

Mitigating Amdahl’s Law Through EPI Throttling

Murali Annavaram, Ed Grochowski, John Shen
Microarchitecture Research Lab, Intel Corporation
2200 Mission College Blvd, Santa Clara, CA 95054

murali.m.annavaram@intel.com, edward.grochowski@intel.com, john.shen@intel.com

Abstract

This paper is motivated by three recent trends in
computer design. First, chip multi-processors (CMPs)
with increasing numbers of CPU cores per chip are
becoming common. Second, multi-threaded software that
can take advantage of CMPs will soon become
prevalent. Due to the nature of the algorithms, these
multi-threaded programs inherently will have phases of
sequential execution; Amdahl’s law dictates that the
speedup of such parallel programs will be limited by the
sequential portion of the computation. Finally,
increasing levels of on-chip integration coupled with a
slowing rate of reduction in supply voltage make power
consumption a first order design constraint. Given this
environment, our goal is to minimize the execution times
of multi-threaded programs containing nontrivial
parallel and sequential phases, while keeping the CMP’s
total power consumption within a fixed budget. In order
to mitigate the effects of Amdahl’s law, in this paper we
make a compelling case for varying the amount of
energy expended to process instructions according to the
amount of available parallelism. Using the equation,
Power=Energy per instruction (EPI) * Instructions per
second (IPS), we propose that during phases of limited
parallelism (low IPS) the chip multi-processor will
spend more EPI; similarly, during phases of higher
parallelism (high IPS) the chip multi-processor will
spend less EPI; in both scenarios power is fixed. We
evaluate the performance benefits of an EPI throttle on
an asymmetric multiprocessor (AMP) prototyped from a
physical 4-way Xeon SMP server. Using a wide range of
multi-threaded programs, we show a 38% wall clock
speedup on an AMP compared to a standard SMP that
uses the same power. We also measure the supply
current on a 4-way SMP server while running the multi-
threaded programs and use the measured data as input
to a software simulator that implements a more flexible
EPI throttle. The results from the measurement-driven
simulation show performance benefits comparable to the
AMP prototype. We analyze the results from both
techniques, explain why and when an EPI throttle works
well, and conclude with a discussion of the challenges in
building practical EPI throttles.

1. Introduction

With silicon technologies enabling billions of
transistors on a single chip, the era of the Chip
Multiprocessor (CMP) has arrived [4][11][15]. CMPs
will soon be used across all computing domains: server,
desktop and mobile. Starting from today’s dual-core
processors, the number of CPU cores on a chip can be
expected to grow over time as a result of Moore’s Law.

The ubiquitous presence of CMPs will naturally be
accompanied by a proliferation of multi-threaded
software. Although multi-threaded software is primarily
the domain of servers today, we expect that in the near
future software for desktop and mobile computers will
also become multi-threaded. Due to the inherent nature
of the algorithms, multi-threaded software will contain
phases of sequential execution interspersed with phases
of parallel execution. Amdahl’s law states that the
speedup possible due to parallelization will be limited by
the portion of the time spent in the sequential
component. For example, if a program spends 10% of its
time in a sequential component, the maximum speedup
achievable through parallelization is 10. Due to
Amdahl’s law, it is necessary to improve the
performance of both the sequential as well as the parallel
components of execution.

Historically, advances in silicon process technology
have been accompanied by reductions in power supply
voltage. Reducing supply voltage lowers chip power
consumption and maintains the electric field strength
within the transistors at safe levels. In recent years,
however, a slowdown in the rate of reduction in supply
voltage has hampered our ability to lower power
consumption with new process technologies. Thus power
consumption has emerged at the forefront of challenges
facing the chip designer. Researchers have proposed
many techniques to reduce power and energy in
accordance to the software’s behavior
[1][5][14][16][17]. In this work our goal is to maximize
the performance of a CMP while keeping its total power
consumption within a fixed power budget. Unlike battery
operated devices that strive to conserve energy to extend
battery life, we focus on AC line powered server and
desktop systems that strive to deliver maximum
performance while operating just within the capabilities
of the power delivery and cooling subsystems.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Due to the conflicting microarchitectural demands, it
is nearly impossible to optimize both single-threaded
(sequential component) and throughput (parallel
component) performance within a fixed power budget.
Microarchitectural techniques for reducing single-
threaded execution latency, e.g. out-of-order execution,
speculation, and deep pipelining, consume relatively
high energy per instruction, thereby limiting the number
of CPU cores that can be accommodated in a CMP for a
given power budget. On the other hand, throughput
performance demands many low energy cores in a CMP
to exploit thread-level parallelism.

The key to designing a microprocessor that can
achieve both high scalar performance and high
throughput performance is to dynamically vary the
amount of energy expended to process each instruction
according to the amount of parallelism available in the
software. In other words, if there is little parallelism, a
microprocessor should expend all available energy
processing a few instructions; and if there is a lot of
parallelism, the microprocessor should expend less
energy in processing each instruction. This relationship
may be formalized as:

IPSEPIP * (1)
where P is the fixed power budget, EPI is the average
energy per retired instruction, and IPS is the aggregate
number of instructions retired per second across all CPU
cores.

In [9] the authors discussed four techniques for
varying EPI. Table 1 summarizes the four techniques,
showing the achievable range of EPI (conservative range
to optimistic range), the approximate time required to
vary EPI over the stated range, and the action that an EPI
throttle would take to reduce energy. To accommodate
software with a wide range of IPS, an equally wide range
of EPI is required. As shown in the table, designers have
the choice of EPI techniques that are relatively slow but
provide significant EPI range, or EPI techniques that are
much faster but have limited EPI range.

Method EPI
Range

Time to vary
EPI

Throttle
Action

Scaling
voltage
frequency

1:2 to
1:4

100us;ramp
Vcc

Lower
voltage
frequency

Asymmetric
cores

1:4 to
1:6

10us;migrate
L2

Migrate
threads
between cores

Variable-size
core

1:1 to
1:2

1us;fill L1 Reduce
toggled
capacitance

Speculation
control

1:1 to
1:1.4

10ns;flush
pipe

Reduce
speculation

Table 1. EPI Throttling Techniques

In [9] the authors described the concept of EPI
throttling. In this paper we present a comprehensive
performance evaluation of EPI throttling using a
combination of prototyping and measurements on
physical systems. This paper makes the following
contributions:
1. By using a novel combination of clock throttling

and processor affinity, we prototype an asymmetric
multiprocessor (AMP) using an off-the-shelf 4-way
SMP. Each processor in the AMP expends varying
amount of EPI based on the available thread-level
parallelism.

