
Adaptive Spill-Receive for Robust High-Performance Caching in CMPs

Moinuddin K. Qureshi

IBM Research

T. J. Watson Research Center, Yorktown Heights NY

mkquresh@us.ibm.com

Abstract

In a Chip Multi-Processor (CMP) with private caches,

the last level cache is statically partitioned between all the

cores. This prevents such CMPs from sharing cache capac-

ity in response to the requirement of individual cores. Ca-

pacity sharing can be provided in private caches by spilling

a line evicted from one cache to another cache. However,

naively allowing all caches to spill evicted lines to other

caches have limited performance benefit as such spilling

does not take into account which cores benefit from extra

capacity and which cores can provide extra capacity.

This paper proposes Dynamic Spill-Receive (DSR) for

efficient capacity sharing. In a DSR architecture, each

cache uses Set Dueling to learn whether it should act

as a “spiller cache” or “receiver cache” for best over-

all performance. We evaluate DSR for a Quad-core sys-

tem with 1MB private caches using 495 multi-programmed

workloads. DSR improves average throughput by 18%

(weighted-speedup by 13% and harmonic-mean fairness

metric by 36%) compared to no spilling. DSR requires a

total storage overhead of less than two bytes per core, does

not require any changes to the existing cache structure, and

is scalable to a large number of cores (16 in our evaluation).

Furthermore, we propose a simple extension of DSR that

provides Quality of Service (QoS) by guaranteeing that the

worst-case performance of each application remains simi-

lar to that with no spilling, while still providing an average

throughput improvement of 17.5%.

1. Introduction

Chip Multi-Processors (CMP) have become a standard

design point for industry. One of the key design decisions

in architecting a CMP is to organize the last level cache as

either a private cache or a shared cache. Figure 1 shows a

four-core CMP with (a) shared cache and (b) private cache.

A private cache is an attractive design option as it offers the

following advantages over a shared cache. First, reduced

cache access latency compared to a shared cache as the

cache is located physically closer to the core, reducing wire

delays. Second, private caches inherently provide perfor-

mance isolation so that a badly behaving application cannot

hurt the performance of other concurrently executing appli-

cations. Third, private caches allow for a tiled architecture

as the tag-store and data-store of L2 cache are contained in

the same design unit as the core which allows for a scalable

design and facilitates power optimizations. Finally, private

caches simplify the on-chip interconnect as only the misses

in the last level cache access the shared interconnect fab-

ric. Shared caches, on the other hand, can provide capacity

sharing but requires a high bandwidth on-chip interconnect

as all access to the last level cache have to use the inter-

connect. For example, Niagara-1 [7] uses a crossbar to in-

terconnect all the 8-cores to the shared L2 cache. A recent

study [8] has argued that the area and latency overhead of

the shared on-chip interconnect can often offset most of the

capacity sharing advantage of the shared cache.

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

L2

CACHE

L2

CACHE

L2

CACHE

L2

CACHE

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

To Memory

(b)

To Memory

SHARED L2 CACHE

(a)

Simple Interconnect

High Bandwidth Interconnect

Figure 1. A four-core CMP design with a (a)

shared L2 cache (b) private L2 cache.

The main disadvantage of private caches is that the cache

capacity is statically partitioned equally among all the cores.

This prevents such a cache organization from sharing cache

capacity in response to the requirement of individual cores.

Therefore, private caches typically incur more misses than

a shared cache. Recent studies on efficient private caches,

namely Cooperative Caching (CC) [3], use second chance

forwarding [5] for capacity sharing. When a cache line

is evicted from one of the private caches, CC can store it

45978-1-4244-2932-5/08/$25.00 ©2008 IEEE

in another private cache. This transfer of evicted line from

one cache to another is called spilling. We call the cache

that spilled the line as “spiller cache” and the cache that

received the spilled line “receiver cache”. The basic prob-

lem with CC is that it performs spilling without knowing if

spilling helps or hurts cache performance. All caches act as

spiller cache, even if some of the applications do not ben-

efit from extra capacity. Similarly, all caches can receive

evicted lines spilled from other cache, even if some of the

caches do not have spare capacity. Therefore, the capacity

sharing of CC has limited performance improvement. The

objective of this paper is to design a practical, low-overhead

spilling mechanism for providing robust high-performance

capacity sharing for private caches by taking into account

the cache requirement of each core. Given that every design

changes and added structure requires design effort, verifi-

cation effort, and testing effort, we would ideally like our

mechanism to have no extra structures or design changes,

while still being scalable to a large number of cores.

The difference in this work compared to CC is the key

insight that a given private cache should either be allowed

to get more capacity or be allowed to give away excess ca-

pacity but not both at the same time. If the cache can spill

as well as receive then the cache tries to get more cache at a

remote location by spilling while at the same time provide

its own local capacity to store lines of some other caches.

Therefore, our design restricts each cache to be either a

spiller or a receiver but not both. We propose the Spill-

Receive Architecture in which each cache is appended with

one bit: S/R. When the S/R bit associated with a cache is

1, the cache acts as a spiller cache and when the S/R bit is

0, the cache acts as a receiver cache. With the right config-

uration of S/R bits, it is straight-forward to design a robust

high-performance capacity sharing mechanism.

