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IBM introduced Power4-based sys-
tems in 2001.1 The Power4 design integrates
two processor cores on a single chip, a shared
second-level cache, a directory for an off-chip
third-level cache, and the necessary circuitry
to connect it to other Power4 chips to form a
system. The dual-processor chip provides nat-
ural thread-level parallelism at the chip level.
Additionally, the Power4’s out-of-order exe-
cution design lets the hardware bypass instruc-
tions whose operands are not yet available
(perhaps because of an earlier cache miss dur-
ing register loading) and execute other instruc-
tions whose operands are ready. Later, when
the operands become available, the hardware
can execute the skipped instruction. Coupled
with a superscalar design, out-of-order exe-
cution results in higher instruction execution
parallelism than otherwise possible.

The Power5 is the next-generation chip in
this line. One of our key goals in designing
the Power5 was to maintain both binary and
structural compatibility with existing Power4
systems to ensure that binaries continue exe-
cuting properly and all application optimiza-
tions carry forward to newer systems. With

that base requirement, we specified increased
performance and other functional enhance-
ments of server virtualization, reliability,
availability, and serviceability at both chip and
system levels. In this article, we describe the
approach we used to improve chip-level
performance.

Multithreading
Conventional processors execute instruc-

tions from a single instruction stream. Despite
microarchitectural advances, execution unit
utilization remains low in today’s micro-
processors. It is not unusual to see average exe-
cution unit utilization rates of approximately
25 percent across a broad spectrum of envi-
ronments. To increase execution unit utiliza-
tion, designers use thread-level parallelism, in
which the physical processor core executes
instructions from more than one instruction
stream. To the operating system, the physical
processor core appears as if it is a symmetric
multiprocessor containing two logical proces-
sors. There are at least three different meth-
ods for handling multiple threads.

In coarse-grained multithreading, only one
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thread executes at any instance. When a
thread encounters a long-latency event, such
as a cache miss, the hardware swaps in a sec-
ond thread to use the machine’s resources,
rather than letting the machine remain idle.
By allowing other work to use what otherwise
would be idle cycles, this scheme increases
overall system throughput. To conserve
resources, both threads share many system
resources, such as architectural registers.
Hence, swapping program control from one
thread to another requires several cycles. IBM
implemented coarse-grained multithreading
in the IBM eServer pSeries Model 680.2

A variant of coarse-grained multithreading
is fine-grained multithreading. Machines of
this class execute threads in successive cycles,
in round-robin fashion.3 Accommodating this
design requires duplicate hardware facilities.
When a thread encounters a long-latency
event, its cycles remain unused.

Finally, in simultaneous multithreading
(SMT), as in other multithreaded implemen-
tations, the processor fetches instructions
from more than one thread.4 What differen-
tiates this implementation is its ability to
schedule instructions for execution from all
threads concurrently. With SMT, the system
dynamically adjusts to the environment,
allowing instructions to execute from each
thread if possible, and allowing instructions
from one thread to utilize all the execution
units if the other thread encounters a long-
latency event.

The Power5 design implements two-way
SMT on each of the chip’s two processor cores.
Although a higher level of multithreading is
possible, our simulations showed that the
added complexity was unjustified. As design-
ers add simultaneous threads to a single phys-
ical processor, the marginal performance
benefit decreases. In fact, additional multi-
threading might decrease performance because
of cache thrashing, as data from one thread
displaces data needed by another thread.

Power5 system structure
Figure 1 shows the high-level structures of

Power4- and Power5-based systems. The
Power4 handles up to a 32-way symmetric
multiprocessor. Going beyond 32 processors
increases interprocessor communication,
resulting in high traffic on the interconnection

fabric. This can cause greater contention and
negatively affect system scalability. Moving the
level-three (L3) cache from the memory side to
the processor side of the fabric lets the Power5
more frequently satisfy level-two (L2) cache
misses with hits in the 36-Mbyte off-chip L3
cache, avoiding traffic on the interchip fabric.
References to data not resident in the on-chip
L2 cache cause the system to check the L3
cache before sending requests onto the inter-
connection fabric. Moving the L3 cache pro-
vides significantly more cache on the processor
side than previously available, thus reducing
traffic on the fabric and allowing Power5-based
systems to scale to higher levels of symmetric
multiprocessing. Initial Power5 systems sup-
port 64 physical processors.

The Power4 includes a 1.41-Mbyte on-chip
L2 cache. Power4+ chips are similar in design
to the Power4 but are fabricated in 130-nm
technology rather than the Power4’s 180-nm
technology. The Power4+ includes a 1.5-
Mbyte on-chip L2 cache, whereas the Power5
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supports a 1.875-Mbyte on-chip L2 cache.
Power4 and Power4+ systems both have 32-
Mbyte L3 caches, whereas Power5 systems
have a 36-Mbyte L3 cache.

