
The Agree Predictor:

A Mechanism for Reducing Negative Branch History Interference

Eric Spranglezy Robert S. Chappellyz Mitch Alsupz Yale N. Patty

Advanced Computer Architecture Laboratory y

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

frobc, pattg@eecs.umich.edu

ROSS Technology, Inc. z

5316 Hwy 290 West Austin, Texas 78735

fsprangle, mitchg@ross.com

Abstract

Deeply pipelined, superscalar processors require accurate
branch prediction to achieve high performance. Two-level
branch predictors have been shown to achieve high prediction
accuracy. It has also been shown that branch interference is
a major contributor to the number of branches mispredicted
by two-level predictors.

This paper presents a new method to reduce the inter-
ference problem called agree prediction, which reduces the
chance that two branches aliasing the same PHT entry will
interfere negatively. We evaluate the performance of this
scheme using full traces (both user and supervisor) of the
SPECint95 benchmarks. The result is a reduction in the
misprediction rate of gcc ranging from 8.62% with a 64K{
entry PHT up to 33.3% with a 1K{entry PHT.

Keywords: branch prediction, superscalar, speculative
execution, two-level branch prediction.

1 Introduction

The link between changes in branch misprediction rate and
changes in performance has been well documented [1{4, 6].
Yeh and Patt have shown that a two-level branch predictor
can achieve high levels of branch prediction accuracy [4].
In a two-level predictor, the �rst level generates an index
into a Pattern History Table (PHT) using some function of
the outcomes of preceding branches. The �rst level function
was originally the value of an N-bit shift register, called the
Branch History Register (BHR), that kept track of the di-
rections of the previous N branches. The second level is an
array of PHT entries (in this paper, 2-bit saturating coun-
ters) which tracks the outcomes of branches mapped to it by
the �rst level's indexing function. Figure 1 depicts a general
two-level predictor.

Pattern History Table (PHT)

2-bit counter

2-bit counter

2-bit counter

2-bit counter

Indexing

Function
Other Inputs

High bit used to predict
taken or not taken

Branch History Register (BHR)

Figure 1: A general two-level predictor.

Since the number of PHT entries is �nite, it sometimes
is the case that two unrelated branches in the instruction
stream are mapped to the the same PHT entry by the pre-
dictor's indexing function. This phenomenon is known as
PHT interference, since the outcome of one branch is inter-
fering with the subsequent prediction of another completely
unrelated branch. Figure 2 shows a case of interference in a
general two-level predictor.

2 Interference in Two-Level Predictors

We de�ne an instance of PHT interference as a branch ac-
cessing a PHT entry that was previously updated by a dif-
ferent branch. In most cases, this does not change the di-
rection of the prediction. We refer to this as neutral inter-
ference, since the presence of interference had no e�ect on
that prediction. However, it is possible for the in
uence of
the previous branches to change the prediction of the cur-
rent branch. This e�ect can cause a correct prediction where
there would be a misprediction otherwise. This is referred
to as positive interference, since the introduction of interfer-
ence causes a positive e�ect on performance by removing a
misprediction. It is also possible that interference can cause
a misprediction where there would not be otherwise. We
refer to this as negative interference, since it has a negative
e�ect on performance. We will con�rm that negative inter-
ference is a substantial contributor to the number of branch
mispredictions [7, 8].

Given that negative interference has a substantial impact
on performance, it is worthwhile to attempt to reduce it.



Prediction of Branch B

the outcome of Branch A

may be altered due to

Pattern History Table (PHT)

2-bit counter

2-bit counter

2-bit counter

2-bit counter

Branch A

Branch B

0000 0011

0000 0011

Instruction Stream

Branch A’s Index

Branch B’s Index

Figure 2: Interference in a two-level predictor.

Most previous studies have examined three basic ways to
counteract the interference problem:

1) Increasing predictor size, causing con
icting branches
to map to di�erent table locations.

2) Selecting a history table indexing scheme that best
distributes history state among the available counters.

