Dynamic Branch Prediction with Perceptrons
Daniel A. Jiménez Calvin Lin

Department of Computer Sciences
The University of Texas
Austin, TX 78712 USA

June 2, 2000

Abstract Branch prediction is an essential part of modern microar-
chitectures. Rather than stall when a branch is encountered
This paper presents a new method for branch prediction. Thgipelined processor uses branch prediction to specelptiv
key idea is to use one of the simplest possible neural nesyoffigtch and execute instructions along the predicted path. As
the perceptron which provides better predictive capabilitiepipelines deepen and the number of instructions issuedyper ¢
than commonly used two-bit counters, and which allows ogle increases, the penalty for a misprediction increases- T
predictor to consider longer branch histories. The haréwagvel adaptive predictors yield good performance and ane-co
resources needed for our method scale linearly with thetyistmonly used [27, 15]. Recent efforts to improve branch pre-
length, in contrast with other purely dynamic schemes téat diction focus primarily on eliminatingliasing which occurs
quire exponential memory. when two unrelated branches destructively interfere bpaisi
This paper describes our design and evaluates it with réspae same prediction resources. We take a different appreach
to two well known predictors. We show that for a 4K bytene that is largely orthogonal to previous work—by imprayin
hardware budget our method improves misprediction rateste accuracy of the prediction mechanism itself.
a composite trace of SPECZOO.O benchmarks by 14.7% OVeh - work builds on the observation that all existing two-
the gshare pred|c_tor. Qur experiments prc_mde a be‘Fte”anSvel techniques use tables of saturating counters. Itsrah
standing of the situations in which traditional predictols to ask whether we can improve accuracy by replacing these
and do not perform we_II. We show that becaus_e our predigs nters with neural networks, which provide good predic-
to_r Works_ \.Ne” for a particular class of branches, it W(_)rkglwetive capabilities. Since most neural networks would be pro-
with trgdltlonal schem_es as a c_omponent of a hybrid IoredH“Ibitively expensive to implement as branch predictorsewe
tor. Finally, we describe techniques that allow our Compl%)fore the use of perceptrons, one of the simplest possihie ne

predictor to operate in one cycle. ral networks. Perceptrons are easy to understand, simple to
implement, and have several attractive properties thégrdif
1 Introduction entiate them from more complex neural networks.

We propose a two-level scheme that uses fast perceptrons

Modern computer architectures increasingly rely on specuinstead of two-bit counters. Ideally, each static branchlis
tion to boost instruction level parallelism. For examplatal located its own perceptron to predict its outcome. Tradaio
that is likely to be read in the near future is speculativetyo-level adaptive schemes use a pattern history table @f tw
prefetched, and predicted values are speculatively usfedebebit saturating counters, indexed by a global history sleiffis-
actual values are available [12, 25]. Accurate predicti@eim ter that stores the outcomes of previous branches. This-stru
anisms have been the driving force behind these techniquets limits the length of the history register to the logfamit of
so increasing the accuracy of predictors increases theperfhe number of counters. Our scheme not only uses a more so-
mance benefit of speculation. Machine learning techniqusssticated prediction mechanism, but it can consider much
offer the possibility of further improving performance hy-i longer histories than saturating counters. Empirical ltssu
creasing prediction accuracy. This paper proposes that shew significant improvements for our approach. Our predic-
machine learning technique can be implemented in hardwtreoutperforms two high quality predictors on a composite o
to improve branch prediction. the SPEC2000 bencmarks, but the performance advantage is

*This research was supported in part by DARPA Contract #F3@601- not uniform across benchmarks. For example, Flgure 1 shows
0150 from the US Air Force Research Laboratory and by NSF CBRg that on the SPEC95 benchmatR6. gcc our predictor im-
grant ACI-9984660. proves the misprediction rate by 31% over gshare when using

a hardware budget of 256K bytes. At the other extreme, ofr Related Work

predictor does not perform well on tf#9. go benchmark,

degrading the misprediction rate by 25% at a 256K hardw&el Neural networks

budget. Artificial neural networks learn to compute a function using
This paper explains why and when our predictor perforff¥@mple inputs and outputs. Neural networks have been used

well. The neural network we have chosen works well fépr @ variety of applications, including pattern recoguiitj

the class ofinearly separable branches term we introduce. classification [10], image processing, and image undetistan

We show that programs tend to have many linearly separah@ [16, 14].

branches, but when they do not, our predictor may not perform

as well as other techniques. Thus, our predictor works tsesSatic branch prediction with neural networks. Neural

a component of a hybrid prediction scheme, along with a maretworks have been used to perfostatic branch predic-

traditional predictor. For example, on the two extreme sas@on [4], where the likely direction of a branch is predictad

mentioned above, an untuned hybrid gshare/perceptron m@mpile-time by extracting program features such as céntro

dictor with a 256K budget achieves a misprediction rateihatlow and opcode information and supplying these features as

40% better than gshare’s fa26. gcc, and 16% better thaninput to a trained neural network. This approach achieves an

gshare foi099. go. 80% correct prediction rate, compared to 75% for static iseur

tics [2, 4]. Static branch prediction performs worse than ex

This paper makes the following contributions. (1) We iristing dynamic techniques, but is useful for performingista

troduce the perceptron predictor, a new kind of branch gredtompiler optimizations.

tor that is often more accurate than existing technique$. (2

We explore the design space for tyvo-lgvgl branch predia%ﬁanch prediction and genetic algorithms. Neural net-
based on perceptrons, empirically identifying good valioes works are part of the field of machine learning, which also

key paramet(_ers. (3) We carefully eyaluate our methOd_agaii'?u%Iudes genetic algorithms. Emer and Gloy use genetic-algo
other dynamic global branch predictors. (4) We provide iy, g 15 “evolve” branch predictors [7], but it is importzto

Zlghts_bas to Wh){ ".“rlﬂe"é predlctorhpre]rforws better. %W%te the difference between their work and ours. Their work
escribe a novel pipelined approach that allows our te®iq o o\ g|ytion to design more accurate predictors, butritle e

to nlwa_ke ?] prediction in l;ess (tjhan gne cyF:Ie. d(6) F_ina}lly, YWesultis something similar to a highly tuned traditionadgic-
explain why perceptron-based predictors introduce IsteTg ¢, \ye propose putting intelligence in the microarchiteet

new ideas for future research. so the branch predictor can learn and adapt on-line. In fact,
their approach cannot describe our new predictor.