Whether a cache should be a spiller or a receiver depends

not only the given application but also on the other appli-

cations concurrently executing in the CMP. For the same

application, the best overall performance is obtained when

the cache acts as a spiller for some workload mixes and as

receivers for others. Therefore, the decision about which

caches should be spillers and which should be receivers

must be determined at runtime. We propose Dynamic Spill-

Receive (DSR) cache architecture, in which each cache

learns using Set Dueling [10] whether it should act as

spiller or receiver for best overall performance. DSR dedi-

cates a few sets (32 in our studies) of the cache to “always-

spill” and another few to “always-receive” and uses the pol-

icy that gives fewest misses for the remaining sets of the

cache. Each cache learns the spill-receive decision indepen-

dently using a separate Set Dueling mechanism. We show

that Set-Dueling based DSR performs similar to apriori

knowing the best spill-receive decisions for a given work-

load using oracle information.

We evaluate DSR on a Quad-core system with 1MB pri-

vate L2 cache with each core. We use 12 SPEC bench-

marks, run all the possible 495 four-threaded combinations,

and measure system performance on all the three metrics:

throughput, weighted-speedup, and hmean-based fairness.

We show that DSR improves average throughput by 18%,

weighted speedup by 13% and hmean-based fairness met-

ric by 36%. DSR requires a total storage overhead of less

than two bytes per core, does not require changes to existing

cache structure, and is scalable to a large number of cores.

DSR provides more than double the performance improve-

ment than Cooperative Caching (CC), while obviating the

design changes of having extra spill bits required by CC.

For all the 1980 applications examined (495x4), DSR

has an IPC degradation of more than 5% compared to no

spilling for 1% of the applications. In Section 6, we show

that a simple extension of DSR can provide Quality of Ser-

vice (QoS) by guaranteeing that the worst-case performance

of each concurrently executing application remains simi-

lar to that with no spilling, while still providing an average

throughput improvement of 17.5%.

2. Motivation and Background

In this work, we assume each core in the CMP executes

one application. In a CMP, different cores can execute

diverse applications concurrently, each application having

different memory behavior and varying cache requirement.

A private cache statically divides the total cache into equal-

size cache units and associates one cache unit with each

core. Thus, all cores have uniform cache capacity, albeit

at a faster access latency and reduce interconnect require-

ment than a shared cache. However, applications vary in

terms of benefit obtained from cache.

Figure 2 shows the misses per 1000 instructions (MPKI)

and Cycles Per Instructions (CPI) for 12 SPEC benchmarks

used in our studies. The horizontal axis shows the number

of ways allocated from a 32-way 2MB L2 cache. The pri-

vate L2 cache used in our baseline is 1MB 16-way which is

indicated by the Grey dotted line. The benchmarks shown

in the top row of Figure 2 have excess cache capacity in

the baseline 1MB cache. Their CPI and MPKI do not in-

crease significantly when the cache size is halved. Eon and

crafty have a small working set, fma3d and equake are sen-

sitive to cache capacity only up to 1

4
th MB, and applu and

lucas are streaming workloads. These applications can pro-

vide their extra cache capacity to other applications that can

benefit from more cache capacity. We call these applica-

tions “Giver” applications. The benchmarks in the second

row of Figure 2 continue to benefit from cache space. Their

CPI and MPKI decrease considerably when the cache size is

increased from 1MB to 2MB. These applications can bene-

fit by using extra cache capacity. We term these applications

as “Taker” applications.

46

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

crafty

 MPKI

 CPI

0 4 8 12 16 20 24 28 32
0

2

4

6

8

10

eon
0 4 8 12 16 20 24 28 32

0

4

8

12

16

20

fma3d
0 4 8 12 16 20 24 28 32

0

3

6

9

12

15

applu
0 4 8 12 16 20 24 28 32

0

6

12

18

24

30

equake
0 4 8 12 16 20 24 28 32

0

4

8

12

16

20

lucas

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

art
0 4 8 12 16 20 24 28 32

0

3

6

9

12

15

ammp
0 4 8 12 16 20 24 28 32

0

2

4

6

8

10

bzip2
0 4 8 12 16 20 24 28 32

0

5

10

15

20

25

galgel
0 4 8 12 16 20 24 28 32

0

5

10

15

20

25

twolf
0 4 8 12 16 20 24 28 32

0

4

8

12

16

20

vpr

Figure 2. MPKI and CPI for SPEC benchmarks as the cache size is varied. The horizontal axis shows
the number of ways allocated from a 32-way 2MB cache (the remaining ways are turned off). The

baseline cache is 1MB 16-way: benchmarks in the top row can provide cache capacity and bench-
marks in the bottom row benefit significantly from cache capacity more than 1MB.

If all applications in the system are Giver applications

then private caches work well. However, when some ap-

plications in the system are Takers and other are Givers

then cache performance and overall system performance

can be improved if the excess cache capacity of Giver ap-

plications are provided to the Taker applications. Thus, ca-

pacity sharing is important to improve the performance of

private caches. Recent studies on efficient private caches,

namely Cooperative Caching (CC) [3], use second chance

forwarding for capacity sharing. When a line is evicted

from one of the private cache, CC can retain that line in

another private cache on the same chip. This transfer of

evicted line from one cache to another is called spilling.

