Per-Thread Cycle Accounting in Multicore Processors

KRISTOF DU BOIS, STIJN EYERMAN, and LIEVEN EECKHOUT, Ghent University

While multicore processors improve overall chip throughput and hardware utilization, resource sharing
among the cores leads to unpredictable performance for the individual threads running on a multicore
processor. Unpredictable per-thread performance becomes a problem when considered in the context of
multicore scheduling: system software assumes that all threads make equal progress, however, this is not
what the hardware provides. This may lead to problems at the system level such as missed deadlines,
reduced quality-of-service, non-satisfied service-level agreements, unbalanced parallel performance, priority
inversion, unpredictable interactive performance, etc.

This article proposes a hardware-efficient per-thread cycle accounting architecture for multicore proces-
sors. The counter architecture tracks per-thread progress in a multicore processor, detects how inter-thread
interference affects per-thread performance, and predicts the execution time for each thread if run in isola-
tion. The counter architecture captures the effects of additional conflict misses due to cache sharing as well
as increased latency for other memory accesses due to resource and bandwidth contention in the memory
subsystem. The proposed method accounts for 74.3% of the interference cycles, and estimates per-thread
progress within 14.2% on average across a large set of multi-program workloads. Hardware cost is limited to
7.44KB for an 8-core processor, a reduction by almost 10x compared to prior work while being 63.8% more
accurate. Making system software progress aware improves fairness by 22.5% on average over progress-
agnostic scheduling.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Modeling of com-
puter architecture; C.4 [Computer Systems Organization]: Performance of Systems—~Modeling techniques

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Multicore processors, hardware/software interface, scheduling, resource
sharing, interference, performance analysis

ACM Reference Format:

Du Bois, K., Eyerman, S., and Eeckhout, L. 2013. Per-Thread cycle accounting in multicore processors. ACM
Trans. Architec. Code Optim. 9, 4, Article 29 (January 2013), 22 pages.

DOI = 10.1145/2400682.2400688 http://doi.acm.org/10.1145/2400682.2400688

1. INTRODUCTION

Multicore processors, or chip-multiprocessors (CMPs), seek at increasing chip through-
put within a given power budget by integrating multiple cores on a single chip.
Processor manufacturers such as Intel, IBM, AMD, and others are taking on the
multicore road, and the number of cores varies between a couple cores to several tens of
cores in the foreseeable future. Multicore processors typically share resources among
the cores, such as caches, memory controllers, off-chip bandwidth, memory banks,

This research is funded through the European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259295. S. Eyerman is a postdoctoral
fellow of the Research Foundation-Flanders (FWO).

Authors’ addresses: K. Du Bois, S. Eyerman, and L. Eeckhout (corresponding author), ELIS Department,
Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; email: lieven.eeckhout@elis.ugent.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 1544-3566/2013/01-ART29 $15.00

DOI 10.1145/2400682.2400688 http://doi.acm.org/10.1145/2400682.2400688

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:2 K. Du Bois et al.

etc. Resource sharing increases hardware utilization, adds flexibility for a processor
to adapt to varying workload demands (e.g., a thread with a large working set can
allocate a large fraction of the shared cache), and can improve performance (e.g., fast
communication between cores through the on-chip interconnection network and shared
cache).

Resource sharing also comes with a significant drawback: coexecuting hardware
threads affect each other’s performance. For example, a thread allocating a large frac-
tion of the shared cache may introduce additional conflict misses for other threads;
likewise, memory accesses by a thread may close open pages in memory, thereby in-
creasing memory access time for other threads. These inter-thread interferences may
or may not have an effect on per-thread performance depending on whether they can be
hidden by doing other useful work. As a result, resource sharing may affect per-thread
performance in unpredictable ways. The key problem now is that system software (e.g.,
the OS or the VMM) assumes that all threads make equal progress, however, this is not
the case when run on the underlying hardware: one thread may make faster progress
than another one in the coscheduled workload mix, and the progress rates may be
different across workload mixes across different timeslices. The mismatch between the
assumption of equal progress by system software and the actual progress on the under-
lying hardware may make multicore processor scheduling ineffective. In other words,
system software assumes that all threads make equal progress but in reality they do
not. This may lead to undesirable properties at system level such as missed deadlines
for (soft) real-time applications, non-satisfied service-level agreements, jitter on the
response times for interactive workloads, unbalanced performance across coexecuting
threads of a parallel workload, priority inversion, starvation, etc.

This article presents a per-thread cycle accounting architecture for multicore
processors—to the best of our knowledge, this is the first comprehensive and hardware-
efficient per-thread cycle accounting architecture for multicore processors that accounts
for the major sources of inter-thread interference in shared resources. The accounting
architecture estimates per-thread progress during multicore execution: for each thread,
the counter architecture estimates what the execution time would be if run in isolation.
Knowing per-thread progress enables system software to make multicore processor
scheduling more effective. For example, the counter architecture can communicate to
system software that one thread has made 5ms and the other thread has made 8ms
of per-thread progress during a 10ms timeslice; this should enable system software
to better understand how much progress each thread has made so far, and adjust the
scheduling accordingly.

The proposed per-thread cycle accounting architecture addresses two major sources
of inter-thread interference: (i) inter-thread misses or misses in the shared cache due
to conflicts among the coexecuting threads, and (ii) waiting cycles, or lost cycles, due
to resource and bandwidth contention in the memory subsystem, which prolong the
memory access time of intra-thread misses (i.e., misses that also occur during isolated
execution). The counter architecture accounts for hardware prefetching effects and also
estimates what the impact is on overall performance, which is nontrivial given how
out-of-order processor cores are designed to hide latencies. The counter architecture
accounts for 74.3% of the interference cycles and estimates per-thread progress within
14.2% on average for an 8-core processor. The hardware cost is as small as 7.44KB for
a multicore processor with eight cores and an 8MB last-level cache. This is a near 10x
reduction in hardware cost compared to the pollution filter by Ebrahimi et al. [2010],
while being 63.8% more accurate.

We demonstrate that per-thread cycle accounting improves multicore performance
by making the scheduler progress aware, i.e., a progress-aware scheduler sched-
ules threads that make slow progress more frequently. Our experimental results

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:3

demonstrate the potential of per-thread cycle accounting: we report fairness improve-
ments by 22.5% on average over progress-agnostic scheduling.

The remainder of this article is organized as follows. We first describe the various
sources of inter-thread interference in multicore processors (Section 2) and detail on
how the proposed counter architecture estimates the impact of the various sources of
inter-thread interference on per-thread performance (Section 3). Sections 4 and 5 de-
scribe the experimental setup and the hardware cost of the proposed accounting archi-
tecture, respectively. We then evaluate the accuracy of the per-thread cycle accounting
architecture (Section 6) and how it improves multicore scheduling (Section 7). Finally,
we discuss related work (Section 8) and conclude (Section 9).

2. THREAD INTERFERENCE IN MULTICORE PROCESSORS

The first step towards designing a per-thread cycle accounting architecture is to under-
stand the different sources of interference. Consider a multicore processor in which each
core has private L1 instruction and data caches, and the last-level (1.2) cache (LLC),
the memory controller, the memory bus, and the main memory banks are shared. (We
assume a shared L2 cache in this work, but the work can be trivially extended to shared
L3 caches.) Throughout the article, we assume a single thread per core, hence we use
the terms “thread” and “core” interchangeably. Upon a context switch on a core, system
software (e.g., the OS) stores the interference counters (which we will detail later in
the article) for the old thread, and reloads all counters for the new thread. This enables
per-thread accounting, while the accounting hardware measures per-core interference.