10+

2.2 Dynamic Branch Prediction

—-e—-- Gshare
—a— Bi-Mode
—e— Perceptron

Dynamic branch prediction has a rich history in the literatu
Recent research focuses on refining the two-level scheme of
Yeh and Patt [27]. In this scheme, a pattern history tablel(PH
of two-bit saturating counters is indexed by a combinatibn o
branch address and global or per-branch history. The high bi
of the counter is taken as the prediction. Once the branch out
come is known, the counter is decremented if the branch is
not taken, or incremented otherwise. An important problem
in two-level predictors is aliasing [21], and many of the re-
cently proposed branch predictors seek to reduce the rdjasi

problem [18, 17, 23, 6] but do not change the basic prediction
T T & 5 & 52 5 Iz e s mechanism. Given a generous hardware budget, many of these

Hardware Budget, Kilobytes two-level schemes perform about the same as one another [6].
Perceptron vs. other techniques, SPEC95 gcc . . .

Most two-level predictors cannot consider long history
Figure 1:Hardware Budget vs. Prediction Rate 6. gcc. The lengths, which becomes a problem when the distance between
perceptron predictor is more accurate than gshare and Herfar COrrelated branches is longer than the length of a globtdityis
hardware budgets over 16K. shift register [9]. Even if a PHT scheme could somehow im-
plement longer history lengths, it may not help becausedong
history lengths require longer training times for these hmet
ods [19].

Percent Mispredicted

Variable length path branch prediction [24] is one scheragperceptron keeps track of positive and negative corogiati
for considering longer paths. It avoids the PHT capacitypprobetween branch outcomes in the global history and the branch
lem by computing a hash function of the addresses along Heng predicted.
path to the branch. Using a complex multi-pass profiling Figure 2 shows a graphical model of a perceptron. A percep-
and compiler-feedback mechanism, this technique achietres is represented by a vector whose elements are the wgeight
a misprediction rate of approximately 2.9% on the SPEC®5r our purposes, the weights are signed integers. The butpu
126. gcc benchmark when the hardware budget is 256K the dot product of the weights vectary. ,,, and the input
bytes. Our predictor achieves superior performaw@thout vector,z;. , (zo is always set to 1, providing a “bias” input).
compiler assistance or profiling-or the same hardware budThe outputy of a perceptron is computed as
get, our predictor achieves a misprediction rate of 2.1%, an

. . . 0 n
our hybrid gshare/perceptron improves this to 1.8%. Y =wo + Z —
i=1

3 Branch Prediction with Perceptrons

This section provides the background needed to understand @ @ @ @
wo w

our predictor. We describe perceptrons, explain how they ca

be used in branch prediction, and discuss their strengttis an ,
weaknesses. Our method is essentially a two-level pratlicto !
replacing the pattern history table with a table of percaptr

w\
3.1 Why perceptrons? @

Perceptrons are a natural choice for branch predictionUsscarijgyre 2: Perceptron Model. The input values, ..., z.., are prop-

they can be efficiently implemented in hardware. Other formgated through the weighted connections by taking thepeetive

of neural networks, such as those trained by back-propamatproducts with the weightsy, ..., w,. These products are summed,

and other forms of machine learning, such as decision tressng with the bias weighty, to produce the output value

are less attractive because of excessive implementatits.co

We also considered other simple neural architectures, asch _ _))

ADALINE [26] and Hebb learning [10], but these were less ef- | '€ INPUtS to our perceptrons abépolar, i.e., each; is

fective than perceptrons (lower hardware efficiency fasA either ',1', meanmgmtakenpr 1, meaningaken. A .negatlve

LINE, less accuracy for Hebb). outputis mterpreted_ gzedict untakenA non-negative output
One benefit of perceptrons is that by examining théﬁlnterpreted apredict taken.

weights i.e., the correlations they learn, it is easy to under-

stand the decisions that they make. By contrast, a criticsm3.3 Training Perceptrons

many neural networks is that it is difficult or impossible & d . . .

termine exactly how the neural network is making its dea:isioon.ce%has been comﬁ)_utebd, tqe.fforlllovgng alr?orlthm IS uied to

