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Abstract

This paper is motivated by three recent trends in 
computer design. First, chip multi-processors (CMPs) 
with increasing numbers of CPU cores per chip are 
becoming common. Second, multi-threaded software that 
can take advantage of CMPs will soon become 
prevalent. Due to the nature of the algorithms, these 
multi-threaded programs inherently will have phases of 
sequential execution; Amdahl’s law dictates that the 
speedup of such parallel programs will be limited by the 
sequential portion of the computation. Finally, 
increasing levels of on-chip integration coupled with a 
slowing rate of reduction in supply voltage make power 
consumption a first order design constraint. Given this 
environment, our goal is to minimize the execution times 
of multi-threaded programs containing nontrivial 
parallel and sequential phases, while keeping the CMP’s 
total power consumption within a fixed budget. In order 
to mitigate the effects of Amdahl’s law, in this paper we 
make a compelling case for varying the amount of 
energy expended to process instructions according to the 
amount of available parallelism. Using the equation, 
Power=Energy per instruction (EPI) * Instructions per 
second (IPS), we propose that during phases of limited 
parallelism (low IPS) the chip multi-processor will 
spend more EPI; similarly, during phases of higher 
parallelism (high IPS) the chip multi-processor will 
spend less EPI; in both scenarios power is fixed. We 
evaluate the performance benefits of an EPI throttle on 
an asymmetric multiprocessor (AMP) prototyped from a 
physical 4-way Xeon SMP server. Using a wide range of 
multi-threaded programs, we show a 38% wall clock 
speedup on an AMP compared to a standard SMP that 
uses the same power. We also measure the supply 
current on a 4-way SMP server while running the multi-
threaded programs and use the measured data as input 
to a software simulator that implements a more flexible 
EPI throttle. The results from the measurement-driven 
simulation show performance benefits comparable to the 
AMP prototype. We analyze the results from both 
techniques, explain why and when an EPI throttle works 
well, and conclude with a discussion of the challenges in 
building practical EPI throttles. 

1. Introduction 

With silicon technologies enabling billions of 
transistors on a single chip, the era of the Chip 
Multiprocessor (CMP) has arrived [4][11][15]. CMPs 
will soon be used across all computing domains: server, 
desktop and mobile. Starting from today’s dual-core 
processors, the number of CPU cores on a chip can be 
expected to grow over time as a result of Moore’s Law.  

The ubiquitous presence of CMPs will naturally be 
accompanied by a proliferation of multi-threaded 
software. Although multi-threaded software is primarily 
the domain of servers today, we expect that in the near 
future software for desktop and mobile computers will 
also become multi-threaded. Due to the inherent nature 
of the algorithms, multi-threaded software will contain 
phases of sequential execution interspersed with phases 
of parallel execution. Amdahl’s law states that the 
speedup possible due to parallelization will be limited by 
the portion of the time spent in the sequential 
component. For example, if a program spends 10% of its 
time in a sequential component, the maximum speedup 
achievable through parallelization is 10. Due to 
Amdahl’s law, it is necessary to improve the 
performance of both the sequential as well as the parallel 
components of execution. 

Historically, advances in silicon process technology 
have been accompanied by reductions in power supply 
voltage. Reducing supply voltage lowers chip power 
consumption and maintains the electric field strength 
within the transistors at safe levels. In recent years, 
however, a slowdown in the rate of reduction in supply 
voltage has hampered our ability to lower power 
consumption with new process technologies. Thus power 
consumption has emerged at the forefront of challenges 
facing the chip designer. Researchers have proposed 
many techniques to reduce power and energy in 
accordance to the software’s behavior 
[1][5][14][16][17]. In this work our goal is to maximize 
the performance of a CMP while keeping its total power 
consumption within a fixed power budget. Unlike battery 
operated devices that strive to conserve energy to extend 
battery life, we focus on AC line powered server and 
desktop systems that strive to deliver maximum 
performance while operating just within the capabilities 
of the power delivery and cooling subsystems.  
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Due to the conflicting microarchitectural demands, it 
is nearly impossible to optimize both single-threaded 
(sequential component) and throughput (parallel 
component) performance within a fixed power budget. 
Microarchitectural techniques for reducing single-
threaded execution latency, e.g. out-of-order execution, 
speculation, and deep pipelining, consume relatively 
high energy per instruction, thereby limiting the number 
of CPU cores that can be accommodated in a CMP for a 
given power budget. On the other hand, throughput 
performance demands many low energy cores in a CMP 
to exploit thread-level parallelism.  

The key to designing a microprocessor that can 
achieve both high scalar performance and high 
throughput performance is to dynamically vary the 
amount of energy expended to process each instruction 
according to the amount of parallelism available in the 
software. In other words, if there is little parallelism, a 
microprocessor should expend all available energy 
processing a few instructions; and if there is a lot of 
parallelism, the microprocessor should expend less 
energy in processing each instruction. This relationship 
may be formalized as: 

IPSEPIP *    (1) 
where P is the fixed power budget, EPI is the average 
energy per retired instruction, and IPS is the aggregate 
number of instructions retired per second across all CPU 
cores.  

In [9] the authors discussed four techniques for 
varying EPI. Table 1 summarizes the four techniques, 
showing the achievable range of EPI (conservative range 
to optimistic range), the approximate time required to 
vary EPI over the stated range, and the action that an EPI 
throttle would take to reduce energy. To accommodate 
software with a wide range of IPS, an equally wide range 
of EPI is required. As shown in the table, designers have 
the choice of EPI techniques that are relatively slow but 
provide significant EPI range, or EPI techniques that are 
much faster but have limited EPI range.  