3) Separating di�erent classes of branches so that they do
not use the same prediction scheme, and thus cannot
possibly interfere.

The �rst, and somewhat obvious, approach is to increase
the number of entries in the PHT. This allows interfering
branches to be mapped by the indexing function to di�erent
PHT entries. The fewer branches using the same PHT entry,
the less interference and the less opportunity for negative
interference to occur. Of course, this approach is limited by
the number of transistors available to devote to the PHT.

Another means of reducing interference is to choose an
indexing function that more e�ectively utilizes the PHT
entries. For example, the gshare predictor [9] XORs the
Branch History Register (BHR) with the lower bits of the
branch address to generate the index into the PHT. Since
BHR histories are not uniformly distributed, the introduc-
tion of address bits into the index gives a more useful dis-
tribution across all PHT entries.

Chang et al introduced �ltering, another method of re-
ducing PHT interference [10]. By using a simple predictor
for easily predicted branches, these branches can be \�l-
tered" out of the PHT, reducing the number of branches
that are using PHT entries. This leads to a reduction in
PHT interference.

3 The Agree Predictor

This paper introduces a new method of reducing negative
branch interference called agree prediction. All of the meth-
ods discussed above focus on reducing the harmful e�ects
of negative interference by reducing overall interference.
Rather than attempting to reduce interference as a whole,
the agree scheme converts instances of negative interference
into either positive or neutral interference. This is done by
modifying the structure and the use of the PHT.

In a traditional two-level branch predictor, each PHT
entry is a 2-bit saturating counter that is used to predict

2-bit counter

2-bit counter

2-bit counter

2-bit counter

Indexing

Function

Branch Address Tag

Tag

Tag

Tag

Bit

Bit

Bit

Bit

Pattern History Table (PHT)

Biasing Bit Storage (part of BTB)

Predict taken
or not taken

Branch History Register (BHR)

Figure 3: Agree predictor operation.

whether branches using that entry are taken or not taken.
The counter's state is updated using the resolved direction
of the branch. If the branch was taken, the PHT entry's
counter is incremented. If the branch was not taken, the
counter is decremented. In this manner, future occurrences
using that PHT entry are more likely to predict the correct
directions.

In an agree predictor (shown in �gure 3), we attach a
biasing bit to each branch (for example, in the instruction
cache or in a BTB) that predicts the most likely outcome
of the branch. Rather than predicting the direction of a
given branch, the 2-bit counters predict whether or not the
branch will go in the direction indicated by the biasing bit.
In e�ect, this scheme predicts if the branch's direction agrees
with the biasing bit. Like a traditional predictor, the 2-
bit counter is updated when the branch has been resolved.
However, in the agree scheme, the counter is incremented
if the branch's direction agreed with the biasing bit. The
counter is decremented if the branch did not agree with the
biasing bit.

This agree scheme e�ectively reduces negative interfer-
ence. If the biasing bit is well chosen, two branches using the
same PHT entry are more likely to update the counter in the
same direction|towards the agree state. This fundamental
change in the PHT interpretation results in negative inter-
ference being converted to positive and neutral interference,
thus increasing overall prediction accuracy.

To illustrate, assume two branches have respective taken
rates of 85% and 15%. In a conventional scheme, the prob-
ability that any combination of these two branches has op-
posite outcomes is given by:

(br1taken; br2nottaken) + (br1nottaken; br2taken) =
(85% � 85%) + (15% � 15%) = 74:5%

In our agree predictor experiments, we set the biasing
bit to the direction the branch goes the �rst time it is ex-
ecuted. This biasing bit represents the correct direction of
the branch about 85% of the time, on average. Assum-
ing that the biasing bits are optimally determined for the
branches in the previous example (taken for the �rst branch,
not taken for the second), the probability that any combina-
tion of these two branches has opposite outcomes becomes:

(br1agrees; br2disagrees)+(br1disagrees; br2agrees) =
(85% � 15%) + (15% � 85%) = 25:5%

Therefore, the PHT entries in the agree predictor are less



likely to be di�erent for two di�erent branches, and negative
interference is decreased.