Techniques have been proposed to extract rules from neltJrr%' the perceptron. Latbe -1 f the branch was not taken,

networks [22], but these rules are not always accurate. P If it was taken, and lef be thethreshold a parameter

ceptrons do not suffer from this opagueness; the percestr to the training algorithm used to decide when enough trginin
- - ; Chas been done.
decision-making process is easy to understand as the odsu

a simple mathematical formula. We discuss this property in 1 ify>6
more detail in Section 5.6. Yout = { 0 if-6<y<é
-1 ify<—6
i f yout #tthen
3.2 How Perceptrons Work for i:=0tondo
The perceptron was introduced in 1962 [20] as a way to study end f Orwl =t

brain function. We consider the simplest of many types of phg i ¢

ceptrons [3], a&ingle-layer perceptrononsisting of one artifi-

cial neuronconnecting severahput unitsby weighted edges Sincet andz; are always either -1 or 1, this algorithm in-
to oneoutput unit A perceptron learns a target Boolean fun@rements thé" weight when the branch outcome agrees with
tion ¢t(z1, ..., z,) Of n inputs. In our case, the; are the bits z;, and decrements the weight when it disagrees. Intuitively,
of a global branch history shift register, and the targetfion when there is mostly agreement, i.e., positive correlatiba
predicts whether a particular branch will be taken. Intgity, weight becomes large. When there is mostly disagreement,

i.e., negative correlation, the weight becomes negatitd wiVe discuss this circuitry in Section 6. When the processer en

large magnitude. In both cases, the weight has a large inftounters a branch in the fetch stage, the following steps are

ence on the prediction. When there is weak correlation, tbenceptually taken:

weight remains close to 0 and contributes little to the otighu

the perceptron. 1. The branch address is hashed to produce an index
0..N — 1 into the table of perceptrons.

3.4 Linear Separability 2. Thei" perceptron is fetched from the table into a vector

A limitation of perceptrons is that they are only capable of register.Fy..n, of weights.

learninglinearly separablefunctions [10]. Imagine the set of 3 The value ofy is computed as the dot product Bfand
all possible inputs to a perceptron asraimensional space. the global history register.
The solution to the equation

. 4. The branch is predicted not taken wheis negative, or

wo + Z ziw; = 0 taken otherwise.
=1 5. Once the actual outcome of the branch becomes known,
the training algorithm uses this outcome and the value of

is a hyperplane (e.g. a line,if = 2) dividing the space into
yperp (e) g P y to update the weights iR.

the set of inputs for which the perceptron will respdatke
and the set for which the perceptron will respanae [10].
A Boolean function over variables, ,, is linearly separa-

ble if and only if there exist values fow,. ,, such that all of It appears that orediction is slow because many comouta-
the true instances can be separated from all of thlsein- . PP P . . y P

. . tions and SRAM transactions take place in steps 1 through 5.
stances by that hyperplane. Since the output of a perceistro

decided by the above equation, only linearly separable-fur'gcowever’ Section 6 shows that a number of arithmetic and mi-

tions can be learned perfectly by perceptfongs we wil croarchitectural tricks allow this prediction step to besgzed

show later, many of the functions describing the behavior '8110 one clock cycle, even for '0?9 history lengths, with goo
branches in real programs are linearly separable. A percgﬁ_curacy from the resulting predictor.

tron can still give good predictions when learning a lingarl
inseparable function, but it will not achieve 100% accuracy‘ Branch Addres# ‘History RegiSIE*' ‘Branch 0utcomF
By contrast, two-level PHT schemes like gshare can learn any
Boolean function if given enough training time.

6. P is written back to the" entry in the table.

Pred'gtion

3.5 Putting it All Together

We can use a perceptron to learn correlations between partic
ular branch outcomes in the global history and the behaior o
the current branch. These correlations are representeleby t
weights. The larger the weight, the stronger the corretatio
and the more that particular branch in the global history-con
tributes to the prediction of the current branch. The input t
the bias weight is always 1, so instead of learning a corcglat
with a previous branch outcome, the bias weight, learns Table
the bias of the branch, independent of the history. Se@\ of
Figure 3 shows a block diagram for the perceptron predictor.@ " | Perceptrons
The processor keeps a table Mfperceptrons in fast SRAM,
similar to the table of two-bit counters in other branch peed
tion schemes. The number of perceptroNs,is dictated by

the hardware budget and number of weights, which 'tself‘gziure 3:Perceptron Predictor Block Diagram. The branch address
determined by the amount of branch history we keep. Spegighashed to select a perceptron that is read from the tabigetfier
circuitry computes the value af and performs the training.with the global history register, the output of the perceptis com-
puted, giving the prediction. The perceptron is updateti ttié train-

ing algorithm, then written back to the table.

1This is strictly true only when the learning is done staticai.e., pre-
dictions are made only after the learning is finished. In @ageg learning is
dynamic, so a perceptron may learn to adapt to some norritynea

4 Design Space and outcomes, are fed to a program that simulates the ditfere

branch prediction techniques.
This section explores the design space for perceptron@redi

tors. Given aﬁxed hardware budget, three.param_eters nee%é%chmarks simulated. We simulated the 12 SPEC2000
be tuned to achieve the best performance: the history Iengfl‘jhe

. . teger benchmarks, as well as two SPEC95 benchmarks,
the number of bits used to represent the weights, and .)
6. gcc and099. go, that have been widely used in pre-
threshold. :) :
vious work. All benchmarks were simulated to completion

) i . using the SPE€est inputs. For253. per | bnk, thet est
History length. Long history lengths can yield more accugn, executeper | on many small inputs, so the concatena-
rate predictions [9] but also reduce the number of tablé&tr oy of the resulting traces was used. B&9. go, a smaller

thereby increasing aliasing. In our experiments, the bisst hho4rd size of 20« 20 was used so that the program would pro-
tory lengths ranged from 12 to 62, depending on the hardwgfig.e a manageable number of traces. For Figure 1, the graph
budget. presented earlier, we computed the average mispredictien r

for all 26 of ther ef inputs forl26. gcc; we believe this best
Representation of weights. The weights for the perceptronrepresents the performance of all the predictors for thp pse
predictor are signed integers. Varying the number of bits @f comparing our results to those in other papers where it is
lowed us to trade hardware budget for accuracy. We foundclear which inputs are used.
that, depending on the hardware budget and history lengthsie also generated a composite trace of the first 100 million
using 7 to 9 bits give the best results. branch traces from each of the SPEC2000 integer benchmarks

to measure the overall performance of the predictors. When
Threshold. The threshold is a parameter to the perceptréenchmark executed fewer than 100 million branches,grace
training algorithm that is used to decide whether the pttedicwere copied from the beginning until there were enough. &inc
needs more training. the median number of branches generated by the benchmarks

is approximately 100 million, we believe this trace bestreep

. sents the average workload for a high performance computer.
5 Experimental Results

