Pipeline Gating:
Speculation Control For Energy Reduction

Srilatha Manne
University of Colorado

Dept. of Electrical and Computer Engineering

Boulder, CO 80309
srilatha.manne@colorado.edu

Abstract

Branch prediction has enabled microprocessors to incréase
struction level parallelism (ILP) by allowing programs tpexula-
tively execute beyond control boundaries. Although speivel ex-
ecution is essential for increasing the instructions pesieyIPC),
it does come at a cost. A large amount of unnecessary worksesu
from wrong-path instructions entering the pipeline due tarich
misprediction. Results generated with the SimpleScatzrsiet us-
ing a 4-way issue pipeline and various branch predictorsvsho
instruction overhead of 16% to 105% for every instructiomoait-
ted. The instruction overhead will increase in the futurgesces-
Sors use more aggressive speculation and wider issue wlths

In this paper, we present an innovative method for power re-
duction which, unlike previous work that sacrificed flexipior
performance, reduces power in high-performance micropssors
without impacting performance. In particular, we introcua hard-
ware mechanism callegipeline gatingto control rampant specu-
lation in the pipeline. We present inexpensive mechanisndef
termining when a branch is likely to mispredict, and for gtinygy
wrong-path instructions from entering the pipeline. Resshow
up to a 38% reduction in wrong-path instructions with a neiie
performance loss=% 1%). Best of all, even in programs with a
high branch prediction accuracy, performance does notagatibly
degrade. Our analysis indicates that there is little riskinmple-
menting this method in existing processors since it doegmpmct
performance and can benefit energy reduction.

1 Introduction

There has been considerable worklow powerprocessors. Most

of this work focuses on reducing power in applications wheat

tery life is paramount. The focus of our research is to redbeen-

ergy demands of high performance microprocessors withown-c

promising performance. Such reductions will greatly rexlpack-

aging costs and will allow the computer architect to betesdabce

an overall “power budget” across different parts of the chip
Existing low power work has focused on reducing energy in the

memory subsystem [3, 8, 4]. In embedded processors, sutieas t

StrongArm [11], the memory subsystem is the dominant soofce

Permissions to make digital/hard copy of part or all this kvor
for personal or classroom use is granted without fee pravide
that copies are not made or distributed for profit or comnagrci
advantage, the copyright notice, the title of the publaatand

its date appear, and notice is given that copying is by permis
sion of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior dpeper-
mission and/or a fee.

ISCA '98 Barcelona, Spain

©1998 ACM $3.50

Artur Klauser, Dirk Grunwald
University of Colorado
Department of Computer Science
Boulder, CO 80309
grunwald,klauser@cs.colorado.edu

Inst Fetch

14%
REST

24%

Inst Dec
14%

Reg Alias Table

Reorder Buf
7%

Data Cache
7%

Figure 1: Power consumption for PentiumPro chip, brokenrdow
by individual processor components.

area and power because the rest of the processor has bedn simp
fied to reduce power. State-of-the-art microprocessors havigh
degree of control complexity and a large amount of area d¢elic
to structures that are essential for high-performancecidptve,
out-of-order execution, such as branch prediction uninth tar-
get buffers, TLBs, instruction decoders, integer and flgapoint
queues, register renaming tables, and load-store queaesx&m-
ple, ~ 30% of the core die area on the DECchip 21264 is devoted
to cache structures, while the StrongARM processor usé®%
of the core die area for memory. Figure 1 shows a distribution
the power dissipated in a PentiumPro processor [6] duringsh t
designed to consume the most power, which is when the proces-
sor is committing each instruction that it fetches. The Heand
decode stages, along with components necessary to perfprm d
namic scheduling and out-of-order execution, account figaif-
icant portion of the power budget. Therefore, pipeline \digtiis
a dominant portion of the overall power dissipation for céexp
microprocessors.

Performance is the primary goal of state-of-the-art miocoep
cessor design. Architectural improvements for perforneahave
centered on increasing the amount of instruction level |[gism

Current Value of

If Counter (M)

M>N

Low Confidence
Branch Counter

Gate Fetch

If Low Conf Branch,
Increment Counter

If Low Confidence Branch
Resolved, Decrement Counter

|

I I
F(?tch Decpde

Instructions

Issue Writeback| Commit

1 2 3

2 Cycle Backward Edge Latency for Branch Misprediction

4 5

ICache

Figure 2: Pipeline with a two fetch and decode cycles, shgwiditional hardware required for pipeline gating. The-ownfidence branch
counter records the number of unresolved branches thattegbas low-confidence. The counter value is compared agathseshold value
(“N”). The processor ceases instruction fetch if there aoeerthan N unresolved low-confident branches in the pipeline

through aggressive speculation and out-of-order executidl-
though these advances have increased the number of instict
per cycle (IPC), they have come at the cost of wasted work.tMos
processors use branch prediction for speculative contmal éxe-
cution, and recent work has examined value and memory specul
tion [14]. Branch prediction is used to execute beyond therob
boundaries in the code. With high branch prediction acguraost
issued instructions will actually commit. However, manggnams
have a high branch misprediction rate, and these prograsng is
many instructions that never commit. Each of those insivast
uses many processor resources. If we can decrease thetpgeen
of uncommitted instructions actually issued, we can deadhe
power demands of the processor as a whole.