The L3 cache operates as a backdoor with
separate buses for reads and writes that oper-
ate at half processor speed. In Power4 and
Power4+ systems, the L3 was an inline cache
for data retrieved from memory. Because of
the higher transistor density of the Power5’s
130-nm technology, we could move the mem-
ory controller on chip and eliminate a chip
previously needed for the memory controller
function. These two changes in the Power5
also have the significant side benefits of reduc-
ing latency to the L3 cache and main memo-
ry, as well as reducing the number of chips
necessary to build a system.

Chip overview
Figure 2 shows the Power5 chip, which

IBM fabricates using silicon-on-insulator
(SOI) devices and copper interconnect. SOI
technology reduces device capacitance to
increase transistor performance.5 Copper
interconnect decreases wire resistance and
reduces delays in wire-dominated chip-tim-

ing paths. In 130 nm lithography, the chip
uses eight metal levels and measures 389 mm2.

The Power5 processor supports the 64-bit
PowerPC architecture. A single die contains
two identical processor cores, each supporting
two logical threads. This architecture makes
the chip appear as a four-way symmetric mul-
tiprocessor to the operating system. The two
cores share a 1.875-Mbyte (1,920-Kbyte) L2
cache. We implemented the L2 cache as three
identical slices with separate controllers for
each. The L2 slices are 10-way set-associative
with 512 congruence classes of 128-byte lines.
The data’s real address determines which L2
slice the data is cached in. Either processor core
can independently access each L2 controller.

We also integrated the directory for an off-
chip 36-Mbyte L3 cache on the Power5 chip.
Having the L3 cache directory on chip allows
the processor to check the directory after an
L2 miss without experiencing off-chip delays.
To reduce memory latencies, we integrated
the memory controller on the chip. This elim-
inates driver and receiver delays to an exter-
nal controller.

Processor core
We designed the Power5 processor core to

support both enhanced SMT and single-
threaded (ST) operation modes. Figure 3
shows the Power5’s instruction pipeline,
which is identical to the Power4’s. All pipeline
latencies in the Power5, including the branch
misprediction penalty and load-to-use laten-
cy with an L1 data cache hit, are the same as
in the Power4. The identical pipeline struc-
ture lets optimizations designed for Power4-
based systems perform equally well on
Power5-based systems. Figure 4 shows the
Power5’s instruction flow diagram.

In SMT mode, the Power5 uses two sepa-
rate instruction fetch address registers to store
the program counters for the two threads.
Instruction fetches (IF stage) alternate
between the two threads. In ST mode, the
Power5 uses only one program counter and
can fetch instructions for that thread every
cycle. It can fetch up to eight instructions
from the instruction cache (IC stage) every
cycle. The two threads share the instruction
cache and the instruction translation facility.
In a given cycle, all fetched instructions come
from the same thread.
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= instruction sequencing unit, IDU = instruction decode unit,
LSU = load/store unit, IFU = instruction fetch unit, FPU =
floating-point unit, and MC = memory controller).



The Power5 scans fetched instructions for
branches (BP stage), and if it finds a branch,
predicts the branch direction using three
branch history tables shared by the two
threads. Two of the BHTs use bimodal and
path-correlated branch prediction mecha-
nisms to predict branch directions.6,7 The
third BHT predicts which of these prediction
mechanisms is more likely to predict the cor-

rect direction.7 If the fetched instructions con-
tain multiple branches, the BP stage can pre-
dict all the branches at the same time. In
addition to predicting direction, the Power5
also predicts the target of a taken branch in
the current cycle’s eight-instruction group. In
the PowerPC architecture, the processor can
calculate the target of most branches from the
instruction’s address and offset value. For
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predicting the target of a subroutine return,
the processor uses a return stack, one for each
thread. For predicting the target of other
branches, it uses a shared target cache. If there
is a taken branch, the processor loads the pro-
gram counter with the branch’s target address.
Otherwise, it loads the program counter with
the address of the next sequential instruction
to fetch from.

After fetching, the Power5 places instruc-
tions in the predicted path in separate instruc-
tion fetch queues for the two threads (D0
stage). Like the Power4, the Power5 can dis-
patch up to five instructions each cycle. On the
basis of thread priorities, the processor selects
instructions from one of the instruction fetch
queues and forms a group (D1, D2, and D3
stages). All instructions in a group come from
the same thread and are decoded in parallel.