We simulated the SPEC2000 integer benchmarks to comp irend the predictors. - We gsed the com.posne trace to tune
the parameters of each predictor for a variety of hardwacde bu

the perceptron predlctor against two highly regarded tecgéts. For gshare and bi-mode, we tuned the history lengths by

nigues from the literature. . i]
exhaustively trying every value from 1 to the the maximum
possible history length for each hardware budget, keefiag t

5.1 Methodology value that gave the best prediction accuracy. For the percep

Predictors simulated. We chose to compare our new predict—ron predictor, we found for each history length and number

tor against gshare [18] and bi-mode [17], two of the bestlpuré)f bit.s per weight, the best value of the thresheld by using an
dynamic global predictors from the branch prediction mermtelllgent search of the space of values, pruning areabef t

ture. We also simulated an untuned hybrid gshare/peraep pace that gave poor performance. We then tuned the history

predictor that uses a 2K byte choice table and the same ch fogth and P“mbe”’f bits per weight for each hardware bgdget
mechanism as that of the Compaq 21264 [15]. The simula dexhaustwe search. Table 1 shows the results of the fistor

predictors use only global pattern information, i.e., heitper- ength tuniqg. . s
branch nor path information was used. Additional informa- Our hybrid gshare/perceptron predictor was not tun'e

tion can yield greater accuracy [8, 15], but our restriction simply combineq tVYO, predictors of eql_.lal size using the pa-
global information is typical of recent work in branch predi rameters for the individually tuned predictors, and we atiae

tion [17, 6], and our new technique is largely orthogonal {8echanism, similar to the one in the Compaq 21264 [15], that
these other techniques dynamically chooses between the two using a 2K byte table of

two-bit saturating counters. Our graphs reflect this ad@ed-h

Gathering t 0 imulati d the inst ; \F?;are expense. We believe that this lack of tuning has greates
athering traces. Our simulations used the instrumente pact at low hardware budgets.

assembly output of the gcc 2.95.1 compiler with optimiza-
tion flags- @3 -fom t-framne-poi nter running on an
AMD K6-11l under Linux to generate traces for all conditidnaEstimating area costs. Our hardware budgets do notinclude
branch instructions. For each branch, the instrumented pifée cost of the logic required to do the computation. By ex-
gram makes a call to a profiling procedure giving the bran@fining die photos, we estimate that at the longest history
address and outcome. Branches in libraries or system callStne final paper will provide results for a tuned hybrid gstiaeeceptron

are not profiled. The traces, consisting of branch addrespesictor.

10—

lengths, this cost is approximately the same as that of 1K of

SRAM. Using the parameters tuned for the 4K hardware bud- e Gshare
get, we estimate the extra hardware will consume about the s{. - E'e?ﬂigf’mn
same logic as 256 bytes of SRAM. Thus, the cost for the com- - ---a-- Hybrid Perceptron + Gshare

putation hardware is small compared to the size of the table.

5.2 Impact of History Length on Accuracy

Percent Mispredicted

One of the strengths of the perceptron predictor is its @bili
to consider much longer history lengths than traditionai-tw
level schemes, which helps because highly correlated besnc
can occur at a large distance from each other [9]. Any global
branch prediction technique that uses a fixed amount of his- S T

T T T T T
2 4 8 16 32 64 128 256 512

tory information will have an optimal history length for asgin Hardware Budget, Kilobytes
set of benchmarks. As we can see from Table 1, the percep- Perceptron vs. other techniges, composite

tron predictor works best with much longer histories tham th o
other two predictors. For example, with a 64K byte hardwafdgure 4: Hardware Budget vs. Prediction Rate on the Com-
budget, gshare works best with a history length of 15, evBpsite Trace. The perceptron predictor is more accurate tha

iough he maximum posibe engih for gshare at 4K is 180 PIT et oL al harivere budges e e i
At the same hardware budget, the perceptron predictor woﬁfs percep P P

. . 32K bytes.
best with a history length of 62. an yies

Hardware budge History Length
in kilobytes gshare| bi-mode| perceptron misprediction rate of 2.12%, an improvement of 31.4% from

1 6 7 12 gshare and 39.9% from bimode. Figures 5 and 6 show the mis-
2 8 9 22 prediction rates on all of the SPEC2000 benchmarks, as well
4 8 11 28 as SPEC94.26. gcc and099. go, for the three predictors

8 11 13 34 and the gshare/perceptron hybrid predictor for hardwark bu
16 14 14 36 gets of 4K and 16K bytes.

32 15 15 59

64 15 16 59 5.4 Why Does it Do Well?