Goals and Contributions It is the goal of this paper to con-
trol speculation and reduce the amount of unnecessary work i
high-performance, wide-issue, super-scalar proces¥ésaccom-
plish this by using a particular form of speculation contealled
pipeline gating to limit speculation and reduce energy consump-
tion. In many processor implementations, functional uitsl
clocks are gated to restrict spurious signals from prodyeain-
necessary activity in circuits. Similarly, the pipelinencalso be
gated to restrict spurious or wrong-path instructions fremtering
the pipeline. Although a thorough power analysis is beydra t
scope of this paper, the reduction in fetch and decode gctiet
sulting from pipeline gating can clearly be exploited touee the
power needs of a complex microprocessor. This paper malkes th
following contributions:

e We presenpipeline gating a method to reduce the number
of speculatively issued instructions, and demonstratbéme
efits of that method using a detailed pipeline-level simula-
tion of a wide-issue, out-of-order, super-scalar micropse
sor. By reducing the number of instructions fetched, dedpde
issued and executed, we reduce the average activity in the
processor without reducing performance, and thus redwee th
total energy.

We compare the effectiveness and cost of this design using
various confidence estimatiomechanisms, and show how
to increase the effectiveness of these confidence estimatio
mechanisms for pipeline gating.

We present results which show a significant reduction in un-
necessary work with a negligible performance loss.

The rest of the paper discusses work reduction and the peli
gating method in more detail. Section 2 describes the gating
method and the work reduction metric used throughout thempap
An overview of the pipeline model, confidence estimatorsarat-
acterization of the estimators for pipeline gating are @nésd in
Section 3. Section 4 presents results for pipeline gatirty $ec-
tion 5 concludes the papers.

2 Processor Pipeline Gating for Work Reduction

The energy consumed by a processor is a function of the amount
of work the processor performs to accomplish a given taska In
non-speculative processor all work performed is necesshra
speculative, multi-issue, dynamically scheduled promesslarge
amount of extra work is performed without realizing any perf
mance benefits. We define tha&tra Workof a given pipeline stage

to be Ew = (Seenlnan—Commiticdlnsn) There is a different &

CommittedInsn,

value for each stage of the pipeline. For example, if only A00of

130 instructions fetched by the processor actually corrtimt,Ewv

of the fetch stage is 30%. If 120 of the 130 instructions ditua
execute, the & of the execution stage is 20%. ThevEparameter
has a lower bound of zero when no extra work is performed, but
has no upper bound.

The goal of pipeline gating is to reduce the amount of extra
work performed to complete a task without affecting the aller
performance of the system. Since performance drives the mar
ket for these processors, it is difficult to justify a perfamnce
loss without extraordinary savings in power. Secondlyralven-
ergy consumption is dependent on performance. Skwergy =
Power x Time, simply reducing the power in a processor may
not decrease the energy demands if the task now takes lomger t
execute. In [3], Fromnet al noted a correlation between energy
and performance. Reducing performance does not alwayseedu
the overall energy consumed by the processor because ofithe q
escent energy consumed in the system [1]. In this paper, dueee
work while retaining performance and thus reduce the olveral
ergy consumption of the processor.

2.1 Pipeline Gating

We will use the schematic of the processor pipeline showrign F
ure 2 to describe pipeline gating. Like many high-perforoean
processors, such as the DEC AXP-21164 or Intel PentiumRiro, o
sample pipeline uses two fetch and decode cycles to alloaltick

rate to be increased. We assume the fetch stage has a srirattins
tion buffer to allow instruction fetch to run ahead of decoBeanch
prediction occurs when instructions are fetched to redheentis-
fetch penalty. The actual instruction type may not be knowtil u
the end of decode. Conditional branches are resolved inxtie e
cution stage, and branch prediction logic is updated in tmarit
stage. Since the processor uses out-of-order executistnyations
may sit in the issue window for many cycles, and there may be
several unresolved branches in the processor.

We use aconfidence estimataio assess the quality of each
branch prediction. A “high confidence” estimate means weebel
the branch predictor is likely to be correct. A “low confidefi@s-
timate means we believe the branch predictor has incoyrect-
dicted the branch. We use these confidence estimates toedecid
when the processor is likely to be executing instructiorat till
not commit; once that decision has been reached, we “gate” th
pipeline, stalling specific pipeline stages.

In our study, we vary a number of parameters, including the
branch predictor, the confidence estimator, the stage atvehgat-
ing decision is made, the stage that is actually gated anduime
ber of outstanding low-confident branches needed to engetgeyg
The decision to gate can occur in the fetch, decode or issigest
Equally important is the decision abowhatto gate anchow long
to gate. Gating the fetch or decode stages would appear te mak
the most sense, and we examined both cases. We used the nu
ber of unresolved low-confident branches to determine wimeh a
how long to gate. For example, if the instruction window urdzs
one low-confident branch, and another low-confident bramits e
the fetch (or, alternatively, decode or issue) stage, gatiould be
engaged until one or the other low-confident branch resolves
ure 2 illustrates this process for a specific configuratior atld a
counter that is incremented whenever the decode encountens
confident branch and is decremented when a low-confidentbran
resolves. If the counter exceeds a threshold, the fetcle stagted.
Instructions in the fetch-buffer continue to be decoded iasded,
but no new instructions are fetched.

We have found that gating the processor typically stallgptioe
cessor for a very short duration. Figure 3 shows the number of
times a specific configuration of our pipeline model is sthiiile
executing different programs. Generally, gating stallsuncfor
about 2-4 processor cycles. Most processor configuratienidie
a similar distribution, and indicate that our mechanisnxtslgiting
fine control over the speculative state of the processor.

2.2 Confidence Estimation Metrics

A complete comparison of confidence estimation mechani&ins [
is beyond the scope of this paper, but we implement several co
fidence estimation methods and compare their performance fo
pipeline gating. There are two important metrics to chamaoe
the performance of confidence estimators used by pipelitingga
specificitySPEcand thepredictive value of a negative tg§vN).
The specificity (REQ is the fraction of all mispredicted branches
actually detected by the confidence estimator as being law co
fidence. The PN is the probability of a low-confidence branch
being incorrectly predicted. A largerP&c means that more mis-
predicted branches are marked as “low confidence”. A larger P
means that a given low-confidence branch is more likely to ise m
predicted. A confidence estimator could have a perfect Bpiegi
by markingall branches as low confidence, but theNfwould then
be no more than the branch misprediction rate.