2.1. Sources of Interference

Coexecuting threads on a multicore processor interfere with each other in each of the
shared resources, causing per-thread performance to deteriorate compared to isolated
execution. Each shared resource leads to different interference effects, which we discuss
now.

LLC. Sharing the last-level cache between threads leads to extra conflict misses due
to threads evicting each other’s data. We refer to these conflict misses as inter-thread
misses. In contrast, we define intra-thread misses as misses that also occur during
isolated execution. Inter-thread misses do not occur during isolated execution and
hence, their performance impact is potentially detrimental to per-thread performance:
these memory references would be serviced by the LLC in isolated execution but turn
into long-latency memory accesses during multicore execution.

Interconnection network. The on-chip interconnection network connects the cores to
the shared cache (and to each other). A request of one core can be delayed due to a
request by another core. Conflicts in the interconnection network thus prolong both
the LLC hit and miss latency compared to isolated execution. Prolonging the LLC hit
time due to conflicts in the interconnection network is unlikely to significantly affect
per-thread performance, because the LLC hit latency (even with the additional conflict
latency) is small enough so that it is effectively hidden through out-of-order execution
in a balanced design [Eyerman et al. 2009]. For LLC misses, the additional conflict
latency may have a significant effect because the processor cannot make progress
while handling the LL.C miss because of its long latency.

Memory bus. As with the interconnection network, a memory request issued by a core
can hold the bus, between the LL.C and main memory, possibly delaying requests by
other cores. This causes memory accesses to take longer, which may have a significant
impact on performance.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:4 K. Du Bois et al.

Memory bank effects. Main memory typically consists of a number of memory banks:
these banks can handle memory accesses in parallel, thereby enabling memory-level
parallelism (MLP). However, each bank can handle one access at a time only. This
implies that while a bank is busy processing an access of a core, no other requests to
that bank from other cores can be serviced. This increases the memory access time for
the other cores.

An additional effect occurs in case of an open-page policy. Consider the example in
which a thread accesses the same page twice and there are no intervening memory
accesses to another page in the same bank, i.e., the page is loaded in the row buffer
and both accesses are serviced from the row buffer. Now, another thread may interfere
and may initiate a memory access to that same bank (but a different page) between
the two memory requests by the first thread. This memory access will cause the row
buffer to be written back to the memory bank and a new page to be loaded in the row
buffer. The second memory access by the first thread will now see a row miss (instead
of a row hit) and will need to load the page again into the row buffer. In other words,
this second memory access will see a longer latency during multicore execution than it
would see during isolated execution.

2.2. Impact of Interference on Performance

Not only is it important to detect interference among coexecuting threads, we also
need to estimate how interference affects multicore execution time relative to isolated
execution time. To this end, we leverage on the insights provided by interval analy-
sis [Eyerman et al. 2009]. Interval analysis is an intuitive, mechanistic performance
model for superscalar out-of-order processors and provides insight with respect to how
miss events affect performance. Interval analysis focuses on the dispatch stage of a
processor—dispatch here refers to the process of entering instructions from the front-
end pipeline to the reorder buffer and issue queues—and reveals that the penalty for
a miss event is the time between dispatch stalling upon a miss event and dispatch
resolving after the miss event has been serviced. For a long-latency load, e.g., LLC
miss or D-TLB miss, this means that its penalty equals the number of cycles dispatch
stalls because of a filled-up reorder buffer (ROB) while the load miss resides at the
ROB head. Karkhanis and Smith [2002] studied the various sources of performance
loss due to long-latency loads and they concluded that the reorder buffer filling up is
more common relative to the issue queue filling up with load-dependent instructions
and the processor running out of rename register. We model all three cases: we quantify
the long-latency miss penalty as the number of cycles where a long-latency load miss
blocks the head of a filled-up ROB or filled-up issue queue, or when the processor runs
out of rename registers.

It follows from this insight that the penalty due to an inter-thread miss equals the
number of cycles the load miss resides at the head of a full ROB. Likewise, interference
effects that prolong the penalty of an intra-thread miss, e.g., interference effects in the
on-chip interconnection network and memory bus, can be quantified as the number of
additional cycles due to interference while a long-latency load miss blocks commit at
the head of a full ROB. We will leverage on these insights in our design of the counter
architecture.

2.3. Quantifying Interference

Before describing the accounting architecture in detail, we first quantify the impact of
interference on per-thread performance, and we identify the contribution of different
sources of interference. We define interference as the relative increase in execution time

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:5

192%

140%
memory contention B cache contention
120%

100%

80% —

Interference

60% —1 1

40% E— EEEN | NN E—

20%

0% -

@
4
Q
S

o

0
L0
a8
[s3e)

<o

3
17}
©

2 cores

bwaves 4 cores
8 cores

. 2 cores

bzip2 4 cores

8 cores

2 cores
cactusADM 4 cores
8 cores

2 cores

gcc 4 cores

8 cores

2 cores

gemsfdtd 4 cores
8 cores

2 cores

gobmk 4 cores

8 cores

2 cores

h264ref 4 cores
8 cores

2 cores

hmmer 4 cores

8 cores

2 cores

4 cores

8 cores

; 2 cores
libquantum 4 cores
8 cores

2 cores

mcf 4 cores

8 cores

2 cores

omnetpp 4 cores
8 cores

2 cores

perlbench 4 cores
8 cores

2 cores

povray 4 cores

8 cores

2 cores

4 cores

8 cores

2 cores

soplex 4 cores

8 cores

2 cores
xalancbmk 4 cores
8 cores

2 cores

4 cores

8 cores

lbm
sjeng
zeusmp

Fig. 1. Impact of inter-thread interference on per-thread performance for 2, 4, and 8 cores, breaking up
interference in cache versus memory contention (average interference is reported across a set of job mixes
per benchmark and assuming hardware prefetching).

between multicore and isolated execution.

Tuiticore — Tisolated
Interference = tore " tsone (1)

Tisolated

Interference thus quantifies the increase in execution time on a multicore processor due
to interference relative to isolated single-core execution. Through detailed simulation—
see Section 4 for a description of the experimental setup—we find that interference is
significant and that it increases with the number of cores: 9.3% on average for 2 cores,
19.5% for 4 cores, and 55.4% for 8 cores. The reason why interference increases with
core count is that an increasing number of cores put increasingly more pressure on the
shared resources, and hence, per-thread performance is affected more significantly.

To understand the relative contributions of the different sources of interference,
Figure 1 makes a distinction between the interference due to inter-thread misses in
the shared cache versus resource and bandwidth sharing in the memory subsystem
(memory bus, memory banks, and open row policy). Some benchmarks seem to suffer
more from cache sharing whereas other benchmarks suffer more from sharing in the
memory subsystem. These interference numbers illustrate that the shared resources
have substantial impact on per-thread performance, and by consequence, estimating
interference is nontrivial (i.e., the null predictor would be highly inaccurate).

Figure 2 quantifies the impact of hardware prefetching on interference. The maxi-
mum interference level observed increases from 2.3 x without prefetching to up to 3.8x
with prefetching. The reason is that hardware prefetching puts even more pressure on
the memory system’s shared resources, which in its turn affects per-thread progress.
In particular, a core that issues many prefetch requests may congest the memory sub-
system and thereby degrade other cores’ performance.

