
Profile-Guided Proactive Garbage Collection
for Locality Optimization

Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{wenkec, sanjaybh, trishulc}@microsoft.com

 Xiaofeng Gao, Weihaw Chuang
Dept. of Computer Science and Engineering

University of California at San Diego
La Jolla, CA 92093

{xgao,wchuang}@cs.ucsd.edu

ABSTRACT
Many applications written in garbage collected languages have large
dynamic working sets and poor data locality. We present a new
system for continuously improving program data locality at run time
with low overhead. Our system proactively reorganizes the heap by
leveraging the garbage collector and uses profile information
collected through a low-overhead mechanism to guide the
reorganization at run time. The key contributions include making a
case that garbage collection should be viewed as a proactive
technique for improving data locality by triggering garbage
collection for locality optimization independently of normal garbage
collection for space, combining page and cache locality
optimization in the same system, and demonstrating that sampling
provides sufficiently detailed data access information to guide both
page and cache locality optimization with low runtime overhead.
We present experimental results obtained by modifying a
commercial, state-of-the-art garbage collector to support our claims.
Independently triggering garbage collection for locality
optimization significantly improved optimizations benefits.
Combining page and cache locality optimizations in the same
system provided larger average execution time improvements (17%)
than either alone (page 8%, cache 7%). Finally, using sampling
limited profiling overhead to less than 3%, on average.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – code generation, memory management
(garbage collectors), optimization, run-time environments

General Terms Measurement, Performance, Experimentation.

Keywords data locality, garbage collectors, cache optimization,
page optimization, memory optimization

1. INTRODUCTION
Many programs, especially those that manipulate pointer data
structures, are memory performance limited due to the growing
disparity between processor speeds and memory access times [10].
Large, multi-level caches help hide some of the memory access
latency and translation look-aside buffers (TLBs) mitigate the page
translation costs. Unfortunately, caches and TLBs are expensive and
unlikely to grow at the same rate as application workloads,

especially on-chip caches. Perhaps most importantly, these
hardware mechanisms are often limited by poor program data
layout, which rarely takes full advantage of the multi-word data
transfer granularity that cache lines (64 – 128 bytes) and pages (4 –
8K bytes) provide.

Two useful layout metrics are page and cache line density, which
indicate how well program elements are laid out and packed
together. Unfortunately, as Figure 1 indicates1, many programs have
poor page density. In addition, programs also have poor cache line
utilization, averaging around 30% [24]. This provides an
opportunity to make more efficient use of caches and TLBs by
packing contemporaneously accessed data elements together and
reducing a program’s page and cache footprint.
Newer mainstream languages such as C# and Java support
automatic memory management, which is implemented with a
garbage collector that, when necessary, automatically examines the
program heap and recycles space occupied by dead data for use in
subsequent allocations. To avoid heap fragmentation, many garbage
collectors either copy all live objects or compact the heap by
moving some live objects into the space freed up by dead data.
Garbage collectors maintain fairly elaborate infrastructure to
accomplish this task. Prior research has leveraged this infrastructure
to combine this object movement with intelligent placement to
optimize either program page or cache locality [6,7,8,13,16,20,22].
This paper describes a locality optimizing system that leverages the
garbage collector with three key differences from earlier work. First,
it uses sampled profiles of data accesses to drive both page and
cache locality optimizations. Second, it proactively triggers garbage
collection for locality optimization rather than passively performing
locality optimization only when garbage collection is invoked due to
memory space constraints. In addition, it implements an automatic
online throttling scheme that limits performance degradation for
applications that do not benefit from locality optimization. Finally,
it combines page and cache locality optimization in the same
system.
 Placing contemporaneously accessed objects together at the page
and cache level requires accurate data access information. While
static analysis techniques continue to improve, they are still unable
to provide sufficiently detailed data access information for this
purpose, especially for large programs that manipulate pointer data
structures. Hence we monitor data accesses at run time and use this

1 These numbers were obtained by running these applications

using a dynamic translator and logging all memory reads and
writes. References to stack pages were filtered out.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’06 June 10–16, 2006, Ottawa, Ontario, Canada
Copyright © 2006 ACM 1-59593-320-4/06/0006…$5.00.

332

information to guide data placement. Unfortunately, the runtime
overhead can sometimes be too high. To address this, we use bursty
tracing [2][5], which is a form of sampling that captures fine-grain
temporal data access information, to reduce our profiling overhead
to less than 3% on average, yet produce sufficiently detailed data
access profiles to guide locality optimization. While previous
research on using garbage collection to improve cache locality in
the Cecil system found profiling without sampling had sufficiently
low-overhead [6], our experience with a commercial system
indicates otherwise. While several differences between the two
systems makes comparison difficult (different languages, SPARC
(32 registers) Vs. x86 (only 8 registers)), a possible reason for this is
our implementation platform is a highly-tuned commercial system
that is less tolerant of instrumentation overhead than the Cecil
research prototype.

Application Pages touched
per interval

Average Page
Density

Web page renderer 1 600 7.7%
Web page renderer 2 588 6.5%
XamlParserTest 602 6.0%
Sat Solver 1703 28.0%
Compress 102 28.0%

(a) C# applications

Application Pages touched
per interval

Average Page
Density

Multimedia App 1 519 7.1%
Multimedia App 2 264 35.4%
Desktop App 1 368 7.3%
Desktop App 2 367 9.5%
Desktop App 3 315 13.2%
Internet App 478 11.2%

(b) C/C++ applications

Figure 1. Application page density (combination of Microsoft
and non-Microsoft applications). The density of a page =
numbers of unique bytes read/written on a page per interval /
size of page. An interval is chosen to be 106 references.