Before a group can be dispatched, the
processor must make several resources avail-
able for the instructions in the group. Each
dispatched group needs an entry in the glob-
al completion table (GCT). Each instruction
in the group needs an entry in an appropriate
issue queue. Each load and store instruction
needs an entry in the load reorder queue and
store reorder queue, respectively, to detect out-
of-order execution hazards.1 When all the
resources necessary for dispatch are available
for the group, the group is dispatched (GD
stage). Instructions flow through the pipeline
stages between instruction fetch (IF) and
group dispatch (GD) in program order. After
dispatch, each instruction flows through the
register-renaming (mapping) facilities (MP
stage), which map the logical register num-
bers in the instruction to physical registers. In
the Power5, there are 120 physical general-
purpose registers (GPRs) and 120 physical
floating-point registers (FPRs). The two
threads dynamically share the register files. An
out-of-order processor can exploit the high
instruction-level parallelism exhibited by
some applications (such as some technical
applications) if a large pool of rename registers
is available. To facilitate this, in ST mode, the
Power5 makes all physical registers available
to the single thread, allowing higher instruc-
tion-level parallelism.

After register renaming, instructions enter
issue queues shared by the two threads. The
Power5 microprocessor, like the Power4, has

multiple issue queues: The floating-point issue
queue feeds the two floating-point units, the
branch issue queue feeds the branch execu-
tion unit, the condition register logical queue
feeds the condition register logical operation
execution unit, and a combined issue queue
feeds the two fixed-point execution units and
the two load-store execution units. Like the
Power4, the Power5 contains eight execution
units, each of which can execute an instruc-
tion each cycle.1

To simplify the logic for tracking instruc-
tions through the pipeline, the Power5 tracks
instructions as a group. Each group of dis-
patched instructions takes an entry in the glob-
al completion table at the time of dispatch.
The two threads share 20 entries in the GCT.
Each GCT entry holds a group of instructions;
a group can contain up to five instructions, all
from the same thread. Power5 allocates GCT
entries in program order for each thread at the
time of dispatch. An entry is deallocated from
the GCT when the group is committed.
Although the entries in the GCT are in pro-
gram order and from a given thread, succes-
sive entries can belong to different threads.

When all input operands for an instruction
are available, it becomes eligible for issue.
Among the eligible instructions in the issue
queue, the issue logic selects one and issues it
for execution (ISS stage). For instruction issue,
there is no distinction between instructions
from the two threads. When issued, the
instruction reads its input physical registers
(RF stage), executes on the proper execution
unit (EX stage), and writes the result back to
the output physical register (WB stage). Each
floating-point unit has a six-cycle execution
pipe (F1 through F6 stages). In each load-
store unit, an adder computes the address to
read or write (EA stage), and the data cache is
accessed (DC stage). For load instructions,
once data is returned, a formatter selects the
correct bytes from the cache line (Fmt stage)
and writes them to the register (WB stage).

When all the instructions in a group have
executed (without generating an exception)
and the group is the oldest group of a given
thread, the group commits (CP stage). In the
Power5, two groups can commit per cycle,
one from each thread.

To efficiently support SMT, we tuned all
resources for improved performance within
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area and power budget constraints. The L1
instruction and data caches are the same size
as in the Power4—64 Kbytes and 32
Kbytes—but their associativity has doubled
to two- and four-way. The first-level data
translation table is now fully associative, but
the size remains at 128 entries.

Enhanced SMT features
To improve SMT performance for various

workload mixes and provide robust quality of
service, we added two features to the Power5
chip: dynamic resource balancing and
adjustable thread priority.

Dynamic resource balancing. The objective of
dynamic resource balancing is to ensure that
the two threads executing on the same proces-
sor flow smoothly through the system.
Dynamic resource-balancing logic monitors
resources such as the GCT and the load miss
queue to determine if one thread is hogging
resources. For example, if one thread encoun-
ters multiple L2 cache load misses, dependent
instructions can back up in the issue queues,
preventing additional groups from dispatch-
ing and slowing down the other thread. To
prevent this, resource-balancing logic detects
that a thread has reached a threshold of L2
cache misses and throttles that thread. The
other thread can then flow through the
machine without encountering congestion
from the stalled thread. The Power5 resource-
balancing logic also monitors how many GCT
entries each thread is using. If one thread starts
to use too many GCT entries, the resource-
balancing logic throttles it back to prevent its
blocking the other thread.

Depending on the situation, the Power5
resource-balancing logic has three thread-
throttling mechanisms:

• Reducing the thread’s priority is the pri-
mary mechanism in situations where a
thread uses more than a predetermined
number of GCT entries.

• Inhibiting the thread’s instruction decod-
ing until the congestion clears is the pri-
mary mechanism for throttling a thread
that incurs a prescribed number of L2
cache misses.

• Flushing all the thread’s instructions that
are waiting for dispatch and holding the

thread’s decoding until the congestion clears
is the primary mechanism for throttling
a thread executing a long-executing
instruction, such as a synch instruction.
(A synch instruction orders memory
operations across multiple processors.)

