache locality optimization is high. 
To further reduce the instrumentation overhead, we use a simplified 
version of bursty tracing [2][5]: if a method is instrumented with a 
read barrier, we generate a second copy of the method without the 
read barrier. The prolog of each copy of the same method is 
extended to perform a check and control transfer to either the 
instrumented or the non-instrumented version of the method. Back 
edges are not modified in our simplified implementation. 
Surprisingly, this simplification does not reduce the effectiveness of 
this approach on the benchmarks we examined (except for some 
synthetic ones that have long-running loops); the reason is that 
modern software practices and object-oriented programming 
languages usually result in many more smaller functions than larger 
ones, where deeply nested loops are rare. As a further optimization, 
the two copies are placed in separate code heaps.  
There are two parameters to control the sampling: how long each 
burst should last and how often sampling should be triggered. By 
tuning these two parameters, we can obtain useful profile 
information at a reasonably low profiling overhead.  Our 
experiments show that with this bursty tracing scheme, we can limit 
pure profiling overhead to less than 5% - the cost of doing the check 
in the prolog. 

3.3 Combining Page and Cache Locality Optimization 
The CLR GC implements a variation of generational mark-compact 
garbage collection. It divides the small object heap into three 
generations, and moves live objects into older generations in their 
allocation order when triggered [15]. We modified the 
implementation so that GC can be independently triggered either for 
space or for locality optimization. However, when GC is triggered, 
unless the policy says it is for space only, it will attempt to do both 
at the same time, with one exception:  when it is triggered to collect 
only Generation 0 objects, locality optimization will not be applied. 
The rationale for not doing heap reorganization for locality 
optimization during a generation 0 collection for space is that most 
of those generation 0 objects, being recently allocated, are already 
hot and in the cache or working set, and are unlikely to benefit 
much from locality improvements. In addition, many of these 
objects are likely to die shortly. During a GC for locality we identify 
all objects that a) have their address entered in the circular object 
access buffer (cache locality optimization) b) were marked as hot 
since the previous locality collection (page locality optimization) 
and c) belong to a generation not older than the generation being 
collected. Only these objects are candidates for locality 
optimization. 
After all the candidate objects having been identified, the locality 
optimization needs to decide how they should be laid out and where 
to put the hot objects on the GC heap. To simplify our 
implementation, we do the layout using two copying phases for the 
hot objects. First, we perform cache optimization by copying 
contemporaneously accessed objects to a temporary buffer. Next, 
we perform page optimization by copying and appending heap 

objects marked as hot into this same buffer according to a 
hierarchical decomposition order based on their inherent structural 
relationship [20]. This can also yield some cache locality benefits 
along with page locality. The original locations are marked free and 
reclaimed by the collector. The well-rearranged aggregation of hot 
objects is then placed back at the younger end of the heap (either 
Generation 1 or Generation 0). 
 We considered other schemes that could avoid the double copying 
(e.g. by reserving a designated section of the heap), but discarded 
them because of several complications (e.g. CLR supports the 
notion of pinned objects) in the implementation.  We also 
considered other layout schemes that did not mix objects from 
different generations, but finally decided to use our current scheme 
for the following reasons: (1) we are guaranteed to have enough 
space at the younger end to accommodate all the hot objects; (2) we 
don’t want to promote objects prematurely, because it is more 
expensive to collect an older generation than a younger one; and (3) 
some longer-lived objects tend to die right after being reused, and 
demoting will accelerate the reclamation of the space occupied by 
these objects. In general blindly demoting many objects is not good, 
but we do this selectively for hot objects (which comprise a small 
fraction of the heap).  
We also make sure that it does not create too many cross-
generational pointers because that will make it more expensive to 
collect younger generations, which usually happens more 
frequently. We compute the number of cross-generation pointers 
that will be created before finalizing our optimization and back-off 
if this exceeds a predetermined threshold. (In our prototype we use 
6,000 which worked well.) 

3.4 Triggering LO independently of GC 
Garbage collection can often coincide with a program phase 
boundary especially if the new phase starts by allocating lots of new 
objects. Passively combining locality optimization (LO) with 
garbage collection (GC), as is traditionally done, would incorrectly 
place objects that were contemporaneously accessed in the previous 
phase together, possibly reducing program locality for the current 
phase. To avoid this problem and to be able to continuously 
reorganize the data layout in response to changes in data access 
patterns caused by program phase behavior, we decouple LO from 
GC and enable triggering LO independently of GC. 
One challenging aspect is to automatically determine conditions for 
triggering GC for locality (LO) as well as conditions for 
determining when to back off, e.g. when the optimization is not 
working as well as anticipated. We have implemented and 
experimented with several different strategies for both. For 
triggering LO we tried the following options: 
a) Use hardware performance counters, e.g., do LO when the rate 

of DTLB and L2 cache misses increases by certain amount.3 
b) Use rates of object allocation, e.g., do LO when there is a 

significant drop in allocation rate as it likely indicates that the 
application is done “setting up” the new phase.  