Garbage collection is typically triggered in response to an allocation
request when the amount of free space falls below a certain
threshold. This can often coincide with a program phase boundary
especially if the new phase starts by allocating many new objects. If
locality optimization (LO) is passively combined with garbage
collection (GC), it would incorrectly place objects that were
contemporaneously accessed in the previous phase together,
possibly reducing program locality for the current phase. To avoid
this problem and to be able to continuously reorganize the data
layout in response to changes in data access patterns caused by
program phase behavior, we decouple LO from GC and enable
triggering LO independently of GC. We use metrics such as cache
and TLB miss rates obtained from hardware performance counters
as well as allocation behavior to trigger LO. In addition, we have
implemented an automatic online throttling scheme that limits
performance degradation for applications that do not benefit from
LO. Our results indicate that actively triggering LO independently
of GC provides significant performance benefits.

Our LO system addresses both page and cache locality. To optimize
page locality, object accesses are recorded by setting a bit in the
object header. In addition, to optimize cache locality we record the
object address in a fixed size circular object access buffer. During
LO, live objects that have their access bit set are copied and placed
contiguously according to a hierarchical decomposition order [20]
(called page locality placement herein), which improves page
locality, and for some of the applications we studied, also improves
cache locality. To specifically improve cache locality, we use a
similar scheme to that described in [6], which uses the object
address buffer information to place contemporaneously accessed
objects together (called cache locality placement herein). Since the
object address buffer is of fixed size, it only contains a subset of
objects that were accessed since the last LO. Our LO combines page
and cache locality optimization by first performing the cache
locality placement for objects in the object address buffer followed
by the page locality placement for objects whose access bit was set
but did not appear in the object address buffer.
We implemented our LO system in the Common Language Runtime
v2.0 (CLR) of Microsoft’s .Net Framework. Our choice of
implementation platform and benchmarks was driven by our goal of
transferring this technology to Microsoft’s commercial platform. All
of the applications we used for benchmarking are written in C#;
however, the results are applicable to any language that targets
MSIL (Microsoft Intermediate Language) binaries.
The main contributions of the paper are:
1) Decoupling LO from GC and demonstrating benefits of

triggering these independently. In addition, we implemented an
automatic online throttling scheme that limits performance
degradation for applications that do not benefit from LO. We
show that this technique significantly improves average
optimization benefits due to improved mutator locality.

2) Combining cache and page locality optimizations in the same
system and demonstrating performance gains. Earlier research
either performed cache or page optimization, but not both. For
the C# applications we studied, combining page and cache
locality optimization in the same system provides larger
average improvements (17%) than either alone (page 8%,
cache 7%).

3) Demonstrating that sampling techniques can be used to collect
sufficiently detailed data access information to guide cache and
page locality optimizations with low overhead (less than 3% on
average).

4) Implementing and evaluating the system in a commercial
managed runtime system. We implemented this in Version 2.0
of the Common Language Runtime GC, which ships with
Microsoft’s .NET Framework.

We believe that automatic locality optimization techniques such as
these are necessary for modern languages, such as C# and Java, to
approach and perhaps even surpass the performance of C/C++
programs.
The rest of the paper is organized as follows: Section 2 briefly
discusses related work. Section 3 describes the design and a few
implementation details of our technique. Section 4 contains
experimental evaluation of our approach using several C#
applications. Section 5 summarizes the main results and directions
for future work.

333

2. RELATED WORK
The idea that garbage collection could be used to improve a
program’s locality was proposed as early as in 1980 by White [18].
Zorn speculated on the possibility of doing garbage collection
purely for program performance in [9]. Several researchers have
proposed ingenious traversal algorithms for copying garbage
collectors to improve the locality of references in the collected heap
[16] [20]. Wilson [20] proposed hierarchical decomposition to
group all structurally related objects together to improve locality.
We similarly group only recently accessed objects for page locality
optimization. Shuf et al [21] proposed a new allocation scheme to
improve locality by placing objects based on the notion of prolific
(frequently instantiated) types. These approaches are based on static
or offline profile information, and the virtual machine or runtime
involved is not active in observing the dynamic data access
sequence and determining how objects should be placed in the heap.
Thus the layout derived may not reflect actual data access patterns,
and moreover, it is not possible to detect phase changes and react
accordingly.
Huang et al. [22] use a technique called online object reordering
(OOR) that uses sampling to identify hot methods, and from these
hot fields and their types. At garbage collection time, the GC copies
referents of hot fields together with their parent, guided by the hot
types. Their work is complementary to ours. Since their work was
done on a virtual machine with function profiling built in and they
sample hot methods rather than contemporaneous data accesses,
their overhead is low. However, they are limited to coarse-grained
profiling information about data accesses and in the type of
placement optimizations they can perform. In addition, they perform
their placement optimization during normal GC traversal. We
trigger locality optimization independent of normal GC and show
that this benefits performance. In addition, we optimize separately
for both cache and page locality in the same system.
Courts described a dynamic approach in [8]. In his implementation,
memory is divided into regions based on generation and activity.
The GC copies inactive objects out of active space based on object
accesses in the training period before each garbage collection.
However, his implementation relied on the transporter, a micro-
coded system service, to bring the objects from inactive space to
active space when they are first accessed. In his system, garbage
collection is just a passive activity that is triggered based on
memory pressure.
Chilimbi and Larus proposed a scheme that uses online profiling to
construct an object affinity graph from observed accesses, and then
uses the GC to rearrange the objects for better cache locality [6][7].
We use their scheme to optimize cache locality but combine it with
page locality optimization. We incur less runtime overhead since we
sample data accesses. Finally, we trigger LO independently of GC
while they perform cache optimization only when GC is invoked
due to memory pressure.
Adl-Tabatabai et al [1] insert prefetch instructions in JIT compiled
code and use GC’s placement ability to maintain the distances of
objects so that the prefetch is effective. They also use hardware
performance monitoring counters to collect cache miss profiles to
determine the prefetch sites. Our work is complementary as we
instrument the application to detect hot objects and re-arrange these
hot objects to improve their reference locality instead of trying to
prefetch objects that will be accessed in the future. Our approach
increases the spatial locality of frequently accessed objects and
consequently increases the effectiveness of hardware prefetching.