3. PER-THREAD CYCLE ACCOUNTING ARCHITECTURE

The central idea of per-thread cycle accounting is to implement an architecture in
hardware that measures events which enable system software to estimate per-thread
progress and act on it through scheduling to improve overall system performance,
quality-of-service, ete. In other words, the counter architecture measures events such

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:6 K. Du Bois et al.

400%
350%

300%

3
5250%
[}
© 200%
E
% 150% = No prefetcher
= With prefetcher
100%
50% I I
o | | LEal I __hK
° 5 9 N S Q9 B X g 5 E E B Q@ £ > 0 x x a
% S 283 5% £E 5 o8 3 E &2 ¢85 2 E €
s N < B 8 € 2 o 3 57 &8 9
[S 2 3 2 o 8 £] c & o @ 8 o >
272 §°og8<& 5§ Eg= § 8
g 7 £ & 2

Fig. 2. The impact of prefetching on interference on an eight-core system (maximum interference is reported
across 10 jobmixes per benchmark).

as the number of inter-thread misses and their penalty, as well as the number of waiting
cycles for intra-thread misses, and communicates these events to system software at
regular time intervals, e.g., at the end of each timeslice. System software then estimates
per-thread progress and adjusts the scheduling to improve system performance.

The counter architecture makes a distinction between two sources of inter-thread
interference in multicore processors: (i) inter-thread misses in the shared cache (i.e.,
the per-thread miss rate increases due to conflicts induced by other threads), and
(i1) resource and bandwidth contention in the memory subsystem which causes intra-
thread misses to take longer—we will refer to these additional cycles as waiting cycles.
The following sections describe how the proposed counter architecture accounts for
both sources of inter-thread interference.

3.1. Inter-thread Misses

We detect inter-thread misses using a structure called the Auxiliary Tag Directory
(ATD). The inter-thread miss performance impact is then estimated through an ac-
counting mechanism.

3.1.1. Auxiliary Tag Directory (ATD). The Auxiliary Tag Directory (ATD) is a structure
private to each core that keeps track of what the status of the shared cache would be if
it were private to that core; see also Figure 3. (The ATD was first proposed by Qureshi
and Patt [2006] to keep track of the utility of the various ways in a shared cache to
each of the cores; we use the ATD for a different purpose.) The ATD keeps track of the
tags and replacement bits (not the data) due to accesses by the given core. An access
to the shared cache accesses both the shared cache and the private ATD of that core.
Only the shared cache returns data (from the cache itself if the access results in a hit,
or from main memory if it is a miss), but both the shared cache and the ATD adjust
the tag and replacement bits. An LLC miss is classified as an intra-thread miss if it
also misses in the ATD; in case of a hit in the ATD, the LLC miss is classified as an
inter-thread miss.

The ATD naturally handles positive cache interference for multi-threaded applica-
tions. Positive interference occurs when a thread brings data into the cache that is later
accessed by other threads, and as a result, the other threads see a cache hit and not a

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 297

shared cache

ATD core 0 ATD core 1

core 0 core 1

Fig. 3. The ATD samples a number of sets in the shared cache to identify inter-thread misses.

miss. This is called an inter-thread hit and is identified by the memory access being a
hit in the LLC and a miss in the ATD.

In spite of the fact that the ATD contains only tag and replacement bits and no data,
the hardware overhead is substantial: more than 6% of a 2MB shared cache per core,
and thus the overhead for a multicore processor with a large number of cores quickly
becomes substantial and practically infeasible. We therefore use set sampling [Kessler
et al. 1994] to reduce the hardware overhead. We evaluated different sampling rates
and found that sampling 32 out of 4096 sets yields the best balance between hard-
ware overhead and accuracy; see the evaluation section in this article. The hardware
overhead of the sampled ATD equals less than 0.05% of the shared cache per core.

3.1.2. Measuring the Performance Impact of Inter-thread Misses. Now that we know which
misses in the shared cache are inter-thread versus intra-thread misses, the next ques-
tion is to determine what their performance penalty is. We measure the number of
interference cycles (miss penalty) due to inter-thread misses as the number of cycles
an inter-thread miss blocks the head of a full ROB. The mechanism is as follows: as
soon as the ROB is full and an inter-thread miss is at the ROB head, we start counting
interference cycles. This requires being able to detect that the ROB is full, and a bit
per ROB entry to keep track of whether a load miss is an inter-thread miss.

Because set sampling is employed in the ATD, as described above, we are unable
to detect all inter-thread misses; we only know the status (inter-thread versus intra-
thread miss) for those accesses that are sampled in the ATD. We therefore have to
estimate the total number of interference cycles. We consider two approaches.

The first approach, the extrapolation approach, measures the penalty of the sampled
inter-thread misses only, and then extrapolates to all inter-thread misses by multiply-
ing by the sampling ratio.

inter-thread miss penalty ~ sampled inter-thread miss penalty
no. of cache accesses

(2)

no. of sampled cache accesses’

The second approach, the interpolation approach, measures the penalty of all LLC
misses (both inter-thread and intra-thread misses), and estimates the fraction of
this penalty due to inter-thread misses by taking the ratio of the number of sampled

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:8 K. Du Bois et al.

inter-thread misses to the total number of sampled misses.

no. of sampled inter-thread misses

inter-thread miss penalty ~ total miss penalty x -
no. of sampled misses

3)

We compare the accuracy of these approaches in the evaluation section. The con-
clusion is that the extrapolation approach is slightly more accurate, the reason being
that the extrapolation approach measures the penalties of the sampled inter-thread
misses, whereas the interpolation approach calculates the penalty for all misses (both
inter-thread and intra-thread misses). The penalty for all misses may not be represen-
tative for the inter-thread misses, hence the extrapolation approach tends to be more
accurate.

Computing the inter-thread miss penalty using the above formulas is relatively
simple and can be done by system software. For example, at each timeslice, system
software can read out the different counters and compute the inter-thread miss penalty.
The counters can then be reset to profile the next timeslice. No additional hardware is
needed for computing the above formulas.

3.2. Waiting Cycles

As discussed in Section 2, there are three main sources for waiting cycles or extra
penalty that prolong the latency seen for intra-thread misses due to resource and
bandwidth contention in the memory subsystem: memory bus conflicts, bank conflicts,
and inter-thread row buffer misses. We now discuss how to count the number of waiting
cycles and how to estimate their impact on overall performance.

3.2.1. Counting Waiting Cycles.

Bus contention. When a memory operation from one core occupies one of the buses
(command, address, or data bus) while a memory operation from another core also
wants to access the bus, then the latter incurs waiting cycles that would not have
occurred in isolated execution. This is detected by inspecting the bus owner if a memory
operation is ready to be scheduled on the bus and the bus is occupied. If the bus is owned
by another core, then waiting cycles are accounted for.

Bank contention. An access that is delayed due to its destination bank being occupied
by an access of another thread is detected similarly, and the extra waiting cycles are
accounted for.

Inter-thread row buffer misses. This type of interference occurs when a row buffer
hit in isolated execution becomes a row buffer miss during multicore execution, in case
of an open-page memory policy. This occurs when a memory operation of another core
accesses another row between the two consecutive accesses of one core to the same row.
Since row buffer misses take considerably more time to be serviced than row buffer hits,
this introduces an additional penalty and should be accounted for as waiting cycles.