128 16 17 62

256 17 17 62 The main advantage of the perceptron predictor is its gldit

512 18 19 62 consider longer history lengths. We support this obseowvati

with an experiment. We simulated gshare and the perceptron
predictor at a 512K hardware budget, where the perceptron
Table 1:Best History Lengths. This table shows the best amOunt@fedictor normally outperforms gshare. However, by only al
global history to keep for each of the branch prediction své® lowing the perceptron predictor to use as many history lsits a
gshare (18 bits), we find that gshare performs better, with a
misprediction rate of 4.83% compared with 5.35% for the per-
ceptron predictor. The inferior performance of this criggl
predictor has two likely causes: there is more destructiasa
Figure 4 shows the prediction rates achieved with increasing with perceptrons because they are larger, and thus fewer
hardware budgets on our composite trace. The percepttioan gshare’s two-bit counters, and the perceptron predist
predictor's advantage over the PHT methods is largest at tagable of learning only linearly separable functions efrni
smaller hardware budgets. At a budget of 4K bytes, the pput, while gshare can potentially learn any Boolean fumctio
ceptron predictor has a misprediction rate of 5.77%, an im-Figure 7 shows the result of simulating gshare and the per-
provement of 14.7% over gshare and 10.0% over bimode. &fptron predictor with varying history lengths on the comspo
a large budget of 256K, the perceptron predictor has a mispte SPEC2000 trace. An 8M byte hardware budget was used
diction rate of 4.74%, an improvement of 4.7% over gshate allow gshare to consider longer history lengths than Lsua
and 5.3% over bimode. Each predictor becomes more accurate as it is allowed to con-
On thel26. gcc benchmark, the perceptron predictor pesider long histories, until gshare becomes worse and then ru
forms particularly well at large hardware budgets. Using8 2 out of bits (since only logarithmically many history bitscle
kilobyte hardware budget, the perceptron predictor agsev considered), while the perceptron predictor continuestteo i

5.3 Performance

25

= Gshare

= Bi-mode

= Perceptron

o Hybrid Perceptron + Gshare

20

15

10

Percent Mispredicted

17@

O, Z. 2 27 2. 2! 2! 2 2 2
99,95 ZQQCCS4_g2&75 Yor o7 Dare2 ,75 3 P& 035G,

L
187 , 18, 56, 4, 30
ge¢Lmeg6-cry 1, Parse,Son >Peryy ;'gfp ,,g(bz,"og oy

Benchmark

Figure 5: Misprediction Rates at a 4K budget. The perceptron pre-

dictor has a lower misprediction rate than gshare for alichemarks
except for099. go, 176. gcc, 186. crafty and197. par ser.
The hybrid predictor is consistently better than the PHTesabs.

25

= Gshare

= Bi-mode

= Perceptron

o Hybrid Perceptron + Gshare

20

15

10

Percent Mispredicted

099 125 164 175 175 187 18g 19> 255 253 254 255 255, 30,
.96 <6.968 %9275V, 0968 - O-cr, ,,fbarsg-r@o,, ‘Rﬁer/g,}%:ap 5. Vo,[s.i;bza,g' oy

Benchmark

prove. The best performance from gshare is with a history
length of 18, where it achieves a misprediction rate of 5.20%
The perceptron predictor is best at a history length of 68, th
longest history considered, where it achieves a mispriedict
rate of 4.64%. Thus, the primary benefit of the perceptron
predictor appears to be its ability to handle longer brarish h
tories.

104

v --- Gshare
—— Perceptron

Percent Mispredicted

0 T T T

History Length

Figure 7: History Length vs. Performance. The accuracy of the
perceptron predictor improves with history length, whikhgre’s ac-
curacy bottoms out at 18.

5.5 When Does It Do Well?

The perceptron predictor does well when the branch being
predicted exhibitdinearly separable behavioiTo define this
term, leth,, be the most recent bits of global branch his-
tory. For a static brancltB, there exists a Boolean function
fB(hy,) that best predict®’s behavior. If {5 is not linearly
separable, then gshare may predicbetter than the percep-
tron predictor. We say such branches limearly inseparable
Itis this function,fg, that all branch predictors strive to learn.
We computed's(hi1o) for each static brancB in the first 100
million branches of each benchmark and tested for linear sep
arability of the function. (Our algorithm for this test takeme
superexponential in, so we were unable to go beyond 10 bits
of history or 100 million dynamic branches. We believe these
numbers are good estimates for the purpose of this disqu¥sio
Intuitively, a linearly inseparable branch is one best pre-
dicted by a complex function of its history. For instance,
if a branch is taken when the exclusive-OR of the third and

Figure 6: Misprediction Rates at a 16K budget. Gshare outpftth most recent branches isue, it is linearly inseparable,

forms the perceptron predictor only dd®9. go, 176. gcc and
186.crafty.

since there is no line separatitrge instances of inputs to the
exclusive-OR function fronfalseones on the plane.

Figure 8 shows the misprediction rates on each benchmark
for a 512K budget, as well as the percentage of dynamically
executed branches that were linearly inseparable. We chose

a large hardware budget to minimize the effects of aliasimg find the most distant of the three weights with the greatest
and to isolate the effects of linear separability. We se¢ tmagnitude. As the best history length increases, the advan-
the perceptron predictor performs better than gshare fer thge of the perceptron predictor generally increases ak wel
benchmarks to the left, which have more linearly separaldeir predictor performs is more accurate for linearly separa
branches than inseparable branches. Conversely, for &ll e branches. For linearly inseparable branches, our giadi
one of the benchmarks for which there are more linearly iperforms generally better when the branches require losig hi
separable branches, gshare performs better. Note thatglth tories, while gshare sometimes performs better when besch
the perceptron predictor performs best on linearly segarakequire short histories.
branches, it also has good performance overall. Knowing that the perceptron predictor does well on a partic-
The099. go benchmark is particularly hard to predict foular type of frequently executed branches motivated theitlyb
both gshare and the perceptron predictor. Figure 8 showesceptron/gshare predictor, which is very good at distisig-
that 82.82% of the dynamically executed branches were ling between predictors.
early inseparable. On these branches alone, the perceptron
predictor achieved a misprediction rate of 12.07%, congbare 104
with 8.77% for gshare. However, on the other 17.18% of the
branchesif®99. go, the perceptron predictor achieved a mis-
prediction rate of 3.68%, slightly better than gshare’©363

