
QoS Policies and Architecture for Cache/Memory in CMP
Platforms

Ravi Iyer1, Li Zhao1, Fei Guo2, Ramesh Illikkal1, Srihari Makineni1, Don Newell1,
Yan Solihin2, Lisa Hsu3, Steve Reinhardt3

1Intel Corporation 2North Carolina State University 3University of Michigan, Ann Arbor
 Contact Email: (ravishankar.iyer@intel.com, li.zhao@intel.com)

ABSTRACT
As we enter the era of CMP platforms with multiple threads/cores
on the die, the diversity of the simultaneous workloads running on
them is expected to increase. The rapid deployment of
virtualization as a means to consolidate workloads on to a single
platform is a prime example of this trend. In such scenarios, the
quality of service (QoS) that each individual workload gets from
the platform can widely vary depending on the behavior of the
simultaneously running workloads. While the number of cores
assigned to each workload can be controlled, there is no hardware
or software support in today’s platforms to control allocation of
platform resources such as cache space and memory bandwidth to
individual workloads. In this paper, we propose a QoS-enabled
memory architecture for CMP platforms that addresses this
problem. The QoS-enabled memory architecture enables more
cache resources (i.e. space) and memory resources (i.e.
bandwidth) for high priority applications based on guidance from
the operating environment. The architecture also allows dynamic
resource reassignment during run-time to further optimize the
performance of the high priority application with minimal
degradation to low priority. To achieve these goals, we will
describe the hardware/software support required in the platform as
well as the operating environment (O/S and virtual machine
monitor). Our evaluation framework consists of detailed platform
simulation models and a QoS-enabled version of Linux. Based on
evaluation experiments, we show the effectiveness of a QoS-
enabled architecture and summarize key findings/trade-offs.

Categories and Subject Descriptors
B.3.2 [Hardware]: Design Styles of Memory Structures – cache
memories.

General Terms: Algorithms, Management, Measurement,
Performance, Design, Experimentation

Keywords: Quality of Service, CMP, Cache/Memory,
Performance, Service Level Agreements, Resource Sharing
Principles

1. INTRODUCTION
As the momentum behind chip multiprocessor (CMP)
architectures [7][12][18] continues to grow, it is expected that
future microprocessors will have several cores sharing the on-die
and off-die resources. The success of CMP platforms depends not

only on the number of cores but also heavily on the platform
resources (cache, memory, etc) available and their efficient usage.
In general, CMP architectures are being designed to perform well
when a single parallel application is running on them. However,
CMP platforms will also be used to run multiple applications
simultaneously. The rapid deployment of virtualization
[2][21][23][31] as a means to consolidate multiple applications
onto a platform is a prime example.
When multiple applications run simultaneously on CMP
architectures, the quality of service (QoS) that the platform
provides to each individual application will not be deterministic
because it depends heavily on the behavior of the other
simultaneously running workloads. As expected, recent studies
[3][5][9][10][19][27] have indicated that contention for critical
platform resources (e.g. cache) is the primary cause for this lack
of determinism and QoS. In this paper, we highlight this problem
further and motivate the need for QoS support in CMP platforms.
We focus on two important platform resources – cache (space)
and memory (bandwidth) – in our investigation and identify QoS
policies and mechanisms to efficiently manage these resources in
the presence of disparate applications (or threads).
Recent studies on partitioning of (cache) resources have either
advocated the need for fair distribution [3] between threads and
applications or the need for unfair distribution [5] with the
purpose of improving overall system performance. In contrast, the
work presented here aims to improve the performance of an
individual application at the potential detriment of others with
guidance from the operating environment. This is motivated by
usage models such as server consolidation where service level
agreements motivate the degree of performance isolation [1][4]
desired for some applications. Since the relative importance of the
deployed applications is best known in the operating environment,
we introduce the need for software-guided priorities (e.g. assigned
by administrators) to efficiently manage hardware resources.
While the objective of priorities may be intuitive, the
considerations, trade-offs and implications of these priorities are
far from obvious. In this paper, we describe the issues involved
and the basis for prioritization (i.e. how priority classes are
specified and what they mean to the resource distribution).
The primary contribution of this paper is the design and
evaluation of several priority-based resource management policies
for an effective QoS-aware cache/memory architecture. The
proposed QoS policies differ in terms of prioritization goals (high
priority targets and low priority constraints), the monitoring
metrics used (resource vs. performance-based) and the nature of
resource assignment (static vs. dynamic). We evaluate the QoS-
aware architecture and policies in the context of virtualization-
based consolidation usage models, heterogeneous CMP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMETRICS’07, June 12-16, 2007, San Diego, CA, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006…$5.00.

25

App1 App2

C C C C

Cache

Mem IO

App1

OS

Mem IO

Hypervisor/VMM

OS

App2 App1 App2

Mem IO

C C C C

Cache

C C C C

Cache

Workload

VM2VM1

OS

Disparate applications

Disparate VMs

Disparate “cores”

 (a) Multi-Tasking Scenarios (b) Virtualization/Consolidation (c) Heterogeneous Cores

Figure 1. Disparate Threads of Execution on CMP Platforms

architectures and traditional multi-tasking environments. Our
evaluation framework is based on detailed trace-driven
simulations as well as a prototype QoS-aware version of Linux.

We show that the proposed QoS-aware memory architecture can
improve the performance of the high priority application
significantly in the presence of other applications. We also show
that dynamic policies are important since they allow the hardware
to guide the resource allocation based on actual performance
changes as well as constraints.

The rest of this paper is organized as follows. The case for QoS
and related work are presented in Section 2 and 3. Section 4
covers the QoS design space (goals, targets and considerations).
Section 5 introduces QoS policies and the QoS-aware
architecture. Section 6 presents the evaluation framework and
analyzes effectiveness of proposed QoS policies. Section 7
summarizes findings and presents a direction for future work.

2. A CASE FOR QOS IN CMP PLATFORMS
In this section, we motivate QoS needs by describing disparate
threads and the shared resource problem.

2.1 Disparate Threads of Execution
As shown in Figure 1, the key trends that point to disparate CMP
threads of execution are as follows:
(a) Multi-tasking becomes more common: As more
threads/cores are enabled on die, the compute capability is best
utilized by multiple simultaneously executing tasks or
applications (see Figure 1a). The behavior and platform resource
usage of these simultaneous threads of execution can be quite
disparate (e.g. cache-friendly versus streaming). It is also possible
that one application is of more importance than another (e.g.
business-critical application executing with network backup).
(b) Virtualized workloads becoming mainstream: While the
concept of virtualization [6] has been around for a while, the
recent re-emergence of virtualization as a means to consolidate
workloads in the datacenter reflects the need to pay attention to
the performance behavior of virtual machines running
heterogeneous workloads simultaneously on a server, as shown in
Figure 1b. This becomes even more important as virtualization-
based usage models continue to rapidly evolve and encompasses
office workstations/desktops and even home PCs/laptops. In these
scenarios, many disparate workloads are consolidated together
and performance isolation [4] is desired for the high priority
applications that can be identified by user or administrator.