Inter-thread row buffer misses are detected by maintaining an Open Row Array
(ORA) per core (e.g., in the memory controller); see Figure 4. The ORA keeps track of
the ID of the most recently accessed row per memory bank per core. If a row buffer miss
hits in the private ORA, then the miss is caused by interference, and the extra penalty
(i.e., the difference between the closed and open-page access times) is accounted for as
waiting cycles. In case of a closed-page policy, the ORA is not needed.

Hardware prefetching. A long-latency load miss that also appears in the hardware
prefetch queue (i.e., the prefetch is to be issued and/or is underway) is accounted waiting
cycles if the load blocks commit at the head of a full ROB, as we will describe in the next

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:9

core 0 core 1
ﬁ f

shared cache

memory controller

ORA ORA
core 0 core 1

bank O bank 1 bank 2 bank 3

Fig. 4. The ORA keeps track of the most recently accessed row per memory bank per core.

section. This strategy basically assumes that the prefetch would be timely in isolated
execution, while it is not during multicore execution because of contention. Although
this is not always the case, this assumption keeps the accounting architecture simple
and we found it to account for a major fraction of the interference due to prefetching.

Waiting cycles are kept track of in the MSHRs. The waiting cycles need to be kept
track of for each individual memory access because there may be multiple outstanding
inter-thread misses (whose latency is potentially hidden). The counter architecture
keeps track of the waiting cycles in the MSHRs: we add a waiting cycle counter
(10 bits) to each MSHR entry, and we add all waiting cycles pertaining to this memory
access to this counter.

3.2.2. Estimating Impact Waiting Cycles on Performance. To estimate the performance im-
pact of the waiting cycles, we use the insights provided by interval analysis [Eyerman
et al. 2009]: a long-latency load miss only has impact on overall performance if it blocks
the head of the ROB and causes the ROB to fill up. This implies that only waiting cycles
need to be accounted as interference cycles if the long-latency load miss makes it to
the ROB head and fills up the ROB. Based on this insight, we propose the following
mechanism: if a miss blocks the head of the ROB and causes the ROB to fill up, then
we add the miss’ waiting cycles (that are kept track of in the MSHRSs) to the per-core
interference cycle counter.

We need to account for waiting cycles for the intra-thread misses only; the additional
penalty incurred by inter-thread misses is accounted for as described before. The
number of intra-thread misses is not readily available though. Instead we need
to extrapolate on the sampled sets in the ATD. In line with what we described in
Section 3.1.2, we consider two approaches. (Recall that all these calculations are done
by system software; no additional hardware is needed.)

The extrapolation approach measures the waiting cycles of the sampled intra-thread
misses and then extrapolates by multiplying with the ratio of cache accesses versus

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:10

Table |. Simulated Multicore Processor Configurations

K. Du Bois et al.

Core frequency

Core pipeline width
ROB size

Load and store buffer
Branch predictor

2GHz

fetch: 8; dispatch, issue and commit: 4
128 entries

96 entries each

64K entry tournament, 4K entry BTB

On-chip bus (1.1 < L2)

L1 I-cache 32KB, 4-way, 64B line, 1 cycle
L1 D-cache 64KB, 4-way, 64B line, 2 cycles
Shared L2 cache 2MB (2 cores); 4MB (4 cores); 8MB (8 cores)

8-way, 64B line, 10 cycles, 32 MSHRs
2GHz, 32 byte

Hardware prefetcher

strided, per-core, degree of 4

Memory controller
Memory bus
DRAM

DRAM timing

FCFS, 16-entry write buffer

1333MHz, 64 bit

667MHz DDR, 8 banks, 4KB row buffer
9-9-9-7 (tRP-tRCD-CL-CWL)

the number of sampled accesses:

waiting cycles sampled intra-thread misses
no. of cache accesses

total waiting cycles ~

(4)

no. of sampled cache accesses’

The interpolation approach takes the number of waiting cycles of all misses and mul-
tiplies that with the estimated fraction of intra-thread misses. This approximates the
number of waiting cycles for all intra-thread misses.

waiting cycles for all misses
no. of sampled intra-thread misses

total waiting cycles ~

(5)

no. of sampled misses

For the same reasons as the ones discussed in Section 3.1.2, we find that extrapolation
is more accurate than interpolation.

4. EXPERIMENTAL SETUP
4.1. Processor Configurations and Benchmarks

We use the gem5 simulator [Binkert et al. 2006] and simulate multicore processors
with up to 8 cores. The L1 instruction and data caches are private to each core, and
the L2 cache (LLC) is shared, and we assume an LLC of 2MB, 4MB, and 8MB for 2, 4,
and 8 cores, respectively. We consider an aggressive stride-based hardware prefetcher
between L2 and main memory. More details on the simulated processor configurations
are available in Table I.

We consider the 19 SPEC CPU2006 benchmarks that properly run in our simula-
tion environment. We use SimPoint [Sherwood et al. 2002] to select 1B-instruction
representative samples from which we create a large number of multiprogram work-
loads. We consider all possible two-program combinations (190 two-program workloads
in total!). For the four-program and eight-program workloads, we construct 10 three-
program and 10 seven-program combinations, respectively, and we run all programs
with each of these 10 multiprogram combinations. Hence, there are 190 four-program

1This is the number of combinations with repetition of 2 elements out of 19 elements, computed as (19+22’1)

190.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:11

and 190 eight-program workloads in total. All of these multiprogram workloads repre-
sent a good mix of memory-intensive and CPU-intensive benchmarks.

4.2. Error Metric and Simulation Procedure
Since the goal of the counter architecture is to estimate the execution time had the pro-
gram run in isolation, we define error as the relative difference between the estimated
and the actual isolated execution times.

Tisolated estimated — Tisolated measured
Error = : : (6)

Tisolated,measured

. (Tmulticore - estimatedinterference) - Tisolated,measured (7)

Tisolated,measured

A positive error implies an overestimation of the predicted isolated execution time or
an underestimation of inter-thread interference; a negative error implies an underes-
timation of the predicted isolated execution time. We adopt the following simulation
approach for computing the error. We first simulate a multi-program workload and stop
the simulation when one of the programs has executed 1B instructions. We estimate
the isolated execution times for each of the programs using the proposed counter archi-
tecture, i.e., Tisolated. estimated- We also determine the number of instructions executed for
each program in the workload mix; one program has executed 1B instructions, the other
programs have executed less than 1B instructions. For each program in the workload
mix, we then run a single-threaded simulation for as many instructions as during mul-
ticore execution, and we determine the isolated execution time, i.e., Tisorated. measured- THis
procedure guarantees that the same amount of work is done during multicore execution
as during isolated single-threaded execution for each program in the workload mix.

When reporting the average per-benchmark prediction error, we take the average
of the absolute errors across all the workload mixes that include the benchmark. In
particular, for the two-program workloads, we report the average absolute prediction
error for a given benchmark across all the 19 two-program workload mixes; likewise,
for the four-program and eight-program workloads, we report the average absolute
prediction error per benchmark across all 10 four-program and all 10 eight-program
workloads, respectively.