2. We show an average of 38% wall clock speedup on
a wide range of multi-threaded programs running on
our physical AMP prototype compared to a standard
SMP that uses the same power. To the best of our
knowledge, this paper is the first to prototype an
AMP and to show wall clock speedups on a physical
system.

3. Our AMP prototype is limited to varying the EPI of
a processor by a coarse granularity. In order to
assess the impact of this limitation, we measure the
supply current on a physical 4-way SMP server
running multi-threaded programs. We feed the
measured data as input to a software simulator that
implements a more flexible EPI throttle. We show
comparable speedups between the simulator and the
AMP prototype, indicating that a realistic EPI
throttle can deliver the performance gains in
practice.

4. Using two complementary methods, we make a
compelling case that an EPI throttled AMP is
effective in mitigating the effects of Amdahl’s law
while running multi-threaded programs with non-
trivial amounts of sequential component.

The rest of this paper is organized as follows. Section
2 discusses how this work differs from the previous
research. Section 3 describes our experimental prototype.
Section 4 describes our multi-threaded programs setup
and execution. Section 5 presents the results comparing
the execution times of our programs on AMP with two
machine configurations that consume equal power. We
analyze the reasons when and why an EPI throttle
performs well. Section 6 presents the results of the
current measurement and software simulation technique.
Section 7 presents conclusions and areas for future work.

2. Related Work

Much research has been done on various
microarchitectural techniques to reduce energy per
instruction. These techniques include CMOS
voltage/frequency scaling [6], asymmetric
multiprocessor cores [16][17][21], variable-sized cores
(also called adaptive processing) [1], and speculation
control [19]. Most of this prior work has been done in

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

the context of running single-threaded programs with the
goal of reducing energy without sacrificing too much
performance. Most researchers cite an improvement on a
metric such as energy*delay2 with power and
performance computed through simulations, measured
activity factors, or analytical models. This paper, on the
other hand, focuses on reducing the wall-clock execution
times multi-threaded programs running on future CMPs
using a physical prototype of an AMP.

The idea of regulating (or throttling) a processor’s
activities to control power and temperature has been the
topic of much research and product development. Brooks
and Martonosi [5] described the use of dynamic thermal
management to control die temperature. The Intel®
Pentium® 4 processor implements a thermal monitor to
limit die temperature so that the processor and system
thermal solutions may be designed according to the
power envelopes of real programs rather than worst-case
power viruses [13]. We use the clock throttling feature
on the Pentium 4 processor in conjunction with process
affinity features in Linux to prototype an AMP.

Heterogeneous multiprocessors are another area of
related work. Menasce and Almeida [20] proposed the
use of heterogeneous processors in supercomputers, with
two different types of processors used to speed up the
parallel and sequential portions of a computation.
Figueiredo and Fortes [8] explored heterogeneous
distributed-shared-memory multiprocessors with a few
nodes with large caches designed for single-thread
performance, and a larger number of nodes with smaller
caches designed for multi-threaded parallelism. Morad et
al. [21] presented an analysis of why an asymmetric chip
multiprocessor can achieve higher performance for a
given area and power budget. Li and Martinez [18] used
a combination of analytical models and simulation
experiments to show that parallel computing can bring
significant power savings while meeting a given
performance target, by choosing appropriate granularity
for parallelism and judicious voltage/frequency levels.
Kumar et al. [16] proposed a heterogeneous multi-core
processor that delivers higher performance than a
homogeneous multi-core processor when both are
constrained by the same die area. Our AMP prototype is
closest to the heterogeneous CMP presented in [16]. In
[16] a single threaded program is switched between
multiple cores on a CMP based on the heuristic that
seeks to minimize energy-delay product. This paper
differs in three respects: we assume the main constraint
is a fixed power budget; we exclusively use multi-
threaded workloads; and we measure wall clock speedup
instead of relying on a metric such as energy-delay.

3. Prototyping AMP on an SMP

To evaluate the performance benefits of EPI
throttling, we construct a prototype multiprocessor

system that uses the Intel® Pentium® 4 Processor’s
clock throttle mechanism [10] to create multiple
performance and power operating points. The physical
AMP prototype system described in this section and the
software modifications described in Section 4 are
primarily intended for evaluating the benefits of EPI
throttling. In practice, we expect an EPI throttle to be
implemented as a hardware mechanism that operates
transparently to software.

The Pentium 4 processor uses on-chip temperature
sensing diodes and clock throttling to control both the
temperature and power consumption of the chip. When
the measured temperature exceeds a defined threshold,
hardware automatically shuts off the processor clock for
a brief time interval to allow the chip to cool. Extensive
use of clock gating and unit power down techniques
allows the power consumption to drastically drop during
clock throttling. System software can also explicitly
manage power consumption using the same clock
throttling mechanism.

Clock throttling can be configured by writing to the
IA32_CLOCK_MODULATION model specific register
(MSR). Three duty cycle bits in the MSR set the duty
cycle to one of the seven levels – 12.5%, 25%, 37.5%,
50%, 62.5%, 75% and 87.5%. The duty cycle can be set
on a per processor basis in a multiprocessor. Note that
clock throttling does not reduce the actual operating
voltage or frequency of a processor. However, clock
throttling has a similar effect on performance as reducing
the processor frequency. Based on historical data [9] we
assume that it is possible to design a range of CPU
microarchitectures in which the power consumption may
be made proportional to the square of the frequency. For
instance, if we duty cycle a 2GHz processor at 50% then
the processor performance is approximately similar to
the performance of a 1GHz processor (½ the
performance of 2GHz processor), and the 1GHz
processor consumes roughly ¼ the power of the 2GHz
processor. Thus, EPI is reduced by a factor of 2. In order
to emulate an EPI throttle, we vary the duty cycle of
each processor independently to create or emulate an
AMP. Note that we conservatively use a square
relationship between power and performance rather than
an idealized cubic relationship as in CMOS
voltage/frequency scaling.