We also tried combinations of these heuristics. One drawback 
with using hardware performance counters is that they are not 
virtualized to a process on many current generation machines (e.g. 
Intel’s x86 family of machines) and so the numbers could be 
skewed by other applications running on the system.  We found 
                                                                 
3 We wrote a kernel-mode driver that allowed the hardware 

performance counters to be read by the application on demand. 
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that the rate of object allocation is a reliable measure for 
triggering LOs. We experimented with several heuristics and the 
one listed below provided the best experimental results across our 
application test suite (see Section 4.3.2 for details). We use 
allocation rate as the primary trigger for heap re-organization for 
locality and additionally consult the DTLB and/or L2 cache miss 
rate when the allocation rate remains relatively stable: if the 
allocation rate drops by more than 12.5%, do a Generation 1 LO 
collection, if it drops by more than 50% do a Generation 2 LO 
collection; otherwise, if either the DTLB or L2 cache miss rate 
(computed from data read from the hardware performance 
counters) increases by 6.25% / 25% do a Generation 1 / 
Generation 2 LO collection; otherwise, LO will be done along 
with GCs triggered for space.  
We currently use a simple scheme for backing off and throttling 
LO when locality optimization appears ineffective. If neither 
DTLB nor L2 cache miss rates have improved by 5% over their 
historical value immediately following a LO, for two successive 
LOs, we disable LO for the next few GCs. The number of GCs for 
which LO is disabled starts at 2 and is exponentially increased 
until LO improves DTLB or L2 cache misses by at least 5%, at 
which time it is reset to 2. This simple scheme worked well in 
practice as discussed in Section 4. 

4. EVALUATION 
This section presents and analyzes the results from experiments 
done with our prototype implementation. 

4.1 Experimental Platform 
As mentioned earlier, our prototype is based upon version 2.0 of 
the commercial CLR implementation on the Windows XP 
operating system. We did not modify the CLR GC’s heap 
allocation budgets, its policy for determining when to grow the 
heap, and the algorithms used to determine the sizes of the 
various generations since those policies have been highly tuned 
and are very complicated to modify [15]. In addition, our goal 
was to investigate the impact of LO on a well-tuned GC. We 
performed experiments on several machines with different 
memory, cache size, and processor speed configurations. 
Unsurprisingly, we found that our locality optimization works 
much better on machines with smaller L2 cache and memory. 
However, we believe that for real-world scenarios where 
performance matters, machines will be configured to have 
adequate memory and large L2 caches. Hence, results reported 
below were obtained on a machine with the following 
configuration: 

CPU: Pentium 4, 2.8 GHz 
DTLB: 64 entries 
L2 cache: 1MB, 8-way, 128-byte cache line  
RAM: 1GB  

4.2 Benchmarks 
Due to the lack of widely available benchmarks for the .NET 
framework, we obtained six large applications written in C# that 
are used internally at Microsoft4. These C# applications, which 
we obtained from our colleagues, are briefly described in Table 1. 
The number in parenthesis in the Original Time column is the 
percentage of execution time spent in garbage collection. 
                                                                 
4 Two of these applications have been made externally available 

at http://research.microsoft.com/~zorn/benchmarks/ 

4.3 Performance results and analysis 
We performed three sets of experiments. First, we measured the 
profiling overhead of gathering data access information for our 
optimizations. Next, we evaluated the benefits of triggering LO 
independently of GC. Finally, we measured the benefits of our 
page and cache locality optimization. 

Table 1: C# Benchmark Descriptions. 

Name Description Input 

Orig. 
Time 

in secs 
(% 

time 
in GC) 

Xaml-
Parser-
Test 

Reads from an XAML  
(extensible application 
markup language,  based on 
XML) file three times to 
measure the performance of 
different components of the 
parser. 

11,000-level 
deeply nested 
node 100.0 

(0.2%) 

SAT-
Solver 

SAT solver in C# ported 
from a C++ 
implementation. 

Problem 
instance with 
24,640 3,250-
variable 
CNFs 

138.0 
(0.4%) 

Max Analyzes and builds a 
dependency relationship 
among a set of modules 
specified in an XML file. 

3338- module 
input 97.7 

(26%) 

GenIBC Computes optimal object 
layout from profile data. 