Hertz et al [11] describe a technique that avoids paging by
integrating the garbage collector with the memory manager so the
GC can make informed decisions about evicting pages. That
approach is orthogonal to ours since they do not address the issue of
intra-page layout.
Our low overhead design relies on having cheap read barriers
proposed by others [3], but the implementation we describe is quite
different: the CLR implementation does not use null checks but
implicit traps to detect null dereferences, the object headers do not
have an extra to-pointer, and the heap implementation is quite
different (for object headers that cannot be moved and the objects
that are moved the to-space). Our compiler optimizations to reduce
the number of read barriers are similar.

3. DESIGN AND IMPLEMENTATION
Our approach relies on a generational garbage collector that
moves objects, and our prototype ties tightly with the CLR and
MSIL (Microsoft Intermediate Language), but is otherwise
agnostic of the implementation details of a virtual machine. In this
section, we first provide a high-level overview of the approach,
discussing various options and the rationale for our adopted
design, and then describe the engineering optimizations necessary
to provide a practical implementation.
Figure 2 provides an architectural overview of our design. A JIT
compiler takes an intermediate language representation (MSIL in
our case) and compiles it into machine code for a particular
architecture. We modify the JIT compiler to insert lightweight
instrumentation in the compiled code. The CLR provides a tool
called Ngen [25] that can compile modules ahead of time to
provide more optimized code and improve startup performance.

Figure 2. Overview of architectural modifications to the CLR.

Our modifications to the compiler work seamlessly with Ngen, so
there is no extra startup penalty for using our approach. The
instrumented code marks objects that have been recently accessed
and records their address in a fixed size circular object access
buffer. We insert monitoring code in the CLR to gather certain
metrics while the application is running and use the collected data
and heuristics to trigger GC-for-locality, or Locality Optimization
(LO). During LO, we use the Chilimbi-Larus scheme for
combining cache locality optimization with GC. In addition, we
perform page locality optimization for the objects that are not
moved during cache locality optimization. To do this, we identify
objects that have been marked as recently accessed (hot) and co-
locate them according to their inherent structural relationship onto
pages separate from the rest of the heap. LO is triggered

JIT Compiler

or NGen

Machine
Code

Gen 2
Heap

Gen 1
Heap

Gen 0
Heap

Garbage
Collector Monitor

1

4

1. Instrument object
referencing
instructions

2. Instrumented codes
mark/record
referenced objects

3. Modify GC algorithm
to improve locality

4. Invoking GC based on
events

3

2

MSIL code

Events

334

independently of a normal GC, which occurs when the allocation
budget is about to be exceeded. To limit performance degradation
for applications with poor algorithmic locality, we throttle LO
when indicated.

We first provide a brief review of the scheme used to optimize
cache locality [6]. Then, we discuss some of the key design issues,
design options that we considered, and our rationale for adopting the
current design.

3.1 Background: Cache Locality Optimization
We record base object addresses in a fixed size circular buffer.
During Locality Optimization (LO), these objects are processed to
construct an object affinity graph. The object affinity graph includes
edges between objects that are contemporaneously accessed, where
objects accessed up to 3 unique accesses apart are considered
contemporaneous. Graph edges are weighted to indicate how often
the objects have been accessed together. The garbage collector
performs a weighted DFS traversal of this object affinity graph and
marks objects for copying to a temporary buffer in the order they
are visited. Since these objects may include some garbage (though
prior work indicates that the amount is miniscule [6]), they are
removed when the objects are physically copied in a later phase of
the same garbage collection. The object affinity graph is not
maintained across LOs but is created from scratch at each LO.
Further details are in [6]. Our page locality optimization, which is
described in the next few sections, copies objects to the end of this
temporary buffer used by cache optimization.

3.2 Low-overhead Data Access Profiling
Since the instrumentation for cache locality is virtually identical to
that described in [6], we focus on the instrumentation needed for
page locality optimization and discuss our use of sampling to reduce
profiling overhead.

3.2.1 Instrumentation for Page Locality Optimization
For page locality, we do not need to determine precise temporal
affinity between data elements. We record objects that are
frequently accessed during a time interval; these objects are
considered hot and we group them during optimization according to
their inherent structural relationship into a set of pages in a separate
section of the heap. A counter is used to decide which objects are
hot.
We use the JIT compiler to insert read barriers for certain critical
instructions that access heap data. The read barrier code consists of
a single call instruction to a helper routine which updates the
counter if necessary. Write barriers are automatically generated by
the compiler to support the generational GC, and we simply modify
those to insert a conditional update of the counter.
The key engineering decisions we had to make were:

• Implementation of the counter
• Implementation of the read barrier
• Optimizing the instrumentation