In our experiment, to satisfy equation 1 for a given
power budget, we assign parallel phases of a program
with high aggregate IPS to low EPI processors and
sequential phases with low IPS to high EPI processors.
In order to make such an assignment we need the ability
to specify to the OS scheduler to assign a process to a
particular processor. Thus our AMP prototype relies on

Intel®, Pentium®, Pentium® 4, and Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

both clock throttling and affinity control, which are
fortunately supported by the Linux 2.4 kernel. The
kernel module p4-clockmod provides a simple interface
to configure the duty cycle for clock throttling. Once the
module is loaded the superuser can simply update the
file “/proc/cpufreq” file with the desired duty cycle value
and within a short interval (10-100 microseconds) clock
throttling will be initiated. We wrote a simple driver
routine that takes as input the processor number and the
desired duty cycle value and updates the cpufreq file.

The second Linux kernel feature used in our
prototype is the process scheduling feature that allows a
thread/process to be affined to a specific processor.
Linux provides a command line scheduling tool, called
taskset, which allows any running process to be
scheduled to run on a specific processor. Linux also
provides a C-programming interface through a set of
process scheduling API, sched_setaffinity and
sched_getaffinity, which allows a programmer to affine a
thread to a processor. Section 4 describes how clock
throttling and processor affinity features are used to run
a diverse set of multi-threaded programs on the AMP
prototype.

3.1 Hardware Configuration

We chose an Intel XeonTM 4-way SMP server as our
experimental machine. The Xeon processor is the server
version of the Pentium 4 processor. The Xeon processors
in our system operate at 2GHz with Hyper-Threading
Technology disabled. Our system is populated with 4
GB of PC200 DDR and has 3 Ultra320 SCSI drives,
each with 73 GB of capacity. We installed Red Hat*

Enterprise Linux 3.0 OS with 2.4.21-15.ELsmp kernel.
In our experiments, we fixed the power budget to be

same as the power consumed by a 1P Xeon processor
running at 2GHz. Given this power budget, the base
SMP can be configured into several MP configurations
all of which consume roughly the same power. As
mentioned earlier, based on historical data we assume
that a range of CPUs may be designed in which power is
proportional to the square of the duty cycle. For instance,
if the power consumed by the baseline 1P/2GHz
processor is 1, then 2P running at 6/8 duty cycle
(effective frequency is 6/8*2GHz =1.5GHz) consume
2*(6/8)2=1.12. Table 2 shows the four possible
configurations.

3.2 AMP Configuration

We created two AMP configurations using a
combination of configurations shown in Table 2. One is
a static AMP configuration where either three processors

* Other names and brands may be claimed as the property of others.

run at 1.25GHz (5/8 duty cycle) or one processor runs at
2GHz. We use either the 1P or the 3P depending on the
amount of thread-level parallelism in our programs.
When the program executes sequential code, we run the
sequential code on the one fast processor and when the
program executes parallel code we run the parallel
threads on the three slow processors. Using processor
affinity we guarantee that the sequential phase is affined
to the fast processor and parallel phases are affined to the
slow processors. In our prototype, we assume that during
sequential code execution the three slow processors can
be shut off so as to consume negligible power, and
similarly during parallel execution the fast processor can
be shut off so as to consume negligible power. An
extremely low power state may be achieved in practice
through the use of sleep transistors and body bias [24].
In the static AMP setup, the duty cycle is set only once
before a program run and is not altered during execution.

CPUs Duty
Cycle

Effective
Freq

Normalized Total
Power

1P 8/8 2GHz 1.00 (Baseline)
2P 6/8 1.5GHz 1.12
3P 5/8 1.25GHz 1.17
4P 4/8 1GHz 1.00

Table 2. MP Configurations with Similar Power

The second AMP configuration is dynamically
reconfigured during program execution based on the
amount of available thread-level parallelism. The
parallel phases are run on either all or a subset of the
four processors while the sequential phase runs on a
single processor at 2GHz. For instance, if there are four
available threads in a given phase we use four processors
running at 1GHz (duty cycle of 4/8) and if the number of
threads reduces to two then we reassign the power
budget to just two processors by running them each at
1.5GHz (duty cycle of 6/8). Thus the power consumed
by AMP is constant all through the program run; EPI is
lower during parallel execution phases and EPI is higher
during sequential execution phases.

A static AMP is desirable for those programs that
rapidly transition between sequential and parallel phases
as the overhead of frequently changing the duty cycle
(by updating the cpufreq file) is quite significant. On the
other hand, a dynamic AMP is desirable when the
thread-level parallelism varies between one and four
during program execution and there are only a few
transitions between sequential and parallel phases. While
some of the overhead is an artifact of our prototype
implementation, we believe that any mechanism to vary
EPI will be fundamentally slow relative to instruction
execution. Hence, reconfiguration overheads should be

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

taken into consideration when choosing an EPI throttling
mechanism.

Some configurations in Table 2 use slightly more
power than the baseline due to the coarse granularity of
the duty cycle. Since some AMP configurations consume
up to 17% more power, they have up to an 8%
performance advantage. To eliminate this advantage and
reflect constant power conditions, we have adjusted the
run times on the AMP setup for all the results presented
in this paper. For instance the measured AMP runtime on
wupwise is 647 seconds, where 90% of the time
wupwise runs on 3P/1.25GHZ and 10% of the time on
1P/2GHz. Hence, the adjusted run time is
(1+0.9*0.08)*647=694 seconds. In doing this
adjustment, all the MP configurations compared in this
paper can be viewed as consuming the exact same fixed
power.

4. Benchmarks: Setup and Tuning

We selected 13 parallel programs for this study: 9
SPEC Open MP (OMP) benchmarks [3], BLAST [2]and
HMMER [12] bioinformatics programs, TPC-H [23]
decision support program, and FFTW a parallel Fourier
transform solver [7]. The SPEC OMP benchmarks are
compiled with the Intel C++ compiler 8.0 and the Intel
Fortran compiler 8.0. All other programs are compiled
with gcc 3.2.3. These represent a wide range of realistic
multi-threaded programs that we were able to easily set
up and build from the source code. This section
describes the programs and explains how we set up and
run them on our AMP prototype.