A 55 MB xml 
file 

6.5 
(27%) 

Fugue .NET protocol checker that 
checks managed API usage 
rules 

A 2MB  
compiled 
.NET 
assembly 

79.9 
(10.3

%) 

Lcsc A C# front-end that 
generates MSIL code 

A 125K LOC 
C# file 

42.6 
(9.1%) 

 

4.3.1 Profiling Overhead 
As mentioned in Section 3, we applied several static 
optimizations, such as CSE, to reduce the number of instrumented 
data access sites. These cut down the number of data accesses that 
require instrumentation by a factor of two on average. In addition, 
the worst case code bloat due to instrumentation was less than 
3%. 
We investigated several sampling rates to pick one that provides a 
good tradeoff between overhead and profile accuracy. Figure 3 
illustrates the overhead results. Since we use bursty tracing, we 
can vary both the overall sampling rate and the burst length. We 
evaluated a wide range of values for both parameters but only 
report results for sampling rates of 0.1%, 0.05%, 0.01% and burst 
lengths of 100 and 1000 units (where each unit is 64K clock 
cycles) as these significantly outperformed the rest in terms of 
overall optimization benefits. Higher sampling rates introduced 
larger overheads that our optimizations were often not able to 
overcome and lower rates degraded the performance impact of 
our optimizations. Similarly, larger burst lengths increased 
overhead without improving optimization benefit and shorter 
bursts negatively affected cache locality optimization. All 
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subsequent experiments use a sampling rate of 0.05% with a burst 
length of 100.  This sampling rate not only resulted in profiling 
overheads that were less than 3% on average, but produced 
sufficiently accurate profiles to drive the optimizations as 
reported in the following sections. While prior research has 
indicated that bursty tracing provides low-overhead with good 
profile accuracy for Java and C/C++ applications [2, 5], we 
wanted to ensure that our variant of bursty tracing performed as 
well for C# applications. 
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Figure 3: Evaluating different sampling rates and burst 

lengths. 
Figure 4 indicates the overall impact of these techniques on 
profiling overhead. Always On (Page) represents the overhead of 
profiling for page locality with static optimization but no 
sampling and Always On (Page + Cache) represents the profiling 
overhead of gathering data for page and cache locality 
optimization. As the data indicates, sampling is essential for 
reducing profiling overhead in our system. For our C# 
applications, profiling overhead is less than 3% on average.  
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Figure 4: Profiling overhead for C# applications. 

 
4.3.2 Triggering LO independently of GC 
The next set of experiments indicates the benefit of separating 
locality optimization (LO) from GC and triggering them 
independently (Pro-active LO). Triggering LO independently of 
GC increases the total number of GCs performed since it does not 
passively wait for memory budget pressure to invoke GC. In 
addition, it changes when GC is performed.  
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Figure 5: Comparison of different LO triggering policies. 

 
We evaluated several different schemes for triggering LO 
independently of GC and show results for “best-in-class” variants 
in Figure 5. The allocation rate policy triggers a Generation 1 LO 
collection, if the allocation rate drops by more than 12.5%, and a 
Gen 2 LO collection, if it drops by more than 50%. The 
DTLB+L2cache miss rate policy triggers a Gen 1 LO collection 
when either the DTLB or L2 cache miss rate increases by 6.25%, 
and a Gen 2 LO collection, if either increases by 25%. The third 
policy is a combination of these two as described in Section 3.4. 
To summarize, it uses the allocation rate policy as the primary 
trigger and uses DTLB, L2 cache measurements when the 
allocation rate remains relatively stable. This combined policy 
provides better execution time benefits than the individual 
policies across all our C# applications as indicated in Figure 5. 
The final bar in Figure 5 indicates the impact of combining this 
triggering policy with our scheme for LO throttling (as described 
in Section 3.4).  LO throttling does not decrease the benefits of 
our optimizations for any of the benchmarks. It is effective at 
reducing the performance degradation of GenIBC from -12% to -
7%. In addition, it slightly increases our optimization benefit for 
Fugue by turning off LO for a brief period during its execution. 
All subsequent experiments use this triggering policy for LO 
(combined + throttling). 
To ensure that the benefits do not arise from merely doing these 
additional GC at different times, we measured the effect of 
triggering Pro-active LO, but disabling the locality optimizations. 
We term this Pro-active GC and its impact is reported in Figure 6. 
As the figure indicates, it provides no execution time 
improvement and slows down a few of the programs by a small 
amount. The next bar in Figure 6 measures the traditional 
technique of combining LO with GC as done in prior research. 
Comparing this against Proactive LO (LO triggered independently 
of GC that uses the combined triggering policy with throttling as 
described above), indicates that in the cases where LO is 
effective, triggering it independently of GC provides large 
additional benefits. On average, for our set of C# applications 
Proactive LO improves execution time by 17% as opposed to 
almost no average improvement from traditional-style LO due to 
the slowdown this incurs for Max and GenIBC. If we ignore those 
two applications, Proactive LO improves performance by 27% 
whereas traditional LO provides 16% improvement. These results 
indicate that triggering LO independent of GC is effective. In 
addition, our LO throttling scheme limits performance 
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degradation for programs with little algorithmic locality to just the 
profiling overhead.   
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Figure 6: Benefits of triggering LO independently of GC. 