Another important side-e�ect of this change is the poten-
tial for increased prediction accuracy during a new branch's
warm-up period. Any new branch is more likely to have
it's PHT entries already in the warmed-up state|the agree
state. Details of both of these e�ects are studied below. Fi-
nally, we should point out that the agree predictor modi�es
only the PHT. Any of the �rst level history structures can
be used with this scheme. In this paper, we restrict the �rst
level history mechanism to that of gshare.

4 Experiments

The experimental results presented in this paper were gener-
ated using SoSS, a full system simulator designed to model a
Sun 4m workstation. SoSS models the CPU, MMU, memory
system, disk, and other I/O devices in a Sun 4m in enough
detail to allow it to boot and run SunOS 4.1.4. Users can
then log into the simulated machine's console and run ar-
bitrary user processes on it. SoSS provides mechanisms for
gathering a wide variety of statistics on both the user and
operating system code that are executed in a given process.
These include full symbolic breakpoints, conditional counter
enabling and resetting, and full disassembly of all or part of
the executed code.

Without the overhead of simulating the branch predic-
tors, the current implementation of SoSS is capable of ex-
ecuting at approximately 1/30th the speed of the host ma-
chine. SoSS is able to achieve this level of performance
through a number of optimizations. Two of the most im-
portant sources of speed are a special fetch-decode cache
(FD-cache) and host pointer entries in the simulated TLB.
The FD-cache, instead of caching the instruction binary to
be simulated, caches a pointer to a segment of code that
simulates the instruction on the host machine. Most in-
structions can be simulated in less than ten host instruc-
tions. Host pointers in TLB lines allow target machine vir-
tual addresses to be translated directly to pointers on the
host machine without having to be translated to target ma-
chine physical addresses as an intermediate step.

For this paper, we ran the SPECint95 benchmarks on
SoSS for 2 billion instructions, or to completion. All bench-
marks were compiled to the SunOS operating system us-
ing the gcc compiler with the -O3 option. The biasing bit
was set to the direction of the branch the �rst time it was
brought into the Branch Target Bu�er (BTB). Since this
bit is unknown on the �rst prediction after a BTB �ll, the
agree predictor uses the sign of the branch's o�set as the
biasing bit. The biasing bits were recorded in a 4K{entry
direct-mapped BTB.

4.1 Interference Study

As the number of PHT entries is increased, three factors
a�ect prediction accuracy:

1) Interference decreases. This increases prediction accu-
racy.

2) Better branch correlation. Increasing PHT size means
it is more likely for an indexing function to map only
those branches with similar behavior to the same PHT
entry. This also increases prediction accuracy.

3) Training time increases. Larger PHT sizes require
larger indices. This typically translates to more pat-
tern history bits being used in the address, resulting in

a longer warm-up period for new branches. A longer
training period reduces prediction accuracy.

These �rst experiments model the performance of a hy-
pothetical interference-free predictor versus the performance
of conventional and agree predictors of increasing PHT sizes.
Since the interference-free predictor is not a�ected by the
�rst of the above three factors, we can gain use its results
to gain insight into the relative magnitudes of the other two
forces. We model 1K, 2K, 4K, 8K, 16K, 32K, and 64K{PHT
entry predictors.

Figures 4 to 9 show the prediction accuracy for the
SPECint95 benchmarks using three versions of the gshare
predictor. All three predictors use the same gshare indexing
function; the lower N bits of the address are XORed with
the BHR. The �rst version, conventional, updates the PHT
entries in a conventional manner. The second version, agree,
uses the agree scheme to update the PHT entries. The third
version, interference-free, allocates a separate 2-bit counter
for each branch/BHR index combination. All three predic-
tors are simulated with 10-16 bit BHRs (1K to 64K{entry
PHT entries, respectively).

The results show that the interference-free predictor con-
sistently outperforms both the conventional and agree pre-
dictors, implying that negative interference dominates pos-
itive interference. In addition, the interference-free predic-
tor gains only a slight improvement in performance as the
PHT size is increased. This a�rms our hypothesis that in-
terference is the major contributor to reducing prediction
accuracy.