Method EPI 
Range

Time to vary 
EPI

Throttle
Action

Scaling
voltage 
frequency  

1:2 to 
1:4 

100us;ramp 
Vcc

Lower
voltage 
frequency 

Asymmetric
cores

1:4 to 
1:6 

10us;migrate 
L2

Migrate
threads 
between cores 

Variable-size 
core

1:1 to 
1:2 

1us;fill L1 Reduce 
toggled 
capacitance

Speculation 
control 

1:1 to 
1:1.4 

10ns;flush 
pipe

Reduce 
speculation 

Table 1. EPI Throttling Techniques 

In [9] the authors described the concept of EPI 
throttling. In this paper we present a comprehensive 
performance evaluation of EPI throttling using a 
combination of prototyping and measurements on 
physical systems. This paper makes the following 
contributions:  
1. By using a novel combination of clock throttling 

and processor affinity, we prototype an asymmetric 
multiprocessor (AMP) using an off-the-shelf 4-way 
SMP. Each processor in the AMP expends varying 
amount of EPI based on the available thread-level 
parallelism.  

2. We show an average of 38% wall clock speedup on 
a wide range of multi-threaded programs running on 
our physical AMP prototype compared to a standard 
SMP that uses the same power. To the best of our 
knowledge, this paper is the first to prototype an 
AMP and to show wall clock speedups on a physical 
system. 

3. Our AMP prototype is limited to varying the EPI of 
a processor by a coarse granularity. In order to 
assess the impact of this limitation, we measure the 
supply current on a physical 4-way SMP server 
running multi-threaded programs. We feed the 
measured data as input to a software simulator that 
implements a more flexible EPI throttle. We show 
comparable speedups between the simulator and the 
AMP prototype, indicating that a realistic EPI 
throttle can deliver the performance gains in 
practice.

4. Using two complementary methods, we make a 
compelling case that an EPI throttled AMP is 
effective in mitigating the effects of Amdahl’s law 
while running multi-threaded programs with non-
trivial amounts of sequential component.  

The rest of this paper is organized as follows. Section 
2 discusses how this work differs from the previous 
research. Section 3 describes our experimental prototype. 
Section 4 describes our multi-threaded programs setup 
and execution. Section 5 presents the results comparing 
the execution times of our programs on AMP with two 
machine configurations that consume equal power. We 
analyze the reasons when and why an EPI throttle 
performs well. Section 6 presents the results of the 
current measurement and software simulation technique. 
Section 7 presents conclusions and areas for future work. 

2. Related Work 

Much research has been done on various 
microarchitectural techniques to reduce energy per 
instruction. These techniques include CMOS 
voltage/frequency scaling [6], asymmetric 
multiprocessor cores [16][17][21], variable-sized cores 
(also called adaptive processing) [1], and speculation 
control [19]. Most of this prior work has been done in 
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the context of running single-threaded programs with the 
goal of reducing energy without sacrificing too much 
performance. Most researchers cite an improvement on a 
metric such as energy*delay2 with power and 
performance computed through simulations, measured 
activity factors, or analytical models. This paper, on the 
other hand, focuses on reducing the wall-clock execution 
times multi-threaded programs running on future CMPs 
using a physical prototype of an AMP.  

The idea of regulating (or throttling) a processor’s 
activities to control power and temperature has been the 
topic of much research and product development. Brooks 
and Martonosi [5] described the use of dynamic thermal 
management to control die temperature. The Intel® 
Pentium® 4 processor implements a thermal monitor to 
limit die temperature so that the processor and system 
thermal solutions may be designed according to the 
power envelopes of real programs rather than worst-case 
power viruses [13]. We use the clock throttling feature 
on the Pentium 4 processor in conjunction with process 
affinity features in Linux to prototype an AMP.  

Heterogeneous multiprocessors are another area of 
related work. Menasce and Almeida [20] proposed the 
use of heterogeneous processors in supercomputers, with 
two different types of processors used to speed up the 
parallel and sequential portions of a computation. 
Figueiredo and Fortes [8] explored heterogeneous 
distributed-shared-memory multiprocessors with a few 
nodes with large caches designed for single-thread 
performance, and a larger number of nodes with smaller 
caches designed for multi-threaded parallelism. Morad et 
al. [21] presented an analysis of why an asymmetric chip 
multiprocessor can achieve higher performance for a 
given area and power budget. Li and Martinez [18] used 
a combination of analytical models and simulation 
experiments to show that parallel computing can bring 
significant power savings while meeting a given 
performance target, by choosing appropriate granularity 
for parallelism and judicious voltage/frequency levels. 
Kumar et al. [16] proposed a heterogeneous multi-core 
processor that delivers higher performance than a 
homogeneous multi-core processor when both are 
constrained by the same die area. Our AMP prototype is 
closest to the heterogeneous CMP presented in [16]. In 
[16] a single threaded program is switched between 
multiple cores on a CMP based on the heuristic that 
seeks to minimize energy-delay product. This paper 
differs in three respects: we assume the main constraint 
is a fixed power budget; we exclusively use multi-
threaded workloads; and we measure wall clock speedup 
instead of relying on a metric such as energy-delay. 

3. Prototyping AMP on an SMP 

To evaluate the performance benefits of EPI 
throttling, we construct a prototype multiprocessor 

system that uses the Intel® Pentium® 4 Processor’s 
clock throttle mechanism [10] to create multiple 
performance and power operating points. The physical 
AMP prototype system described in this section and the 
software modifications described in Section 4 are 
primarily intended for evaluating the benefits of EPI 
throttling. In practice, we expect an EPI throttle to be 
implemented as a hardware mechanism that operates 
transparently to software.  