(c) Heterogeneous CMP architectures are attractive: In
addition to diverse workloads, we are also at a point in the CMP
evolution where not only heterogeneous cores [13] but also co-
processors and engines (e.g. TCP offload, graphics, crypto) are
being explored for integration on the die. These diverse “threads”
of execution (as illustrated in Figure 1c) are known to have
different behavior as compared to typical applications running on
the general-purpose cores on the die. Depending on the workload,
it is also possible that either the general purpose application or the
special-purpose function is more important to optimize.

2.2 The Shared Resource Problem
Cache and memory are two key platform resources that affect
application performance. While memory has always been shared
in multiprocessor platforms, the emergence of CMP architectures
now makes cache (typically the last level in the hierarchy) also a
shared resource amongst the threads on the die. In addition to
cache and memory, other resources that are shared include
interconnects (on-die and off-die) as well as I/O devices. While
we expect that all shared resources will require priority-based
management in the platform, we focus in this paper primarily on
cache and secondarily on memory. The resource characteristics
that need to be provisioned for QoS differ significantly between
cache and memory as considered in this paper. For cache, it is the
space shared by disparate threads, whereas for memory, it is the
bandwidth that is shared between disparate threads running
simultaneously.

Figure 2 illustrates the motivation for QoS in this context. The
figures show the resource and performance implications of a high
priority application running in standalone (dedicated) mode
versus when it is running in shared mode with other low priority
applications. We chose an OLTP trace (TPC-C like) to represent a
high priority application and a Java workload trace
(SPECjbb2005 like) and a networking workload trace (NTttcp) to
represent the low priority applications. We ran the high priority
application in isolation (dedicated mode) and along with the low
priority applications (shared mode). The study showed how
sharing cache affects the performance of the high priority
application (OLTP). The cache performance of the high priority
application reduced significantly (~1.7X increase in MPI) since
the cache space available to this application was only 35%. In
order to minimize the loss of performance (~20%), the priority of
the application needs to be comprehended by the platform in
order to re-allocate cache resources. In this paper, we investigate
QoS policies and mechanisms to manage the cache (and memory)
resource distribution between high and low priority applications.

26

Cache

C C C C

Cache

Mem IO

C C C C

OS

App1

Dedicated Mode:
App1 by itself

OS

App2+App1

Mem IO

Shared Mode: App1
running with others

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Dedicated Shared Dedicated Shared Dedicated Shared

Cache Space MPI IPC

60% loss
20% loss

70% more
misses

(a) Dedicated Mode Execution (b) Dedicated vs. Shared Performance Implications (c) Shared Mode Execution

Figure 2. Disparate Threads and Shared Resources: Illustrating the need for QoS

3. RELATED WORK
Previous research on partitioning for cache/memory architectures
can be found in [5][9][10][17][19][19][33] The primary
optimization goal for the techniques presented in most of these
papers has been either fairness [10][17][33] or improving overall
throughput [19]. For example, Kim et al. [10] proposed a fair
policy that attempts to equalize the cache resources provided to
each of the individual applications or provide unequal cache
resources to ensure equal performance degradation for each of the
applications. However, their dynamic algorithm requires an
offline profile for each thread’s execution. Yeh et al. [33] presents
a dynamic scheme which is based on on-line statistics and re-
configures the cache partitioning accordingly. To provide fairness
as well as QoS on available memory bandwidth across threads,
Nesbit et al. [17] proposed a memory scheduler by adapting fair
queuing techniques from network research. To improve overall
performance through unequal distribution of cache resources,
Qureshi et al [19] presents a low overhead online mechanism to
keep track of cache utility for each thread and direct cache space
distribution.

Although QoS has been studied for a long time in real-time
environments [24], networking [35] and multimedia [15], it has
only been recently introduced to the CMP architecture[9]. Iyer [9]
described the need for a priority-based framework to introduce
QoS in CMP caches. However, the paper did not present a
detailed description of policies, metrics or complete architectural
support. In this paper, we present a complete proposal with
optimization goals, policies and metrics as well as hardware
support in the CMP platform.

4. QOS GOALS AND CONSIDERATIONS
In order to design appropriate QoS policies and mechanisms it is
important that the goals, metrics and constraints are considered
and incorporated.

4.1 QoS Philosophy & Goals
The first step is to ensure that the goal of the QoS policy is well
defined. Hsu et al. [5] describe various optimizations goals and
policies for cache sharing in a CMP platform. Three types of
policies are described – capitalistic, communist and utilitarian.
The capitalist policy is essentially the baseline LRU-based cache
implemented in most processors today. This policy allows each

individual thread to grab cache space based on the frequency of
the access. As a result, the faster it generates memory accesses,
the more allocation it is able to accomplish. The utilitarian policy
attempts to improve the overall throughput (the greater good) of
the platform by maximizing resources for the cache-friendly
application and minimizing resources for the cache-unfriendly
application. Finally, the communist policy attempts to equalize
the cache resource or performance available to each of the
individual applications.

In this paper, our basic philosophy is different in that it considers
the relative priority of the applications running simultaneously
and ensures that a high priority application is provided more
platform resources than the low priority applications. As a result,
we propose a new policy that could be called “elitist”, as it caters
to the elite application(s) at the possible expense of the non-elite
classes of applications. Elitist policies have several key
considerations and requirements: (a) the classification of
applications into elite vs. non-elite, (b) the nature of the QoS that
an elite application should be provided and (c) the extent to which
non-elite applications is allowed to suffer. In following
subsections, we will further discuss considerations and propose
solutions that address them.

Figure 3. Metrics for QoS Policies (E.g. Cache)

4.2 QoS Metrics
The purpose of the elitist QoS policy is to improve the
performance of the high priority application at the expense of

 RUM
(resource
usage)

Cache

Prioritized
Requests

App-Pri-1 App-Pri-2

MPI-1 MPI-2

 RPM
(resource
performance)

 OPM
(overall
performance)

IPC-1 IPC-2

27

others. To specify and/or measure the efficacy of a QoS policy,
we propose three types of metrics (see Figure 3):
• Resource Usage Metrics (RUM): The underlying mechanism
to improve the performance of the high priority application is the
amount of resource it is provided. So RUM (e.g. cache space)
could be used as a metric to measure both resource QoS as well as
its contribution to overall QoS if multiple resources are involved.
Specifying the usage needs for all of the platform resources also
enables creation of a virtual platform architecture tailored to the
application or virtual machine of interest.
• Resource Performance Metrics (RPM): Providing more
resources (measured by RUM) does not always ensure that the
application performance will improve. For example, there are
applications that are streaming in nature where providing
additional cache space does not help. As a result, it may be better
to use resource performance (e.g. misses per instruction for the
cache resource) as a metric as opposed to resource usage itself.
• Overall Performance Metrics (OPM): The contribution of a
certain resource and its performance to the overall platform
performance depends highly on the platform as well as
application characteristics. Ultimately, it is best to measure the
overall performance (e.g. IPC).

4.3 QoS Targets & Constraints
To define an appropriate QoS policy and mechanism, it is
important to understand the targets and the constraints. The target
of the QoS policy is the extent to which the high priority
application should be improved whereas the constraint ensures
that the low priority application does not suffer beyond a certain
point. In order to understand this further, let’s define the target
first. Figure 4 describes the bounds on high-priority applications,
low-priority applications and overall performance of the platform.