We considered two ways to implement the object reference counter:
embed it in the object or implement it as a separate table. Our
current implementation uses a 1-bit counter that is embedded in the
object. The CLR already has a four-byte object header for each
object that is used for various purposes (e.g. to implement a
lightweight lock or to store a hash code for the object). We modified
this layout to steal one bit for our purposes. Although this reduces
the number of bits available for other purposes, we feel that this is a

good performance tradeoff. The main impact of stealing the bit is
reducing the number of objects whose hash can be stored in the
object header (from 27 to 26 bits) and reducing the number of
concurrent threads that can be supported with lightweight locks.
When the bits overflow they are repurposed to index into a table that
points to larger object headers.
The read barrier code is shown in Figure 3.
 test dword ptr[rg-4], OBJECT_ACCESSED_BIT
 jnz Bit_set
 lock or dword ptr[rg-4], OBJECT_ACCESSED_BIT; atomic update
Bit_set :
 ret
Figure 3. Profiling code used to mark accessed objects for page locality
optimization. rg is the register that holds the object address. The object
header is at offset -4 from the start of the object. OBJECT_ACCESSED_BIT
is a bit mask used to set a single bit in the object header.
We use an interlocked operation to set the bit since the object header
could be concurrently modified by other threads on an SMP
machine. The interlocked operation is expensive on x86
architectures (20-30 clock cycles). In addition, it dirties a cache line
during a read operation that could hurt scalability of applications on
multi-processors. Therefore we implement a conditional read barrier
instead of an unconditional one even though it bloats the read
barrier code quite a bit. To minimize code bloat we do not inline the
read barrier but implement it as a helper routine (one for each
register). 2
Algorithms used for optimizing access barriers can be directly
applied here to further reduce the number of read barriers, and
hence, the amount of code bloat. The read barrier used here is
different from typical access (read or write) barriers in that we do
not need to insert a call to it at every access point, because it does
not affect the correctness of the generated code. This allows us to
perform more aggressive optimizations. In our prototype
implementation, we use common sub-expression elimination (CSE)
to optimize away redundant calls to the read barrier routines.
Furthermore, since occurrences of exceptions are rare, no profiling
calls are inserted into exception handling code. Similarly, we also
ignore constructors that are not inlined.
One policy decision we had to make was when to reset the counter.
Because of our decision to embed the counter in the object, we
cannot clear the bit without a scan over the whole heap, which is
expensive. The only natural opportunity for clearing the counter is
when we do a GC. We experimented with a few different schemes
and found that the simple strategy of clearing the counter every time
we encounter a hot object during a GC (no matter whether for
locality or for space) works well for objects in lower generations
(generation 0 and 1). For higher generations (generation 2 in CLR)
this does not work as well because those generations are collected
infrequently and the reference bit gets stale over time. In our
prototype, since the collector does need to check generation 2
objects that contain cross-generation pointers, we use this
opportunity to clear the counters embedded in them, which
alleviates the problem to some extent. An alternative would be to
store the counters in a card table, which would make clearing the
counters relatively cheap.

2 The code bloat is < 3% for the applications we studied.

335

3.2.2 Sampling Data Accesses
The page locality instrumentation model described above has low
overhead and is enough to speed up some benchmarks that we
describe later. But there are several scenarios where dynamic heap
reorganization does not help improve the performance of an
application, e.g., if the dataset is small enough to fit in the available
memory or the algorithm has poor locality. For such applications the
cost of the read barrier can be very high (in some cases degrading
the application by as much as 40%). In addition, the overhead of the
instrumentation needed by our cache locality optimization is high.
To further reduce the instrumentation overhead, we use a simplified
version of bursty tracing [2][5]: if a method is instrumented with a
read barrier, we generate a second copy of the method without the
read barrier. The prolog of each copy of the same method is
extended to perform a check and control transfer to either the
instrumented or the non-instrumented version of the method. Back
edges are not modified in our simplified implementation.
Surprisingly, this simplification does not reduce the effectiveness of
this approach on the benchmarks we examined (except for some
synthetic ones that have long-running loops); the reason is that
modern software practices and object-oriented programming
languages usually result in many more smaller functions than larger
ones, where deeply nested loops are rare. As a further optimization,
the two copies are placed in separate code heaps.
There are two parameters to control the sampling: how long each
burst should last and how often sampling should be triggered. By
tuning these two parameters, we can obtain useful profile
information at a reasonably low profiling overhead. Our
experiments show that with this bursty tracing scheme, we can limit
pure profiling overhead to less than 5% - the cost of doing the check
in the prolog.

3.3 Combining Page and Cache Locality Optimization
The CLR GC implements a variation of generational mark-compact
garbage collection. It divides the small object heap into three
generations, and moves live objects into older generations in their
allocation order when triggered [15]. We modified the
implementation so that GC can be independently triggered either for
space or for locality optimization. However, when GC is triggered,
unless the policy says it is for space only, it will attempt to do both
at the same time, with one exception: when it is triggered to collect
only Generation 0 objects, locality optimization will not be applied.
The rationale for not doing heap reorganization for locality
optimization during a generation 0 collection for space is that most
of those generation 0 objects, being recently allocated, are already
hot and in the cache or working set, and are unlikely to benefit
much from locality improvements. In addition, many of these
objects are likely to die shortly. During a GC for locality we identify
all objects that a) have their address entered in the circular object
access buffer (cache locality optimization) b) were marked as hot
since the previous locality collection (page locality optimization)
and c) belong to a generation not older than the generation being
collected. Only these objects are candidates for locality
optimization.
After all the candidate objects having been identified, the locality
optimization needs to decide how they should be laid out and where
to put the hot objects on the GC heap. To simplify our
implementation, we do the layout using two copying phases for the
hot objects. First, we perform cache optimization by copying
contemporaneously accessed objects to a temporary buffer. Next,
we perform page optimization by copying and appending heap