---- Linearly inseparable branches
Linearly separable branches

he)
Q
k]
3
&
£
100 o % linearly inseparable branches % 5]
= misprediction rate, Gshare =
= misprediction rate, Perceptron 8
[}
_ o
80— > 50% separable > 50% inseparable =
Q
8 . g
5 g
i=
& 6o I £ o
o - N
£
2 23
S 404
f=
8
& [0} 50)lo éo
Best History Length
20+
Figure 9: Classifying the Advantage of our Predictor. Above the
I I l z axis, the perceptron predictor is better on average. Belwmrt
2551 208.0720 06 00005100 o ey O 2ok L mEPOg0 axis, gshare is better on average. For linearly separableches, our
Benchmarks predictor is more accurate than gshare on average. Foraredap

branches, our predictor is sometimes less accurate focheanthat
Figure 8: Linear Separability vs. Performance at a 512K budgetquire short histories, and it is more accurate for braschat re-
The perceptron predictor is better than gshare when therdignaquire long histories, on average.
branches are mostly linearly separable, and it tends tosseslecurate
than gshare otherwise.

Some branches require longer histories than others for gcg Additional Advantages of Our Predictor
curate prediction, and the perceptron predictor often hmas a

advantage for these branches. Figure 9 shows the relaifppngssigning confidence to decisions. Our predictor can pro-
between this advantage and the required history lengttn, witde a confidence-level in its predictions that can be useful
one curve for linearly separable branches and one for insegaiding hardware speculation. The outpuyt,of the percep-
rable branches. Theaxis represents the advantage of our prgen predictor is not a Boolean value, but a number that we
dictor, computed by subtracting the misprediction ratehef tinterpret astakenif y > 0. The value ofy provides impor-
perceptron predictor from that of gshare. We sorted alistatant information about the branch since the distancg fodm
branches according to their “best” history length, whickthis 0 is proportional to theertaintythat the branch will be taken

x axis. Each data point represents the average mispredicfid]. This confidence can be used, for example, to allow a
rate of static branches (without regard to execution fregy® microarchitecture to speculatively execute both brandhga
that have a given best history length. Since Eetral show when confidence is low, and to execute only the predicted path
that most branches can be predicted by looking at three-previnen confidence is high. Some branch prediction schemes ex-
ous branches [9], we can use the perceptron predictor to fpiititly compute a confidence in their predictions [13], lnut
these best lengths: Using a perceptron trained for eacttbyamur predictor this information comes free.

Analyzing branch behavior with perceptrons. Percep-
trons can be used to analyze correlations among branches. Th)
perceptron predictor assigns each bit in the branch history 104
weight. When a particular bit is strongly correlated withaap
ticular branch outcome, the magnitude of the weight is highe
than when there is less or no correlation. Thus, the peroaptr
predictor learns to recognize the bits in the history of dipar
ular branch that are important for prediction, and it leaims
ignore the unimportant bits. This property of the perceptro
predictor can be used with profiling to provide feedback for
other branch prediction schemes. For example, our methodol
ogy in Section 5.5 could be used with a profiler to provide path

—+— Gshare

—a— Bi-Mode

—— Perceptron

--4-- Hybrid Perceptron + Gshare

Percent Mispredicted

; . . : 0

length information to the variable length path predictct][2 S N e S PV S
Hardware Budget, Kilobytes

5.7 Effects of Context Switching Perceptron vs. other techniges, context switching

Branch predictors can suffer a loss in performance aftena co) o)
text switch, having to warm up while relearning patterns [|g_ure_ 10: Budget vs. Mlspred_lctlor_1 Rate for Simulated Context
We simulated the effects of context switching by interlegvi >"V/tching. The perceptron predictor is more affected byvijezn-
. text switching than gshare or bi-mode.
branch traces from each of the SPEC2000 integer benchmarks,
switching to the next program after 60,000 branches. This

workload represents an unrealistically heavy amount ot cqpyy to that performed by multiplication circuits, which st
text switching, but it serves as a good indicator of perfalo® fjnq the sum of partial products that are each a function of an
in extreme conditions, and it uses the same methodologyifgger and a single bit. Furthermore, only the sign bit @ th
other recent work [6]. Note that previous studies have usgd|t is needed to make a prediction, so the other bits of the

the eight SPECOS5 integer benchmarks, so our use of theglgy,t can be computed more slowly without having to wait
SPEC2000 benchmarks will likely lead to higher mispredigsr 5 prediction.

tion rates.

Figure 10 shows that context switching affects the percetg)- o
tron predictor more significantly than the other two predist D€lay. A 54 x 54 multiplier in a 0.2%m process can oper-
For example, without heavy context switching (Figure 4) ttf€ in 2.7 nanoseconds [11], which is approximately twolcloc
perceptron predictor is better than the PHT schemes at eve¥§les With a 700 MHz clock. At the longer history lengths,
hardware budget, but with context switching the perceptr8f implementation of our predictor resembles 584 mul-
scheme meets the performance of the others at a 16K blifdy: but the data corresponding to the partial produces. i
get. The perceptron predictor is affected by context sviiigh the weights) are narrower, at most 9 bits. Thus, any carry-
more than the other techniques because it is more susaepfipPagate adders, of which there must be at least one in a mul-
to aliasing. The hybrid gshare/perceptron predictor pemfo tiplier circuit, will not need to be as deep. We believe that
much better in the presence of context switching; this ben&ig00d implementation of our predictor at a large hardware
of hybrid predictors has been noticed before [8]. From theBddget will take no more than two clock cycles to make a pre-
results we conclude that to achieve good performance in cgjtion. For smaller hardware budgets, one cycle operation
ditions adverse to the perceptron predictor, we should ustegsible. Two cycles is also the amount of time claimed fer th

hardware budget of at least 16K bytes, the same size as“@@able length path branch predictor [24]. That work preg®
Compag 21264’s branch predictor. pipelining the predictor to reduce delay. We next describe a

similar technique for our predictor that will often resultan
effective prediction time of zero cycles.