P
er

fo
rm

an
ce

Dedicated Mode

High Priority Low Priority Overall

Shared Mode

Dedicated Mode

Shared Mode
QoS Targets

QoS Constraint

Shared Mode

QoS Constraint

Figure 4. QoS Targets and Constraints

As illustrated in Figure 4, the high priority application
performance is essentially bounded by its performance in
dedicated mode versus shared mode. The QoS target is to achieve
somewhere in between. At one extreme, to achieve the dedicated
mode performance, all resources have to be provided to the high
priority application. At the other extreme, if shared mode
performance is sufficiently close to dedicated mode performance,
QoS may not be required. Another consideration is that the QoS
target for the high performance application can be specified as
either a distance from the dedicated mode execution or a distance
from the shared mode execution. Online monitors or offline
profiling may be required to measure these bounds and provide
guidance on setting targets.

While attempting to achieve high performance for the high
priority application, it may be important to control the
degradation of the low priority applications or the overall
performance of the platform. As shown in Figure 4, the QoS
constraint is this degradation threshold that is allowable in the
platform. It would be ideal if the low priority is less affected if
fewer resources are provided to it, but that may not always be the
case. If the QoS target and QoS constraint are set independently,
we expect that only best effort QoS can be supported by the
platform. If hard guarantees are required on the resource itself, the
choices that need to be made may be quite different. In this paper,
we focus on best effort QoS and show how best we can provide
resource and performance benefit for high priority applications
while meeting the constraints.

5. QOS POLICIES AND ARCHITECTURE
In this section, we outline proposed QoS policies based on
specific goals, metrics, targets and constraints. We also present a
QoS-aware memory architecture that forms the underlying
infrastructure to implement these policies.

5.1 Proposed QoS Policies
The proposed QoS policies differ based on whether they require
static or dynamic resource allocation, whether they consider
targets or constraints, and the metric on which they are based.
While the QoS policies can be defined for any number of
applications and priority levels, we discuss the policies in the
context of one high-priority level and one low-priority level. The
two primary policies (static vs. dynamic) and associated sub-
policies are described in the subsections below.

5.1.1 Static QoS Policies

We define a policy as static if the hardware mechanism required
for it does not need to perform dynamic resource assignment. In
other words, static policies are defined such that the specified
target and constraint do not require continuous adjustment of
resources. As a result, a static policy specifies the QoS target
and/or constraint in terms of the resource usage metric (RUM; e.g.
cache space) provided to the high priority application and low
priority applications respectively. It should be noted that while the
hardware policy is static, the software policy can choose to
dynamically modify the prioritization.

For the cache resource, we need to be able to specify the cache
space allowable for each priority level and ensure that the priority
level does not exceed this threshold during execution. It is also
important that cache and memory QoS work cooperatively. If a
low priority application is constrained in cache space, it will start
to occupy more memory bandwidth and thereby affect the high
priority applications and potentially cause priority inversion. The
resource metric of interest for memory QoS is bandwidth. To
control memory bandwidth allocation, we control the rate at
which requests from different priority levels are allowed to be
issued to the memory subsystem. Nesbit et al. [17] describe an
interesting re-design of the memory controller to achieve the goal
of bandwidth guarantees. To avoid significant re-design, we
evaluate a simpler approach. Re-ordering of requests is a common
optimization in the memory controller for improving memory
efficiency and performance [16][22][36]. Based on this re-
ordering optimization, we control memory bandwidth by allowing

28

requests from a high priority application to bypass requests from a
low-priority application. The extent to which requests can be
bypassed (e.g. 5 high priority requests before serving one low
priority requests) indicates the ratio of bandwidth (e.g. 5:1) that is
provided to the incoming priority levels. It should be noted that
we take this approach because (a) we are more interested in
bandwidth differentiation rather than bandwidth guarantees and
(b) it is very simple to implement.

5.1.2 Dynamic QoS Policies

Dynamic QoS requires resources to be continuously re-allocated
based on the resultant performance and the targets/constraints. In
this paper, we evaluate the ability to do this dynamic re-allocation
in hardware. However, it should be noted that it is possible to
accomplish the re-allocation in software as well if all of the
monitoring feedback is provided to the execution environment
(OS or VMM). The targets and constraints can be specified in
terms of resource performance (Dynamic QoS RPM) or overall
performance (Dynamic QoS OPM). Also, depending on whether
the constraints are used at all or how they are specified, the sub-
policies can be further sub-categorized into (a) Target – where a
target is specified for the high priority application and the
constraint is ignored, (b) LoPriConstraint – where instead of a
high-priority target, a constraint is specified that the low-priority
application should not degrade below a certain resource or overall
performance level, and (c) OverallConstraint – where instead of a
high priority target being specified, a constraint that the (resource
or overall) performance of the overall platform should not drop
below a certain threshold is specified. In these policies, the
amount of resource as well as the resultant performance provided
to a high priority application or a low priority application need to
be monitored at regular intervals in the platform. If the
performance of the high priority application is lower than the
target or the degradation threshold for the low priority application
or for overall platform is not crossed, then the amount of
resources assigned to the high priority application is increased by
a pre-specified amount. The architecture and implementation for
such QoS policies are discussed below.

5.2 A QoS-Aware Memory Architecture
In this subsection, we present a layered QoS architecture that
implements static and dynamic cache resource assignment for the
QoS policies. Our proposed QoS-aware memory architecture
consists of three primary layers: priority enforcement, priority
assignment and priority classification. For simplicity, we first
assume that there is only one high priority thread and one low
priority thread. We later describe extensions to the architecture
for more priority levels and more applications. Figure 5 shows the
three layers and the hardware support for each layer.

5.2.1 Priority Classification

The priority classification layer is responsible for identifying and
providing the QoS information: the priority levels of each
application (0 for high and 1 for low) and the associated
targets/constraints. We expect that the metric of choice (RUM vs.
RPM vs. OPM) is ultimately standardized and exposed to the user
in a consistent manner. As shown in Figure 5, this layer requires
support in the execution environment (either OS or hypervisor) as
well as the processor architecture. Operationally, support (in the

form of a QoS API) is required for the user or administrator to
supply the required QoS information to

QoS
Enforcement

Module

QoS Resources
Cache,

Memory BW

Tagged Memory
Accesses

ThresholdUtilization

Enforcement

Cache Space,
Memory BW

Platform QOS
Register

Priority
Level

Resource
Threshold

Performance
Targets

Memory
Accesses

QoS API

Application User/
Admin

OS / VMM

P
rio

rit
y

A
ss

ig
nm

en
t

P
rio

rit
y

E
nf

or
ce

m
en

t
P

rio
rit

y
C

la
ss

ifi
ca

tio
n

QoS Resource
Table

Core

QoS
Enforcement

Module

QoS Resources
Cache,

Memory BW

Tagged Memory
Accesses

Tagged Memory
Accesses

ThresholdUtilization

Enforcement

Cache Space,
Memory BW

Platform QOS
Register

Priority
Level

Resource
Threshold

Performance
Targets

Memory
Accesses

QoS API

Application User/
Admin

OS / VMM

P
rio

rit
y

A
ss

ig
nm

en
t

P
rio

rit
y

A
ss

ig
nm

en
t

P
rio

rit
y

E
nf

or
ce

m
en

t
P

rio
rit

y
E

nf
or

ce
m

en
t

P
rio

rit
y

C
la

ss
ifi

ca
tio

n

QoS Resource
Table

QoS Resource
Table

Core

Figure 5. QoS Architecture Layers and Components

the execution environment. The support in the execution
environment is the ability to maintain the QoS information in the
thread state and the ability to save and restore it in the processor’s
architectural state when the thread is scheduled to run. The
support in the processor is essentially a new control register called
Platform QoS Register (PQR) in order to maintain the QoS
information (in the architectural state) for the runtime. The
execution environment sets the PQR with the platform priority
level of the currently running application at schedule time. In
addition, this register will also be used to convey the mapping of
priority levels into resource thresholds (for static QoS) and the
mapping of priority levels to targets/constraints (in case of
dynamic QoS).