5. COUNTER ARCHITECTURE HARDWARE COST

Before evaluating the accuracy of the proposed counter architecture, we first quantify
its hardware cost. The total hardware cost equals 952 bytes per core:

—ATD: 32 (sampled sets) x 8 (associativity) x 27 bit (tag + replacement) = 864 byte;

—marking (inter-thread) misses: 1 bit per ROB entry = 128 bit = 16 byte;

—the inter-thread latency counters in the MSHRs: 32 x 10 bit = 40 byte;

—ORA: 20 bit x 8 (banks) = 20 byte;

—the counters for the total number of accesses, the number of sampled accesses, and
the number of sampled inter-thread misses: 3 x 20 bit = 8 byte;

—the total interference cycle counter: 32 bit = 4 byte.

The hardware cost for the proposed counter architecture is small (952 bytes per core),
and scales linearly with the number of cores. Even for a multicore processor with a
large number of cores, the total hardware cost is limited compared to the total transistor
budget.

Not only is the amount of storage needed small, implementing the counter architec-
ture should also be feasible in practice. The circuitry is localized to specific regions of
the processor core. In particular, there is a set of counters in the ROB and MSHRs;

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:12 K. Du Bois et al.

14%

12%

10%

8% B

Error

6% B — H|nterpolation
Extrapolation
= No sampling

4% B

]_[
€
=]
2
c
©
=)
<3
2

2%

sjeng |u

0% T

T T

£
=)

T

soplex ="

xalancbmk

gce
average

bwaves [
A
gobmk [

gemsfdtd
mcf

bzip2 |

astar
cactusADM

hmmer [

h264ref

omnetpp

perlbench
povray [
zeusmp [

Fig. 5. Average isolated execution time estimation error per benchmark for Egs. (2) and (3) (eight cores,
fixed memory latency, 32 sampled sets), compared to no sampling.

there is the ATDs; and there is the ORAs. The counter architecture is unlikely to affect
cycle time. The counters are read out by system software at regular (but coarse-grain)
intervals, e.g., at the end of each timeslice. System software then uses these counts to
predict per-thread progress.

6. EVALUATION

We evaluate the accuracy of the counter architecture in three steps. We first consider
an idealized memory system and evaluate the counter architecture’s accuracy for es-
timating the impact of inter-thread misses (additional misses in the shared cache) on
overall performance. Second, we evaluate the counter architecture’s overall accuracy
while considering both inter-thread misses as well as waiting cycles on intra-thread
misses; we consider a realistic memory system including hardware prefetching, mem-
ory banks, and an open-page policy. Finally, we compare our approach to the pollution
filter which was recently proposed by Ebrahimi et al. [2010] for detecting inter-thread
misses.

6.1. Estimating the Impact of Inter-thread Misses

We first evaluate the counter architecture’s accuracy for estimating the effect of inter-
thread misses on overall performance. To this end, we consider an idealized memory
system in order to focus on inter-thread misses and eliminate the effect of waiting cycles
on intra-thread misses. We assume a fixed memory access latency (100ns) and assume
there are no bank conflicts. Figure 5 shows the isolated execution time error when
using the extrapolation and interpolation approaches (Eqgs. (2) and (3), respectively).
The extrapolation approach slightly outperforms the interpolation approach with an
average error of 4.05% versus 4.66%, respectively.

Figure 6 shows the impact of sampling frequency in the ATD on accuracy for both
approximations. The error of the interpolation approximation seems to be less sensitive
to sampling frequency compared to the extrapolation approach. The reason is that the
interpolation approach measures the penalty of all misses to infer the penalty for the
inter-thread misses, whereas the extrapolation approach measures the penalty of the
sampled inter-thread misses only and then extrapolates to all inter-thread misses.
At a low sampling frequency, the penalty for the sampled inter-thread misses is not

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:13

6%

5% —_—

)] K o amye == K o= . Yem o Mo o @ o @ = = -=X
4% et ——
--¢- Interpolation - 2 cores
S o o -~ Extrapolation - 2 cores
£ 3% - - = oK :
w e Pra Py pugiinrl =& Interpolation - 4 cores
- - -y == - d ke .
i~ gl gt 28 —EoaAv =x -Extrapolation - 4 cores
2% .- = Interpolation - 8 cores
....... e T T T T T T T g Tt s T s g e e T S S P TP T e Extrapolation - 8 cores

1%

0% T T T T T T T T ! ; : :
4096 2048 1024 512 256 128 64 32 16 8 4 2
Sampled sets

Fig. 6. Average isolated execution time estimation error for the interpolation and extrapolation approaches
as a function of the number of sampled sets; we assume fixed memory access latency.

representative for the other inter-thread misses, hence accuracy degrades. We find that
32 sampled sets is a good design point for two, four, and eight cores.

6.2. Overall Accuracy Evaluation

In the previous section, we assumed idealized memory (fixed access latency) in order to
evaluate the counter architecture’s accuracy with respect to estimating the impact of
inter-thread misses. We now consider a realistic memory system with multiple banks
along with an open-page policy; further, we assume hardware prefetching is enabled.
This allows for evaluating the accounting architecture’s ability to accurately estimate
the effect of both inter-thread misses and waiting cycles. Figure 7 shows the measured
versus estimated interference for two, four, and eight cores. The counter architecture
achieves an average (absolute) error of 3.75% for 2 cores, 5.57% for 4 cores, and 14.2%
for 8 cores. This is fairly accurate given the level of interference, which equals 9.3%
for 2 cores, 19.5% for 4 cores, and 55.4% for 8 cores; in other words, the accounting ar-
chitecture captures 74.3% of the inter-thread interference on average for 8 cores. Note
that although the absolute error increases with increasing core count, e.g., it increases
from 5.57% for 4 cores to 14.2% for 8 cores, the relative error compared to the level
of interference actually decreases from 28.5% for 4 cores to 25.6% for 8 cores. In other
words, absolute error increases with core count but so does the level of interference,
hence in the end, the relative accuracy of the counter architecture is fairly stable and
actually decreases with core count, i.e., the proposed counter architecture is able to
consistently capture the most significant sources of inter-thread interference. Further,
we expect absolute accuracy to improve given microarchitecture enhancements that
reduce inter-thread interference, such as a advanced network-on-chip topologies,
multiple memory controllers, limiting the number of cores that share a cache, etc.
The results shown so far presented error numbers that are averaged across a
number of multiprogram workloads, e.g., there are 19 two-program workloads and
10 four-program and 10 eight-program workloads per benchmark. Figure 8 shows the
same data but does not average out across a number of multi-program workloads; i.e.,
there is a data point for each workload (190 in total). The graph shows a cumulative
distribution for the interference and the error: the horizontal axis shows the fraction
of workloads for which the interference and error are below the corresponding value
on the vertical axis. This graph shows the amount of variation in both the interference
and the error. We observe that interference can be very high for some workloads, up to

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:14 K. Du Bois et al.