6 Implementation

Pipelined Operation. As we have described it, our scheme
fetches a perceptron from SRAM and computes the sign of its
output, all during the instruction fetch stage. To avoid-pre
Computing the Perceptron Output. Since -1 and 1 are thediction delays of more than one cycle, we have pipelined the
only possible input values to the perceptron, multiplicati prediction mechanism, so that the address ofithleranch in

is not needed to compute the dot product. Instead, we sindynamic sequence is used to select a neuron foi gha*

ply add when the input bit is 1 and subtract (add the twoBranch. We reorder the operations described in Section 3 as
complement) when the input bitis -1. This computation is-sirfollows:

We now show how to implement our predictor efficiently.

1. When a prediction for branchis requested, we returnthey can use long history lengths without requiring expenen
the prediction computed by the previous iteration of thigal resources. A potential weakness of perceptrons is ihei
algorithm; if the preceding branch occurred more thancaeased computational complexity when compared with two-
few cycles ago, this takes no time at all, since the bitlt counters, but we have shown how a perceptron predictor
already available. can be implemented efficiently with respect to both area and

) delay. Another weakness of perceptrons is their inability t

2. When the actual outcome of brancts known, the cur- learn linearly inseparable functions, but despite thiskmeas

Lentkcontﬁnts g‘; thf register are trained and then writteny, ¢ perceptron predictor performs well, achieving a lowés-m
ack to the table of perceptrons. prediction rate, at all hardware budgets, than two wellino

3. The global history register is updated. At the same tinfélobal predictors for our composite SPEC2000 trace.
the address of branatis concatenated with the outcome We have shown that there is benefit to considering his-
of branchi (0 or 1) and hashed to select a perceptron f&#y lengths longer than those previously considered. -Vari
branchi + 1. (In our simulations, the hashing function igble length path prediction considers history lengths ofaup

simply modulus.) 23 [24], and a study of the effects of long branch histories
_ _ on branch prediction only considers lengths up to 32 [9]. We
4. The selected perceptron is read ifito have found that additional performance gains can be found fo

5. A prediction for branch + 1 is made using the update(]branCh history lengths of up to 62.))
global history register and the contentsiyfand senttoa VW& have also learned why the perceptron predictor is ac-
latch to be read when branch prediction is next request&drate- PHT techniques provide a general mechanism that
does not scale well with history length. Our predictor iaste
If there are no indirect branches (e.g. jumps through tableerforms particularly well on two classes of branches, ¢hos
procedure returns, etc.) between branand branch + 1, that are linearly separable, and those that require lortgryis
then the combination of the address and the outcome of bralggtgths. Because these two classes represent a large number
i fully determines the identity of branah so the “right” per- of dynamic branches, our predictor performs well.
ceptron is fetched before branéh+ 1 is ever encountered. Because our approach is largely orthogonal to many of the
If there is an indirect branch between branchesd: + 1, recent ideas in branch prediction, there is consideraldenro
then the perceptron chosen for brariegh1 may not always be for future work. We can decrease aliasing by tuning our pre-
the same. We have found that in practice accuracy is dimilictor to use the bias bits that were introduced by the Agree
ished by only about 0.1%. As long as branches do not occupiredictor [23]. We can also employ perceptrons in a hybrid
close succession, this mechanism effectively providesdira predictor that uses both global and local histories, whigbeh
predictions in zero cycles. This scheme can likely be adbptgoven to work better than purely global schemes [8]. We have
to work with other global branch predictors to provide fastg@reliminary experimental evidence that such hybrid screeme
prediction. can be improved by using perceptrons, and we intend to con-
tinue this study in more detail.

Training. The training algorithm of Section 3.3 can be im- More significantly, perceptrons have interesting characte
plemented efficiently in hardware. Since there are no depétics that open up new avenues for future work. Because the
dences between loop iterations, all iterations can exdioutéPerceptron predictor has different strengths and wealesess
parallel. Since in our case both and¢ can only be -1 or 1, from counter-based predictors, new hybrid schemes can be
the loop body can be restated as “incremenby 1if t = z;, developed. Along these lines, we plan to tune our hybrid
and decrement otherwise,” a quick arithmetic operationesingshare/perceptron predictor and to explore other hybgt-te

thew; are at most 9-bit numbers: nigues. We also plan to develop compiler-based branchiclass
fication techniques to make such hybrid predictors even more
for each bit in parallel effective. We already have a starting point for this workjetth
if¢t=uaithen is to focus on the distinction between linearly separabttian
ol Sé”i =wi +1 separable branches, and between branches that requite shor

history lengths and long history lengths. As noted in Sec-
tion 5.6, perceptrons can also be used to guide speculation
based on branch prediction confidence levels, and pereeptro
predictors can be used in recognizing important bits in fke h
7 Conclusions tory of a particular branch.

Finally, studies have shown that as clock rates increase ove
In this paper we have introduced a new branch predictor thia¢ next 15 years, wire delays will make large data strusture
uses neural networks—the perceptron in particular—asdhe less feasible [1]. Finding ways to reduce the aliasing probl
sic prediction mechanism. Perceptrons are attractiveusecaor small hardware budgets will be essential to the continue

w; =w; — 1
end if

10

success of this and other branch prediction techniques. [g] Y. Hagihara, S. Inui, A. Yoshikawa, S. Nakazato, S. ilrik
ing branch classification [5] to allow the compiler to choose
among different predictors, e.g. between the perceptren pr
dictor or gshare, will likely allow the same performance at

a significant hardware savings. Thus, a deeper understand-

ing the nature of branches for which the perceptron predicf2]
performs better will be important for developing classifica
strategies.