15 bits for static resource
Targets for a priority level
- 2 bits for resource type
- 13 bits for Threshold

- Cache space (%)
- Memory BW (%)

Resource TargetsResource Targets

15 Bits to specify the Dynamic
QoS Targets/Constraints
- 1 bit for Target/Constraint
- 4 bits for performance metric id
- 10 bits for performance value

Performance TargetsPerformance Targets

Two bits to indicate
four Application
Priority levels

– 00: Priority A
– 01: Priority B
– 10: Priority C
– 11: Priority D

Priority LevelPriority Level

15 bits for static resource
Targets for a priority level
- 2 bits for resource type
- 13 bits for Threshold

- Cache space (%)
- Memory BW (%)

Resource TargetsResource Targets

15 Bits to specify the Dynamic
QoS Targets/Constraints
- 1 bit for Target/Constraint
- 4 bits for performance metric id
- 10 bits for performance value

Performance TargetsPerformance Targets

Two bits to indicate
four Application
Priority levels

– 00: Priority A
– 01: Priority B
– 10: Priority C
– 11: Priority D

Priority LevelPriority Level

Figure 6. QoS Information Encoding in PQR

5.2.2 Priority Monitoring & Assignment

Figure 5 also illustrates the components of priority assignment
layer in the QoS-aware memory architecture. Figure 6 shows a
potential encoding of QoS information that needs to be passed
down from the execution environment to the platform. The first
field indicates the priority level of the executing thread. This
information is written into the PQR every time a new thread is
scheduled on to the processor. The second field is used for static

29

QoS and indicates the thresholds for each resource type (cache,
memory, etc) for each priority level. For example, it specifies the
space threshold for cache and the bandwidth threshold for
memory in discrete quantities or as ratios respectively. This
information is only provided when the execution environment
initializes or needs to modify the resource thresholds for the
priority levels supported by the platform. Whenever this field is
updated in the PQR, the information is passed to the QoS
Resource Table (QRT) which will be described later. For dynamic
QoS, the third field is used to specify the target and/or constraint
for the priority level. It is desirable to specify the target/constraint
in terms of a multiplier to the actual performance (RPM or OPM).
For example, if the target is specified as 1.2, then the goal is to
achieve 20% more performance (IPC) when using OPM as the
metric. In the PQR, one bit is used to indicate target vs.
constraint, a few bits are used to indicate which performance
metric (RPM vs. OPM, cache vs. memory, etc) and then a subset
of the multiplier values are encoded in the remaining bits.
Whenever the PQR is written, these resource and performance
targets are passed down to the QoS Resource Table and the QoS
Enforcement module if necessary. Once the mapping of priority
level to resource or performance targets are established, the next
step is to ensure that every memory access is tagged with the
priority level. By tagging each memory access with the associated
priority level (from the PQR), monitoring and enforcement of
resource usage is made possible locally within each subsystem
(cache, memory, etc). This is described in more detail in the next
section.

5.2.3 Priority Enforcement

Figure 5 illustrates the priority enforcement layer in the
architecture and shows the components involved. The inputs to
the enforcement layer are the tagged memory accesses and the
QoS resource table. As shown in Figure 7, each line in the cache
is tagged with the priority level in order to keep track of the
current cache space utilization per priority level. The QoS
resource table uses this information to store the cache utilization
per priority level. This is done simply by incrementing the
resource usage when a new line is allocated into the cache and
decrementing the resource usage when a replacement or eviction
occurs. The QoS resource table also maintains the number of
memory accesses (cache misses and writebacks). By doing so, it
can also keep track of the bandwidth consumption in memory.

QoS Aware
Replacement

Algorithm

QoS Resource TableQoS Enabled Cache

Se
t n

ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority Level ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority Level

Way N
Way …
Way 2
Way 1

Priority Priority
LevelLevel

Line Line
StateState

DataDataAddress Address
TagTag

Way N
Way …
Way 2
Way 1

Priority Priority
LevelLevel

Line Line
StateState

DataDataAddress Address
TagTag

QoS Aware
Replacement

Algorithm

QoS Resource TableQoS Enabled Cache

Se
t n

ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority Level ThresholdThreshold

Priority D
Priority C
Priority B
Priority A

UtilizationUtilizationPriority LevelPriority Level

Way N
Way …
Way 2
Way 1

Priority Priority
LevelLevel

Line Line
StateState

DataDataAddress Address
TagTag

Way N
Way …
Way 2
Way 1

Priority Priority
LevelLevel

Line Line
StateState

DataDataAddress Address
TagTag

Figure 7. QoS-Enabled Cache Enforcement

For priority enforcement, there are two more functions that are
critical: (a) Static QoS: to make sure the resource utilization stays
within the static QoS threshold specified in the QoS Resource
Table and (b) Dynamic QoS: to dynamically adjust the threshold
to satisfy the performance target/constraint specified. The static

QoS policy is achieved by modifying the replacement policy to be
QoS aware. For each priority level, the utilization and the static
QoS thresholds are available (in the QRT) on a per priority basis.
If the utilization is lower than the specified threshold, then the
replacement policy works in normal mode using the base policy
(like LRU). When the utilization reaches the static QoS threshold,
the replacement policy overrides the LRU policy to ensure that it
finds a victim within the same priority level. In some corner
cases, it is possible that the set does not contain a line from the
same priority level even though the utilization threshold has been
reached. In these cases, a victim is chosen from a lower priority
level or at random if none is available. Similar cache partitioning
mechanisms have been presented before [9][19][27][28].

At each interval, perform the following check:
Target-Only: If (perfhi < targethi) {reduce lo threshold; increase hi threshold}
Lo-Constraint: If (perflo > targetlo) {reduce lo threshold; increase hi threshold}
Overall-Constraint: If (perfovl > targetovl) {reduce lo threshold; increase hi threshold}
All-of-the-Above: Else {restore previous interval thresholds}

Figure 8. Basic 2-Priority Dynamic QoS Heuristic

To enforce dynamic QoS policy, the QoS Enforcement Module
(QEM shown in Figure 5) monitors the performance (cache
misses as well as cycles per instruction) at frequent intervals. A
basic description of a dynamic QoS heuristic (for 2 priority
levels) is shown in Figure 8. As long as the target is not achieved
or the constraint is not violated (as specified by the dynamic QoS
policy described in section 5.1.2), the QEM modifies the resource
thresholds by reducing it for low priority and increasing it for
high priority. The granularity at which the resource threshold
increases/decreases is a parameter that is pre-specified (e.g. 10%
of cache size). The QEM can also address underutilization issues
by modifying resource thresholds. In the memory subsystem,
similarly, the QEM can decide to change the bandwidth ratio (e.g.
from 3:2 to 4:1). If the target is reached, then no changes are
made to the thresholds subsequently. If the constraint is violated,
the setting for the previous interval is restored. For implementing
this, the QoS resource table is extended to maintain current and
past resource utilization and thresholds, resource performance and
overall performance. Since the table is small (< 1KB), the
overhead of maintaining this information is negligible.