objects marked as hot into this same buffer according to a
hierarchical decomposition order based on their inherent structural
relationship [20]. This can also yield some cache locality benefits
along with page locality. The original locations are marked free and
reclaimed by the collector. The well-rearranged aggregation of hot
objects is then placed back at the younger end of the heap (either
Generation 1 or Generation 0).
 We considered other schemes that could avoid the double copying
(e.g. by reserving a designated section of the heap), but discarded
them because of several complications (e.g. CLR supports the
notion of pinned objects) in the implementation. We also
considered other layout schemes that did not mix objects from
different generations, but finally decided to use our current scheme
for the following reasons: (1) we are guaranteed to have enough
space at the younger end to accommodate all the hot objects; (2) we
don’t want to promote objects prematurely, because it is more
expensive to collect an older generation than a younger one; and (3)
some longer-lived objects tend to die right after being reused, and
demoting will accelerate the reclamation of the space occupied by
these objects. In general blindly demoting many objects is not good,
but we do this selectively for hot objects (which comprise a small
fraction of the heap).
We also make sure that it does not create too many cross-
generational pointers because that will make it more expensive to
collect younger generations, which usually happens more
frequently. We compute the number of cross-generation pointers
that will be created before finalizing our optimization and back-off
if this exceeds a predetermined threshold. (In our prototype we use
6,000 which worked well.)

3.4 Triggering LO independently of GC
Garbage collection can often coincide with a program phase
boundary especially if the new phase starts by allocating lots of new
objects. Passively combining locality optimization (LO) with
garbage collection (GC), as is traditionally done, would incorrectly
place objects that were contemporaneously accessed in the previous
phase together, possibly reducing program locality for the current
phase. To avoid this problem and to be able to continuously
reorganize the data layout in response to changes in data access
patterns caused by program phase behavior, we decouple LO from
GC and enable triggering LO independently of GC.
One challenging aspect is to automatically determine conditions for
triggering GC for locality (LO) as well as conditions for
determining when to back off, e.g. when the optimization is not
working as well as anticipated. We have implemented and
experimented with several different strategies for both. For
triggering LO we tried the following options:
a) Use hardware performance counters, e.g., do LO when the rate

of DTLB and L2 cache misses increases by certain amount.3
b) Use rates of object allocation, e.g., do LO when there is a

significant drop in allocation rate as it likely indicates that the
application is done “setting up” the new phase.

We also tried combinations of these heuristics. One drawback
with using hardware performance counters is that they are not
virtualized to a process on many current generation machines (e.g.
Intel’s x86 family of machines) and so the numbers could be
skewed by other applications running on the system. We found

3 We wrote a kernel-mode driver that allowed the hardware

performance counters to be read by the application on demand.

336

that the rate of object allocation is a reliable measure for
triggering LOs. We experimented with several heuristics and the
one listed below provided the best experimental results across our
application test suite (see Section 4.3.2 for details). We use
allocation rate as the primary trigger for heap re-organization for
locality and additionally consult the DTLB and/or L2 cache miss
rate when the allocation rate remains relatively stable: if the
allocation rate drops by more than 12.5%, do a Generation 1 LO
collection, if it drops by more than 50% do a Generation 2 LO
collection; otherwise, if either the DTLB or L2 cache miss rate
(computed from data read from the hardware performance
counters) increases by 6.25% / 25% do a Generation 1 /
Generation 2 LO collection; otherwise, LO will be done along
with GCs triggered for space.
We currently use a simple scheme for backing off and throttling
LO when locality optimization appears ineffective. If neither
DTLB nor L2 cache miss rates have improved by 5% over their
historical value immediately following a LO, for two successive
LOs, we disable LO for the next few GCs. The number of GCs for
which LO is disabled starts at 2 and is exponentially increased
until LO improves DTLB or L2 cache misses by at least 5%, at
which time it is reset to 2. This simple scheme worked well in
practice as discussed in Section 4.

4. EVALUATION
This section presents and analyzes the results from experiments
done with our prototype implementation.

4.1 Experimental Platform
As mentioned earlier, our prototype is based upon version 2.0 of
the commercial CLR implementation on the Windows XP
operating system. We did not modify the CLR GC’s heap
allocation budgets, its policy for determining when to grow the
heap, and the algorithms used to determine the sizes of the
various generations since those policies have been highly tuned
and are very complicated to modify [15]. In addition, our goal
was to investigate the impact of LO on a well-tuned GC. We
performed experiments on several machines with different
memory, cache size, and processor speed configurations.
Unsurprisingly, we found that our locality optimization works
much better on machines with smaller L2 cache and memory.
However, we believe that for real-world scenarios where
performance matters, machines will be configured to have
adequate memory and large L2 caches. Hence, results reported
below were obtained on a machine with the following
configuration:

CPU: Pentium 4, 2.8 GHz
DTLB: 64 entries
L2 cache: 1MB, 8-way, 128-byte cache line
RAM: 1GB

4.2 Benchmarks
Due to the lack of widely available benchmarks for the .NET
framework, we obtained six large applications written in C# that
are used internally at Microsoft4. These C# applications, which
we obtained from our colleagues, are briefly described in Table 1.
The number in parenthesis in the Original Time column is the
percentage of execution time spent in garbage collection.