In practice, a confidence estimator must balanee&/s. PvN
to provide a good quality confidence estimate for many brasch
The confidence estimators we examined have an averege &-
tween 17%-77%, and an averaggN’between 19%-40%; typi-

Distribution of Number of Cycles Gated

—&—com —l—gcc —a&—go ijp
—H—li —@—m38 —+—perl vor
3.E+06

a2

]

S 2.E+06

]

o

£ 2.E+06 1/

S

o

‘5 1.E+06 -

@

o

IS

=]

zZ

13

9
Number of Cycles

Figure 3: Distribution of gating events and the number ofleyc
gated per event.

cally, estimators with a higher=chave a lower BN. If we sim-

oly used the RN of a single branch to control pipeline gating, we
would stall the pipeline too frequently, compromising penfiance.
However, if there weréV low-confident branches in the pipeline,
the probability thatat least oneof those branches is mispredicted
becomesl — (1 — PvN)¥. Thus, if the average W is 30%
and we gate when there are two or more low-confident branches
in the pipeline, the probability of at least one misprediotbe-
comess1%. Since any subsequently fetched instructions would be
control dependent on both branches in the pipeline, thissbog”
improves our gating decision.

3 Empirical Evaluation of Pipeline Gating

To properly understand the effects of stalling the pipelime used
the SimpleScalar tools [2] to develop a pipeline model of at: 0
of-order, speculative, wide-issue processor. We modifiedim-
outorder processor model to produce the machine configuration
listed in Tables 1 and 2. Table 3 shows the latency of therdiffie
operation types. Although we used a 32kByte instructioreait
is effectively equivalent to a 16kByte instruction cachedgse the
SimpleScalar instruction set uses 8-byte instructionse fioces-
sor can fetch, issue, and commit four instructions eachecycl

We used both McFarling combining branch predictor and
Gshare branch predictor to characterize the effect of lirgme-
dictor accuracy on pipeline gating. The McFarling combinpre-
dictor uses gshare and bimodal branch component prediimng
with a meta predictor. The meta predictor chooses one ofrdrech
predictors as the correct prediction for the branch. We ettbe
combination of gshare and bimodal because McFarling [14i} in
cated this combination had the best performance for theigioed
sizes used in this paper. In both the Gshare and McFarling pre
dictors, the branch prediction counters are updated at aggrand
both predictors speculatively update the global histogjster, but
not the prediction counters. The penalty for a branch mipti®n
is a minimum of seven cycles. Five of the cycles are incurred i
the pipeline stage for the new instruction to travel to thexpof
execution, and the other 2 cycles are incurred for sendiagrtis-
prediction signal to the rest of the pipeline and to calauanew
target address. The penalty will be larger than seven cyttbs
new instruction is not available in the L1 instruction cache

McFarling Gshare

Comm Inst/ Exec| Fetch| MisPred| Exec| Fetch| MisPred
Name Inst | Branch | Cycles Rate (%) | Cycles Inst | Rate (%)
compress| 80.4 5.6 4471 120.9 9.9 446 119.8 9.8
gcc 250.9 5.0 | 249.3| 4133 12.2| 282.0| 461.3 21.4
go 548.1 6.8 | 508.8| 1043.2 239 5441 1127.3 32.2
ijpeg 252.0 12.6| 112.7] 316.6 10.4| 114.4] 320.3 12.2
li 183.3 44| 100.3| 275.2 6.9| 106.6| 286.3 9.4
m88ksim | 416.5 46| 2825 5449 46| 290.1| 555.6 6.5
perl 227.5 52| 276.8| 361.3 11.3| 305.0| 403.4 21.3
vortex 180.9 6.2 | 119.7| 192.8 17| 127.7] 2111 5.0

Table 4: Baseline performance for McFarling and Gshareipi@c. Instruction count and execution cycles are givemilions. Also
shown in the number of instructions fetched (in millions) éach branch predictor.

Parameter Configuration
L1 Icache 256:64:2 (32 kB) - 1 cycle*
L1 Dcache 256:32:2 (16 kB) - 1 cycle
L2 Combined Cache 512:64:2 (64 kB) - 6 cycles
Memory 128 bit wide - 18 + 2 X chunks cycles
Branch Pred. (McFarling) 2k gshare + 2k bimodal + 2k meta
Branch Pred. (Gshare) 8k gshare entries
BTB 1024 entry, 4-way set associative
Return Address Stack 32 entry queue
ITLB 64 entry, fully associative
DTLB 128 entry, fully associative
Ifetch Queue 8 instructions

Table 1: Machine configuration parameters. Cache configumst
are described as Lines:Block Size:AssociativityLhe 32kByte in-
struction cache is equivalent to a 16kByte cache becaus8ithe
pleScalar Tool Set uses 8 byte instructions.

Parameter Units
Fetch/lssue/Commit Width 4
Integer ALU 3
Integer Mult/Div 1
FP ALU 2
FP Mult/Div/Sqrt 1
Memory Ports 2
Instruction Window Entries 64
Load/Store Queue Entries 32
Minimum Mispredict Latency 7

Table 2: Resource and pipeline configuration for simulatetiia
tecture.

Resource Latency Occupancy
Integer ALU 1 1
Integer Mult 3 1
Integer Div 20 19
FP ALU 2 1
FP Mult 4 1
FP Div 12 12
FP Sqrt 24 24
Memory Ports 1 1

Table 3: Function unit configuration in terms of executioreiey
and occupancy.