35%

30%

25%

20%

15% [m Estimated

Measured

Interference

10% -

5% A

0% -

astar
bwaves
bzip2
cactusADM
gce
gemsfdtd
gobmk
h264ref
hmmer
Ibm
libquantum
mcf
omnetpp
perlbench
povray
sjeng
soplex
xalancbmk
zeusmp

60%

50%

40%

Interference
w
S
2

m Estimated
20% Measured

10% -

0%

astar
bwaves
bzip2
cactusADM
gce
gemsfdtd
gobmk
h264ref
hmmer
Ibm
libquantum
mcf
omnetpp
perlbench
povray
sjeng
soplex
xalancbmk
zeusmp

200%
180%
160%
140%
0%
100%

[}

Ci
-
N

Interferen:

80% — u Estimated
60% Measured

40%
20%
0%

gcc
mcf

=
©
-
%]
©

bwaves
bzip2
cactusADM
gemsfdtd
gobmk
h264ref
hmmer

Ibm
libquantum
omnetpp
perlbench
povray
sjeng
soplex
xalancbmk
zeusmp

Fig. 7. Estimated versus measured interference for (a) a dual-core, (b) a quad-core, and (c) an eight-core
system.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:15

3.5

2.5

= |nterference
Error

Interference / Error
- o n

T

0.5 =
: ‘—.——-——‘/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Cumulative fraction of workloads

Fig. 8. Interference and error for estimating isolated execution time for an 8-core processor; workloads are
sorted along the horizontal axis.

3.8x. The proposed cycle accounting architecture accurately identifies the workloads
with high interference levels, and the error is substantially lower compared to the
level of interference. In particular, for 80% of the workloads, interference is as large
as 92%, yet the error is less than 21%; similarly, for 70% of workloads, interference
is as large as 59% with an error below 13.6%. This graph shows once more that the
accounting architecture is able to measure a large fraction of the interference in all
cases: a higher interference results in a higher absolute error, but the relative error
remains approximately the same (around 25%).

6.3. Error Analysis

In order to better understand the different sources of error, we set up a number of
experiments and we quantified how the error is affected by various sources of inter-
ference for the various benchmarks; see Figure 9. For the first bar, we assumed no
bank nor row buffer conflicts (fixed memory access latency), no hardware prefetching
and full (i.e., nonsampled) ATDs. In this case, the accounting architecture achieves an
average absolute error of 4.1% on an 8-core system. This error follows mainly from
second-order effects that are not captured. For example, intra-thread waiting cycles
hidden underneath inter-thread misses during multicore execution are possibly not
hidden in isolated execution; in this case, the accounting architecture would account
for the waiting cycles, although it should not. We chose not to consider second-order
effects in order not to complicate the accounting architecture hardware.

The second bar shows the impact of sampling only 32 sets of the cache. This has no
noticeable effect on accuracy. Adding banks and considering an open-page policy (third
bar) increases the average error to 11.5%, and adding prefetchers (fourth bar) increases
the overall error to 14.2%. These errors also stem from second-order effects that are
not modeled in our cycle-accounting method, to reduce the overhead and complexity of
the hardware additions. For example, when an inter-thread miss causes waiting cycles
(e.g., due to a bank conflict) for an intra-thread miss of the same thread, these cycles are
not accounted since both misses belong to the same thread. Accounting for this would
require a categorization of every miss into inter- or intra-thread, which is impossible
using a sampled ATD, and would also need communicating the inter- and intra-thread
miss information to the memory controller, which complicates the design.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:16 K. Du Bois et al.

70%
60%
50%
40%
30% m Fixed latency - no sampling
S 20% . .
w Fixed latency - sampling
10% l | l
0o e M LML au .|| Al e M. o s vemory banks and open-page
1 L I policy
-10% ® Memory banks, open-page policy
and prefetchin
-20% P g
-30%
= QA O T X % = B L >0 X X o [0
g8o385E2255288¢858EE 9
mg_oﬁ 8088 S 8807‘)803 ©
a =} S 2c < =) ET @ SQ 3
© o o o o =
g g "8 e

Fig. 9. Error analysis per benchmark for an 8-core processor.

Furthermore, Figure 9 also shows that the resulting error can be positive or negative
(we took the absolute values to calculate the averages, such that these errors do not
compensate for each other). This shows that our technique is not biased, i.e., there is
no consistent under- or overestimation. As a result, additional accounting to decrease
the error in the case interference is overestimated tends to also increase the error in
case the interference is underestimated and vice versa. This means that in order to
reduce the error consistently, both underestimation and overestimation cases need to
be handled, which would make the accounting architecture overly complex.

6.4. Comparison against the Pollution Filter

Ebrahimi et al. [2010] present an alternative mechanism for detecting inter-thread
misses using a structure called the pollution filter. The pollution filter consists of an
array of bits and there are as many bits in the pollution filter as there are sets in the
shared cache; and there is one pollution filter per core. A bit indicates whether a block
was evicted from the cache by another thread or not. The bits are indexed by the cache
block address, alike how the cache is indexed. The pollution filter works as follows. If a
replacement in a cache set causes the eviction of a cache block most recently accessed
by another core, then the corresponding bit in the pollution filter of the previously
referencing core is set. If a miss occurs, the pollution filter is consulted, and if the bit
is set, the miss is classified as an inter-thread miss. This indicates a scenario in which
the cache access would have been a hit in isolated execution but is a miss in multicore
execution. When the data of the inter-thread miss is fetched from memory and inserted
into the cache, the corresponding bit is reset in the pollution filter.

The advantage of a pollution filter over a sampled ATD is that the pollution filter
can make a classification for every miss in terms of whether the miss is an inter-
thread versus intra-thread miss. In other words, the pollution filter does not suffer
from sampling inaccuracy. On the other hand, since multiple cache blocks map to the
same bit, a pollution filter is subject to aliasing. This is not the case for the sampled
sets in the ATD.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:17

35%
30%
25%

20%

Error

15% mATDs

10% Pollution filter
5%

0%

bzip2 Me—
goc m—
o ——
mof —

astar =

bwaves ™
cactusADM ™
gemsfdtd ™=
gobmk ™
h264ref ™=
hmmer ™
libquantum ™=
omnetpp
perlbench [——
povray ™
sjeng |
soplex ™=
xalancbmk |——
zeusmp [
average =

Fig. 10. Average isolated execution time estimation error per benchmark for the ATD (32 sampled sets
and 6.75KB total hardware cost) versus the pollution filter (16K entries and 64KB total hardware cost); we
assume eight cores and a fixed memory access latency.

The hardware cost of a pollution filter is the number of sets times one bit; and there is
a pollution filter per core. Additionally, a thread ID has to be kept track of for each cache
block in the shared cache: this is to detect whether or not the evicted block was most
recently accessed by the same thread. The ATD approach, which we advocate, does not
need to keep track of thread IDs in the cache blocks. Figure 10 compares the accuracy
of the ATD versus the pollution filter assuming 8 cores and an 8MB LLC. The hardware
cost for the sampled ATDs equals 8 x 864 bytes or 6.75KB in total. The pollution filter,
on the other hand, requires 64KB for 8 cores (and 8MB L2): 48KB for keeping track
of the thread IDs in the shared cache plus 8 times 2KB for the pollution filters. In
other words, the sampled ATDs involve approximately 10x less hardware than the
pollution filter. Figure 10 shows that the sampled ATD is substantially more accurate
than the pollution filter, in spite of its smaller hardware budget: 4.05% average error
for the ATD versus 11.2% for the pollution filter—a 63.8% improvement in accuracy
while being an order of magnitude more efficient in hardware cost. The interesting
observation is that accurately measuring the miss penalty for a limited number of
inter-thread misses leads to more accurate predictions as opposed to determining all
the inter-thread misses (and being limited by aliasing effects at the set level).