4.1 SPEC OMP

The SPEC OMP benchmarks are a subset of the well
known CPU2K benchmarks. These benchmarks are
parallelized using the Open MP directives. We selected 9
out of the 11 benchmarks from the SPEC OMP suite:
wupwise, swim, mgrid, applu, equake, apsi, fma3d, art
and ammp. Two benchmarks, galgel and gafort were not
used as they could not be run to completion in our
environment. Based on the frequency of transitions
between sequential and parallel regions we chose either a
static AMP or a dynamic AMP configuration. Table 3
shows AMP configurations used for each of our 13
programs. For most SPEC OMP benchmarks we used
static AMP configuration, where clock throttling is used
to statically configure an AMP with one processor (CPU
0) at 2GHz and three processors (CPUs 1, 2 and 3) at
1.25GHz. Typically OMP parallelization directives
create as many threads as there are CPUs (four in our
setup). However, we hand modified all the benchmarks
to use processor affinity guaranteeing that the sequential
regions run only on the CPU 0 running at 2GHz and the

parallel regions run only on CPUs 1, 2 and 3 running at
1.25 GHz. Modification of the SPEC OMP benchmarks
is fairly simple as we searched for the parallelization
directives and added processor affinity calls at the start
and end of each OMP directive. These software
modifications were only necessary in our prototype
implementation, while in practice we expect an EPI
throttle to be implemented as a hardware mechanism that
operates transparently to software.

AMP Configuration Programs

Static AMP: 1P/2GHz
or 3P/1.25GHz

wupwise, swim, mgrid,
equake, fma3d, art, ammp,
BLAST, HMMER

Dynamic AMP:
1P/2GHz to 4P/1GHz

applu, apsi, FFTW, TPC-H

Table 3. AMP Configurations for Programs

4.2 BLAST

Basic Local Alignment Search Tool (BLAST) is a
program extensively used in bioinformatics research
where researchers search for the closest match of a new
protein or amino acid sequence in an existing, and
continuously evolving, database of known sequences.
Typically the database is built from FASTA formatted
text input data using the formatdb program. Formatting
reorganizes text data into a meta-database that enables
efficient search operations. After the database is built
usually a series of repeated searches are performed on
the database using the blast_all program. The blast tool
kit provides code for both formatdb and blast_all.
Database formatting is a sequential operation while
search operations are parallel.

We ran blast on a static AMP configuration. The code
provided by BLAST uses pthreads to automatically
create as many threads as there are CPUs during search.
We modified the code to create only three threads during
the search operation. Furthermore, we used the Linux
thread scheduling API (sched_setaffinity) to assign the
three parallel search threads to CPUs 1, 2 and 3 running
at 1.25 GHz and the sequential formatdb operation is
configured to run on the 2GHz CPU 0. In our setup we
ran the formatdb operation on a 120MB database and ran
five parallel search operations using a 2500 character
sequence protein string.

4.3 HMMER

HMMER is another bioinformatics program which is
similar to BLAST. HMMER, unlike BLAST,
concurrently searches for multiple sequences in a
database using Hidden Markov Model pattern matching.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

HMMER is capable of searching text databases and
hence does not need any database formatting operation.
The search operation is mostly parallel, except during
the initial setup and output generation phases which are
sequential. Our AMP setup for HMMER is also
statically configured where 1P/2GHz runs the sequential
code and 3P/1.25GHz run the parallel search code.

4.4 FFTW

FFTW is a collection of programs for computing the
Discrete Fourier Transform in multiple dimensions. It
includes complex, real, symmetric, and parallel
transforms, and can handle arbitrary array sizes
efficiently. For our work we used the three-dimensional
FFT solver parallelized using pthreads. The program
uses data parallelism by dividing the input data arrays
into as many chunks as there are processors. Each
processor operates on its own chunk and the results are
then merged at the end. FFTW has just four transitions
between sequential and parallel phases. Furthermore,
during the parallel operation there is enough data
parallelism to fully saturate four CPUs. Hence, we used
a dynamic AMP setup where the sequential regions run
on 1P/2GHz and the parallel region run on 4P/1GHz. We
identified sequential and parallel regions in the program
and affined the sequential regions to run only on CPU 0.
Prior to the beginning of each sequential region we set
the CPU 0 duty cycle to 1 and at the end of the
sequential region we reset the duty cycle to 4/8. Thus the
parallel regions run on all four CPUs at duty cycle 4/8
and the sequential region runs on CPU 0 at duty cycle 1.

4.5 TPC-H

TPC-H is a decision support database benchmark. We
built a 1GB TPC-H database using the Postgres DBMS
[22] and tuned the setup to maximize the CPU
utilization. We wrote a master driver to run all the 22
queries in TPC-H. The driver places all these queries in a
query queue in random order. Initially, our driver sets
the frequency of the four CPUs to 1GHz. Then it creates
four threads and assigns affinities to run them on four
different CPUs. Each thread then executes one query
from the query queue on the thread’s assigned processor.
When a query completes the thread picks up the next
query from the queue. If there are no more queries in the
queue the thread signals to the master and exits. The
master thread then increases the frequency of the
remaining three threads to 1.25GHz. Similarly, when the
next thread exits, the master increases the frequency of
the remaining two CPUs to 1.5GHz. Finally when there
is only one thread the frequency is increased to 2GHz. In
this manner, the total power is kept constant over all
phases.

5. Results and Analysis

Figure 1 shows the results of running the 13 programs
on three machine configurations (1P/2GHz, AMP, and
4P/1GHz). All three configurations consume roughly
equal power. The left bar for each program is the
speedup on an AMP normalized to 1P/2GHz. The right
bar is the speedup on 4P/1GHz SMP normalized to
1P/2GHz. Based on the speedups achieved, the
programs may be classified into one of three categories.
The five programs in the first category (ammp, applu,
apsi, mgrid, and wupwise) show that a 4P/1GHz SMP
performs slightly better than AMP. The six programs in
the second category (art, BLAST, equake, FFTW,
HMMER, and TPC-H) show that AMP achieves
significantly better speedup than 1P/2GHz or 4P/1GHz.
Finally, the two programs, fma3d and swim, indicate
AMP and 4P/1GHz do not provide any performance
benefit (or even worse performance) over a standard
1P/2GHz processor.