We call the cache that spilled the line as “spiller cache”

and the cache that received the spilled line the “receiver

cache”. A line can be spilled until it has exceeded a pre-

determined number of spills. The basic problem with CC

is that it performs spilling without knowing if spilling helps

or hurts cache performance. For example, both Taker and

Giver applications are allowed to spill their evicted lines to

neighboring caches. This can be particularly harmful when

cache lines of streaming applications (such as applu and lu-

cas) are spilled into caches of Taker applications (say vpr

and bzip2). The cache of streaming applications will not

benefit from spilling because of poor reuse but receiving

the spilled line can hurt performance of applications such

as vpr and bzip2. Therefore, the capacity sharing as done

in CC has limited performance improvement, and in some

cases spilling can in-fact hurt performance.

A key difference in this work compared to CC is the in-

sight that a given private cache should either be allowed to

get more capacity or be allowed to give away excess capac-

ity but not both at the same time. If the cache can spill as

well as receive then the cache tries to get more cache at a

remote location by spilling while at the same time provide

its own local capacity to store lines of some other caches.

Therefore, our design restricts each cache to be either a

spiller or a receiver but not both. Given the information

about whether a cache is spiller or receiver, it is straight for-

ward to design an efficient cache sharing scheme for private

caches: caches designated as spiller-caches are allowed to

spill their evicted lines to receiver-cache. Evicted lines from

receiver caches are not spilled to any of the on-chip caches.

However, the decision about which cache should be spiller

and which should be receiver must be done judiciously oth-

erwise overall system performance can degrade compared

to the base case of no spilling. The next section describes

our proposed spill-receive architecture and a runtime mech-

anism to lean the best spill-receive decision for each cache.

3. Design of Dynamic Spill-Receive

3.1. Spill-Receive Architecture

We propose a Spill-Receive Architecture in which each

cache is appended with one bit: S/R. When the S/R bit as-

sociated with a cache is 1, the cache acts as a spiller cache

and when the S/R bit is 0, the cache acts as a receiver cache.

Thus, the S/R bit classifies each cache in the system as ei-

ther a spiller or a receiver but not both. This is important be-

cause if the cache is trying to spill the line and get higher la-

tency cache space then it should first retain its lower-latency

space. Similarly, if the cache is willing to give cache space

to other applications, then it should not try to get higher-

latency cache space some where else in the system. Fig-

ure 3 shows an example of the Spill-Receive architecture

for a Quad-core system with private L2 caches. The S/R

47

bit of caches A and C are set to 1 indicating that these two

caches act as spiller caches. Conversely, caches B and D act

as receiver caches.

DCBA

L2 CACHEL2 CACHE L2 CACHE L2 CACHE

S/R = 1

(Spiller)

S/R = 0

(Spiller)

S/R = 1 S/R = 0

Evicted line from A Evicted line from C

(Receiver) (Receiver)

Figure 3. A Spill-Receive architecture for a
four-core CMP. Cache A and C spill evicted

lines randomly to either cache B or D.

When a core accesses a cache line, it first checks for the

cache line in the local cache associated with the core. If

there is a miss in the local cache, all the other caches in

the system are snooped (this is required in the baseline as

well for coherence). If there is a hit in any of the remote

caches, the cache line is brought to the local cache and the

line evicted from the local cache is transferred to the remote

cache. If there is a miss in all the remote caches as well,

the line is fetched from memory and installed in the local

cache. This line can cause an eviction of another cache line

from the local cache. If the local cache is a spiller cache

(A and C), the evicted line is spilled to one of the receiver

caches in the system. If there are more than one receiver

caches in the system then a receiver cache is chosen ran-

domly.1 This ensures that some of the lines evicted from A

are spilled to B and some to D, ensuring good load balanc-

ing between receiver caches. Similarly, evicted lines from

C are spilled to either B or D. When a line is evicted from

any of the receiver caches (B and D) it is simply discarded

without trying to spill to any of the caches. Thus, our archi-

tecture automatically discards unused spilled lines without

the need for any spill bit in the tag-store entry of each cache,

as required by CC [3]. When all caches in the system are

spiller caches then spilled lines cannot be received in any

of the caches, which implicitly disables spilling. Similarly,

when all caches in the system are receiver caches then none

will spill an evicted line, which explicitly disables spilling.

Given the right configuration of S/R bits for each of the

cache, the Spill-Receive architecture can implement an ef-

ficient cache sharing mechanism for private caches. Such

1Further optimization of the scheme can be done by tuning what frac-

tion of the spilled lines from a particular spiller cache gets to a particular

receiver cache. Or, restricting spills only to nearest neighbor to reduce

interconnect latency. We do not consider such optimizations in this paper.

a scheme can have the latency and bandwidth advantages

of private caches and capacity sharing advantages of shared

caches. And, it can do so while incurring a negligible hard-

ware overhead (one bit per cache). A vital piece of infor-

mation in the Spill-Receive architecture is the S/R bit as-

sociated with each cache. As the spill-receive decision for

an application varies with input set, machine configuration,

and behavior of other competing applications, obtaining this

information using profiling may be impractical or even im-

possible. Therefore, we obtain the spill-receive decision at

runtime using the recently proposed Set-Dueling [10] tech-

nique. We briefly describe Set-Dueling next.