To extend the dynamic QoS heuristic for multiple priority levels,
additional parameters are needed: (a) separation level and (b) split
ratio. The separation level indicates that all priority levels below
it will have resources reduced and the ones above it will be
provided those resources. The split ratio indicates how these
resources will be stolen and distributed amongst the priority
levels. In the evaluation section, we will show an example with
three priorities (where the separation is set to the lowest priority
level and the split ratio is varied).

6. QOS EVALUATION & PROTOTYPING
In this section, we present two approaches (trace-driven
simulation & software prototyping) to evaluate QoS.

6.1 Simulation-Based Evaluation
In this subsection, we describe the trace-driven simulations for
evaluating QoS policies and architecture.

30

6.1.1 Simulation Framework

We developed a trace-driven platform simulator called ManySim
[34] to evaluate CMP architectures and QoS policies. ManySim
simulates the platform resources with high accuracy, but abstracts
the core to optimize for speed. The core is represented by a
sequence of compute events (collected from a cycle-accurate core
simulator) separated by memory accesses that are injected into the
platform model. ManySim contains a detailed cache hierarchy
model, a detailed coherence protocol implementation, an on-die
interconnect model and a memory model that simulates the
maximum sustainable bandwidth specified in the configuration.
The CMP architecture (a somewhat scaled down version of a
Niagara-like [11][14] architecture) used for evaluation is shown in
Figure 9. There are two cores, with each one having four threads
and its own private L1 and L2. Both cores share the last level
cache (L3) where the QoS policies are enforced. When we run
multi-threaded applications with two priority levels, each core is
running a different application (the first four threads run the high
priority application whereas the second four threads run the low
priority application). When we run three applications with three
different priority levels, the high, mid and low priority
applications are running on the first three threads, the next three
and the last two threads respectively.

T0

 T1

L2

T2
 T3

L1

L3
Memory

Interconnect

T4
 T5

L2

T6
 T7

L1

Figure 9. Evaluated CMP Environment

Table 1 summarizes the simulation configurations. As shown in
the table, we model CMP architecture with a 3-level cache
hierarchy and simple in-order cores. In our simulation, the 8
threads share a 1MB last-level cache. The available memory
bandwidth is set to be 8 GB/s. For QoS evaluation, ManySim was
modified to allow cores and traces to be tagged with priorities.
The priorities were then provided to the cache/memory
subsystem. The QoS hardware components (QRT, QEM, QoS-
aware replacement, etc) were implemented in ManySim. The
specific cache QoS policies evaluated using Manysim are:

• Static QoS
• Dynamic QoS + MPI_Target
• Dynamic QoS + Overall_MPI_Constraint
• Dynamic QoS + LoPriority_MPI_Constraint
• Dynamic QoS + IPC_Target
• Dynamic QoS + Overall_IPC_Constraint
• Dynamic QoS + LoPriority_IPC_Constraint

We also evaluate memory QoS for the base architecture with and
without cache QoS. The specific QoS parameters used are
described along with the results. In all cases, we model cache and
memory contention effects accurately.

Table 1. ManySim Simulation parameters

Parameters Values
Core 4GHz, In-order, 4 threads

L1 I/D cache 32 Kbytes, 4-way, 64-byte block

L2 cache 128K bytes, 8-way, 64-byte block

L2 cache hit time 10 cycles

MSHR size 16

L3 cache 1M bytes, 16-way, 64-byte block

L3 cache hit time 50 cycles

Interconnect bandwidth 128GB/s

Memory access time 400 cycles

Memory bandwidth 8GB/s

Queues and Other
Structures

Memory Queue (16) L3 MSHR (16)

Coherence Controller Queue (16)

Interconnect Interface (8 entries)

6.1.2 Workloads & Traces

We chose a few commercial multi-threaded server workloads
(OLTP, SPECjbb) and a networking workload (NTttcp). Running
these simultaneously allows us to experiment with virtualization-
based consolidation usage models (two or three workloads
running simultaneously) as well as heterogeneous CMP
architectures (when one of the workloads is NTttcp) described
earlier in Section 2.1.

OLTP: For representing OLTP, we used traces from multi-
threaded TPC-C-like workload [30], which is an online-
transaction processing benchmark that simulates a a warehouse
environment where a user population executes transactions
against a database. The benchmark is based on order-entry
transactions (new order, payment, etc).
Java: SPECjbb2005 [26] is a Java-based multi-threaded server
benchmark that models a warehouse company with warehouses
that serve a number of districts (much like TPC-C). This
workload stresses the performance of JVM internals (garbage
collection, runtime optimization, etc).
NTttcp: NTttcp is commonly used to test network I/O (packet
processing for transmit/receive) and contains a lot of
transient/streaming data as a result. This is a Windows version for
ttcp [29] micro-benchmark.

6.1.3 Evaluating Static QoS Impact

The static QoS policy essentially allows more cache (space) and
memory (bandwidth) resources to be assigned to the high priority
application. For cache, we do so by limiting the amount of space
in the cache that the low priority application can allocate. As a
result, our evaluation of the static QoS policy is done by varying
this cache space limit for low priority applications from 0% to
40% of the cache size. We compare this to the shared mode
execution without QoS which is denoted by a cache space limit of
100%. We use the two RPM/OPM primary metrics to evaluate
effectiveness: resource performance denoted by MPI (misses per
instruction) and overall performance denoted by IPC (Instructions
per Cycle).

31

Figure 10 shows the impact of the QoS policy when executing
TPCC with SPECjbb and TPCC and NTttcp. The two y-axes
illustrate the MPI (bars) and IPC (lines) respectively, normalized
to the case where both workloads share the cache without any
prioritization. We find that as we reduce the cache space available
for SPECjbb (in Figure 10a), the MPI for TPCC is decreased.
When SPECjbb can only take up to 10% of the total cache size,
the MPI for TPCC is reduced by about 25%, and as a result the
IPC for TPCC is increased by 11.4%. On the other hand, as
expected, the MPI for SPECjbb is increasing and its IPC is
reduced. One of the important findings from this study is that
since the low priority application gets affected, it is important to
enforce constraints on how degraded its performance can get.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100% 40% 30% 20% 10% 0%
Cache space that SPECjbb (low priority) can consume

N
or

m
al

iz
ed

 M
PI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 IP
C

MPI(TPCC) MPI(SPECjbb)
IPC(TPCC) IPC(SPECjbb)

(a) TPCC (hi) + SPECjbb (lo)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

100% 40% 30% 20% 10% 0%
Cache space that NTttcp (low priority) can consume

N
or

m
al

iz
ed

 M
PI

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 IP
C

MPI(TPCC) MPI(NTttcp)
IPC(TPCC) IPC(NTttcp)

(b) TPCC (hi) + NTttcp (lo)