The Pentium 4 processor uses on-chip temperature 
sensing diodes and clock throttling to control both the 
temperature and power consumption of the chip. When 
the measured temperature exceeds a defined threshold, 
hardware automatically shuts off the processor clock for 
a brief time interval to allow the chip to cool. Extensive 
use of clock gating and unit power down techniques 
allows the power consumption to drastically drop during 
clock throttling. System software can also explicitly 
manage power consumption using the same clock 
throttling mechanism.  

Clock throttling can be configured by writing to the 
IA32_CLOCK_MODULATION model specific register 
(MSR). Three duty cycle bits in the MSR set the duty 
cycle to one of the seven levels – 12.5%, 25%, 37.5%, 
50%, 62.5%, 75% and 87.5%. The duty cycle can be set 
on a per processor basis in a multiprocessor. Note that 
clock throttling does not reduce the actual operating 
voltage or frequency of a processor. However, clock 
throttling has a similar effect on performance as reducing 
the processor frequency. Based on historical data [9] we 
assume that it is possible to design a range of CPU 
microarchitectures in which the power consumption may 
be made proportional to the square of the frequency. For 
instance, if we duty cycle a 2GHz processor at 50% then 
the processor performance is approximately similar to 
the performance of a 1GHz processor (½ the 
performance of 2GHz processor), and the 1GHz 
processor consumes roughly ¼ the power of the 2GHz 
processor. Thus, EPI is reduced by a factor of 2. In order 
to emulate an EPI throttle, we vary the duty cycle of 
each processor independently to create or emulate an 
AMP. Note that we conservatively use a square 
relationship between power and performance rather than 
an idealized cubic relationship as in CMOS 
voltage/frequency scaling. 

In our experiment, to satisfy equation 1 for a given 
power budget, we assign parallel phases of a program 
with high aggregate IPS to low EPI processors and 
sequential phases with low IPS to high EPI processors. 
In order to make such an assignment we need the ability 
to specify to the OS scheduler to assign a process to a 
particular processor. Thus our AMP prototype relies on 

                                                     
Intel®, Pentium®, Pentium® 4, and Xeon  are trademarks or registered 
trademarks of Intel Corporation or its subsidiaries in the United States 
and other countries. 
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both clock throttling and affinity control, which are 
fortunately supported by the Linux 2.4 kernel. The 
kernel module p4-clockmod provides a simple interface 
to configure the duty cycle for clock throttling. Once the 
module is loaded the superuser can simply update the 
file “/proc/cpufreq” file with the desired duty cycle value 
and within a short interval (10-100 microseconds) clock 
throttling will be initiated. We wrote a simple driver 
routine that takes as input the processor number and the 
desired duty cycle value and updates the cpufreq file.

The second Linux kernel feature used in our 
prototype is the process scheduling feature that allows a 
thread/process to be affined to a specific processor. 
Linux provides a command line scheduling tool, called 
taskset, which allows any running process to be 
scheduled to run on a specific processor. Linux also 
provides a C-programming interface through a set of 
process scheduling API, sched_setaffinity and
sched_getaffinity, which allows a programmer to affine a 
thread to a processor. Section 4 describes how clock 
throttling and processor affinity features are used to run 
a diverse set of multi-threaded programs on the AMP 
prototype.  

3.1 Hardware Configuration 

We chose an Intel XeonTM 4-way SMP server as our 
experimental machine. The Xeon processor is the server 
version of the Pentium 4 processor. The Xeon processors 
in our system operate at 2GHz with Hyper-Threading 
Technology disabled. Our system is populated with 4 
GB of PC200 DDR and has 3 Ultra320 SCSI drives, 
each with 73 GB of capacity. We installed Red Hat*

Enterprise Linux 3.0 OS with 2.4.21-15.ELsmp kernel.  
In our experiments, we fixed the power budget to be 

same as the power consumed by a 1P Xeon processor 
running at 2GHz. Given this power budget, the base 
SMP can be configured into several MP configurations 
all of which consume roughly the same power. As 
mentioned earlier, based on historical data we assume 
that a range of CPUs may be designed in which power is 
proportional to the square of the duty cycle. For instance, 
if the power consumed by the baseline 1P/2GHz 
processor is 1, then 2P running at 6/8 duty cycle 
(effective frequency is 6/8*2GHz =1.5GHz) consume 
2*(6/8)2=1.12. Table 2 shows the four possible 
configurations.

3.2 AMP Configuration 

We created two AMP configurations using a 
combination of configurations shown in Table 2. One is 
a static AMP configuration where either three processors 

                                                     
* Other names and brands may be claimed as the property of others. 

run at 1.25GHz (5/8 duty cycle) or one processor runs at 
2GHz. We use either the 1P or the 3P depending on the 
amount of thread-level parallelism in our programs. 
When the program executes sequential code, we run the 
sequential code on the one fast processor and when the 
program executes parallel code we run the parallel 
threads on the three slow processors. Using processor 
affinity we guarantee that the sequential phase is affined 
to the fast processor and parallel phases are affined to the 
slow processors. In our prototype, we assume that during 
sequential code execution the three slow processors can 
be shut off so as to consume negligible power, and 
similarly during parallel execution the fast processor can 
be shut off so as to consume negligible power. An 
extremely low power state may be achieved in practice 
through the use of sleep transistors and body bias [24]. 
In the static AMP setup, the duty cycle is set only once 
before a program run and is not altered during execution.  