We used the SPECInt95 applications to evaluate the differen
pipeline gating techniques. The applications were cordpiéh
the Gee compiler with full optimization. We used scaled dawn
puts to reduce the runtime of some applications, but eaclicapp
tion was run to completion. Relevant information for the ¢len
marks, along with the conditional branch mispredictioresator
Gshare and McFarling branch predictors, are shown in Tabldé
misprediction measurements use the base processor catidgur
with no pipeline gating. The misprediction rate across qpliaa-
tions ranges from 2% to 32%. We used the SPECIint95 benchmarks
for our performance evaluation and did not simulate the SP&&
since those programs typically pose few difficulties fortmia pre-
dictors.

A schematic model of the pipeline was given in Figure 2, and
both fetch and decode take two cycles to complete. This model
should highlight flaws in pipeline gating, because the timeet
cover from an incorrect pipeline gating decision is a funictof the
number of cycles it takes for the gated instructions to rahehs-
sue stage. Hence, the longer the front end of the pipeliedather
the penalty for incorrect gating. Figure 2 also shows theds
for the pipeline gating mechanism we found to be most effecti
The decision to gate and the actual gating is performed duha
first fetch cycle. Our performance results show that moshefex-
tra work in the pipeline occurs at the fetch and decode stageb
gating at the fetch stage will have the largest impact. Thalrer
of unresolved, low-confidence branches were measured atidec
This insures some “slip” between the fetch and decode sthges
made an incorrect gating decision. This increases the gxirk
(Ew) of the stages beyond fetch, but also reduces the perfoenanc
loss by providing the issue stage with a few instructionsnfitbe
correct-path while the pipeline catches up from an incargating
decision.

Pipeline gating is engaged when the number of low confidence
branches exceeds tlyating threshold (N)As mentioned, this is
used to improve the likelihood that at least one mispredibtanch
is being processed. Gating is disengaged when the numbewof |
confidence branches is less than or equal to the gating thicesh
As was shown in Figure 3, gating is triggered a number of times
but for very few cycles each time. Therefore, pipeline gataf-
fectively slows the injection of instructions into the plipe rather
than stopping instructions altogether.

3.1 Confidence Estimators

Although branch predictors have been widely studied, cenfié
estimators have only recently been discussed [7, 5]. Thasyil
describe the mechanics of confidence estimation and thedeo#
estimators we used in more detail. Confidence estimationligg

nostic test that attempts to classify each branch predietichaving
“high confidence”, meaning that the branch was likely prestic
correctly, or “low confidence”, meaning the branch was lkelis-
predicted. We used ther&cand P/N metrics defined in the previ-
ous section to classify the confidence estimators discuzssled.

Perfect Confidence Estimation: Although a perfect confidence
estimator is unattainable in practice, we used precisearimton
from the pipeline state to evaluate the potential of pigetjating,
and to determine how much of that potential performance was e
ploited by other configurations.

Static Confidence Estimation: Static confidence estimation as-
sociates a confidence estimate with each conditional brémch
struction. The confidence is determined by running the p@nogr
through a branch prediction simulator and recording thentina
misprediction rate of individual branch sites. Branch finstions
with a misprediction rate above a specified threshold wenside
ered to have low confidence. Static confidence estimatiorteas
benefit that it can be “customized” for a specifieex and R/N.
For the experiments in this paper, we wanted to demonsthate t
best performance that a static confidence estimator cooldds.
Thus, we use the same input to select and evaluate the siafie ¢
dence sites, and we varied the selection threshold acrebspea-
gram to report the best performance. We used the static médho
both Gshare and McFarling predictors.

JRS Confidence Estimation: Jacobsewt al[7] proposed a con-
fidence estimator that paralleled the structure of the gsheanch
predictor. This estimator uses a table miss distance coun-
ters (MDC) to keep track of branch prediction correctness. Each
MDC entry is a “saturating resetting counter”. Correctlegicted
branches increment the corresponding MDC, while incolyegue-

Gshare
ConfPred | SPEC | PvN
static 875 | 275
JRS 728 37.1
distance=4 | 71.9| 25.8

McFarling
ConfPred | SPEC | PvN
static 88.4| 26.3
JRS 65.9| 30.7
Both Strong| 77.2 | 20.3

Table 5: Assorted confidence estimators with the Gshare and M
Farling branch predictors. Values given are the arithmméan of
all committed branches for Specint95 benchmarks.

Table 5 shows the performance of the different confidende est
mators in terms of Becand R/N using the Gshare and McFarling
branch predictors. A complete comparison of different ateriice
estimation methods is beyond the scope of this paper. khstea
wanted to compare the performance of pipeline gating ugiRg i
expensive implementations and more expensive impleniensat
Unlike the JRS estimator, which has a considerable overtbad
Distance estimator is very inexpensive to implement. Likewthe
“Both Strong” method simply uses existing processor statd,in-
troduces negligible additional hardware cost. Although tvied
other estimators with the branch predictors, we found thatines
presented in Table 5 performed the best by producing a hRcS
and a reasonableviR.

As we will see in later sections, it is more important, within
reason, to select an estimation mechanism with a geaetSalue
as opposed to one with just a googiNPvalue. Effectively, using
a gating threshold boosts the effective PVN, and it becoma® m

dicted branches set the MDC to zero. A branch is considered to important to seenorelow-confident branches.¢., a higher SPEC)
have “high confidence” only when the MDC has reached a partic- than to know that the low confident branches were truly mispre

ular confidence threshold value referred to asMieC-threshold
For this simulation, we used a table of 4096 entries of 2-diitis
rating/resetting counters. We also discuss the effeatisemf dif-
ferent JRS configurations for pipeline gating in future mett. We
use the JRS method for both Gshare and McFarling predictors.