3.2. Set Dueling

Set Dueling is a general mechanism that can choose be-

tween competing policies while incurring negligible over-

head. Set Dueling leverages the fact that the last-level

caches typically have large number (more than thousand) of

sets and cache performance can be estimated by sampling

a few sets. Figure 4 describes the Set Dueling mechanism

to select between two policies P0 and P1. The mechanism

uses Set Dueling Monitors (SDM) to estimate the cache per-

formance of each of the two policies. A few sets of the

cache are dedicated to always use policy P0, thereby form-

ing SDM-P0. Similarly, another few sets of the cache are

dedicated to always use policy P1, thereby forming SDM-

P1. The remaining sets are called follower sets, and they

follow the better performing policy between P0 and P1. A

saturating counter (PSEL) tracks which of the two SDMs

have fewer misses: misses in SDM-P0 increments PSEL

and misses in SDM-P1 decrements PSEL. Follower sets of

the cache use P0 if the Most Significant Bit (MSB) of PSEL

is 0 and P1 otherwise.

+ −

������������

������������
������������

������������

PSEL

Miss in SDM−P0

Miss in SDM−P1

If MSB=0, follower sets use Policy P0

else follower sets use Policy P1

{

{

CACHE

SDM−P0

SDM−P1

Figure 4. Set Dueling based selection be-
tween two policies: P0 and P1

48

+
−

+

−

+

−

 SET 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

������

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������

����������

�����
�����
�����
�����

�����
�����
�����
�����

����������
�����
�����
�����
�����

����������
����������

�����
�����
�����
�����

����������

����������
�����
�����
�����
�����

����������

���
���
���
���

CACHE B CACHE C CACHE DCACHE A

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0 0

of any cache (A,B,C,D)

Miss in Set 30 or Set 31

of any cache (A,B,C,D)

B

PSEL

C

PSEL

D

PSEL

Miss in Set 4,5 Miss in Set 8,9

Miss in Set 22,23

Miss in Set 12,13

else cache A spills

Miss in Set 0 or Set 1

Miss in Set 26,27 Miss in Set 18,19

A

PSEL

If MSB=0, cache A receives

SDM−A−Spill

}

SDM−A−Receive

}

Always receive

Always spill

decided by PSEL

Legend for Sets 0−31

MSB decides S/R for B MSB decides S/R for C MSB decides S/R for D

Spill−receive

+

−

Figure 5. Dynamic Spill-Receive using Set Dueling

3.3. Dynamic Spill-Receive Architecture

We propose Dynamic Spill-Receive (DSR) architecture

that uses Set Dueling to implement efficient cache shar-

ing in private caches. In DSR, each cache learns whether

it should act as a “spiller cache” or “receiver cache” in

order to minimize overall cache misses. Figure 5 shows

the DSR architecture for a system containing four private

caches (cache A to D). For simplicity, we assume each

cache consists of 32 sets. Each cache dedicates two sets to

estimate the cache performance when it spills and another

two sets to estimate the cache performance when it receives

spilled lines from other applications. For example, cache

A dedicates Set 0 and Set 1 to form SDM-Spill and these

sets “always spill” their evicted lines. Cache A also ded-

icates Sets 30 and 31 to form SDM-Receive and these set

can “always receive” spilled lines from other applications.

A saturating counter (PSEL-A) keeps track of which of the

two policies (spill or receive) when applied to cache A min-

imizes overall cache misses. A miss in Set 0 or Set 1 of any

of the cache decrements PSEL-A, whereas, a miss in Set 30

or Set 31 of any of the cache increments PSEL-A. Note that

the benefit of spilling is obtained only when there is a hit

in the remote cache, therefore, it is important to take global

cache miss rate into account instead of just local cache miss

rate. The most significant bit (MSB) of PSEL-A then indi-

cates which of the two policies (spill/receive) when applied

for cache A minimizes overall misses. This policy is used

for the remaining 28 sets of cache A.

Thus, the S/R bit for cache A is 0 for sets 30 and 31,

is 1 for sets 0 and 1, and is equal to the MSB of PSEL-A

for all other sets. Similarly, other three caches (B,C,D) in

the system learn which policy (spill/receive) when applied

to the cache minimizes overall misses using their individ-

ual PSEL counters. The storage overhead incurred by DSR

is one PSEL counters per cache. We use a 10 bit PSEL

counter in our studies. The last level cache (L2 cache) in

our baseline contains 1024 sets. We dedicate 32 sets from

each cache to SDM-Spill and another 32-Sets to SDM-Spill.

3.4. Selection of Dedicated Sets

A set dedicated to one of the SDM must not be dedicated

to any other SDM of the same cache or any other cache

in the system. Therefore, the sets dedicated to SDM-Spill

and SDM-Receive for all the caches must be selected in a

non-overlapping manner. The sets for SDM can be selected

randomly and a separate storage structure can track which

49

sets belong to SDM-Spill and which sets belong to SDM-

Receive for each of the cache. The storage structure can be

obviated if the sets dedicated to SDM are selected based on

a hash function of the set index of the cache [10][6].

Type of Set for CacheID[1:0]

+

+

CacheID[1:0]

CacheID[1:0]

SetIndex[9:5]

Follower Set

SDM−Spill

SDM−Receive

NumCaches(4)

SetIndex[4:0]

SetIndex[9:5]

Figure 6. Logic for selecting dedicated sets

The baseline cache contains 1024 sets (indexed by

SetIndex[9:0]). Figure 6 describes the logic circuit for se-

lecting 32 sets each for both SDM-Spill and SDM-Receive

for each of the four caches. All caches use a separate circuit

each driven with corresponding value of CacheID[1:0].