Adjustable thread priority. Adjustable thread pri-
ority lets software determine when one thread
should have a greater (or lesser) share of execu-
tion resources. (All software layers—operating
systems, middleware, and applications—can
set the thread priority. Some priority levels are
reserved for setting by a privileged instruction
only.) Reasons for choosing an imbalanced
thread priority include the following:

• A thread is in a spin loop waiting for a lock.
Software would give the thread lower pri-
ority, because it is not doing useful work
while spinning.

• A thread has no immediate work to do and
is waiting in an idle loop. Again, software
would give this thread lower priority.

• One application must run faster than
another. For example, software would
give higher priority to real-time tasks over
concurrently running background tasks.

The Power5 microprocessor supports eight
software-controlled priority levels for each
thread. Level 0 is in effect when a thread is not
running. Levels 1 (the lowest) through 7 apply
to running threads. The Power5 chip observes
the difference in priority levels between the
two threads and gives the one with higher pri-
ority additional decode cycles. Figure 5 (next
page) shows how the difference in thread pri-
ority affects the relative performance of each
thread. If both threads are at the lowest run-
ning priority (level 1), the microprocessor
assumes that neither thread is doing mean-
ingful work and throttles the decode rate to
conserve power.

Single-threaded operation
Not all applications benefit from SMT.

Having two threads executing on the same
processor will not increase the performance
of applications with execution-unit-limited
performance or applications that consume all
the chip’s memory bandwidth. For this rea-
son, the Power5 supports the ST execution
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mode. In this mode, the Power5 gives all the
physical resources, including the GPR and
FPR rename pools, to the active thread, allow-
ing it to achieve higher performance than a
Power4 system at equivalent frequencies.

The Power5 supports two types of ST oper-
ation: An inactive thread can be in either a
dormant or a null state. From a hardware per-
spective, the only difference between these
states is whether or not the thread awakens on
an external or decrementer interrupt. In the
dormant state, the operating system boots up
in SMT mode but instructs the hardware to
put the thread into the dormant state when
there is no work for that thread. To make a
dormant thread active, either the active thread
executes a special instruction, or an external
or decrementer interrupt targets the dormant
thread. The hardware detects these scenarios
and changes the dormant thread to the active
state. It is software’s responsibility to restore
the architected state of a thread transitioning
from the dormant to the active state.

When a thread is in the null state, the oper-
ating system is unaware of the thread’s existence.
As in the dormant state, the operating system

does not allocate resources to a null thread. This
mode is advantageous if all the system’s execut-
ing tasks perform better in ST mode.

Dynamic power management
In current CMOS technologies, chip power

has become one of the most important design
parameters. With the introduction of SMT,
more instructions execute per cycle per proces-
sor core, thus increasing the core’s and the
chip’s total switching power. To reduce switch-
ing power, Power5 chips use a fine-grained,
dynamic clock-gating mechanism extensively.
This mechanism gates off clocks to a local
clock buffer if dynamic power management
logic knows the set of latches driven by the
buffer will not be used in the next cycle. For
example, if the GPRs are guaranteed not to
be read in a given cycle, the clock-gating
mechanism turns off the clocks to the GPR
read ports. This allows substantial power sav-
ing with no performance impact.

In every cycle, the dynamic power man-
agement logic determines whether a local
clock buffer that drives a set of latches can be
clock gated in the next cycle. The set of latch-
es driven by a clock-gated local clock buffer
can still be read but cannot be written. We
used power-modeling tools to estimate the
utilization of various design macros and their
associated switching power across a range of
workloads. We then determined the benefit
of clock gating for those macros, implement-
ing cycle-by-cycle dynamic power manage-
ment in macros where such management
provided a reasonable power-saving benefit.
We paid special attention to ensuring that
clock gating causes no performance loss and
that clock-gating logic does not create a crit-
ical timing path. A minimum amount of logic
implements the clock-gating function.

In addition to switching power, leakage
power has become a performance limiter. To
reduce leakage power, the Power5 uses tran-
sistors with low threshold voltage only in crit-
ical paths, such as the FPR read path. We
implemented the Power5 SRAM arrays main-
ly with high threshold voltage devices.

The Power5 also has a low-power mode,
enabled when the system software instructs
the hardware to execute both threads at the
lowest available priority. In low-power mode,
instructions dispatch once every 32 cycles at
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most, further reducing switching power. The
Power5 uses this mode only when there is no
ready task to run on either thread.

The out-of-order execution Power5 design
coupled with dual 2-way simultaneous mul-
tithreaded processors provides instruction and
thread level parallelism. Future plans call for
shrinking the size of the Power5 die by using
a 90-nm lithography fabrication process,
which should allow even higher performance
at lower power. 
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