Saturating Counters: Most branch predictors use some form of
saturating counters to predict the likely branch outconmeitis[13]
mentioned that it may be possible to use these counters astbra
confidence estimators. We used this mechanism with the Mogar
predictor to produce the “Both Strong” estimation methodolth
marks a branch as high confidence only if the saturating essint
for both gshare and bimodal predictors are in a strong stade a
have the same predicted direction (taken or not-taken). ri&fd t
a number of other variants with the McFarling counters andéb
that the “Both Strong” configuration provided the best restbr
our needs because it produced a higieSvalue with a reasonable
PvN. The saturating counters method did not work well for Gshare

Distance: In [5], we found that branch mispredictions were clus-
tered and that this clustering could be used to build an ieespe
confidence estimator. The conditional probability of a masic-
tion for branches that issuebranches after a mispredicted branch
is resolved is higher for smaller values &f Varying the distance

d affects the 8ecand R/N — smaller values increase the'® (but
reduce the 8eQ. We found a value ofi = 4 worked best for
pipeline gating in our model. We used the Distance methodhas a
inexpensive confidence mechanism for Gshare.

dicted {.e., a higher PVN).

4 Results

The basic configuration used for pipeline gating is given iig- F
ure 2. We evaluated the McFarling and Gshare branch presdicto
using a variety of modifications. Analysis is performed asrdif-
ferent confidence estimators, gating threshold values pgreline
configurations.

Figures 4 and 5 show the amount of extra work being performed
with the McFarling and Gshare predictors, respectivelythierbase
case with no pipeline gating. The bars represent the amdwext-o
tra work (Ew) performed in each stage of the pipeline. Most of
the extra work occurs in the front stages of the pipeline et
and decode. As we progress down the pipeline, the amount-of ex
tra work decreases dramatically. This is because most edgged
branches resolve in a reasonable amount of time, and thalgteb
ity is small that an instruction from the wrong-path has pesged
deep into the pipeline. As expected, the amount of unnegessa
work is generally correlated to the misprediction rate. Exam-
ple,vortexhas a low misprediction rate, and there is very little extra
work being done for this program. On the other hand, the pipel
performs twice the amount of necessary workdorwhich suffers
from a high misprediction rate. Fortunately, confidence maec
nisms inherently do better on programs with a large misotem
rate [5], and are most effective in reducing the amount atexbrk
in programs that have the largest overhead.

McFarling: Base Case
OFetch @ Decode Olssue OWriteBack

EW (%)

Figure 4: Extra work for base case with the McFarling preatict

Gshare: Base Case

OFetch W Decode Olssue OWriteBack

Figure 5: Extra work for base case with the Gshare predictor.

McFarling/Perfect

‘ Speedup O Not Gated B Gated ‘

1.1 110

1 -+ 100
094 — (M@ — — — — — 19
0.8 1 | | __||Fetch | | | | | | | | 1 80
0.7 - = L 70 _

So6 :@l 160 £

$ 05 - Issue 50 2

joR !

0 0.4 r 40
0.3 | - 30
0.2 | - 20
0.1 r 10

0 -0
@ 1S <
s 8 o) § = 2 T £
3 s} =) = % Q g
8 £
o
Figure 6: Extra work (Ev) and speedup for McFarling predictor

with a perfect confidence estimator. The entire thin bar shBw
with “No Gating” while the dark portion shows\E with gating.

The wide,

gray bar represents relative speedup.

Gshare/Perfect

‘ Speedup ONotGated B Gated

compress
gcc
go

m88ksim

Figure 7: Extra work and speedup for Gshare predictor witkra p
fect confidence estimator. The entire thin bar showsth “No
Gating”, while the dark portion showsviEwith gating. The wide,

gray bar represents relative speedup.
McFarling/Both Strong

perl

‘ Speedup O Not Gated B Gated ‘

vortex

EW (%)

gec
go

ijpeg
I

»
I}
o
<4
S
£
I}
o

m88ksim

perl

vortex

using aigat

EW (%)

Figure 8: Results for McFarling and “Both Strong”
threshold value o?.
Gshare/Distance
‘ Speedup ONot Gated B Gated ‘
1.1 110
1 [100
0.9 1 Fetch || 1 90
0.8 - - 80
0.7 4 Decode | | 170
s 0'6 | 60 £
el Issue | |z
$ 05 iesue | L 50 2
904 L 40
0.3 + 30
0.2 + 20
0.1 10
0 L0

gce
go

»
7]
o
L
S
£
S
o

Results for Gshare and Distance using a gatinghbte

m88ksim

Figure 9:
of 2.

perl

vortex

4.1 Performance with Different Confidence Estimators

We first explore the effectiveness of pipeline gating as ation
of the confidence estimation mechanisms. We present rasts
ing perfect confidence estimation, inexpensive dynamimasion,
static estimation, and a more expensive dynamic estimatsed
on the JRS estimator. For the analysis of different confidess

timators, we used the gating mechanism shown in Figure 2. The

pipeline is gated at fetch, and the number of unresolveddhesis
measured at decode.

Perfect Confidence Estimation: Figures 6 and 7 show the ex-

tra work and speedup results when using McFarling and Gshare

branch predictors, respectively, with a perfect confideastma-
tor. The dark portion of the thinner bars represents the arnou
of extra work with pipeline gating. The entire thin bar regeats
the amount of extra work without any pipeline gating. Therfou
bars per group represent the four stages of the pipelineh fele-
code, issue and writeback. We do not show the commit stage sin
the number of committed instructions is the same with andavit
pipeline gating. The wide, gray bars represent the speetitieeo
pipeline gating method relative to the base case. RorlBwer is
better, whereas for speedup, higher is better. All speedugbers
above 1.0 represent a performance improvement from pipelt-
ing, while numbers below 1.0 represent a performance lokshé
data we present for pipeline gating is presented in a sinmaner.