Figure 10. Impact of Cache QoS (Static Policy)

We next evaluate the impact of QoS policies for memory
bandwidth prioritization when running TPCC and NTttcp (TPCC
having higher priority). Note that although we have the results of
all the combinations for different workloads, we pick one of them
for brevity. It should also be noted that we simulated a
bandwidth-constrained environment to study memory QoS to
mimic pin constraints on future generations of large-scale CMP
platforms. For memory bandwidth, the resource is controlled by
allowing multiple high priority requests in the queue to be
serviced before a pending low priority request. The number of
requests that are serviced for high priority before a low priority
request is labeled as the priority degree (same as bandwidth ratio).
The base case is where the memory requests are serviced in order
of arrival.
Figure 11 shows the impact of the static memory QoS policy on
the IPC of the high priority application (in (a)) and the low
priority application (in (b)). In the figure, we show three curves
denoted by 100% (shared mode execution without cache QoS),

30% (shared mode execution with 30% cache space limit on low
priority application) and 0% (shared mode execution with low
priority applications bypassing the last-level cache). It should be
noted that there are two “opposite” memory effects occurring as
more cache space is provided to the high priority application: (a)
fewer high priority misses go to the memory subsystem and as a
result, the dependency on memory bandwidth is lower, and (b)
more low priority misses go to the memory subsystem and as a
result, it occupies more of the memory bandwidth.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

base 1 2 3 4 5
Priority degree

N
or

m
al

iz
ed

 IP
C

NTttcp(100%)
NTttcp(30%)
NTttcp(0%)

 (a) TPCC (high priority) Performance

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

base 1 2 3 4 5
Priority degree

N
or

m
al

iz
ed

 IP
C

NTttcp(100%)
NTttcp(30%)
NTttcp(0%)

(b) NTttcp (low priority) Performance

Figure 11. Memory QoS Impact
As shown in Figure 11 (a), even a small increase in priority
degree (value of 1) improves the IPC of TPCC (high priority
workload) by as much as 21%. As we increase the priority degree
further, the IPC increases more slowly and remains constant once
the priority degree reaches 3. When QoS policy is enforced on
cache, the IPC is increased by another 20% (NTttcp-30% case)
and 16% (NTttcp-0% case) respectively except for the base case.
As shown in Figure 11(b), the IPC for low priority workload
(NTttcp) is reduced. However the reduction in low priority
performance is not as much as the increase for the high priority
application. When priority degree is 1, the IPC is reduced by
10%. Similar behavior can be seen for other two curves. Another
notable behavior is that when NTttcp is fully bypassing the cache
(0%), the bandwidth priority does not have much impact. This
occurs partially because TPC-C has more space in cache and is
less sensitive to changes in memory latency.

6.1.4 Evaluating Dynamic QoS Impact

For dynamic QoS, we only present the impact of the policy on
cache for lack of space. The dynamic policies evaluated differ in
target/constraint metric (RPM vs. OPM) as well as the type of
target or constraint used. Table 2 shows the parameters used for
the six resultant policies. These policies are compared to the base

32

case where all the workloads have the same priorities. For two
priority levels, we only show the results for TPC-C running with
NTttcp for brevity. Figure 12 shows the implications of using
dynamic QoS based on MPI as the RPM metric. The x-axis shows
execution timeline broken into intervals of 300K references.

Table 2: Dynamic QoS Parameters

Policy RPM (MPI multiplier) OPM (IPC multiplier)

Target 0.8x (high priority) 1.2x (high priority)
Overall
Constraint

1.1x (overall) 0.9x (overall)

Low-Pri
Constraint

1.2x (low priority) 0.8x (low priority)

During a given interval, the resource allocation is constant. At the
end of each interval, the QoS enforcement module re-evaluates
the performance based on targets/constraints and re-allocates the
cache space as appropriate. The two y-axes show the cache space
utilized (bars) by each application and the normalized MPI
(lines). Figure 12a shows the execution when no QoS is
performed. The workloads exhibit a relatively steady cumulative
MPI and cache space utilization with NTttcp occupying almost
60% of the cache space and TPC-C occupying 40%. Figure 12b
shows the impact of target-only QoS, where a target of 0.8x MPI
is achieved for the TPC-C workload without considering the
effect on the NTttcp workload. The graph shows that cache
allocation changes occurred during the run (as seen in the bars)
whenever the MPI in a given interval is lower than the target.
Figure 12c shows the effect of the applying overall MPI
constraints on the performance. Since the overall MPI does not
increase beyond the 1.1x constraint, we do not see significant
amount of dynamic cache space re-allocation. Instead we find that
the high priority application is constantly given additional
resources (almost all of the cache) and benefits from a MPI
reduction of more than 30%. Finally, Figure 12d shows the
implications of applying a low priority constraint of not
exceeding 1.2x MPI. As shown, the cache space is re-allocated a
few times to ensure that this constraint is not violated. At the
same time, the cache performance of the high priority application
is improved significantly (MPI reduction of 20%). Although not
shown due to space limitation, our experiments on IPC-based QoS
show similar behavior and confirm that using IPC can be
reasonable especially if only one resource is affecting overall
performance.
We also look at the QoS impact on all three applications running
simultaneously, with TPCC having the highest priority, SPECjbb
having the mid-level priority and NTttcp having the lowest
priority. Figure 13 shows the data for the dynamic QoS policy
with the following overall constraint: as long as the overall MPI
does not increase by 2%, we steal resources from low priority
applications and allocate those to mid and high priority
applications. To do so, the first step is to reduce the cache space
threshold for low priority application by a pre-determined amount
(20% in this case). This freed up space is then made available to
both high and mid-level priority applications. In order to ensure
that the high priority is given more of this space than mid priority,
we define a split ratio. The split ratio indicates the percentage of
the freed up space provided to the mid-level priority application.
For example, if the split ratio is 20%, then 20% of the space is

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time interval

Ca
ch

e
sp

ac
e

co
ns

um
pt

io
n

(%
)

0

0.2

0.4

0.6

0.8

1

1.2

No
rm

al
iz

ed
 M

PI

Size(TPCC) Size(NTttcp)
MPI(TPCC) MPI(NTttcp)

(a) No Cache QoS

0

0.1
0.2

0.3

0.4
0.5

0.6

0.7

0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time interval

C
ac

he
 s

pa
ce

 c
on

su
m

pt
io

n
(%

)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
P

I

Size(TPCC) Size(NTttcp)
MPI(TPCC) MPI(NTttcp)

(b) Cache QoS with Target-Only

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time interval

C
ac

he
 s

pa
ce

 c
on

su
m

pt
io

n
(%

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 M
P

I

Size(TPCC) Size(NTttcp)
MPI(TPCC) MPI(NTttcp)
MPI(total)

(c) Cache QoS with Overall Constraint

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time interval

C
ac

he
 s

pa
ce

 c
on

su
m

pt
io

n
(%

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
N

or
m

al
iz

ed
 M

P
I

Size(TPCC) Size(NTttcp)
MPI(TPCC) MPI(NTttcp)

(d) Cache QoS with Low Priority Constraint

Figure 12: Dynamic QoS using RPM

33

given to mid-priority and 80% is given to high priority. In Figure
13, we show the base case (no QoS) and three dynamic QoS
cases, where we vary the split ratio. We can see that with the QoS
policy, the cache space for TPCC is increased significantly, and
as a result, its MPI is reduced about 20%. As expected, this is at
the cost of NTttcp, whose MPI is increased by 25%. For the mid-
level priority application, SPECjbb, its space consumption
increases by only a small amount when the split ratio is 20% and
35%, and therefore the MPI does not change. However, when the
split ratio is increased to 50%, its space consumption increases
significantly, and its MPI reduces by 6%. In any case, the split
ratio indicates a trade-off of space allocation between the high
and mid-level priority applications.