4. Experimental Methodology

4.1. Configuration

We use an in-house CMP simulator for our studies. The

baseline configuration is a four-core CMP with the parame-

ters given in Table 1. We use a simple in-order core model

so that we can evaluate our proposal within a reasonable

simulation time. Unless otherwise specified, the L2 cache

in the system is 1MB private per core with a 10 cycle hit

latency to the local L2 cache. Cache hits in other L2 caches

incur an additional latency of 40 cycles. All caches in the

baseline use a uniform linesize of 64B and use LRU replace-

ment policy. Memory is 300 cycles away.

Table 1. Baseline Configuration
System Four Core CMP

Processor Core single issue in-order, five stage pipeline

L1 caches (Private) I and D : 16KB, 64B line-size, 4-way

L2 cache (Private) 1MB, 64B line-size, 16-way LRU repl.

10-cycle local-hits, 40-cycle remote hits

Memory 300-cycle access latency minimum

Off-chip Bus 16B-wide split-transaction, 4:1 speed ratio

4.2. Workloads

Table 2 shows the 12 SPEC CPU2000 benchmarks used

in our studies. A representative slice of 250M instructions

was obtained for each benchmark using a tool that we de-

veloped using the SimPoint methodology. The benchmarks

broadly belong to one of the two categories. The first six

benchmarks are called Giver applications as their CPI does

not increases significantly when the cache size is halved

from 1MB to 1

2
MB. The other six applications are termed

Taker applications because their CPI decreases significantly

if the cache size is doubled from 1MB to 2MB.

Table 2. Benchmarks Classification (Based

on CPI Normalized to 1MB)

“Giver” (G) Applications

CPI crafty eon fma3d applu equake lucas
1

2
MB 1.02 1.0 1.0 1.0 1.0 1.0

1MB 1.0 1.0 1.0 1.0 1.0 1.0

2MB 0.998 1.0 0.997 0.995 0.986 1.0

“Taker” (T) Applications

CPI art ammp bzip2 galgel twolf vpr
1

2
MB 1.28 1.55 1.33 1.79 1.72 1.73

1MB 1.0 1.0 1.0 1.0 1.0 1.0

2MB 0.24 0.64 0.74 0.54 0.55 0.66

We form a four-threaded workload by combining four

separate benchmarks. We run all possible four-threaded

combinations of 12 benchmarks, namely 12C4 = 495 work-

loads. To provide insights in our evaluation, we clas-

sify these workloads into five categories depending on how

many “Giver” applications (G) and how many “Taker” ap-

plications (T) are present in the workload. Table 3 describes

this classification. The workloads in G4T0 category are

unlikely to improve performance with cache sharing since

none of the applications in the workload benefit from in-

creased cache capacity. Workloads in G0T4 category have

very high cache contention and need robust cache sharing.

Table 3. Workload Summary

Type Description of Workload Total workloads

G4T0 Four Givers + zero Takers 6C4 ·
6C0 = 15

G3T1 Three Givers + one Takers 6C3 ·
6C1 = 120

G2T2 Two Givers + two Takers 6C2 ·
6C2 = 225

G1T3 One Givers + three Takers 6C1 ·
6C3 = 120

G0T4 Zero Givers + four Takers 6C0 ·
6C4 = 15

All All of the above
∑

= 495

All workloads are simulated till each application in

the workload executes at-least 250M instructions. When

a faster thread finishes its 250M instruction, then it is

restarted so that it continues to compete for cache capac-

ity. However, statistics are collected for only the first 250M

instruction for each application.

4.3. Metrics

The three metrics commonly used to quantify the aggre-

gate performance of a system in which multiple applications

execute concurrently are: Throughput, Weighted Speedup,

and Hmean-Fairness. The Throughput metric indicates

the utilization of the system but it can be unfair to a low

IPC application. The Weighted Speedup metric indicates

reduction in execution time. The Hmean-Fairness metric

balances both fairness and performance [9]. We will use all

three metrics for key performance comparisons. We also

evaluate DSR with regards to Quality-of-Service (QoS) in

Section 6. We defer the discussion of QoS to that section.

50

5. Results and Analysis

We compare the performance of the baseline without

spilling to three other configurations: Shared cache of 4MB

size, DSR, and Cooperative Caching (CC). The shared

cache is 4-way banked with 10 cycle latency for local-

bank and 20 cycle latency for remote-bank. A high-

bandwidth crossbar interconnect is assumed for the shared

cache without penalizing it for the area overhead. The per-

formance of CC is highly dependent on the parameter spill-

probability [1]. Therefore, for each workload, we evaluate

five configurations of CC, each with spill probability of 0%,

25%, 50%, 75% and 100% respectively, and selected the

one that gives the best performance for the given workload.

We call this CC(Best). In our evaluation, the numbers re-

ported for a suite are the geometric mean averages measured

for all of the workloads in a given workload suite.

5.1. Performance on Throughput Metric

Figure 7 shows the throughput of shared cache, DSR,

and CC(Best) normalized to the baseline (no spilling). The

geometric-mean average for each of the five workload cate-

gories and all 495 workloads are shown.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

T
h

ro
u

g
h

p
u

t
N

o
rm

a
li

ze
d

 t
o

 N
o

S
p

il
l

 Shared cache

 Baseline + DSR

 Baseline + CC(Best)

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 7. Throughput of shared cache, DSR,

and CC over baseline.