CPUs Duty 
Cycle

Effective
Freq 

Normalized Total 
Power

1P 8/8 2GHz 1.00 (Baseline) 
2P 6/8 1.5GHz 1.12 
3P 5/8 1.25GHz 1.17 
4P 4/8 1GHz 1.00 

Table 2. MP Configurations with Similar Power

The second AMP configuration is dynamically 
reconfigured during program execution based on the 
amount of available thread-level parallelism. The 
parallel phases are run on either all or a subset of the 
four processors while the sequential phase runs on a 
single processor at 2GHz. For instance, if there are four 
available threads in a given phase we use four processors 
running at 1GHz (duty cycle of 4/8) and if the number of 
threads reduces to two then we reassign the power 
budget to just two processors by running them each at 
1.5GHz (duty cycle of 6/8). Thus the power consumed 
by AMP is constant all through the program run; EPI is 
lower during parallel execution phases and EPI is higher 
during sequential execution phases.  

A static AMP is desirable for those programs that 
rapidly transition between sequential and parallel phases 
as the overhead of frequently changing the duty cycle 
(by updating the cpufreq file) is quite significant. On the 
other hand, a dynamic AMP is desirable when the 
thread-level parallelism varies between one and four 
during program execution and there are only a few 
transitions between sequential and parallel phases. While 
some of the overhead is an artifact of our prototype 
implementation, we believe that any mechanism to vary 
EPI will be fundamentally slow relative to instruction 
execution. Hence, reconfiguration overheads should be 
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taken into consideration when choosing an EPI throttling 
mechanism.  

Some configurations in Table 2 use slightly more 
power than the baseline due to the coarse granularity of 
the duty cycle. Since some AMP configurations consume 
up to 17% more power, they have up to an 8% 
performance advantage.  To eliminate this advantage and 
reflect constant power conditions, we have adjusted the 
run times on the AMP setup for all the results presented 
in this paper. For instance the measured AMP runtime on 
wupwise is 647 seconds, where 90% of the time 
wupwise runs on 3P/1.25GHZ and 10% of the time on 
1P/2GHz. Hence, the adjusted run time is 
(1+0.9*0.08)*647=694 seconds.  In doing this 
adjustment, all the MP configurations compared in this 
paper can be viewed as consuming the exact same fixed 
power. 

4. Benchmarks: Setup and Tuning 

We selected 13 parallel programs for this study: 9 
SPEC Open MP (OMP) benchmarks [3], BLAST [2]and
HMMER [12] bioinformatics programs, TPC-H [23] 
decision support program, and FFTW a parallel Fourier 
transform solver [7]. The SPEC OMP benchmarks are 
compiled with the Intel C++ compiler 8.0 and the Intel 
Fortran compiler 8.0. All other programs are compiled 
with gcc 3.2.3. These represent a wide range of realistic 
multi-threaded programs that we were able to easily set 
up and build from the source code. This section 
describes the programs and explains how we set up and 
run them on our AMP prototype.  

4.1 SPEC OMP 

The SPEC OMP benchmarks are a subset of the well 
known CPU2K benchmarks. These benchmarks are 
parallelized using the Open MP directives. We selected 9 
out of the 11 benchmarks from the SPEC OMP suite: 
wupwise, swim, mgrid, applu, equake, apsi, fma3d, art
and ammp. Two benchmarks, galgel and gafort were not 
used as they could not be run to completion in our 
environment. Based on the frequency of transitions 
between sequential and parallel regions we chose either a 
static AMP or a dynamic AMP configuration. Table 3 
shows AMP configurations used for each of our 13 
programs. For most SPEC OMP benchmarks we used 
static AMP configuration, where clock throttling is used 
to statically configure an AMP with one processor (CPU 
0) at 2GHz and three processors (CPUs 1, 2 and 3) at 
1.25GHz. Typically OMP parallelization directives 
create as many threads as there are CPUs (four in our 
setup). However, we hand modified all the benchmarks 
to use processor affinity guaranteeing that the sequential 
regions run only on the CPU 0 running at 2GHz and the 

parallel regions run only on CPUs 1, 2 and 3 running at 
1.25 GHz. Modification of the SPEC OMP benchmarks 
is fairly simple as we searched for the parallelization 
directives and added processor affinity calls at the start 
and end of each OMP directive. These software 
modifications were only necessary in our prototype 
implementation, while in practice we expect an EPI 
throttle to be implemented as a hardware mechanism that 
operates transparently to software. 

AMP Configuration Programs 

Static AMP: 1P/2GHz 
or 3P/1.25GHz 

wupwise, swim, mgrid, 
equake, fma3d, art, ammp, 
BLAST, HMMER 

Dynamic AMP: 
1P/2GHz to 4P/1GHz 

applu, apsi, FFTW, TPC-H 

Table 3. AMP Configurations for Programs 

4.2 BLAST 

Basic Local Alignment Search Tool (BLAST) is a 
program extensively used in bioinformatics research 
where researchers search for the closest match of a new 
protein or amino acid sequence in an existing, and 
continuously evolving, database of known sequences. 
Typically the database is built from FASTA formatted 
text input data using the formatdb program. Formatting 
reorganizes text data into a meta-database that enables 
efficient search operations. After the database is built 
usually a series of repeated searches are performed on 
the database using the blast_all program. The blast tool 
kit provides code for both formatdb and blast_all.
Database formatting is a sequential operation while 
search operations are parallel.  

We ran blast on a static AMP configuration. The code 
provided by BLAST uses pthreads to automatically 
create as many threads as there are CPUs during search. 
We modified the code to create only three threads during 
the search operation. Furthermore, we used the Linux 
thread scheduling API (sched_setaffinity) to assign the 
three parallel search threads to CPUs 1, 2 and 3 running 
at 1.25 GHz and the sequential formatdb operation is 
configured to run on the 2GHz CPU 0. In our setup we 
ran the formatdb operation on a 120MB database and ran 
five parallel search operations using a 2500 character 
sequence protein string.  