With a perfect confidence estimator, one would expect a 100%
reduction in extra work. This does not happen with the pieli
gating configuration used because we do not “see” the low -confi
dence branch until it reaches tdecodestage. Therefore, some
extra instructions will “leak” into the pipeline before gag is ini-
tiated. Pipeline gating with perfect confidence estimatian re-
sult in increased speedup for a number of programs, sutihaasl
m88ksim Performance improves in the gated pipeline because op-
erations from the wrong path do not consume resources wihich c
rect path instructions might need. On the other hand, some pr
grams, such agerl with the McFarling branch predictor, show
a performance loss with perfect confidence estimation. Bpec
tive execution has been shown to be beneficial for perforedyc
warming up instruction caches [12], and gating the pipealatices
the benefits of the warm-up effect. With more realistic cogrfice
estimation mechanisms, we do not gate as many of the in¢lyrrec
predicted paths. Hence we still benefit from some of the wapm-
effects in the instruction caches.

Inexpensive Dynamic Confidence Estimation: Figures 8 and 9
show results for the “Both Strong” and Distance confidentienas
tors, respectively. Gating is engaged when there are marettho
low-confident branches in the pipeline. Gshare uses theaist
estimator, and McFarling uses the “Both Strong” estimaidiese
were determined to be the best and least expensive dynamic co
fidence mechanisms for pipeline gating for the respectieandin
predictors. The figures show the reduction in extra work ad r
ative speedup for each SpeciInt95 program. The dynamic confi-
dence estimation mechanisms for both branch predictorfemper
well enough to reduce approximately 30% of the extra worgon
and yet not hurt performance wortexthrough unnecessary gating.

Static Confidence Estimation: In Figures 10 and 11, we show
results for gating when using a best-case static confidesttma
tor discussed in Section 3. The static confidence estimetoveell
for both McFarling and Gshare predictors. In the case of tlee M
Farling predictor, a few programs, suchasnpressdo better with
static profiling, but the results in general are about theesamthe

“Both Strong” estimation mechanism. For Gshare, on therothe
hand, there is marked reduction in extra work. goc, the BEw is
reduced from over 80% to just over 50% in the fetch stage. Wih
Distance estimator, we were only able to reduce this to 65%@ T
Distance estimator relies on the clustering behavior opneidicted
branches. Some programs, suchgasexhibit significant mispre-
diction clustering while others, such asmpressandm88ksimdo
not. Hence, the Distance method is not as consistent or @ecur
in its confidence estimations for Gshare as the Saturatinmtecs
method is for McFarling.

Dynamic Confidence Estimation with JRS: Data for McFar-
ling and Gshare predictors with a small JRS estimation masha
is shown in Figures 12 and 13. We restricted ourselves to RS
of 1kByte or less because of area and power considerations. T
results shown use a 128 entry, 4-bit JRS table for both braneh
dictors. The JRS estimator for McFarling used a MDC-thré&bb
15, while the JRS estimator for Gshare used a MDC-threshiold o
12. As mentioned earlier, a branch is considered to havén“tim-
fidence” only when the miss distance counters (MDC) havehec
a specified MDC-threshold value. The results for McFarlinthw
JRS are similar to those using the “Both Strong” estimat@hase
results, on the other hand, improve significantly with thes J#3-
timator. For example, the reduction inAEfor compressmproves
from 6% to 32%. Results produced are similar to those geegrat
with the static estimation method. There are a couple ofamg!
tions for this. First, as discussed earlier, the Distanediptor does
not do well for some types of programs. Secondly, the JR&esti
tor is tuned to work well with the Gshare predictor [7, 5], adwks
not perform as well with the McFarling predictor. If the hare
can be justified, a small, multi-bit, JRS confidence estimait
provide the best results of any dynamic estimation mechafis
Gshare.

JRS Configurations For Pipeline Gating: The JRS configura-
tions that worked best for both Gshare and McFarling had dlsma
table size and a large counter size. The question that rersivhy
such a small JRS table does so well. Figure 14 shows the ggomet
mean of Bv and speedup for a variety of JRS table configurations
with the Gshare predictor. The values ofvEvithout pipeline gat-
ing does not change as a function of the JRS table, because the
JRS estimator does not affect the “Not Gated” case. Althdhgh
first two sets of data (128—4bit, 256—2hit) use the same Hi&td-
ble, albeit different configurations, they show very diéfet results.
Furthermore, the larger tables shown do not produce sigmnitfig
better results for the amount of hardware used. This is Isecau
even the largest JRS table suffers from a relatively lovw Ralue,
and a gating threshold must be used to boost the effective. RgN
noted earlier, the bestyR values are around 0.4, and even a small
increase in BN requires considerable extra hardware. Therefore,
it is far less expensive to target a highi&cvalue and increase the
accuracy of the estimation with the aid of the gating thrékho

To verify this hypothesis, we ran the 128 entry JRS table with
different MDC-threshold values. Figure 15 shows the gedmet
mean of Bv and speedup for a range of MDC-threshold values
(which are labeled) using a 128 entry JRS table with the Gshare
predictor. The gating threshold was setfor all of these simula-
tions, which means that gating is engaged when there are 8@ m
low confident branches in the pipeline. Figure 15 clearlynshthe
reduction in extra work with larger MDC-threshold valuess e
increase the MDC-threshold, more branches are classifiddvas
confidence”, resulting in a largerr&cand lower R/N. With the
lower PVN, we see a corresponding reduction in performance be-
cause the confidence estimation is less accurate. Howaeein-t

McFarling/Static
‘ Speedup O Not Gated B Gated

1.1 110
1 + 100
0.9 —— 4 90
038 cichjinl MANN BN N W g,
0.7 2 4 70
s S
506 L 60 &
(7
g 05 50 3
9 04 t 40
0.3 + 30 Gshare/JRS
02 - 20 ‘ Speedup ONot Gated B Gated
0.1 L 10
L 0

m88ksim
perl
vortex

(9]
0
5 8 9
£ o °
o
o

Figure 10: Extra work and speedup for McFarling with statioc
fidence estimation.