1.
45

2.
50

1.
74

1.
56

1.
48

1.
09

1.
43

1.
42

1.
48

1.
12

1.
501.
56

0.
81

0.
80

0.
76

1.
02

1.
04

0.
961.

15

1.
15

1.
17

1.
03

1.
75

1.
57

1.
50

2.
52

0

0.5

1

1.5

2

2.5

3

am
m

p
applu

apsi

m
grid

wupwis
e art

BLAST

equak
e

FFTW

HM
MER

TPC-H

fm
a3d

swim

S
pe

ed
 u

p
N

or
m

al
iz

ed
 to

 1
P

/ 2
G

H
z

AMP 4P/1GHz

C

Figure 1. Speedup Normalized to 1P/2GHz

FFTW

0

100

200

300

400

1 101 201

Time (sec)

C
P

U
 U

til
 %

Figure 2. CPU utilization over time for FFTW

To provide an intuitive understanding of why AMP
improves performance in the second category, Figure 2
shows the measured total CPU utilization during the

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

AMP run of FFTW. The graph shows distinct phases of
sequential and parallel execution where the CPU
utilization is 100% and 400% respectively. AMP uses
1P/2GHz processor during sequential phases and uses a
4P/1GHz during parallel phases. Using a standard
4P/1GHz SMP would underutilize the power budget
during sequential phases when only one processor is
running. In contrast, always using a 1P/2GHz processor
does not take advantage of available thread-level
parallelism during parallel phases. AMP improves
performance by varying the EPI according to available
thread-level parallelism to continuously optimize the use
of given power budget.

We now present a detailed analysis of when and why
AMP works better than SMP. Figure 3 shows idealized
run times (normalized to 1P/2GHz) of a 4-way SMP and
an AMP along with the runtimes of the 13 programs.
The X-axis shows the percentage of sequential
component in the program, and the Y-axis shows the run
time normalized to 1P/2GHz.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0% 20% 40% 60% 80% 100%
Sequential Component

R
un

 ti
m

e
(n

or
m

al
iz

ed
 to

 1
P

/2
G

H
z)

1P 2GHz

SMP 4P 1GHz

AMP 1+3

BLAST

wupwise

equake

TPC-H

HMMER

fma3d

art

ammp

swim

mgrid

apsi

FFTW

Figure 3: Ideal versus Measured Run time

As shown in the graph, when the sequential
component is 0%, 4P/1GHz achieves half the execution
time of 1P/2GHz because the program is completely
parallelized. When the sequential component is 100%,
4P/1GHz has twice the execution time of 1P/2GHz since
the multiprocessor is using only one of its four CPUs.
For sequential components in between 0% and 100%,
the run times may be linearly interpolated from the two
endpoints because the sequential and parallel
components are additive. Figure 3 also plots the run time
of an idealized AMP configuration that consumes the
same power: 1P/2GHz or 3P/1.25GHz (static AMP). The
endpoints at 0% and 100% are about the same as the
corresponding SMP configurations. However, the AMP

has the advantage that in between 0% and 100%, the
AMP can optimize both the sequential and parallel
phases within the fixed power budget. The idealized
AMP configurations achieve lower execution times than
the idealized SMP configurations for all but the trivially
parallel or completely sequential programs.

Finally, Figure 3 plots the measured run times of the
12 programs (applu is omitted because its speedup is
superlinear). The sequential component is determined by
measuring the execution times on a 1P/2GHz and
4P/1GHz and applying the following formulas:

u = s + p (2)
m = 2·(s + p/4) (3)
s = -1/3·u + 2/3·m (4)
p = 4/3·u - 2/3·m (5)

where u is the execution time on 1P/2GHz; m is the
execution time on 4P/1GHz; s is the sequential
component of execution time; and p is the parallel
component of execution time.

The graph shows that programs are clustered into
three categories. On the left are the highly-parallel
programs ammp, apsi, mgrid, and wupwise. Notice that
these are the same set of programs that were categorized
into group one in Figure 1. Our analysis of sequential
and parallel components showed that these programs
have a large parallel component; hence, they benefit
from running on a large number of low-power CPUs. On
our four processor server, these benchmarks do not
spend enough time in the sequential component to
receive significant benefit from AMP. We surmise that
on future large multiprocessors, the sequential
component can be expected to become an increasingly
dominant part of the total execution time (Amdahl’s
law), and therefore, the benefits of AMP can be expected
to increase.

In the middle of are the moderately parallel programs
art, BLAST, equake, FFTW, HMMER, and TPC-H.
These benchmarks spend 23% to 36% of their execution
time in sequential components. Ideally, all these
benchmarks with significant amount of sequential
component are expected to perform well on AMP. There
are two reasons for the discrepancy between idealized
and measured AMP performance. First, art and HMMER
are not CPU bound (<70% CPU utilization) and hence,
AMP provides less performance benefits than the
potential shown in Figure 3. The second cause for the
discrepancy is the thread migration overhead introduced
by the AMP. The overhead may be amortized over long
program phases such as in FFTW. Hence, benchmarks
with long program phases show performance gains that
are comparable to the idealized AMP performance.

The third category of benchmarks includes fma3d and
swim. While these benchmarks have sequential
components in the range of 31% to 54%, our visual
analysis of these benchmarks revealed that these
benchmarks have short sequential and parallel phases

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

and they switch rapidly between the two phases. Hence,
the overhead introduced by thread migration in an AMP
offsets any reduction in execution time. These
benchmarks run well on a conventional 1P/2GHz
processor.

6. Current Measurement and Simulation

In this section we present an alternative method for
assessing the benefits of EPI throttling that employs a
high-resolution measurement of CPU power
consumption. While the AMP prototype described in the
previous sections monitors CPU power with 1-bit of
resolution (active or idle), this method offers 14 bits of
resolution. The method comprises of two steps: (1)
Supply current measurement and trace collection, and (2)
Software throttle simulation. The software simulator
models a hardware implementation of the EPI throttle
that may use any of the EPI techniques presented in
Table 1.