4.3 HMMER

HMMER is another bioinformatics program which is 
similar to BLAST. HMMER, unlike BLAST, 
concurrently searches for multiple sequences in a 
database using Hidden Markov Model pattern matching. 
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HMMER is capable of searching text databases and 
hence does not need any database formatting operation. 
The search operation is mostly parallel, except during 
the initial setup and output generation phases which are 
sequential. Our AMP setup for HMMER is also 
statically configured where 1P/2GHz runs the sequential 
code and 3P/1.25GHz run the parallel search code. 

4.4 FFTW

FFTW is a collection of programs for computing the 
Discrete Fourier Transform in multiple dimensions. It 
includes complex, real, symmetric, and parallel 
transforms, and can handle arbitrary array sizes 
efficiently. For our work we used the three-dimensional 
FFT solver parallelized using pthreads. The program 
uses data parallelism by dividing the input data arrays 
into as many chunks as there are processors. Each 
processor operates on its own chunk and the results are 
then merged at the end. FFTW has just four transitions 
between sequential and parallel phases. Furthermore, 
during the parallel operation there is enough data 
parallelism to fully saturate four CPUs. Hence, we used 
a dynamic AMP setup where the sequential regions run 
on 1P/2GHz and the parallel region run on 4P/1GHz. We 
identified sequential and parallel regions in the program 
and affined the sequential regions to run only on CPU 0. 
Prior to the beginning of each sequential region we set 
the CPU 0 duty cycle to 1 and at the end of the 
sequential region we reset the duty cycle to 4/8. Thus the 
parallel regions run on all four CPUs at duty cycle 4/8 
and the sequential region runs on CPU 0 at duty cycle 1.  

4.5 TPC-H

TPC-H is a decision support database benchmark. We 
built a 1GB TPC-H database using the Postgres DBMS 
[22] and tuned the setup to maximize the CPU 
utilization. We wrote a master driver to run all the 22 
queries in TPC-H. The driver places all these queries in a 
query queue in random order. Initially, our driver sets 
the frequency of the four CPUs to 1GHz. Then it creates 
four threads and assigns affinities to run them on four 
different CPUs. Each thread then executes one query 
from the query queue on the thread’s assigned processor. 
When a query completes the thread picks up the next 
query from the queue. If there are no more queries in the 
queue the thread signals to the master and exits. The 
master thread then increases the frequency of the 
remaining three threads to 1.25GHz. Similarly, when the 
next thread exits, the master increases the frequency of 
the remaining two CPUs to 1.5GHz. Finally when there 
is only one thread the frequency is increased to 2GHz. In 
this manner, the total power is kept constant over all 
phases. 

5. Results and Analysis

Figure 1 shows the results of running the 13 programs 
on three machine configurations (1P/2GHz, AMP, and 
4P/1GHz).  All three configurations consume roughly 
equal power.  The left bar for each program is the 
speedup on an AMP normalized to 1P/2GHz.  The right 
bar is the speedup on 4P/1GHz SMP normalized to 
1P/2GHz.  Based on the speedups achieved, the 
programs may be classified into one of three categories. 
The five programs in the first category (ammp, applu, 
apsi, mgrid, and wupwise) show that a 4P/1GHz SMP 
performs slightly better than AMP. The six programs in 
the second category (art, BLAST, equake, FFTW, 
HMMER, and TPC-H) show that AMP achieves 
significantly better speedup than 1P/2GHz or 4P/1GHz. 
Finally, the two programs, fma3d and swim, indicate 
AMP and 4P/1GHz do not provide any performance 
benefit (or even worse performance) over a standard 
1P/2GHz processor. 

1.
45

2.
50

1.
74

1.
56

1.
48

1.
09

1.
43

1.
42

1.
48

1.
12

1.
501.
56

0.
81

0.
80

0.
76

1.
02

1.
04

0.
961.

15

1.
15

1.
17

1.
03

1.
75

1.
57

1.
50

2.
52

0

0.5

1

1.5

2

2.5

3

am
m

p
applu

apsi

m
grid

wupwis
e art

BLAST

equak
e

FFTW

HM
MER

TPC-H

fm
a3d

swim

S
pe

ed
 u

p 
N

or
m

al
iz

ed
 to

 1
P

/ 2
G

H
z

AMP 4P/1GHz

C

Figure 1. Speedup Normalized to 1P/2GHz 

FFTW

0

100

200

300

400

1 101 201

Time (sec)

C
P

U
 U

til
 %

Figure 2. CPU utilization over time for FFTW

To provide an intuitive understanding of why AMP 
improves performance in the second category, Figure 2 
shows the measured total CPU utilization during the 
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AMP run of FFTW. The graph shows distinct phases of 
sequential and parallel execution where the CPU 
utilization is 100% and 400% respectively. AMP uses 
1P/2GHz processor during sequential phases and uses a 
4P/1GHz during parallel phases. Using a standard 
4P/1GHz SMP would underutilize the power budget 
during sequential phases when only one processor is 
running. In contrast, always using a 1P/2GHz processor 
does not take advantage of available thread-level 
parallelism during parallel phases. AMP improves 
performance by varying the EPI according to available 
thread-level parallelism to continuously optimize the use 
of given power budget. 