G4T0 contains workloads that do not benefit from ex-

tra capacity so the increased latency of shared cache hurts

throughput. As cache capacity becomes more important,

shared cache has better throughput than the baseline. DSR

outperforms baseline by 11.8% for G3T1, 20.4% for G2T2,

and 22.1% for G1T3. Workloads in G0T4 need more capac-

ity for all applications, still, doing spill-receive intelligently

improves the throughput by 18.6%. On average, DSR im-

proves throughput by 18% across all 495 workloads. Com-

paratively, CC(Best) – even with the best-offline spill pa-

rameter – improves throughput by only 7% on average.

Although DSR has 18% more throughput than baseline,

it is important that this does not come at the expense of

significant degradation in throughput of some workloads.

To that end, Figure 8 shows the S-Curve2 of the throughput

improvement of DSR over baseline for all 495 workloads.

2An S-curve is plotted by sorting the data from lowest to highest. Each

point on the graph then represents one data-point from this sorted list.

0 50 100 150 200 250 300 350 400 450 500
Workloads (total: 495)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

o
f

D
S

R

Figure 8. S-Curve for throughput improve-

ment of DSR over baseline (no spilling)

5.2. Performance on Weighted Speedup

The throughput metric gives more weightage to the ap-

plication with higher IPC, therefore it can be unfair to the

slower applications. The Weighted Speedup (WS) metric

gives equal weightage to the relative speedup of each ap-

plication. Figure 9 shows the weighted speedup of shared

cache, baseline, DSR, and CC(Best).

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

W
ei

g
h

te
d

 S
p

ee
d

u
p

 Shared cache

 Baseline (NoSpill)

 Baseline + DSR

 Baseline + CC(Best)

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 9. Weighted Speedup of shared cache,

baseline, DSR, and CC(Best).

For the workload in G4T0 category, all private cache

configurations (baseline, DSR, and CC(Best)) achieve

close to ideal weighted speedup, while the higher latency of

shared cache causes a degradation. As the number of Taker

applications in the workload increases, the contention for

cache capacity increases as well and weighted speedup of

all scheme starts to decrease. However, DSR consistently

has the best performance in all categories that has at-least

1 Taker applications. For the workloads in the G0T4 cate-

gory, the weighted speedup of the baseline is almost half

of the ideal value of 4. DSR tries to minimize overall

misses thereby increasing the weighted speedup from 2.07

to 2.5. On average, over all 495 workloads, DSR improves

weighted speedup by 13.4% over baseline, and CC(Best)

improves weighted speedup by 6%.

We also evaluate the caching schemes using the “Fair”

Speedup (FS) metric proposed in [2] and found that DSR

improves FS by 18% over the baseline. Comparatively,

CC(Best) improves average FS by 9%. Although FS uses

harmonic mean to penalize slowdowns harshly than WS,

FS uses a much weaker reference for measuring speedups

(1MB per core) compared to the 4MB per core used in WS.

51

5.3. Performance on Hmean Fairness

The Harmonic-mean based performance metric [9] has

been shown to balances both performance and fairness. Fig-

ure 10 shows this metric for shared cache, baseline, DSR,

and CC(Best). For G4T0 all three private caching schemes

have close to ideal value of 1. Shared cache has lower value

than 1 because it has higher latency than the 4MB 10-cycle

cache used as reference in computing the metric. Partition-

ing the caches equally does not result in fair allocation com-

pared to the reference of 4MB used in evaluation, therefore,

the dynamic allocation of shared cache allows it to outper-

form baseline for all other categories. On average, for all

the 495 workloads, DSR has a value of 0.77, compared to

0.57 for the baseline. Thus, DSR not only improves perfor-

mance significantly but it also balances fairness well.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
a

rm
o

n
ic

-m
ea

n
 F

a
ir

n
es

s
M

et
ri

c

 Shared cache

 Baseline (NoSpill)

 Baseline + DSR

 Baseline + CC(Best)

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 10. Hmean-Fairness metric

5.4. Comparison with Best-Offline Policy

DSR is a runtime technique that tries to converge to the

spill-receive policy that gives the fewest misses. We com-

pare DSR to an offline scheme that executes the workload

for all 16 combinations of spill-receive for a four-core sys-

tem and choose the one that gives best performance. We call

this policy Best-Offline.3 Best-Offline may not be practical

to use given the extensive offline analysis or even impossi-

ble when different applications form a workload at runtime.

Nonetheless, it gives us a reference for comparison.

1.00

1.05

1.10

1.15

1.20

1.25

T
h

ro
u

g
h

p
u

t
N

o
rm

a
li

ze
d

 t
o

 N
o

S
p

il
l

 DSR

 Best-Offline

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 11. DSR vs. Best-Offline policy

Figure 11 compares the throughput improvement of DSR

and Best-Offline (for maximum throughput). Although

3We also studied another best-offline policy that chooses from a 3-way

decision for each core: spill-receive-neither. We executed all 34 = 81
combinations for each workload and selected the one that gave the best

performance. The average improvement with the 3-way best-offline policy

is similar to that obtained with the binary (spill-receive) best-offline policy.

DSR is a low overhead, practical, runtime mechanism, it

still provides 90% of the performance benefit (17.9% vs.

19.8%) of the impractical Best-Offline scheme. The dif-

ference is because DSR tries to minimize misses and Best-

Offline explicitly chooses maximum throughput.

5.5. Scalability of DSR to Larger Systems

We also evaluate DSR for an 8-core and a 16-core sys-

tem. We form 100 workloads for each system by randomly

combining from the 12 SPEC benchmarks. Figure 12 shows

the improvement in throughput of DSR compared to that

with no spill for the 8-core and 16-core system respectively.