6.1 Supply Current Measurement

In the first step we measure the multiprocessor’s
supply current using a current probe and record the
measured current over time. Our experimental setup
consists of the following equipment: (1) 4-way Xeon
2GHz SMP server, (2) Agilent 34134A DC Coupled
Current Probe, (3) Agilent 34401A Digital Multimeter,
(4) Agilent 82357A USB/GPIB Interface, and (5) IBM
ThinkPad T20 laptop.

Figure 4 shows our experimental setup. The SMP
server is the same server used in the AMP prototype. In
order to measure the supply current to the four
processors the current probe is placed around the +12
volt wires between the power supply and motherboard.
These wires feed the voltage regulators for the four Xeon
processors. Note that the server board design constrained
us to measure the input current to the voltage regulators
rather than the output current that feeds the four CPUs.
Hence, the measured current, converted to power, is the
total for all four CPUs and includes small losses in the
regulators.

The output from the current probe is sent to the
Agilent 34401A multimeter. The multimeter captures
600 current measurement samples per second. We
programmed the multimeter to collect samples for the
same time as the run length of each of our 13
benchmarks. The Agilent 82357A USB/GPIB Interface
is used to transfer the samples from the multimeter to the
IBM ThinkPad T20 laptop. To measure the current flow
over time we ran the unmodified benchmark binaries on
the 4-way SMP. For each of the 13 benchmarks, between
20,000 and 400,000 samples were recorded.

Figure 4: Current Measurement Setup

Figure 5. Measured Supply Current on FFTW

An example of the measured supply current over time
is shown in Figure 5 for FFTW. It is interesting to note
the visual similarity between the current measurements
in Figure 5 and the CPU utilization in Figure 2. The Y-
axis represents current (in 1/100 amperes). The X-axis
represents sample number. The phases of sequential (low
current) and parallel (high current) execution are clearly
apparent. Our measurements indicate that across all 13
benchmarks the four CPUs collectively consume 48
watts when idle and 220 watts when highly active.

6.2 Software Throttle Simulation

The software simulator reads the trace of measured
supply current and simulates the actions of an EPI
throttle that regulates all processors uniformly. The
simulator computes the level of processor performance
that is consistent with maintaining the total
multiprocessor power within a fixed power budget.
Intuitively, when power demands are too high the
simulator creates the effect of slowing down all CPUs by
reading the input trace more slowly. Reading the trace
slowly makes everything run more slowly (CPU,

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

int timeclk =0; // simulator time
double inputclk =0; // input trace time
double intval =1; // integrator value
double scalefactor=1; // throttle amount
double inpval; // instantaneous power
double diffval; // difference between actual and desired power

while (inputclk<datamax) { // while there is data
 inpval=datatbl[(int) floor (inputclk)] * // read current from trace
 scalefactor * // multiply by square or cube
 scalefactor * // of scalefactor to convert to
 (squareflag ? 1.0 : scalefactor); // power

 diffval = inpval - threshold; // subtract power threshold
 intval += diffval*gain; // multiply by gain and accumulate

 if (intval<lowerclamp) intval=lowerclamp; // saturate at lower clamp (usually 1.0)
 if (intval>upperclamp) intval=upperclamp; // saturate at upper clamp

 scalefactor = 1.0/intval; // compute new scalefactor

 inputclk += scalefactor; // advance trace time
 ++timeclk; // advance simulator time
};

Figure 6. EPI Throttle Simulator Algorithm

memory, I/O subsystem). By choosing the 13
benchmarks that are mostly CPU bound in this paper we
minimized the adverse effects of slowing components in
the system other than the CPU. The simulator outputs an
execution time measured in sample intervals. The
wupwise benchmark for instance when run on all four
Xeon processors at 2GHz consumes 220 watts and
generates about 400,000 current measurement samples
(equivalent to 670 seconds of execution time). However,
if the power was constrained to 55 watts the same trace
would have executed in 744,489 sample intervals,
equivalent to 1,240 seconds of execution time.

The details of the simulator algorithm are shown in
Figure 6. The algorithm takes three inputs: the current
measurement trace, the power threshold value, and a
gain constant for the feedback loop in the throttle. The
current trace is stored in the datatbl array. Inputclk is the
time (measured in sample intervals) in the input trace;
timeclk is the time (measured in sample intervals) of the
simulator output. As mentioned earlier our equipment
collects 600 samples per second and hence each sample
interval corresponds to 1/600th of a second. The
simulator is capable of scaling the measured current by
either the square or the cube of the throttle amount. For
our work, we use the square relationship since we are
conservatively assuming that power can be made
proportional to the square of the performance. The
second input is the threshold constant that sets the
desired power budget. The threshold value is usually
selected by the designer to be the maximum power
consumed by the chip. In our experiments we used 55
watts as the power threshold that can be dynamically

distributed amongst the four processors. Our
measurements showed that the maximum power
consumed on our four processors running at 2GHz is 220
watts. Since we set the power budget to be the same as
one processor running at 2GHz we used 55 watts (¼ of
the 220 watts) as the power threshold. The third input to
the algorithm is the gain constant, which determines how
quickly the throttle's feedback loop can respond to
changes in the power consumption. We chose a value of
0.1 which enables the processor's throttled performance
to double or halve in roughly 1/10 of a second. Finally,
to prevent the throttle from attempting to run the CPUs
faster than possible during periods of low power
consumption, the lower clamp is set to the baseline value
of 1.0, corresponding to our 2GHz processor. An
optional upper clamp is also provided but was never
triggered in our simulation runs.

In Figure 6 inputclk is advanced each iteration by the
scale factor. The scale factor is never greater than one,
since intval is clamped at a maximum of one. Typically
the scale factor is less than one and hence, the same
input current data may be read several times during
consecutive iterations. Thus, we simulate the effect of
reducing the processor’s power and correspondingly its
performance.