We now present a detailed analysis of when and why 
AMP works better than SMP. Figure 3 shows idealized 
run times (normalized to 1P/2GHz) of a 4-way SMP and 
an AMP along with the runtimes of the 13 programs. 
The X-axis shows the percentage of sequential 
component in the program, and the Y-axis shows the run 
time normalized to 1P/2GHz.  
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Figure 3: Ideal versus Measured Run time 

As shown in the graph, when the sequential 
component is 0%, 4P/1GHz achieves half the execution 
time of 1P/2GHz because the program is completely 
parallelized. When the sequential component is 100%, 
4P/1GHz has twice the execution time of 1P/2GHz since 
the multiprocessor is using only one of its four CPUs. 
For sequential components in between 0% and 100%, 
the run times may be linearly interpolated from the two 
endpoints because the sequential and parallel 
components are additive. Figure 3 also plots the run time 
of an idealized AMP configuration that consumes the 
same power: 1P/2GHz or 3P/1.25GHz (static AMP). The 
endpoints at 0% and 100% are about the same as the 
corresponding SMP configurations. However, the AMP 

has the advantage that in between 0% and 100%, the 
AMP can optimize both the sequential and parallel 
phases within the fixed power budget. The idealized 
AMP configurations achieve lower execution times than 
the idealized SMP configurations for all but the trivially 
parallel or completely sequential programs. 

Finally, Figure 3 plots the measured run times of the 
12 programs (applu is omitted because its speedup is 
superlinear). The sequential component is determined by 
measuring the execution times on a 1P/2GHz and 
4P/1GHz and applying the following formulas: 

u = s + p      (2) 
m = 2·(s + p/4)     (3) 
s = -1/3·u + 2/3·m    (4) 
p = 4/3·u - 2/3·m    (5) 

where u is the execution time on 1P/2GHz; m is the 
execution time on 4P/1GHz; s is the sequential 
component of execution time; and p is the parallel 
component of execution time. 

The graph shows that programs are clustered into 
three categories. On the left are the highly-parallel 
programs ammp, apsi, mgrid, and wupwise. Notice that 
these are the same set of programs that were categorized 
into group one in Figure 1. Our analysis of sequential 
and parallel components showed that these programs 
have a large parallel component; hence, they benefit 
from running on a large number of low-power CPUs. On 
our four processor server, these benchmarks do not 
spend enough time in the sequential component to 
receive significant benefit from AMP. We surmise that 
on future large multiprocessors, the sequential 
component can be expected to become an increasingly 
dominant part of the total execution time (Amdahl’s 
law), and therefore, the benefits of AMP can be expected 
to increase. 

In the middle of are the moderately parallel programs 
art, BLAST, equake, FFTW, HMMER, and TPC-H. 
These benchmarks spend 23% to 36% of their execution 
time in sequential components. Ideally, all these 
benchmarks with significant amount of sequential 
component are expected to perform well on AMP. There 
are two reasons for the discrepancy between idealized 
and measured AMP performance. First, art and HMMER 
are not CPU bound (<70% CPU utilization) and hence, 
AMP provides less performance benefits than the 
potential shown in Figure 3. The second cause for the 
discrepancy is the thread migration overhead introduced 
by the AMP.  The overhead may be amortized over long 
program phases such as in FFTW. Hence, benchmarks 
with long program phases show performance gains that 
are comparable to the idealized AMP performance. 

The third category of benchmarks includes fma3d and 
swim. While these benchmarks have sequential 
components in the range of 31% to 54%, our visual 
analysis of these benchmarks revealed that these 
benchmarks have short sequential and parallel phases 
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and they switch rapidly between the two phases. Hence, 
the overhead introduced by thread migration in an AMP 
offsets any reduction in execution time. These 
benchmarks run well on a conventional 1P/2GHz 
processor. 

6. Current Measurement and Simulation 

In this section we present an alternative method for 
assessing the benefits of EPI throttling that employs a 
high-resolution measurement of CPU power 
consumption. While the AMP prototype described in the 
previous sections monitors CPU power with 1-bit of 
resolution (active or idle), this method offers 14 bits of 
resolution. The method comprises of two steps: (1) 
Supply current measurement and trace collection, and (2) 
Software throttle simulation. The software simulator 
models a hardware implementation of the EPI throttle 
that may use any of the EPI techniques presented in 
Table 1. 

6.1 Supply Current Measurement 

In the first step we measure the multiprocessor’s 
supply current using a current probe and record the 
measured current over time. Our experimental setup 
consists of the following equipment: (1) 4-way Xeon 
2GHz SMP server, (2) Agilent 34134A DC Coupled 
Current Probe, (3) Agilent 34401A Digital Multimeter, 
(4) Agilent 82357A USB/GPIB Interface, and (5) IBM 
ThinkPad T20 laptop.  

Figure 4 shows our experimental setup. The SMP 
server is the same server used in the AMP prototype. In 
order to measure the supply current to the four 
processors the current probe is placed around the +12 
volt wires between the power supply and motherboard. 
These wires feed the voltage regulators for the four Xeon 
processors. Note that the server board design constrained 
us to measure the input current to the voltage regulators 
rather than the output current that feeds the four CPUs. 
Hence, the measured current, converted to power, is the 
total for all four CPUs and includes small losses in the 
regulators.

The output from the current probe is sent to the 
Agilent 34401A multimeter. The multimeter captures 
600 current measurement samples per second. We 
programmed the multimeter to collect samples for the 
same time as the run length of each of our 13 
benchmarks. The Agilent 82357A USB/GPIB Interface 
is used to transfer the samples from the multimeter to the 
IBM ThinkPad T20 laptop. To measure the current flow 
over time we ran the unmodified benchmark binaries on 
the 4-way SMP. For each of the 13 benchmarks, between 
20,000 and 400,000 samples were recorded. 