4.3.3 Analysis of Pro-active LO Benefits 
Finally, we performed experiments to separate out the locality 
benefits provided by page and cache optimizations. In addition, 
we measured locality metrics such as page density, data TLB 
misses, and L2 cache misses to validate that the observed 
execution time benefits arise from locality optimization.  
Figure 7 indicates the execution time performance benefits of 
Proactive LO. The first bar represents the case where only page 
locality optimization is enabled. For the second bar, both cache 
and page locality optimizations are turned on. Page locality 
optimization produced improvements in XAMLParserTest and 
SATSolver and slowed down Fugue and Lcsc by a small amount. 
Overall, it improved execution time of our C# applications by 8% 
on average with a maximum improvement of 56% for 
XAMLParserTest. Combining this with cache locality produced 
additional improvements for SATSolver, Fugue and Lcsc for an 
overall average execution time improvement of 17%.  
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Figure 7: Page and Cache LO benefits for C# applications. 

 
The results indicate the benefits of a system that combines page 
and cache locality optimizations. For some applications, page 
locality optimization is effective while others benefit most from 
cache locality optimizations. In addition, SATSolver benefits 
from both optimizations.  
Table 2, which shows the fraction of execution time spent in the 
GC for different configurations, indicates that the execution time 
improvements arise solely from mutator speedup. The optimized 
configurations spend more time in GC to perform the locality 
optimizations, but these more than pay for themselves when 
effective.  

Table 2: Time spent in GC as a percentage of overall time. 

Application 
Base 
(%) 

Pro-active 
LO (Page) 

(%) 

Pro-active LO 
(Page+Cache)  

(%) 
XamlParserTest 0.15 1 1.21 
SAT solver 0.35 0.74 0.86 
Max 26.0 26.7 26.9 
GenIBC 27.0 27.5 27.6 
Fugue 10.3 17.1 19.7 
Lcsc 9.1 16.3 18.5 

 
Finally, Figure 8 shows the % reduction in page working set, data 
TLB misses, L2 cache misses, and % improvement in page 
density, for the Proactive LO (Page + Cache) configuration. All 
applications that benefit from our optimization incur a lower 
number of data TLB or L2 cache misses. For applications where 
page locality optimization is effective (XAMLParserTest and 
SATSolver), the page density improves (by 196% for 
XAMLParserTest) and data TLB misses are reduced. For SAT 
solver, page working set increases slightly because the optimization 
involves many more GCs, each of which needs to scan portions or 
the whole heap, and these metrics do not exclude accesses made by 
the garbage collector. 
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Figure 8: Locality Improvements for C# applications. 

Applications that benefit from cache locality optimizations, such as 
SATSolver, Fugue, and Lcsc, show significant reductions in L2 
cache misses (12—53%). XAMLParserTest is interesting in that the 
page locality optimization provides significant cache benefits as 
well. These numbers validate that locality optimizations are 
responsible for mutator speedups.  

5. CONCLUSIONS 
We have described an online profile-guided proactive approach to 
improve data locality in garbage collected systems.  Our results 
show that it is beneficial to view the garbage collector as an explicit 
locality improvement mechanism rather than just a scavenger that is 
only invoked when the allocation budget is about to be exceeded.  
We have shown that sampling can provide sufficiently detailed 
profile information to guide both page and cache locality 
optimization. Triggering LO independently of GC provides 
significant performance improvements over the traditional technique 
of performing LO with normal GC. Finally, combining page and 
cache locality optimizations in the same system provides larger 
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benefits that either alone. These techniques improve the 
performance of the C# applications we studied by reducing both 
DTLB and L2 cache misses.   
We are currently investigating further techniques for reducing the 
overhead of gathering profile data. A promising approach is to 
detect program phase changes [17][23]to guide the triggers for 
bursty sampling. We are also investigating the effects of different 
object field layout schemes for hot objects. 
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