6.3 Software Throttle Simulation Results

The results produced by the EPI throttle simulator are
shown in Figure 7. This figure shows the normalized
performance on each benchmark as the power threshold

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

is varied from 0 to 220 watts. A reference point is plotted
illustrating our rule-of-thumb relationship between
performance and power (½ relative performance at ¼
relative power, which is 55 watts). Several interesting
observations can be made from this figure. The graphs
show that the simulated performance for all the
benchmarks is greater than this reference point; the EPI
throttle takes advantage of the fact that the four
processors are not consuming maximum power at all
times. The set of programs art, BLAST, FFTW,
HMMER and TPC-H show the least performance
degradation with reduced CPU power indicating that
these benchmarks have phases of execution where the
four CPUs are underutilized. Hence, these benchmarks
are expected to perform well on our AMP prototype,
which concurs with the results in Figure 1. Finally, as
expected, the CPU-intensive programs such as wupwise
and applu show the greatest performance degradation as
CPU power is constrained.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200 220
Power (watts)

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 t
o

4P
/2

G
H

z

HMMER
art
TPC-H
BLAST
FFTW fma3d

equake
apsi
mgrid
swim
ammp
applu
wupwise

reference

Figure 7: Performance versus Power Threshold

6.4 Prototype versus Simulation Results

The AMP prototype uses thread-level parallelism
within a program to determine the number of processors
and the corresponding frequency (duty cycle) to use to
stay within the power budget. However, we expect in
practical implementations an EPI throttle would monitor
the activity levels of the various blocks within a chip,
and based on activity determine when to reduce the
power consumption. The advantage of the AMP
prototype is that one can quickly measure the
performance impact of a throttle using the wall clock
execution times. The throttle simulator, on the other
hand, is a more flexible implementation because of
programmable parameters.

Figure 8 compares the measured performance using
the AMP prototype with the simulated performance
using the EPI throttle simulator. Across the suite of
benchmarks, the two approaches provide comparable
results. However, a small number of benchmarks have
noticeable differences. These differences may be due to
the following effects:
1. Programs with frequent transitions between

sequential and parallel phases (such as fma3d) may
run slowly on the AMP due to the added overhead
of thread migration

2. Programs with low activity levels in all four CPUs
during the execution of parallel regions will run
faster on the simulator because the EPI throttle
doesn't need to slow down the CPUs by much to
reduce power.

3. Programs with significant accesses to main memory
and I/O may run slower on the simulator because the
simulator uniformly slows down all components of
the computer, including processors, memory, and
I/O.

The close correlation of the results in Figure 8
between the measurement-driven simulator and the
physical AMP prototype system shows that a realistic
EPI throttle can deliver the performance gains in
practice.

1.
45

2.
50

1.
74

1.
56

1.
48

1.
09

1.
43

1.
42 1.
48

1.
12

1.
50

0.
80

0.
81

1.
71

2.
36

1.
75 1.
79

1.
41

1.
10

1.
39

1.
30 1.

40

1.
23 1.

35

1.
00

0.
60

0.00

0.50

1.00

1.50

2.00

2.50

3.00

am
mp

ap
plu ap

si

mgr
id

wup
wise ar

t

BLAST

eq
ua

ke

FFTW

HM
MER

TPC-H
fm

a3d
sw

im

S
pe

ed
up

 N
or

m
al

iz
ed

 to
 1

P
/2

G
H

z

AMP Prototype

Software Simulator

Figure 8: Prototype and Measurement Results

7. Conclusion and Future Work

In this paper we have presented a comprehensive
performance evaluation of EPI throttling using a
physical AMP prototype system and current
measurements on a physical system. We use clock
throttling and processor affinity to prototype an
asymmetric multiprocessor (AMP) using an off-the-shelf
4-way SMP. Each processor in the AMP expends
varying amount of EPI based on the available thread-

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

level parallelism. By running a wide range of multi-
threaded programs on the AMP prototype, we show a
38% wall clock speedup compared to a 4-way SMP with
a fixed power budget. The performance advantage is due
to the EPI throttle’s ability to dynamically allocate a
fixed power budget among a small number of high-
performance (high EPI) processors and a large number
of low-power (low EPI) processors in order to rapidly
execute both the sequential and parallel portions of the
computation.

In order to improve the 1-bit resolution of EPI
throttling in AMP, we measure the supply current on a
physical 4-way SMP server running multi-threaded
programs. We feed the measured data as input to a
software simulator that implements a more flexible EPI
throttle. We show that speedup from the AMP prototype
is comparable to the speedup achieved using the flexible
EPI throttle.

We believe that future chip multiprocessors will
incorporate some form of EPI throttle in order to deliver
maximum performance while keeping power
consumption within a fixed budget. By measuring wall
clock speedups, we show that an EPI throttle works well.
Furthermore, using two complementary methods we
make a compelling case that an EPI-throttled chip
multiprocessor is effective in mitigating the effects of
Amdahl’s law when running multi-threaded programs
with non-trivial sequential components.

We now discuss areas for future work. While our
work is based on a 4-way multiprocessor, future
multiprocessors may be expected to contain very large
numbers of processors. How well can the EPI throttle be
expected to work with future systems and software? As
chip multiprocessors with larger and larger numbers of
processors become practical, we expect the potential
performance benefits of EPI throttling will increase. This
is due to Amdahl’s law – as the parallel phase is divided
among more and more CPUs, it becomes increasingly
important to run the sequential phase quickly. Since the
effectiveness of the EPI throttle is highly dependent on
the characteristics of software, we may ask what
percentage of a typical software workload consists of an
inherently sequential component?

Hardware implementation is another area for
investigation. What is the best microarchitecture for the
EPI throttle? The EPI throttle consists of a mechanism
to monitor the multiprocessor’s activity, a feedback loop,
and a mechanism to control the multiprocessor’s EPI as
described in Table 1. We expect the EPI throttle to be
implemented as a hardware mechanism that operates
transparently to software. Software sees a symmetric
multiprocessor with an unusual property: individual
threads become slower as software asks hardware to run
more threads, even though net throughput increases. The
EPI throttle can make software execution times hard to

predict and raises possible fairness issues. What are the
software implications of the EPI throttle?

In our prototype, we studied the effects of EPI
throttling on CPU performance and power. A more
comprehensive study may choose to consider the entire
platform, including the main memory and I/O
subsystem. How does an EPI throttle account for
platform-level power interactions?