Figure 4: Current Measurement Setup 

Figure 5. Measured Supply Current on FFTW 

An example of the measured supply current over time 
is shown in Figure 5 for FFTW. It is interesting to note 
the visual similarity between the current measurements 
in Figure 5 and the CPU utilization in Figure 2. The Y-
axis represents current (in 1/100 amperes). The X-axis 
represents sample number. The phases of sequential (low 
current) and parallel (high current) execution are clearly 
apparent. Our measurements indicate that across all 13 
benchmarks the four CPUs collectively consume 48 
watts when idle and 220 watts when highly active. 

6.2 Software Throttle Simulation 

The software simulator reads the trace of measured 
supply current and simulates the actions of an EPI 
throttle that regulates all processors uniformly. The 
simulator computes the level of processor performance 
that is consistent with maintaining the total 
multiprocessor power within a fixed power budget. 
Intuitively, when power demands are too high the 
simulator creates the effect of slowing down all CPUs by 
reading the input trace more slowly. Reading the trace 
slowly makes everything run more slowly (CPU, 
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int    timeclk    =0;      // simulator time 
double inputclk   =0;      // input trace time 
double intval     =1;      // integrator value 
double scalefactor=1;      // throttle amount 
double inpval;             // instantaneous power 
double diffval;            // difference between actual and desired power 

while (inputclk<datamax) {                  // while there is data 
  inpval=datatbl[(int) floor (inputclk)] *  // read current from trace 
         scalefactor *                      // multiply by square or cube 
         scalefactor *                      // of scalefactor to convert to 
         (squareflag ? 1.0 : scalefactor);  // power 

  diffval = inpval - threshold;             // subtract power threshold 
  intval += diffval*gain;                   // multiply by gain and accumulate 

  if (intval<lowerclamp) intval=lowerclamp; // saturate at lower clamp (usually 1.0) 
  if (intval>upperclamp) intval=upperclamp; // saturate at upper clamp 

  scalefactor = 1.0/intval;                 // compute new scalefactor 

  inputclk += scalefactor;                  // advance trace time 
  ++timeclk;                                // advance simulator time 
}; 

Figure 6. EPI Throttle Simulator Algorithm

memory, I/O subsystem). By choosing the 13 
benchmarks that are mostly CPU bound in this paper we 
minimized the adverse effects of slowing components in 
the system other than the CPU. The simulator outputs an 
execution time measured in sample intervals. The 
wupwise benchmark for instance when run on all four 
Xeon processors at 2GHz consumes 220 watts and 
generates about 400,000 current measurement samples 
(equivalent to 670 seconds of execution time). However, 
if the power was constrained to 55 watts the same trace 
would have executed in 744,489 sample intervals, 
equivalent to 1,240 seconds of execution time.  

The details of the simulator algorithm are shown in 
Figure 6. The algorithm takes three inputs: the current 
measurement trace, the power threshold value, and a 
gain constant for the feedback loop in the throttle. The 
current trace is stored in the datatbl array. Inputclk is the 
time (measured in sample intervals) in the input trace; 
timeclk is the time (measured in sample intervals) of the 
simulator output. As mentioned earlier our equipment 
collects 600 samples per second and hence each sample 
interval corresponds to 1/600th of a second. The 
simulator is capable of scaling the measured current by 
either the square or the cube of the throttle amount. For 
our work, we use the square relationship since we are 
conservatively assuming that power can be made 
proportional to the square of the performance. The 
second input is the threshold constant that sets the 
desired power budget. The threshold value is usually 
selected by the designer to be the maximum power 
consumed by the chip. In our experiments we used 55 
watts as the power threshold that can be dynamically 

distributed amongst the four processors. Our 
measurements showed that the maximum power 
consumed on our four processors running at 2GHz is 220 
watts. Since we set the power budget to be the same as 
one processor running at 2GHz we used 55 watts (¼ of 
the 220 watts) as the power threshold. The third input to 
the algorithm is the gain constant, which determines how 
quickly the throttle's feedback loop can respond to 
changes in the power consumption. We chose a value of 
0.1 which enables the processor's throttled performance 
to double or halve in roughly 1/10 of a second. Finally, 
to prevent the throttle from attempting to run the CPUs 
faster than possible during periods of low power 
consumption, the lower clamp is set to the baseline value 
of 1.0, corresponding to our 2GHz processor. An 
optional upper clamp is also provided but was never 
triggered in our simulation runs.  

In Figure 6 inputclk is advanced each iteration by the 
scale factor. The scale factor is never greater than one, 
since intval is clamped at a maximum of one. Typically 
the scale factor is less than one and hence, the same 
input current data may be read several times during 
consecutive iterations. Thus, we simulate the effect of 
reducing the processor’s power and correspondingly its 
performance.  

6.3 Software Throttle Simulation Results

The results produced by the EPI throttle simulator are 
shown in Figure 7. This figure shows the normalized 
performance on each benchmark as the power threshold 
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is varied from 0 to 220 watts. A reference point is plotted 
illustrating our rule-of-thumb relationship between 
performance and power (½ relative performance at ¼ 
relative power, which is 55 watts). Several interesting 
observations can be made from this figure. The graphs 
show that the simulated performance for all the 
benchmarks is greater than this reference point; the EPI 
throttle takes advantage of the fact that the four 
processors are not consuming maximum power at all 
times. The set of programs art, BLAST, FFTW, 
HMMER and TPC-H show the least performance 
degradation with reduced CPU power indicating that 
these benchmarks have phases of execution where the 
four CPUs are underutilized. Hence, these benchmarks 
are expected to perform well on our AMP prototype, 
which concurs with the results in Figure 1. Finally, as 
expected, the CPU-intensive programs such as wupwise 
and applu show the greatest performance degradation as 
CPU power is constrained. 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200 220
Power (watts)

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 t
o 

4P
/2

G
H

z

HMMER
art
TPC-H
BLAST
FFTW fma3d

equake
apsi
mgrid
swim
ammp
applu
wupwise

reference

Figure 7: Performance versus Power Threshold 

6.4 Prototype versus Simulation Results 

The AMP prototype uses thread-level parallelism 
within a program to determine the number of processors 
and the corresponding frequency (duty cycle) to use to 
stay within the power budget. However, we expect in 
practical implementations an EPI throttle would monitor 
the activity levels of the various blocks within a chip, 
and based on activity determine when to reduce the 
power consumption. The advantage of the AMP 
prototype is that one can quickly measure the 
performance impact of a throttle using the wall clock 
execution times. The throttle simulator, on the other 
hand, is a more flexible implementation because of 
programmable parameters.  