7. MULTICORE SCHEDULING

Now that we have evaluated the counter architecture’s accuracy, the question is how
this translates into multicore performance. Progress-aware scheduling leverages the
per-thread cycle accounting architecture to track per-thread progress and schedules
slowly progressing threads more frequently so that they are able to catch up and
achieve better performance. Progress-agnostic scheduling assumes that each thread
makes equal progress during each timeslice, however, a thread that suffers more from
resource contention will observe a higher slowdown compared to other threads. The
pitfall is that the scheduler is unaware of this slowdown, which may lead to severely
degraded performance for workloads that suffer significantly from resource contention.

To evaluate thread-progress-aware scheduling, we set up the following experiment.
We consider the 4-program and 8-program workload mixes which we schedule on a
2-core and 4-core system, respectively (see Table I for the configuration of these sys-
tems); we assume a 5ms timeslice in these experiments, and we simulate until at least

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:18 K. Du Bois et al.

one benchmark has executed 1 billion instructions?. The scheduling techniques are
implemented in the simulator itself, as we do not simulate the operating system.

The baseline progress-agnostic scheduling policy schedules programs such that they
all get an equal amount of timeslices; e.g., round-robin achieves this property. Progress-
aware scheduling, on the other hand, tracks progress for each of the programs in the
mix, and prioritizes the programs with the highest current slowdown to be scheduled
first. Slowdown is computed as the execution time on the multicore system divided by
the estimated isolated execution time. In other words, progress-aware scheduling aims
at speeding up slow-progress programs so that all users experience good performance
and none of the programs experiences huge slowdowns nor starvation.

Figure 11 reports the progress-agnostic and progress-aware scheduling fairness ob-
served for each of the workload mixes for the 2-core and 4-core systems. Fairness
[Eyerman and Eeckhout 2008] is defined as the progress of the slowest program divided
by the progress of the fastest program in the job mix. A fairness of 1 means that each
thread has made the same progress, while a zero fairness means that at least one thread
is starving. Each point represents the progress-agnostic (Y-axis) and progress-aware (X-
axis) scheduling fairness of a specific workload. Points on the indicated bisector have the
same fairness for both scheduling policies. Points beneath the bisector have higher fair-
ness for the progress-aware scheduling, while points above the bisector show a smaller
fairness for progress-aware scheduling compared to progress-agnostic scheduling.

Progress-aware scheduling improves fairness substantially over progress-agnostic
scheduling for most of the workloads: the majority of the points are located beneath
the bisector. For the points at the bottom right corner, the fairness improvement is
the largest: a smaller than 0.1 fairness for the progress-agnostic scheduling becomes
a bigger than 0.9 fairness for the progress-aware scheduling, which uses the proposed
cycle-accounting architecture. We observe an average fairness improvement of 20.3%
and 24.8% for 2 and 4 cores, respectively.

Improving fairness for threads running on a multicore processor is important for
avoiding missed deadlines in soft real-time applications, for reducing jitter in the
response time for interactive applications, for guaranteeing fairness in consolidated
environments, for delivering service-level agreements, for balanced performance in
parallel workloads, etc. We believe that per-thread cycle accounting is foundational for
this set of applications, which is further supported by the experimental evaluation in
this work.

8. RELATED WORK
8.1. Per-Thread Cycle Accounting

Eyerman and Eeckhout [2009] first presented the concept of per-thread cycle-
accounting and they proposed a per-thread cycle, accounting architecture for
Simultaneous MultiThreading (SMT) processors. The per-thread cycle-accounting
architecture estimates the per-thread progress for each thread in an SMT processor.
An SMT processor shares almost all of its core-level resources among the coexecuting
threads (e.g., ROB entries, functional units, rename registers, L1 caches, branch
predictor, etc.). The focus of this prior work in per-thread cycle accounting has been
on estimating the impact of core-level resource sharing, and limited focus was put
towards estimating the impact of resource sharing in the memory hierarchy. This
article adds memory system interference modeling and improves cache sharing
interference modeling—interpolation versus extrapolation. The previously proposed

2We were unable to run 16-program workload mixes on an 8-core system because of physical memory
constraints on our simulation host machine.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:19

<
©
S
.
3¢

. 4
0.8 e 3 3:“ 3
8 . P * % -~
=] - *
3 0.7 > e o .
S 06 te et
Lo *
805 .0
c
=) * Fairness
g 0.4 .
[%] *
(0]
‘g)O.S . .
< PR
o *
0.2 .{‘
0.1 *
0 $
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Progress-aware scheduling
*
*
0.9 it ,{&.
*
0.8 — fio
c
= .o
§ 0.7 (R ‘: ‘:‘
5 . ”00 * o 0’
8¢ < .
= *
205 e
) ¢ . * Fairness
0.4
50.3 .
8 . . L e
Lo2 . -
0.1 *
o ¥
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Progress-aware scheduling

Fig. 11. Fairness results for progress-aware and progress-agnostic scheduling for (a) 4-program mixes on
2 cores, and (b) 8-program mixes on 4 cores.

SMT accounting architecture is orthogonal to the one proposed in this article and can
thus be integrated in case of a multicore of SMT cores.

8.2. Quantifying Impact of Cache Sharing

A couple recent papers account for the impact of cache sharing, but do not model the
impact of memory bus and main memory bank sharing. Luque et al. [2009] propose
a scheme to assess the impact of inter-thread cache misses. A limitation of this
mechanism is that it needs to know for every miss whether it is an inter-thread miss
or intra-thread miss, which incurs significant hardware overhead. Zhou et al. [2009]
propose a complex set of counters to estimate the performance impact of inter-thread
misses. Its accuracy quickly drops when sampling is employed though. The cycle,

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:20 K. Du Bois et al.

accounting architecture proposed in this article is more hardware efficient and in
addition captures the impact of both cache and memory sharing.

8.3. Quantifying Impact of Memory System Sharing

Mutlu and Moscibroda [2007] focus on contention in main memory and they propose
a mechanism to quantify the impact of bus and memory bank sharing on per-thread
performance. A fairly complicated scheme is needed for counting the number of pend-
ing events; in addition, an empirical parameter is needed to fine-tune the proposed
technique. Our scheme is simpler and does not involve empirical components. Further,
this work focuses on main memory sharing only, and does not address cache sharing.
Finally, the authors do not evaluate the accuracy of the proposed scheme for predicting
the impact of memory system sharing on per-thread performance; instead, the scheme
is evaluated indirectly through a mechanism to improve fairness in CMPs.

Ebrahimi et al. [2010] proposed a mechanism for estimating the performance impact
of both cache and memory sharing. They propose the pollution filter to detect inter-
thread misses, which we have shown to be less hardware efficient and less accurate
than sampled ATDs; see Section 6.4. Further, Ebrahimi et al. evaluate the accuracy
of the proposed mechanism indirectly only (by showing that it can improve fairness
in a multicore memory system) and they do not report per-thread progress estimates.
Finally, their scheme handles overlap effects by using a single bit per core that indicates
whether the core is experiencing an interference event (multiple interference events
add only one unit per cycle); the mechanism then counts the number of cycles this bit is
set in order to know the total number of interference cycles. This approach implies that
(potentially long) wires need to be provided from the memory system to this per-core
bit. In contrast, our mechanism measures the various interference events locally, and
the resulting performance impact is calculated using formulas that are evaluated in
system software that take the different counts as an input.