EW (%)

Gshare/Static

‘ Speedup ONot Gated B Gated ‘

ijpeg
i
perl
vortex

compress
gcc
go

m88ksim

EW (%)

Figure 13: Results for gating using a 128 entry, 4-bit JR&tafith
Gshare. A gating threshold value Dfvas used.
Gshare/JRS With Various Sizes

‘ Speedup ONot Gated B Gated ‘

perl
vortex

compress
gcc
m88ksim

Figure 11: Extra work and speedup for Gshare with static eonfi

dence estimation.
McFarling/JRS

‘ Speedup ONot Gated B Gated ‘

= = = = =
38 8 38 8 8
i N i N o
® © © < ©
N re} re} N I3
— R4 N o <}

= <

Figure 14: The effectiveness of various JRS table sizes fokw
reduction. The size of each table is givendentries>—<bits per

entry>.

EW (%)

gcc
go
Ijpeg
perl
vortex

m88ksim

)
I
IS
s
£
IS
o

Figure 12: Results for gating using a 128 entry, 4-bit IR &tedith
McFarling. A gating threshold value &fwas used.

crease in 8ecis much larger than the decrease wN? The SPEC
increases from a value 34.4 to 93.10 as the MDC-thresholaggt
from 1 to 15, while the PN decreases from 31.5to0 21.3. Since gat-
ing is engaged when there are 3 or more unresolved, low canfide
branches in the pipeline, the probability that at least drikeothree
low confident branches is mispredictedis- (1 — .315)% = 68%

for a MDC-threshold of 1, antl— (1 —.213)* = 51% for a MDC-
threshold of 15. Although we are less accurate when the MDC-
threshold is large, the short duration of gating events hadlip”
between instruction fetch and decode helps reduce therpaafece
penalty due to incorrect gating.

4.2 Varying the Gating Threshold

Figures 16 and 17 showViE and speedup for the McFarling and
Gshare predictors, respectively, as a function of the gatinesh-
old valueN. The gating threshold is used to determine the maxi-
mum number of low-confidence branches allowed in the pipelin
before gating is triggered. The “Both Strong” confidence haec
nism was used with McFarling, and the Distance mechanism was
used with Gshare. The data given is the geometric meamcdfd
speedup for different gating threshold values. Note thatvdiue
of Ew without pipeline gating does not change as a functioN,of
since the gating threshold does not affect the “Not Gatedéca

The leftmost set of bars show the results for a configuration
with a gating threshold of zero and all branches tagged astow
fidence. This effectively reduces the pipeline to a supatasc
non-speculative machine, which provides the best enerdycre
tion albeit with a high performance penalty. This is not anax
replica of a non-speculative machine, which would seavav&lue
of zero. As with the perfect confidence estimation case,i€not
zero because we only “see” a low-confidence branch at deddude.
speedup loss is over 35% for both predictors when approxngat
non-speculative machine, although we achieve a subdtesdiac-
tion in Ew. With a reasonable confidence estimator and a gating
threshold of zero, we still significantly reduce the amouhEw
without the performance loss seen in a non-speculative imach
Although this loss in performance is not appropriate for pow
reduction, other applications, such as bandwidth mutgdhing,
might benefit from a zero gating threshold.

For work reduction with no performance loss, both figures
clearly show the need for a gating threshold to compensateléov
PvN value. As the gating threshold (labellsiincreases, speedup
improves but Ev also increases. ldeally, &increases, the im-
provement in speedup should be greater than the increaserin E
In both figures, this occurs faN = 2, given tight constraints on
performance. Using a gating threshold value of two, we ale tab
reduce Bv in the fetch and decode stages by approximately 25%
and 23% for McFarling, and 18% and 17% for Gshare with a neg-
ligible performance loss.

4.3 Varying the Pipeline Structure

So far, we have investigated various confidence estimatiechar
nisms and gating threshold values, but have not changedties-u
lying structure of the gated pipeline. We decided to gatestuthf
and measure at decode so that we could 1) capture a largerporti
of the wrong path instructions in fetch, and 2) allow somp sito
the pipeline, respectively. We explored moving the poingaf-
ing to the decode and issue stages. All results in this sect@e
generated for the McFarling predictor using the “Both Sgroesti-
mation method. Table 6 shows results for no gating, for meé=agu
at decode and gating at fetch, and measuring and gating edlelec
Gating at decode produces worse results for & the fetch
stage than gating at fetch, although there is still an olerduction

Gshare: Confidence Threshold Effect

‘ Speedup ONotGated B Gated

Geo Mean Speedup
Geo Mean EW (%)

Figure 15: The effectiveness of a 128 entry JRS table as didunc
of MDC-threshold value. T denotes the MDC-threshold.
McFarling: Secondary Filter Effects

‘ Speedup ONot Gated B Gated ‘

55
+ 50
145
+ 40
135
130
125
120

| |Fetch

Decode

Geo Mean EW (%)

t
-
3

10

Figure 16: Bv and speedup as a function of gating threshold values
(denotedN) for the McFarling predictor. Also shown is the non-
speculative version of the processor (NS).
Gshare: Secondary Filter Effects
‘ Speedup ONot Gated B Gated ‘

t t
N W
(K]

Geo Mean EW (%)

t
N
o

t
i
3

10

Figure 17: Bv and speedup as a function of gating threshold val-
ues for Gshare. Also shown is the non-speculative versiahef
processor (NS).