0 10 20 30 40 50 60 70 80 90 100
Workloads (total: 100)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

w
it

h
 D

S
R

 8 core system

 16 core system

Figure 12. DSR on 8-core and 16-core CMPs

DSR improves throughput on average by 19.7% for the

8-core system and by 19% for the 16-core system, while

never degrading the throughput of any of the 200 workloads.

Thus, DSR is a scalable, robust, and practical mechanism,

given that the improved performance is still obtained with

the storage overhead of only one 10-bit counter per core

even for the 8-core and 16-core systems.

5.6. Effect on IPC of Each Application

Thus far, we have used metrics that indicate aggregate

performance of the workload. We now show the effect of

DSR on the performance of individual application within

the workload. Figure 14 shows the normalized IPCs of each

of the 1980 applications (4x495 workloads) compared to the

baseline. For 20 out of 1980 applications, DSR has slow-

down of more than 5%. Thus, for 99% of the applications,

DSR retains the performance isolation of private caches.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
 495 workloads x 4 applications/workload = 1980 applications

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

IP
C

 N
o

rm
a

li
ze

d
 t

o
 N

o
S

p
il

l

Figure 13. S-Curves for IPC with DSR normal-
ized to the baseline

52

6. Quality-of-Service Aware DSR

Thus far, we have tried to improve overall performance,

even if this means reducing the performance of one of

the application if it provides huge improvement in per-

formance of other applications in the workload. How-

ever, in some scenarios, such as interactive applications

and service level agreements, there is a certain level of

guaranteed performance required. Such scenarios require

“Quality of Service (QoS)”, which means that the worst-

case performance of the applications remains similar to

(or better than) the baseline case of private caches. With

DSR, we reduce the IPC of about 1% of the applications

by more than 5%. In some cases this may be unaccept-

able. DSR must try to improve overall performance while

retaining the worst-case performance similar to the base-

line. We propose an extension of DSR architecture that

facilitates such QoS guarantees. We call this QoS-Aware

DSR. To implement QoS, we must know the increase in

misses with DSR compared to the baseline. We leverage

the fact that the spiller sets for each cache do not receive

lines from any other cache. Therefore, we can track the

misses in spiller sets (MissInSpillerSets) and use it to

estimate the misses in the baseline system with no spilling

(MissesWithBaseline) using Equation 1.

MissesWithBaseline =
NumSetsInCache · MissInSpillerSets

NumSetsDedicatedToSpillerSets
(1)

∆MissesWithDSR = MissesWithDSR−MissesWithBaseline

(2)

∆CyclesWithDSR = AvgMemLatency · ∆MissesWithDSR

(3)

QoSPenaltyFactor = max(0,
∆CyclesWithDSR

TotalCycles
) (4)

The number of misses with DSR (MissesWithDSR)
for each cache can be measured at runtime using a counter.

The change in misses with DSR (∆MissesWithDSR) is

given by Equation 2. The change in execution time because

of DSR (∆CyclesWithDSR) can then be calculated by

multiplying the ∆ misses with average memory latency (we

use a static number for our system but for out-of-order sys-

tems a method similar to the one used in [11] can be em-

ployed). We calculate QoSPenaltyFactor as percentage

increase in execution time due to DSR, which can be cal-

culated using equation 4, given that a cycle counter register

can track the TotalCycles. Then, instead of increment-

ing/decrementing the PSEL counters by 1 on each miss, we

give more weightage to the misses of an application (say i)

that has higher QoSPenaltyFactor using Equation 5.

WeightOfMissi = 1 + λ · QoSPenaltyFactori (5)

Where λ is a constant (256 in our studies). We calculate

QoSPenaltyFactor once every 5 Million cycles, store it in

a QoSPenaltyFactorRegister, and use it for the next 5

Million cycles. QoS-Aware DSR requires a per-core storage

overhead as follows: 3 bytes for MissInSpillerSets, 3 bytes

for MissInDSR, 1 byte for QoSPenaltyFactor Register (6.2

fixed point format), and 12 bits for PSEL (10.2 fixed point

format). A cycle counter of 4 bytes is shared between all

the cores. Thus, the total overhead of enforcing QoS within

the DSR architecture is less than 10 bytes per core. If the

cycle counter or any of the miss counters overflow, the cycle

counter and all the miss counters are halved.

1.00

1.05

1.10

1.15

1.20

1.25

T
h

ro
u

g
h

p
u

t
N

o
rm

a
li

ze
d

 t
o

 N
o

S
p

il
l

 DSR

 QoS-Aware DSR

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 14. Throughput of QoS-Aware DSR

Figure 14 shows the improvement in throughput with

DSR and QoS-Aware DSR. For G0T4 category, QoS con-

straints reduce throughput improvement form 18% to 15%.

On average, the two scheme performs similarly, with DSR

providing 18% and QoS-Aware DSR with 17.5%. As G0T4

is the category with the most QoS violations, we show the

normalized IPC of each application in this category for DSR

and QoS-Aware DSR in Figure 15 (for other categories the

two curves are almost identical). QoS-Aware DSR success-

fully removes the IPC degradation of DSR and all appli-

cations have a worst-case IPC similar to the baseline. For

all 1980 applications evaluated, 20 out of 1980 applications

had an IPC degradation of more than 5% for DSR, whereas,

not a single application had that amount of degradation with

QoS-Aware DSR. Thus, the DSR architecture can success-

fully optimize for both QoS and performance.