Ebrahimi et al. [2011] present a mechanism that controls prefetch behavior to reduce
inter-thread interference caused by prefetch requests. In our proposal, we measure the
impact of inter-thread interference, including prefetch requests, which is orthogonal to
their policy. However, they also propose to measure the delay a prefetch causes on a
demand miss. Our mechanism does this in a natural way, since only demand misses
can block a processor core, and once scheduled, prefetch requests are considered as
normal reads. Furthermore, we also account for the case where prefetch requests are
delayed by demand misses and prefetch requests by other threads, which is not covered
by Ebrahimi et al.

8.4. Cache Partitioning

A large body of recent work has focused on cache partitioning in multicore processors,
see for example; Iyer [2004], Iyer et al. [2007], Jaleel et al. [2008], Kim et al. [2004],
Nesbit et al. [2007], Qureshi and Patt [2006], and Zhou et al. [2009]. These proposals
did not quantify per-thread progress, but aimed at improving multicore throughput
while guaranteeing some level of fairness among coexecuting jobs. Guo et al. [2007]
propose a framework to provide QoS in CMP systems. To accomplish this, they make
use of dynamic cache partitioning. As in Qureshi and Patt [2006], they use sampled
ATDs to determine the impact of assigning a limited number of sets to an application.
They do not model interference in main memory though. Our mechanism measures
interference in all of these components.

8.5. Thread Criticality

Bhattacharjee and Martonosi [2009] predict critical threads, or threads that run slower
than other threads in parallel workloads. The motivation is to give more resources to

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

Per-Thread Cycle Accounting in Multicore Processors 29:21

critical threads so that they run faster, offload tasks from critical threads to noncritical
threads to improve load balancing, etc. They determine thread criticality by tracking
and weighting the number of cache misses at different levels in the memory hierarchy.

9. CONCLUSION

Resource sharing leads to interference among coexecuting threads in multicore pro-
cessors because of contention effects: coexecuting threads compete for the shared re-
sources, such as caches, off-chip bandwidth, memory banks, etc., which leads to un-
predictable per-thread performance. The fundamental problem now is that system
software assumes that all coexecuting threads make equal progress although this is
not guaranteed by the underlying hardware. This may lead to various detrimental ef-
fects at the system level such as reduced quality-of-service, nonsatisfied service-level
agreements, unbalanced parallel execution, priority inversion, etc., which severely com-
plicates multicore processor scheduling.

This article presented a hardware-efficient per-thread cycle-accounting architecture
that tracks per-thread progress during multicore execution. The cycle-accounting ar-
chitecture estimates the impact of inter-thread misses in the shared cache as well as the
resource and bandwidth sharing in the memory subsystem, including the memory bus,
bank conflicts, and row buffer conflicts. The accounting architecture estimates the im-
pact of resource sharing on per-thread performance and reports to system software how
much isolated progress each thread has made during multicore execution. We report
average error numbers of 14.2% for an 8-core processor—the accounting architecture
captures 74.3% of the inter-thread interference on average. Hardware cost is limited
to 7.44KB for an eight-core system, which is almost 10x smaller than prior work,
while being 63.8% more accurate. System software, when made aware of per-thread
progress, improves multicore fairness by scheduling slowly progressing threads more
frequently: we report an average fairness improvement of 22.5% over progress-agnostic
scheduling.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive and insightful feedback.

REFERENCES

BHATTACHARJEE, A. AND MarTONOsI, M. 2009. Thread criticality predictors for dynamic performance, power,
and resource management in chip multiprocessors. In Proceedings of the International Symposium on
Computer Architecture (ISCA). 290-301.

Binkert, N. L., DresuiNsK, R. G., Hsu, L. R., Lim, K. T., Sami, A. G., axD REINHARDT, S. K. 2006. The M5
simulator: Modeling networked systems. IEEE Micro 26, 4, 52—60.

Esranivi, E., Leg, C. J., MutLy, O., aND Patt, Y. 2011. Prefetch-Aware shared-resource management for
multi-core systems. In Proceedings of the International Symposium on Computer Architecture (ISCA).

Esranmvi, E., Leg, C. J., MutLy, O., AND PaTT, Y. N. 2010. Fairness via source throttling: A configurable and
high-performance fairness substrate for multi-core memory systems. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
335-346.

EverMaAN, S. aND EEckHOUT, L. 2008. System-Level performance metrics for multi-program workloads. IEEE
Micro 28, 3, 42-53.

EvermaN, S. anD EEckHOUT, L. 2009. Per-Thread cycle accounting in SMT processors. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 133-144.

EveErmAN, S., EEckHOUT, L., KARKHANIS, T., AND SMiTH, J. E. 2009. A mechanistic performance model for super-
scalar out-of-order processors. ACM Trans. Comput. Syst. 27, 2.

Guo, F., SouHI, Y., ZHAO, L., AND IYER, R. 2007. A framework for providing quality of service in chip multi-
processors. In Proceedings of the International Symposium on Microarchitecture (MICRO). 343-355.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

29:22 K. Du Bois et al.

IveR, R. 2004. CQoS: A framework for enabling QoS in shared caches of CMP platforms. In Proceedings of
the International Conference on Supercomputing (ICS). 257-266.

IveRr, R., ZHAO, L., aMD R. ILLIKRAL, F. G., MAKINENI, S., NEWELL, D., SoLmn, Y., Hsu, L., AND REINHARDT, S.
2007. QoS policies and architecture for cache/memory in CMP platforms. In Proceedings of the ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. 25—36.

JALEEL, A., HASENPLAUGH, W., QURESHI, M., SEBOT, J., STEELY, JR., S., AND EMER, J. S. 2008. Adaptive inser-
tion policies for managing shared caches. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT). 208-219.

Karkzanis, T. anp Smits, J. E. 2002. A day in the life of a data cache miss. In Proceedings of the 2nd Annual
Workshop on Memory Performance Issues (WMPI) held in conjunction with ISCA.

KessLEr, R. E., Hiur, M. D., anp Woop, D. A. 1994. A comparison of trace-sampling techniques for multi-
megabyte caches. IEEE Trans. Comput. 43, 6, 664—675.

Kmv, S., CHANDRA, D., aND SormiN, Y. 2004. Fair cache sharing and partitioning in a chip multiprocessor
architecture. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT). 111-122.

Luqug, C., MoreTro, M., CAZoRLA, F. J., Gioiosa, R., BUYUKTOSUNOGLU, A., AND VALERO, M. 2009. ITCA: Inter-task
conflict-aware CPU accounting for CMPs. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT). 203-213.

MurtLu, O. AND MosciBroDA, T. 2007. Stall-Time fair memory access scheduling for chip multiprocessors. In
Proceedings of the IEEE /| ACM International Symposium on Microarchitecture (MICRO). 146-160.
Nesgrr, K. J., Lavupon, J., aND SmitH, J. E. 2007. Virtual private caches. In Proceedings of the International

Symposium on Computer Architecture (ISCA). 57—68.

QuresHI, M. K. anD PatT, Y. N. 2006. Utility-Based cache partitioning: A low-overhead, high-performance, run-
time mechanism to partition shared caches. In Proceedings of the 39th Annual IEEE /| ACM International
Symposium on Microarchitecture (MICRO). 423-432.

SuerwooD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large scale pro-
gram behavior. In Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 45-57.

Zuovu, X., CHEN, W., AND ZHENG, W. 2009. Cache sharing management for performance fairness in chip mul-
tiprocessors. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT). 384-393.

Received June 2012; revised September 2012; accepted September 2012

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 29, Publication date: January 2013.