0%

20%

40%

60%

80%

100%

base split ratio for
mid_pri=20%

split ratio for
mid_pri=35%

split ratio for
mid_pri=50%

Sp
ac

e
co

ns
um

pt
io

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 M
PI

Space_TPCC Space_SPECjbb Space_NTttcp
MPI_TPCC MPI_SPECjbb MPI_NTttcp
MPI_Total

Figure 13. Dynamic QoS (RPM) on 3 priority levels

6.2 QoS Prototyping
To evaluate our QoS-aware architecture more realistically, we
developed a software prototype and ran a limited set of
experiments on a full system simulator. In this section, we
describe this effort and our initial findings.

6.2.1 QoS-Aware Operating System

Our software prototype is a QoS-aware Linux operating system.
This was accomplished by modifying the 2.6.16 Linux kernel to
provide the following QoS support:
(a) QoS bits in process state: QoS bits that indicate the priority
level and associated information were added to each process’
state. This information is saved/restored during context switches.
(b) QoS register emulation: The Linux scheduler was modified
to emulate saving and restoring the QoS bits from the process
state to processor architecture state (Platform QoS Register) and
vice-versa. This was achieved by employing a special I/O
instruction during every processor context switch. More
specifically, we first read the QoS bits value from the process
context that was switched in. Then we issued an out (x86 ISA)
instruction that sent this value to an unused I/O port 0x200
(typically, this port was reserved for joystick). This instruction
was used to communicate the process’ QoS value to the hardware.
Port 0x200 was registered as the “QoS” port in the kernel I/O
resource registration module to guarantee that it wouldn’t be used
by other I/O devices.

In addition, to allow administrators to pass QoS values for
running processes, the Linux kernel was modified:
(a) QoS APIs for user/administrator: Two extra system calls
were added to the kernel to provide access to QoS bits which
were stored in kernel address space.

(b) QoS utility program: This tool was implemented in the host
Linux machine to query and modify the QoS value of the running
applications.

6.2.2 Full-System Simulation

In order to evaluate the QoS-aware Linux OS on a QoS-aware
architecture, we employed SoftSDV [32], a full-system simulator
that allows us to model the architecture functionally and enables a
performance model. We use the functional model of SoftSDV to
boot the Fedora Core 5 Linux, including our QoS-enabled kernel.
The functional model passes instructions executed by the
applications running to the performance model. These instructions
include the out instruction, which triggers the performance model
to record the priority values into the architectural state. For the
performance evaluation, we integrated a cache simulator [8] into
SoftSDV. The cache simulator was modified to support static and
dynamic cache QoS.

6.2.3 QoS Evaluation

We first look at a dual-core CMP with a shared last-level cache.
This cache is an 8-way 256KB cache and is scaled down from 1M
since the number of threads is reduced by a factor of 4 compared
to the configuration used in the previous subsection. We choose
two single-threaded applications from SPECint2000 benchmark
suite [25] -- ammp and gcc, which show large cache sharing
impact when they are co-scheduled. The standard ref is used as
the input set. During the execution of these two benchmarks, we
collect cache sharing statistics for about 100M instructions (after
sufficient warmup).

0

0.5

1

1.5

2

2.5

100% 40% 30% 20% 10%
Cache Space that Ammp can consume

N
or

m
al

iz
ed

 M
P

I

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

A
ve

ra
ge

 C
ac

he
 O

cc
up

an
cy

 (%
)

Gcc-space Ammp-space
Gcc-MPI Ammp-MPI

Figure 14: Impact of static QoS in two-core CMP

Figure 14 shows the static QoS evaluation results from our QoS
prototype experiment when running gcc (high priority) and ammp
(low priority) simultaneously. The two Y-axes represent the MPI
(lines) and average cache space occupancy (bars) of the two
applications respectively. The MPI value is normalized to the case
when both applications share the L2 cache without any
prioritization. As seen from the figure, the MPI of gcc reduces
when we reduce the cache space available for ammp. This is
accompanied by an increase in the MPI of ammp. The MPI
reduction for gcc is about 57% when ammp was constrained to
occupy 10% of total cache size. Note that although we limit the
cache space for low priority application, this limitation is not a
hard bound and applications can sometimes exceed the specified
limits. This can be because sharing of data by applications,
(shared libraries etc) results in processes sometimes accessing

34

data tagged with the priorities of other processes. In our
implementation, cache lines are tagged with the priority of the last
application that touches the data.
Next, we look at a four-core CMP platform, where we run one
high priority application, two mid level priority applications and
one low priority application which share a 1MB last level cache.
It should be noted that we did not evaluate both mid-level priority
applications contending within the same priority level. Instead we
had two mid-priority levels with identical cache space thresholds
(similar to having one middle-level priority with fair allocation
within the priority level). For this scenario, each mid-priority
application is limited to occupy 10% of total cache space and the
low priority application will bypass the L2 cache (i.e. 0%) and
essentially only use L1 cache. Figure 15 shows the impact of QoS
when applu (high priority), art (mid level priority), gcc (mid level
priority) and mcf (low priority) are co-scheduled. The MPI value
of each application is normalized to the case when it shares the
cache with other applications without prioritization. We can see
that when we limit the cache space of art, gcc and mcf, the MPI of
applu (high priority) reduces by 33% and the MPI of art, gcc and
mcf increase by 21%, 150% and 216% respectively.

0

0.5

1

1.5

2

2.5

3

3.5

4

Applu Art Gcc Mcf

N
or

m
al

iz
ed

 M
PI

Shared
Prioritized

High
%

Mid Mid Low

Figure 15: Impact of Static QoS in 4-core CMP

0

0.5

1

1.5

2

2.5

Gcc Ammp

N
or

m
al

iz
ed

 M
PI

Shared
half-half
static QoS
Dynamic QoS

Figure 16: Comparison of Several QoS schemes

Figure 16 compares the MPI running gcc (high priority) and
ammp (low priority) simultaneously as follows: shared mode
(without prioritization), half-half mode (each application gets
50% of cache), static QoS mode (ammp is constrained to occupy
only 10% of cache) and dynamic QoS (amount of cache is
dynamically modified to improve high priority). The MPI value
of each application is normalized to the case when it runs under
shared mode. We can see that both static and dynamic QoS
schemes efficiently improve the performance of gcc (high
priority) while adversely affecting ammp (low priority).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the need for QoS in CMP
architectures. We showed that efficient management of resources
such as cache and memory are required to cater to high and low
priority threads running simultaneously.

We described the philosophy and goals for investigating QoS
policies by introducing resource-based and performance-based
metrics. We presented the key considerations and metrics
involved when defining QoS policies. The primary consideration
in enabling QoS is to decide whether to enable it on a resource-
basis or a performance-basis. We proposed several policies (static
and dynamic) for resource-based as well as performance-based
QoS. We showed the implementation requirements for a QoS-
aware memory architecture for CMP platforms.