McFarling
Case Fetch Decode Issue WriteBack
Base 45,12 3496 11.11 10.64
Gate at
Fetch 34.74 27.10 9.66 9.23
Gate at
Decode 39.24 27.83 9.77 9.33

Table 6: Geometric Mean of \E for base case (No Gating), gating
at fetch, and gating at decode for McFarling.

in work when compared to the base case. This is reasonalgle sin
we are allowing the fetch stage to continue fetching unélfiétch
buffer is full. Therefore, more instructions will enter tpgeline;
this would not happen if gating disabled instruction fet@fe ex-
pected to see an improvement in performance with gatingcatdie
since the recovery penalty for incorrect gating would bes lg&an
gating at fetch. It takes only three cycles for an instruttm“catch
up” and issue after an incorrect gating event with gatingeabde
as opposed to five cycles with gating at fetch. Results shovealo
performance benefit from moving the gating point from fetche-
code. As shown in Figure 3, the pipeline is generally notdébe
more than a few cycles. The current pipeline model has a @4-en
register update unit, and results show that it usually hasigimin-
structions in the issue queue to keep the execution unitspied
while the pipeline catches up from gating.

We also tried other gating configurations such as measuimg |
confidence branches at the second decode cycle, and gaisyg at
sue. None of these configurations performed as well as gating
fetch and measuring at decode. Measuring at the second elecod
cycle did not change the results in any significant mannetinGat
issue resulted in very little savings since most of the wrpath in-
structions do not reach the issue stage. Due to space lionisatve
will not present results for these configurations. Of all pifgeline
gating configurations attempted, gating at fetch and méeasat
decode produced the best results.

5 Conclusion

We have looked at speculation control to reduce the amouer-of
ergy consumed in a speculative, multi-issue, out-of-offeces-
sor. We introduced a new mechanism, pipeline gating, which r
sults in a reduction of instructions in the pipeline withsignifi-
cantly altering performance. We have shown results foredfit
branch predictors and confidence estimators, and implexdent
expensive dynamic confidence estimation methods that da-a re
sonable job of reducing unnecessary work. Furthermore, nee p
sented a practical configuration for the JRS confidence asim
that successfully reduces energy without a large hardwamnelpy.
Most importantly, we showed that inexpensive, dynamic confi
dence estimation mechanisms exist which, at worst, do ngadm
performance for highly predictable programs, and at bestuce
work by a measurable amount for programs with a large mispred
tion rate.

Architectural level power reduction in high performance-r
cessors is a broad field and one that is in its infancy. We have
presented an innovative method for reducing power, andettser
much work left to be done in this area. With wider width proces
sors and hyper speculation in the foreseeable future [pElivie
gating methods will become even more essential for no-mskgy
reduction in high performance processors.

10

Acknowledgments: We would like to thank Steve Gunther for
many invaluable conversations on power dissipation in oaicr
processors, Doug Burger and Todd Austin for supporting Sim-
pleScalar, and Todd Austin for his help in developing theagle
presented in this paper. We would also like to thank the eefer
for their helpful comments. This work was conducted on equip
ment provided by a Digital Equipment Corporation grant, arc
partially supported by a grant from Hewlett-Packard, NS&ngs
No. CCR-9401689, No. MIP-9706286 and in part by ARPA con-
tract ARMY DABT63-94-C-0029.

References

[1] Thomas D. Burd and Robert W. Brodersen. Processor de-
sign for portable systemdournal ov VLSI Signal Processing
13(2/3):203-222, August 1996.

[2] D.Burgerand T. M. Austin. The simplescalar tool set sien

2.0. TR 1342, University of Wisconson, June 1997.

[3] Richard Fromm, Stylianos Perissakis, Neal Cardwell,

Christoforos Kozyrakis, Bruce McGaughy, and David Patter-

son. The Energy Efficiency of IRAM Architectures. Techni-

cal report, May 1997.

[4] Ricardo Gonzalez and Mark Horowitz. Energy Dissipation

in General Purpose Microprocessot&EE Journal of Solid-

State Circuits31(9):1277-1284, September 1996.

Dirk Grunwald, Artur Klauser, Srilatha Manne, and Andre
Pleszkun. Confidence esimation for speculation control. In
Proceedings 25th Annual International Symposium on Com-
puter Architecture, SIGARCH Newslett®&arcelona, Spain,
June 1998. ACM.

(5]

(6]

Steve Gunther and Suresh Rajgopal. Personal communica-
tion.

[7] E. Jacobsen, E. Rotenberg, and J.E. Smith. Assigning Con
fidence to Conditional Branch Predictions. Imernational
Symposium on Microarchitectyrpages 142—-152, December

1996.

[8] J.Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache
An Energy Efficient Memory StructuréEEE Micro, Decem-
ber 1997.

[9] M. H. Lipasti and J. P. Shen. Superspeculative micrdgech

ture for beyond ad 2000EEE Computer30(9), 1997.

S. McFarling. Combining branch predictors. TN 36, DEC-
WRL, June 1993.

J. Montanaro anet. all. A 160-MHz, 32-b, 0.5-W CMOS
RISC Microprocessor. IDigital Technical Journal vol-
ume 9. Digital Equipment Corporation, 1997.

[10]

[11]

[12] J. Pierce and T. Mudge. Wrong-Path Instruction Préiet.

|IEEE Micro, December 1996.

[13] J.E. Smith. A Study of Branch Prediction Strategies. In
Annual International Symposium on Computer Architecture,

SIGARCH Newslettepages 135-148, May 1981.

[14] A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In
Annual International Symposium on Computer Architecture,

SIGARCH Newslettepages 194-205. IEEE, June 1997.