0 6 12 18 24 30 36 42 48 54 60
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

IP
C

 N
o
rm

a
li

ze
d

 t
o
 N

o
S

p
il

l

G0T4 (15 workloads x 4 applications/workload = 60 applications)

 DSA

 QoS-Aware DSA

Figure 15. S-Curve of IPC for apps in G0T4

workloads with DSR and QoS-Aware DSR

53

7. Related Work

Managing Private Caches: When cache lines are con-

currently accessed by multiple cores, replication can reduce

cache access latency at the expense of reducing the num-

ber of unique lines that can be stored on-chip. Several pro-

posals [4][3] have tried to balance this latency vs. capacity

trade-off. These schemes contain a replication control pa-

rameter that determines the percentage of lines that can be

replicated. Adaptive Selective Replication [1] is a dynamic

mechanism that learns the best replication parameter at run-

time using large tagged structures. The reduced-capacity

vs. improved-latency trade-off solved by these proposals is

orthogonal to the capacity sharing problem solved by DSR.

Managing Shared Caches: LRU-managed shared

cache allocates capacity between competing applications on

a demand basis. Cache performance can be improved if

cache space allocated to streaming applications can be min-

imized. TADIP [6] is a simple high-performance scheme

that uses Set Dueling and Adaptive Insertion [10] to re-

duce harmful cache interference in shared caches. However,

TADIP is applicable to only shared caches and does not

solve the problem of increased latency and high-bandwidth

interconnect requirement of a shared cache. Figure 16

shows the throughput improvement of shared cache with

TADIP and private cache with DSR. On average, TADIP

improves throughput by 15% and DSR by 18%. DSR can

also be implemented on a cache that uses DIP [10] for

demand lines (spilled lines are always inserted in MRU

position). DSR+DIP improves throughput by 23% over

NoSpill+LRU and by 17% over NoSpill+DIP (not shown).

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

T
h

ro
u

g
h

p
u

t
N

o
rm

a
li

ze
d

 t
o

 N
o

S
p

il
l

 Shared+LRU

 Shared+TADIP

 DSR

 DSR+DIP

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 16. Throughput: TADIP vs. DSR.

Fairness and Quality-of-Service: Cooperative Cache

Partitioning (CCP) [2] tries to optimize both fairness and

quality of service using time-sharing of cache partitions.

MTP needs cache requirement curves for each application.

Obtaining such information using profiling may be imprac-

tical and using time-sampling requires huge training time.

Furthermore, even if MTP has such information, it still re-

quires 2 bits/line (storage: 16KB) to measure cache capac-

ity given to each application. Unlike CCP, DSR does not

require time sampling and design changes, and can still en-

force QoS. A practical version of MTP can always use DSR

(instead of CC) to improve both performance and fairness.

8. Summary
CMPs with private last-level cache suffer from the inabil-

ity to share cache capacity between cores when the cache

requirement of each core varies. Capacity sharing can be

implemented in private caches by spilling an evicted line

from one cache to another cache. However, previous pro-

posals do spilling without taking into account the cache re-

quirement of each core, which limits the performance im-

provement obtained with spilling. The goal of this paper is

to enable efficient high-performance capacity sharing in pri-

vate caches by using a practical spill mechanism that takes

cache requirement of different cores into account. To that

end, this paper makes the following contributions:

1. We propose the Spill-Receive architecture, where each

cache is allowed to either spill evicted lines or receive

spilled lines but not both. This prevents spiller caches

from giving their local capacity while they are trying

to gain more cache capacity remotely and vice-versa.

2. We propose the Dynamic Spill-Receive (DSR) archi-

tecture that learns the best spill-receive decision for

each cache at runtime. We show that DSR improves

average throughput by 18%, weighted speedup by 13%

and Hmean fairness by 36% for a 4-core CMP.

3. We propose a simple extension of DSR that guarantees

Quality of Service while retaining high performance.

Acknowledgments

The author thanks William Starke, Ravi Nair, Viji Srini-

vasan, and Trey Cain for their comments and feedback.

References

[1] B. M. Beckmann et al. ASR: Adaptive selective replication

for CMP caches. In MICRO-2006.
[2] J. Chang and G. S. Sohi. Cooperative cache partitioning for

chip multiprocessors. In ICS-2007.
[3] J. Chang and G. S. Sohi. Cooperative caching for chip multi-

processors. In ISCA-2006.
[4] Z. Chishti et al. Optimizing replication, communication, and

capacity allocation in CMPs. In ISCA-2005.
[5] M. D. Dahlin et al. Cooperative caching: using remote client

memory to improve file system performance. In OSDI-1994.
[6] A. Jaleel et al. Adaptive insertion policies for managing

shared caches. In PACT-2008.
[7] P. Kongetira et al. Niagara: A 32-way multithreaded SPARC

processor. IEEE Micro, 25(2):21–29, 2005.
[8] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in

multi-core architectures: Understanding mechanisms, over-

heads and scaling. In ISCA-2005.
[9] K. Luo, J. Gummaraju, and M. Franklin. Balancing through-

put and fairness in SMT processors. In ISPASS-2001.
[10] M. K. Qureshi et al. Adaptive insertion policies for high-

performance caching. In ISCA-2007.
[11] M. K. Qureshi et al. A case for MLP-aware cache replace-

ment. In ISCA-2006.

54