Through a detailed simulation-based evaluation, we showed that
the QoS policies on cache and memory can be quite effective in
optimizing the performance of high priority applications in the
presence of other low priority workloads. We showed that
significant performance improvements (20 to 30% reduction in
MPI and 10 to 20% improvement in performance) can be
achieved by providing additional cache space or memory
bandwidth to the high priority application. The policies allow
significant flexibility in modifying the amount of benefit
achievable for the workload scenarios of interest. We also showed
that considerations such as side-effects on overall performance or
low priority performance can be addressed by enabling dynamic
policies and implementing QoS enforcement modules. Last but
not least, we validated our QoS architecture by implementing a
software prototype and running it on a QoS-aware full-system
simulation. Preliminary results from the prototype also show
promising benefits for multi-tasking scenarios.

Future work in this area is as follows. We plan to investigate
architectures and execution environments with many workloads
running executing. In particular, we would like to apply the
resource-based and performance-based approaches to virtual
machine environments. We would also like to further experiment
with our prototyping environment for application or VM
scheduling implications. It is also important to evaluate dynamic
software QoS approaches where the OS passes dynamic QoS
hints to the platform.

8. ACKNOWLEDGMENTS
We are very grateful to the anonymous reviewers for their
comments and feedback on the paper. We would also like to thank
Jaideep Moses for his help in developing the ManySim simulator.

9. REFERENCES
[1] Azul Systems. Azul Compute Appliance.

http://www.azulsystems.com/products/cpools_cappliance.ht
ml

[2] P. Barham, et al. Xen and the Art of Virtualization. In Proc.
of the ACM Symposium on Operating Systems Principles
(SOSP), Oct 2003.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multiprocessor
architecture”, In Proc. of 11th International Symposium on
High Performance Computer Architecture (HPCA), Feb
2005.

35

[4] T. Deshane, D. Dimatos, et al.. Performance Isolation of a
Misbehaving Virtual Machine with Xen, VMware and Solaris
Containers.
http://people.clarkson.edu/~jnm/publications/isolationOfMis
behavingVMs.pdf.

[5] L. Hsu, S. Reinhardt, R. Iyer and S. Makineni. Communist,
Utilitarian, and Capitalist Policies on CMPs: Caches as a
Shared Resource. In Proc. of 15th International Conference
on Parallel Architectures and Compilation Techniques
(PACT), Sept 2006.

[6] R. P. Goldberg. Survey of virtual machine research. IEEE
Transactions on Computers, 1974.

[7] Intel Corporation. Intel Dual-Core Processors -- The First
Multi-core Revolution.
http://www.intel.com/technology/computing/dual-core/.

[8] R. Iyer. On Modeling and Analyzing Cache Performance
using CASPER. In Proc. of 11th International Symposium on
Modeling, Analysis and Simulation of Computer & Telecom
Systems, Oct 2003.

[9] R. Iyer. CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms. In Proc. of 18th Annual
International Conference on Supercomputing (ICS’04), July
2004.

[10] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proc.
of 13th Int’l Conf. on Parallel Arch. & Complication
Techniques(PACT), Sept 2004.

[11] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
Way Multithreaded Sparc Processor.In Proc. of Annual
International Symposium on Microarchitecture(MICRO),
Mar 2005.

[12] K. Krewell. Best Servers of 2004: Multicore is Norm.
Microprocessor Report, www.mpronline.com, Jan 2005.

[13] R. Kumar, D.M. Tullsen, N. P. Jouppi, P. Ranganathan.
Heterogeneous Chip Multiprocessors. IEEE Transactions on
Computers, 2005.

[14] J. Laudon. Performance/Watt: The New Server Focus. In 1st
Workshop on Design, Architecture and Simulation of CMP
(dasCMP), Nov 2005.

[15] K. Lee, T. Lin and C. Jen. An Efficient Quality-Aware
Memory Controller for Multimedia Platform SoC. IEEE
Trans. On Circuits and Systems for Video Technology, May
2005.

[16] C. Natarajan, B. Christenson, and F. Briggs. Performance
Impact of Memory Controller Features in Multiprocessor
Server Environment. In 3rd Workshop on Memory
Performance Issues, 2004.

[17] Kyle J. Nesbit, et al. Fair Queuing Memory Systems. In
Proc. of Annual International Symposium on
Microarchitecture (MICRO), June 2006.

[18] K. Olukotun, B. A. Nayfeh , et. al. The case for a single-
chip multiprocessor. In Proc. of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct 1996.

[19] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches In Proc. of Annual
Int’l Symposium on Microarchitecture (MICRO), June 2006.

[20] N. Rafique, W.T. Lim and M. Thottethodi. Architectural
Support for Operating System-Driven CMP Cache
Management. In Proc. of the 15th International Conference
on Parallel Architectures and Compilation Technology
(PACT 2006), Sept 2006.

[21] P. Ranganathan and N. Jouppi. Enterprise IT Trends and
Implications on Architecture Research. In Proc. of the 11th
International Symposium on High Performance Computer
Architecture (HPCA), Feb 2005.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, et al. Memory access
scheduling. In Proc. of the International Symposium on
Computer Architecture (ISCA), June 2000.

[23] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors:
Current Technology and Future Trends. IEEE Transactions
on Computers, 2005.

[24] L. Sha, R. Rajkumar and J. P. Lehoczky. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization.
IEEE Transactions on Computers, Sept 1990.

[25] SPECint, http://www.spec.org/cpu2000/SPECint
[26] SPECjbb2005, http://www.spec.org/jbb2005
[27] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of

cache memory. IEEE Transactions on Computers, Sept
1992.

[28] G. Suh, S. Devadas, and L. Rudolph. A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In Proc. of International Symposium on High
Performance Computer Architecture (HPCA), Feb 2002.

[29] “Test TCP (TTCP) Benchmarking Tool”,
http://www.pcausa.com

[30] “TPC-C Design Document”, http://www.tpc.org/tpcc/
[31] R. Uhlig, et al., “Intel Virtualization Technology,” IEEE

Transactions on Computers, 2005.
[32] R. Uhlig, R. Fishtein, et. al. SoftSDV: A Presilicon Software

Development Environment for the IA-64 Architecture. Intel
Technology Journal. (http://www.intel.com/technology/itjf)

[33] T. Y. Yeh and G. Reinman. Fast and Fair: Data-stream
Quality of Service. In Proc. of International Conference of
Compilers, Architecture and System For Embedded Systems
(CASES), July 2004.

[34] L. Zhao, J. Moses, R. Iyer, et al. Architectural Evaluation of
Large-Scale CMP Platforms using ManySim. In Intel’s
Design & Test Technology Conference (DTTC), Aug 2006.

[35] H. Zhang. Service Disciplines for Guaranteed Performance
Service in Packet-switching Networks. In Proc. of IEEE,
Oct. 1995.

[36] Z. Zhu and Z. Zhang. A Performance Comparison of DRAM
Memory System Optimizations for SMT Processors. In Proc,
of the 11th International Symposium on High Performance
Computer Architecture(HPCA), Feb 2005

36