4 Two of these applications have been made externally available

at http://research.microsoft.com/~zorn/benchmarks/

4.3 Performance results and analysis
We performed three sets of experiments. First, we measured the
profiling overhead of gathering data access information for our
optimizations. Next, we evaluated the benefits of triggering LO
independently of GC. Finally, we measured the benefits of our
page and cache locality optimization.

Table 1: C# Benchmark Descriptions.

Name Description Input

Orig.
Time

in secs
(%

time
in GC)

Xaml-
Parser-
Test

Reads from an XAML
(extensible application
markup language, based on
XML) file three times to
measure the performance of
different components of the
parser.

11,000-level
deeply nested
node 100.0

(0.2%)

SAT-
Solver

SAT solver in C# ported
from a C++
implementation.

Problem
instance with
24,640 3,250-
variable
CNFs

138.0
(0.4%)

Max Analyzes and builds a
dependency relationship
among a set of modules
specified in an XML file.

3338- module
input 97.7

(26%)

GenIBC Computes optimal object
layout from profile data.

A 55 MB xml
file

6.5
(27%)

Fugue .NET protocol checker that
checks managed API usage
rules

A 2MB
compiled
.NET
assembly

79.9
(10.3

%)

Lcsc A C# front-end that
generates MSIL code

A 125K LOC
C# file

42.6
(9.1%)

4.3.1 Profiling Overhead
As mentioned in Section 3, we applied several static
optimizations, such as CSE, to reduce the number of instrumented
data access sites. These cut down the number of data accesses that
require instrumentation by a factor of two on average. In addition,
the worst case code bloat due to instrumentation was less than
3%.
We investigated several sampling rates to pick one that provides a
good tradeoff between overhead and profile accuracy. Figure 3
illustrates the overhead results. Since we use bursty tracing, we
can vary both the overall sampling rate and the burst length. We
evaluated a wide range of values for both parameters but only
report results for sampling rates of 0.1%, 0.05%, 0.01% and burst
lengths of 100 and 1000 units (where each unit is 64K clock
cycles) as these significantly outperformed the rest in terms of
overall optimization benefits. Higher sampling rates introduced
larger overheads that our optimizations were often not able to
overcome and lower rates degraded the performance impact of
our optimizations. Similarly, larger burst lengths increased
overhead without improving optimization benefit and shorter
bursts negatively affected cache locality optimization. All

337

subsequent experiments use a sampling rate of 0.05% with a burst
length of 100. This sampling rate not only resulted in profiling
overheads that were less than 3% on average, but produced
sufficiently accurate profiles to drive the optimizations as
reported in the following sections. While prior research has
indicated that bursty tracing provides low-overhead with good
profile accuracy for Java and C/C++ applications [2, 5], we
wanted to ensure that our variant of bursty tracing performed as
well for C# applications.

0

1

2

3

4
5

6

7

8

9

10

XAMLP
ars

erT
es

t

SATSolv
er

Max

Gen
IB

C
Fu

gu
e

Lc
sc

Ave
rag

e

%
 O

ve
rh

ea
d

0.1%, 100
0.1%, 1000
0.05%, 100
0.05%,1000
0.01%,100
0.01%,1000

Figure 3: Evaluating different sampling rates and burst

lengths.
Figure 4 indicates the overall impact of these techniques on
profiling overhead. Always On (Page) represents the overhead of
profiling for page locality with static optimization but no
sampling and Always On (Page + Cache) represents the profiling
overhead of gathering data for page and cache locality
optimization. As the data indicates, sampling is essential for
reducing profiling overhead in our system. For our C#
applications, profiling overhead is less than 3% on average.

0

10

20

30

40

50

60

70

XAMLP
ars

erTes
t

SATSolve
r

Max

GenIB
C

Fugu
e

Lc
sc

Ave
rag

e

%
 O

ve
rh

ea
d

Always On (Page) Always On (Page + Cache) Sampling (Page + Cache)

Figure 4: Profiling overhead for C# applications.

4.3.2 Triggering LO independently of GC
The next set of experiments indicates the benefit of separating
locality optimization (LO) from GC and triggering them
independently (Pro-active LO). Triggering LO independently of
GC increases the total number of GCs performed since it does not
passively wait for memory budget pressure to invoke GC. In
addition, it changes when GC is performed.

-30

-20

-10

0

10

20

30

40

50

60

70

XAMLP
ars

erT
es

t

SATSolv
er

Max

Gen
IBC

Fug
ue

Lc
sc

Ave
rag

e

%
 E

xe
cu

tio
n

tim
e

im
pr

ov
em

en
t

Allocation Rate
DTLB+L2cache miss rate
Allocation rate + DTLB+L2cache miss rate
Allocation rate + DTLB+L2cache miss rate + throttling

Figure 5: Comparison of different LO triggering policies.