Figure 8 compares the measured performance using 
the AMP prototype with the simulated performance 
using the EPI throttle simulator. Across the suite of 
benchmarks, the two approaches provide comparable 
results. However, a small number of benchmarks have 
noticeable differences. These differences may be due to 
the following effects: 
1. Programs with frequent transitions between 

sequential and parallel phases (such as fma3d) may 
run slowly on the AMP due to the added overhead 
of thread migration 

2. Programs with low activity levels in all four CPUs 
during the execution of parallel regions will run 
faster on the simulator because the EPI throttle 
doesn't need to slow down the CPUs by much to 
reduce power.  

3. Programs with significant accesses to main memory 
and I/O may run slower on the simulator because the 
simulator uniformly slows down all components of 
the computer, including processors, memory, and 
I/O.

The close correlation of the results in Figure 8 
between the measurement-driven simulator and the 
physical AMP prototype system shows that a realistic 
EPI throttle can deliver the performance gains in 
practice.
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Figure 8: Prototype and Measurement Results 

7. Conclusion and Future Work 

In this paper we have presented a comprehensive 
performance evaluation of EPI throttling using a 
physical AMP prototype system and current 
measurements on a physical system. We use clock 
throttling and processor affinity to prototype an 
asymmetric multiprocessor (AMP) using an off-the-shelf 
4-way SMP. Each processor in the AMP expends 
varying amount of EPI based on the available thread-
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level parallelism. By running a wide range of multi-
threaded programs on the AMP prototype, we show a 
38% wall clock speedup compared to a 4-way SMP with 
a fixed power budget. The performance advantage is due 
to the EPI throttle’s ability to dynamically allocate a 
fixed power budget among a small number of high-
performance (high EPI) processors and a large number 
of low-power (low EPI) processors in order to rapidly 
execute both the sequential and parallel portions of the 
computation.  

In order to improve the 1-bit resolution of EPI 
throttling in AMP, we measure the supply current on a 
physical 4-way SMP server running multi-threaded 
programs. We feed the measured data as input to a 
software simulator that implements a more flexible EPI 
throttle. We show that speedup from the AMP prototype 
is comparable to the speedup achieved using the flexible 
EPI throttle.  

We believe that future chip multiprocessors will 
incorporate some form of EPI throttle in order to deliver 
maximum performance while keeping power 
consumption within a fixed budget. By measuring wall 
clock speedups, we show that an EPI throttle works well. 
Furthermore, using two complementary methods we 
make a compelling case that an EPI-throttled chip 
multiprocessor is effective in mitigating the effects of 
Amdahl’s law when running multi-threaded programs 
with non-trivial sequential components. 

We now discuss areas for future work. While our 
work is based on a 4-way multiprocessor, future 
multiprocessors may be expected to contain very large 
numbers of processors. How well can the EPI throttle be 
expected to work with future systems and software? As 
chip multiprocessors with larger and larger numbers of 
processors become practical, we expect the potential 
performance benefits of EPI throttling will increase. This 
is due to Amdahl’s law – as the parallel phase is divided 
among more and more CPUs, it becomes increasingly 
important to run the sequential phase quickly. Since the 
effectiveness of the EPI throttle is highly dependent on 
the characteristics of software, we may ask what 
percentage of a typical software workload consists of an 
inherently sequential component?

Hardware implementation is another area for 
investigation. What is the best microarchitecture for the 
EPI throttle? The EPI throttle consists of a mechanism 
to monitor the multiprocessor’s activity, a feedback loop, 
and a mechanism to control the multiprocessor’s EPI as 
described in Table 1. We expect the EPI throttle to be 
implemented as a hardware mechanism that operates 
transparently to software. Software sees a symmetric 
multiprocessor with an unusual property: individual 
threads become slower as software asks hardware to run 
more threads, even though net throughput increases. The 
EPI throttle can make software execution times hard to 

predict and raises possible fairness issues. What are the 
software implications of the EPI throttle?  

In our prototype, we studied the effects of EPI 
throttling on CPU performance and power.  A more 
comprehensive study may choose to consider the entire 
platform, including the main memory and I/O 
subsystem. How does an EPI throttle account for 
platform-level power interactions?

Finally, in our work we’ve taken the simple goal of 
keeping the total CMP power constant, within a fixed 
power budget. Future EPI throttles may need to operate 
under several competing constraints. These may include 
minimizing energy, minimizing di/dt-induced supply 
voltage variation, reducing the magnitude of thermal hot-
spots, or guaranteeing a certain quality of service. What 
are the most appropriate goals for future deep 
submicron processors, and how should an EPI throttle 
function given multiple, potentially conflicting goals? 

We believe that the advent of large chip 
multiprocessors, operating in a power-constrained 
environment, with performance characteristics governed 
by Amdahl’s law, has opened up an exciting new area 
for future research. 
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