Finally, in our work we’ve taken the simple goal of
keeping the total CMP power constant, within a fixed
power budget. Future EPI throttles may need to operate
under several competing constraints. These may include
minimizing energy, minimizing di/dt-induced supply
voltage variation, reducing the magnitude of thermal hot-
spots, or guaranteeing a certain quality of service. What
are the most appropriate goals for future deep
submicron processors, and how should an EPI throttle
function given multiple, potentially conflicting goals?

We believe that the advent of large chip
multiprocessors, operating in a power-constrained
environment, with performance characteristics governed
by Amdahl’s law, has opened up an exciting new area
for future research.

8. Acknowledgments

This paper benefited from several stimulating
discussions on EPI throttle ideas we had with Bryan
Black, Richard Hankins, Norman Oded, Ryan Rakvic,
Ronny Ronen, Hong Wang and Uri Weiser. Thanks to
Konrad Lai, Ravi Rajwar, and Mike Upton for providing
us information on using the Pentium 4 processor’s clock
throttle under Linux. We would like to acknowledge
Carole Dulong and her team for providing us guidance
on setting up the BLAST and HMMER programs,
Natalie Enright for pointing us to FFTW and Hideki
Saito for patiently answering all our questions related to
the SPEC OMP benchmarks.

9. References

[1] D.H. Albonesi, R. Balasubramonian S.G. Dropsho,
S. Dwarkadas, E.G. Friedman, M.C. Huang, V.
Kursun, G. Magklis, M.L. Scott, G. Semeraro, P.
Bose, A. Buyuktosunoglu, P.W. Cook and S.E.
Schuster. Dynamically tuning processor resources
with adaptive processing. In IEEE Computer,
36(12):49-58, December 2003.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers and
D.J. Lipman. Basic local alignment search tool. In
Journal of Molecular Biology, vol. 215, pages 403-
410, 1990.

[3] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner,
W.B. Jones, and B. Parady. SPEComp: A New
Benchmark Suite for Measuring Parallel Computer

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

Performance. In Proceedings of the Workshop on
OpenMP Applications and Tools, Lecture Notes in
Computer Science, vol. 2104, pages 1-10, July
2001.

[4] L.A. Barroso, K. Gharachorloo, R. McNamara, A.
Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing. In
Proceedings of the 27th International Symposium on
Computer Architecture, pages 282-293, June 2000.

[5] D. Brooks and M. Martonosi Dynamic thermal
management for high-performance microprocessors.
In proceedings of the Seventh International
Symposium on High-Performance Computer
Architecture, pages 171-182, January 2001.

[6] T.D. Burd and R.W. Brodersen. Energy Efficient
CMOS Microprocessor Design. In Proceedings of
the 28th Annual Hawai'i International Conference
on System Sciences, vol. 1, pages. 288-297, Jan.
1995.

[7] FFTW: http://www.fftw.org

[8] R.J.O. Figueiredo and J.A.B. Fortes. Impact of
heterogeneity on DSM performance. In Proceedings
Sixth International Symposium on High-
Performance Computer Architecture, pages 26-38,
January 2000.

[9] E. Grochowski, R. Ronen, J. Shen, H. Wang. Best of
Both Latency and Throughput. In Proceedings of
the 22nd International Conference on Computer
Design, pages 236-243, October 2004.

[10] S.H. Gunther, F. Binns, D.M. Carmean, J.C. Hall.
Managing the Impact of Increasing Microprocessor
Power Consumption. Intel Technology Journal,
First Quarter 2001.
http://www.intel.com/technology/itj/q12001.htm

[11] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M.
Willey, M. Chen, M. Kozyrczak, and K. Olukotun.
The Stanford Hydra CMP. Hot Chips 11, August
1999.

[12] HMMER: http://hmmer.wustl.edu

[13] Intel® Pentium® 4 Processor in the 423-pin
Package at 1.30 GHz, 1.40 GHz, 1.50 GHz, 1.60
GHz, 1.70 GHz and 1.80 GHz Datasheet,.
http://support.intel.com/design/pentium4/datashts/24
9198.htm, pages 78-79, 2001.

[14] C. Isci and M. Martonosi. Runtime Power
Monitoring in High-End Processors: Methodology
and Empirical Data. In Proceedings of the 36th
International Symposium on Microarchitecture,
pages 93-104, December 2003.

[15] J. Kahle. Power4: A Dual-CPU Processor Chip.
Microprocessor Forum '99, October 1999.

[16] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan
and D.M. Tullsen. Single-ISA heterogeneous multi-
core architectures: the potential for processor power
reduction. In proceedings of the 36th International
Symposium on Microarchitecture, pages 81-92,
December 2003.

[17] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi
and K. Farkas. Single-ISA heterogeneous multi-core
architectures for multithreaded workload
performance. In Proceedings 31st International
Symposium on Computer Architecture, pages 64-75,
June 2004.

[18] J. Li and J.F. Martínez. Power-Performance
Implications of Thread-level Parallelism on Chip
Multiprocessors. To appear in Proceedings of the
International Symposium on Performance Analysis
of Systems and Software, March. 2005.

[19] S. Manne, A. Klauser and D. Grunwald. Pipeline
gating: speculation control for energy reduction. In
Proceedings the 25th International Symposium on
Computer Architecture, pages 132-141, June 1998.

[20] D. Menasce, V. Almeida. Cost-performance analysis
of heterogeneity in supercomputer architectures. In
Proceedings of Supercomputing, pages 169-177,
November 1990.

[21] T.Y Morad, U. Weiser and A. Kolodny. ACCMP -
Asymmetric Chip Multi-Processing. CCIT
Technical Report #488,
http://www.ee.technion.ac.il/morad/publications/acc
mptr.pdf, June 2004

[22] M. Stonebraker and L.A. Rowe. The design of
POSTGRES. In Proceedings of the International
Conference on Management of Data, pages 340-
355. June 1986.

[23] TPC-H: http://www.tpc.org/tpch

[24] J. Tschanz, S. Narendra, Y. Yibin, B. Bloechel, S.
Borkar, D, Vivek. Dynamic-sleep transistor and
body bias for active leakage power control of
microprocessors. In IEEE Journal of Solid-State
Circuits, 38(11):1838-1845, November 2003.

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA’05)

1063-6897/05 $20.00 © 2005 IEEE