We evaluated several different schemes for triggering LO
independently of GC and show results for “best-in-class” variants
in Figure 5. The allocation rate policy triggers a Generation 1 LO
collection, if the allocation rate drops by more than 12.5%, and a
Gen 2 LO collection, if it drops by more than 50%. The
DTLB+L2cache miss rate policy triggers a Gen 1 LO collection
when either the DTLB or L2 cache miss rate increases by 6.25%,
and a Gen 2 LO collection, if either increases by 25%. The third
policy is a combination of these two as described in Section 3.4.
To summarize, it uses the allocation rate policy as the primary
trigger and uses DTLB, L2 cache measurements when the
allocation rate remains relatively stable. This combined policy
provides better execution time benefits than the individual
policies across all our C# applications as indicated in Figure 5.
The final bar in Figure 5 indicates the impact of combining this
triggering policy with our scheme for LO throttling (as described
in Section 3.4). LO throttling does not decrease the benefits of
our optimizations for any of the benchmarks. It is effective at
reducing the performance degradation of GenIBC from -12% to -
7%. In addition, it slightly increases our optimization benefit for
Fugue by turning off LO for a brief period during its execution.
All subsequent experiments use this triggering policy for LO
(combined + throttling).
To ensure that the benefits do not arise from merely doing these
additional GC at different times, we measured the effect of
triggering Pro-active LO, but disabling the locality optimizations.
We term this Pro-active GC and its impact is reported in Figure 6.
As the figure indicates, it provides no execution time
improvement and slows down a few of the programs by a small
amount. The next bar in Figure 6 measures the traditional
technique of combining LO with GC as done in prior research.
Comparing this against Proactive LO (LO triggered independently
of GC that uses the combined triggering policy with throttling as
described above), indicates that in the cases where LO is
effective, triggering it independently of GC provides large
additional benefits. On average, for our set of C# applications
Proactive LO improves execution time by 17% as opposed to
almost no average improvement from traditional-style LO due to
the slowdown this incurs for Max and GenIBC. If we ignore those
two applications, Proactive LO improves performance by 27%
whereas traditional LO provides 16% improvement. These results
indicate that triggering LO independent of GC is effective. In
addition, our LO throttling scheme limits performance

338

degradation for programs with little algorithmic locality to just the
profiling overhead.

-40

-20

0

20

40

60

80

XAMLP
ars

erT
es

t

SATSolv
er

Max

Gen
IBC

Fug
ue

Lc
sc

Ave
rag

e

%
 E

xe
cu

tio
n

tim
e

im
pr

ov
em

en
t

Pro-active GC LO (Page + Cache) with GC Pro-active LO (Page + Cache)

Figure 6: Benefits of triggering LO independently of GC.

4.3.3 Analysis of Pro-active LO Benefits
Finally, we performed experiments to separate out the locality
benefits provided by page and cache optimizations. In addition,
we measured locality metrics such as page density, data TLB
misses, and L2 cache misses to validate that the observed
execution time benefits arise from locality optimization.
Figure 7 indicates the execution time performance benefits of
Proactive LO. The first bar represents the case where only page
locality optimization is enabled. For the second bar, both cache
and page locality optimizations are turned on. Page locality
optimization produced improvements in XAMLParserTest and
SATSolver and slowed down Fugue and Lcsc by a small amount.
Overall, it improved execution time of our C# applications by 8%
on average with a maximum improvement of 56% for
XAMLParserTest. Combining this with cache locality produced
additional improvements for SATSolver, Fugue and Lcsc for an
overall average execution time improvement of 17%.

-10

0

10

20

30

40

50

60

XAMLP
ars

erT
es

t

SATSolv
er

Max

Gen
IBC

Fug
ue

Lc
sc

Ave
rag

e%
 E

xe
cu

tio
n

tim
e

im
pr

ov
em

en
t

Pro-active LO (Page) Pro-active LO (Page + Cache)

Figure 7: Page and Cache LO benefits for C# applications.

The results indicate the benefits of a system that combines page
and cache locality optimizations. For some applications, page
locality optimization is effective while others benefit most from
cache locality optimizations. In addition, SATSolver benefits
from both optimizations.
Table 2, which shows the fraction of execution time spent in the
GC for different configurations, indicates that the execution time
improvements arise solely from mutator speedup. The optimized
configurations spend more time in GC to perform the locality
optimizations, but these more than pay for themselves when
effective.

Table 2: Time spent in GC as a percentage of overall time.

Application
Base
(%)

Pro-active
LO (Page)

(%)

Pro-active LO
(Page+Cache)

(%)
XamlParserTest 0.15 1 1.21
SAT solver 0.35 0.74 0.86
Max 26.0 26.7 26.9
GenIBC 27.0 27.5 27.6
Fugue 10.3 17.1 19.7
Lcsc 9.1 16.3 18.5

Finally, Figure 8 shows the % reduction in page working set, data
TLB misses, L2 cache misses, and % improvement in page
density, for the Proactive LO (Page + Cache) configuration. All
applications that benefit from our optimization incur a lower
number of data TLB or L2 cache misses. For applications where
page locality optimization is effective (XAMLParserTest and
SATSolver), the page density improves (by 196% for
XAMLParserTest) and data TLB misses are reduced. For SAT
solver, page working set increases slightly because the optimization
involves many more GCs, each of which needs to scan portions or
the whole heap, and these metrics do not exclude accesses made by
the garbage collector.

-10
0

10
20
30
40
50
60
70
80
90

100

XAMLP
ars

erTes
t

SATSolve
r

Max

GenIB
C

Fugu
e

Lc
sc

Ave
rag

e

% Working set reduction % Page density improvement
% DTLB miss reduction % L2 cache miss reduction

Figure 8: Locality Improvements for C# applications.

Applications that benefit from cache locality optimizations, such as
SATSolver, Fugue, and Lcsc, show significant reductions in L2
cache misses (12—53%). XAMLParserTest is interesting in that the
page locality optimization provides significant cache benefits as
well. These numbers validate that locality optimizations are
responsible for mutator speedups.