[13]

Acknowledgments. It's our pleasure to thank Steve Keckler
and Kathryn McKinley for many stimulating discussions on
this topic, and to thank Steve, Kathryn, and Ibrahim Hur f?I4]
their comments on earlier drafts of this paper.

References

[1] V. Agarwal, M.S. Hrishikesh, S. W. Keckler, and D. Burger,

(2]

(3]

(4]

(5]

[6] A.N. Eden and T.N. Mudge.

(7]

(8]

9]

[10]

[15]

16]

Clock rate versus ipc: The end of the road for conventional mnii
croarchitectures. Ithe 27th Annual International Symposium
on Computer Architecture (to appeafflay 2000. [17]

T. Ball and J. Larus. Branch prediction for free. Pnoceedings
of the SIGPLAN '93 Conference on Programming Langua?e
Design and Implementatippages 300—-313, June 1993. 18]

H. D. Block. The perceptron: A model for brain functiogin
Reviews of Modern Physic34:123-135, 1962.

B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn. Evidence-based static branch predic-
tion using machine learningACM Transactions on Program- [20]
ming Languages and Systert§(1), 1997.

[19]

P.-Y. Chang and U. Banerjee. Branch classification: a ng@al]
mechanism for improving branch predictor performance. In
Proceedings of the 27th International Symposium on Microar
chitecture November 1994. [22]

The YAGS branch prediction
scheme. InProceedings of the 31st Annual ACM/IEEE Inter-
national Symposium on Microarchitectufdovember 1998. [23]

J. Emer and N. Gloy. A language for describing predictansl
its application to automatic synthesis. Rroceedings of the
24th International Conference on Computer Architectulene

1997. [24]

M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid brapeé-
dictors to improve branch prediction accuracy in the presen

of context switches. IfProceedings of the 23rd International
Conference on Computer Architectuiday 1996. [25]

M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. Az

of correlation and predictability: What makes two-levehibch
predictors work. InProceedings of the 25th Annual Interna-[ze]
tional Symposium on Computer Architectutaly 1998.

L. Faucett. Fundamentals of Neural Networks: Architectures!,
Algorithms and ApplicationsPrentice-Hall, Englewood Cliffs,
NJ, 1994.

11

R. lkeda, Y. Shibue, T. Inaba, M. Kagamihara, and M. Ya-
mashina. A 2.7ns 0.25um CMOS 5454b multiplier. InPro-
ceedings of the IEEE International Solid-State Circuitsiteo-
ence February 1998.

J. L. Hennessy and D. A. Patterso&omputer Architecture:
A Quantitative Approach, Second EditioMorgan Kaufmann
Publishers, 1996.

E. Jacobsen, E. Rotenberg, and J.E. Smith. Assignimg co
fidence to conditional branch predictions. Pmoceedings of
the 29th Annual International Symposium on Microarchitest
December 1996.

D. A. Jimenez and N. Walsh. Dynamically weighted ensiemb
neural networks for classification. Froceedings of the 1998
International Joint Conference on Neural Netwarktay 1998.

R.E. Kessler, E.J. McLellan, and D.A. Webb. The Alph2@4
microprocessor architecture. Technical report, Compam-Co
puter Corporation, 1998.

A. D. Kulkarni. Artificial Neural Networks for Image Under-
standing Van Nostrand Reinhold, 1993.

C.-C. Lee, C.C. Chen, and T.N. Mudge. The bi-mode branch
predictor. InProceedings of the 30th Annual International Sym-
posium on MicroarchitectureNovember 1997.

S. McFarling. Combining branch predictors. TechniR&lport
TN-36m, Digital Western Research Laboratory, June 1993.

P. Michaud, A. Seznec, and R. Uhlig. Trading conflict aad
pacity aliasing in conditional branch predictors.Rroceedings
of the 24th International Conference on Computer Architest
June 1997.

F. Rosenblatt.Principles of Neurodynamics: Perceptrons and
the Theory of Brain MechanismSpartan, 1962.

S. Sechrest, C.-C. Lee, and T.N. Mudge. Correlationadizas-
ing in dynamic branch predictors. roceedings of the 23rd
International Conference on Computer Architectuviay 1999.

R. Setiono and H. Liu. Understanding neural networksrule
extraction. InProceedings of the 14th International Joint Con-
ference on Atrtificial Intelligencepages 480485, 1995.

E. Sprangle, R.S. Chappell, M. Alsup, and Y. N. Patt. Agece
predictor: A mechanism for reducing negative branch histor
interference. IrProceedings of the 24th International Confer-
ence on Computer Architectyréune 1997.

J. Stark, M. Evers, and Y. N. Patt. Variable length paiinich
prediction. InProceedings of the 8th International Conference
on Architectural Support for Programming Languages and Op-
erating SystemgOctober 1998.

K. Wang and M. Franklin. Highly accurate data value fetdn
using hybrid predictors. I®roceedings of the 30th Annual In-
ternational Symposium on Microarchitectui2ecember 1997.

B. Widrow and Jr. M.E. Hoff. Adaptive switching circsit In
IRE WESCON Convention Record, parpages 96-104, 1960.

27] T.-Y. Yeh and Y. Patt. Two-level adaptive branch préidic.

In Proceedings of the 24 ACM/IEEE Int'| Symposium on Mi-
croarchitecture November 1991.