5. CONCLUSIONS
We have described an online profile-guided proactive approach to
improve data locality in garbage collected systems. Our results
show that it is beneficial to view the garbage collector as an explicit
locality improvement mechanism rather than just a scavenger that is
only invoked when the allocation budget is about to be exceeded.
We have shown that sampling can provide sufficiently detailed
profile information to guide both page and cache locality
optimization. Triggering LO independently of GC provides
significant performance improvements over the traditional technique
of performing LO with normal GC. Finally, combining page and
cache locality optimizations in the same system provides larger

339

benefits that either alone. These techniques improve the
performance of the C# applications we studied by reducing both
DTLB and L2 cache misses.
We are currently investigating further techniques for reducing the
overhead of gathering profile data. A promising approach is to
detect program phase changes [17][23]to guide the triggers for
bursty sampling. We are also investigating the effects of different
object field layout schemes for hot objects.

ACKOWLEDGEMENTS
We are grateful to Patrick Dussud for answering several questions
pertaining to the CLR implementation. Hoi Vo and Hon Keat Chan
offered advice on the implementation. Pramod Joisha, Ben Zorn,
and the anonymous referees provided valuable feedback on earlier
drafts of this paper.

REFERENCES
[1] Adl-Tabatabai, A., Hudson, R., Serrano, M., Subramoney,

S. “Prefetch Injection Based on Hardware Monitoring and
Object Matadata.” In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’04), 2004, 267—276.

[2] Arnold, M. and Ryder, B. “A Framework for Reducing the
Cost of Instrumented Code.” In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’01), 2001, 168—179.

[3] Bacon, D.F., Cheng, Perry, Rajan V.T. “A Real-time Garbage
Collector with Low Overhead and Consistent Utilization” In
Principles of Programming Languages (POPL ’03), 2003.

[4] Cheney, C. “A Non-recursive List Compacting Algorithm.”
Communications of the ACM, 13(11), November 1970, 677—
678.

[5] Hirzel, M. and Chilimbi, T. “Bursty Tracing: A Framework for
Low-Overhead Temporal Profiling.” In 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization ’01 (FDDO),
2001, 117—126.

[6] Chilimbi, T. and Larus, J. “Using Generational Garbage
Collection to implement Cache-conscious Data placement.” In
Proceedings of the 1st International Symposium on Memory
Management, October 1998, 37—48.

[7] Chilimbi, T., and Larus, J. “Cache-conscious Structure
Definition.” In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
’99), 1999, 1—12.

[8] Courts, R. “Improving Locality of Reference in a Garbage-
Collecting Memory Management System.” Communications of
the ACM, 31(9), September 1988, 1128—1138.

[9] Zorn, B. The Effect of Garbage Collection on Cache
Performance, Technical Report CU-CS-528-91, Department of
Computer Science, University of Colorado at Boulder, 1991.

[10] Hennessy, J. and Patterson, D. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, San Mateo, CA. 3rd
edition, 2002.

[11] Hertz, M., Feng, Y., and Berger, E. D. “Garbage Collection
without Paging” In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’05), 2005.

[12] Inagaki, T., Onodera, T., Komastu, H., and Nakatani, T.
“Stride Prefecthing by Dynamically Inspecting Objects.” In

Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’03), 2003, 269—277.

[13] Lam, M., Wilson, P., and Moher, T. “Object Type Directed
Garbage Collection to Improve Locality.” In Proceedings of
the International Workshop on Memory Management, 1992,
404—425.

[14] Hirzel, M., Diwan, A. and Hertz, M. “Connectivity-based
Garbage Collection.” In Proceedings of the 18th annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ‘03), 2003,
359 – 373.

[15] Richter, J. “Garbage Collection: Automatic Memory
Management in the Microsoft .NET Framework (Part I and
II).” MSDN Magazine, 2000,
http://msdn.microsoft.com/msdnmag/issues/1100/GCI/ and
http://msdn.microsoft.com/msdnmag/issues/1200/GCI2/.

[16] Moon, D. “Garbage Collection in a Large LISP System.” In
Proceedings of the 1984 ACM Symposium on LISP and
Functional Programming, August 1984, 235 – 246.

[17] Nagpurkar, P., Krintz, C., and Sherwood, T. Phase-aware
Remote Profiling, Technical report UCSB 2004-21,
Department of Computer Science, University of California at
Santa Barbara, 2004.

[18] White, J. “Address/Memory Management for a Gigantic LISP
Environment or, GC Considered Harmful.” In Proceedings of
the 1980 ACM Conference on LISP and Functional
Programming, 1980, 119 – 127.

[19] Wilson, P. “Uniprocessor Garbage Collection Techniques.” In
Proceedings of the International Workshop on Memory
Management, 1992, 1 – 42.

[20] Wilson, P., Lam, M., and Moher, T. “Effective Static-graph
Reorganization to Improve Locality in Garbage Collected
Systems.” In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
’91), 1991, 177 – 191.

[21] Shuf, Y., Gupta, M., Franke, H., Appel, A., and Singh, J.
“Creating and Preserving Locality of Java Applications at
Allocation and Garbage Collection Times.” In Proceedings of
the 18th annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA ‘02), 2002, 13 – 25.

[22] Huang, X., Blackburn, S., McKinley, K., Moss, J., Wang, Z.,
and Cheng, P. “The Garbage Collection Advantage: Improving
Program Locality.” In Proceedings of the 18th annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ‘04), 2004,
29 – 80.

[23] Shen, X., Zhong, Y., and Ding, C. “Locality Phase Prediction.”
In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’04), 2004, 165 – 176.

[24] Chilimbi, T. “Efficient Representations and Abstractions for
Quantifying and Exploiting Data Reference Locality.” In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’01), 2001, 191 – 202.

[25] Wilkes, R. “Ngen Revs up your performance with Powerful
New Features”, MSDN Magazine April 2005

340

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