The agree predictor clearly outperforms the conventional
two-level scheme, especially in the smaller predictors and
on certain benchmarks. Smaller predictors naturally have
more contention for the PHT entries. The agree predictor
attacks this interference and is able to increase performance.
However, as the PHT size becomes very large, the agree
predictor becomes less and less e�ective, since there is less
opportunity to remove negative interference. In addition,
secondary e�ects, such as misses in the BTB (where the
biasing bits are stored) become more signi�cant.

The agree predictor also seems to perform better on some
benchmarks than on others. Benchmarks such as gcc and
go have a larger branch \footprint"; they have a large num-
ber of static branches that are frequently executed. Figure
10 plots the percentage of total branches executed by each
benchmark versus the number of static branches in each
benchmark. We can see that some benchmarks, such as gcc
and go, have much larger branch footprints than others. In
general, these benchmarks are the ones that bene�t the most
from interference reduction. While the branch footprint is
not directly representative of the amount of interference that
occurs in a benchmark, it is a good �rst-order indicator.

Table 1 lists the improvement in prediction accuracy
when moving from a 1K{entry PHT to a 64K{entry PHT,
for each predictor class. All of the predictors achieve higher
prediction accuracies as the number of PHT entries is in-
creased. For the interference-free predictor, the change in
performance is due solely to the combination of better cor-
relation and greater training time. Since the plot for the
interference-free predictor is monotonically increasing, we
can conclude that the increase in performance due to bet-
ter correlation is greater than the decrease due to increased
training time.

As the predictor size is increased, both the agree and
conventional predictors achieve greater improvements in ac-
curacy than the interference-free predictor. This implies



10 11 12 13 14 15 16

Predictor Size (log2(PHT Entries))

65

70

75

80

85

90

95

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Interference-Free
Agree
Conventional

Figure 4: Prediction accuracy versus predictor size for gcc.

10 11 12 13 14 15 16

Predictor Size (log2(PHT Entries))

65

70

75

80

85

90

95

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Interference-Free
Agree
Conventional

Figure 5: Prediction accuracy versus predictor size for go.

10 11 12 13 14 15 16

Predictor Size (log2(PHT Entries))

65

70

75

80

85

90

95

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Interference-Free
Agree
Conventional

Figure 6: Prediction accuracy versus predictor size
m88ksim.

10 11 12 13 14 15 16

Predictor Size (log2(PHT Entries))

65

70

75

80

85

90

95

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Interference-Free
Agree
Conventional

Figure 7: Prediction accuracy versus predictor size for perl.

10 11 12 13 14 15 16

Predictor Size (log2(PHT Entries))

65

70

75

80

85

90

95

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Interference-Free
Agree
Conventional

Figure 8: Prediction accuracy versus predictor size for vor-
tex.

10 11 12 13 14 15 16

Predictor Size (log2(PHT Entries))

65

70

75

80

85

90

95

100

P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

Interference-Free
Agree
Conventional

Figure 9: Prediction accuracy versus predictor size for xlisp.



0 2000 4000 6000

Number of Static Branches

50

60

70

80

90

100

P
er

ce
nt

ag
e 

of
 D

yn
am

ic
 B

ra
nc

he
s

perl
xlisp
m88ksim
vortex
go
gcc

Figure 10: Percentage of static branches accounting for dy-
namic branches by benchmark.

Table 1: Improvement in accuracy from 1K to 64K{entry
PHT.

Benchmark Interference-Free Agree Conventional

gcc .67% 5.22% 10.63%
go 4.50% 10.77% 15.77%

m88ksim .13% 1.60% 3.32%
perl .00% 1.57% 2.52%
vortex .16% 2.36% 11.10%
xlisp .60% 2.35% 5.51%

that interference is a much greater factor in predictor per-
formance than is correlation. We can estimate the improve-
ment in accuracy due to interference reduction (as the PHT
size is increased) by examining the equation:

ChangeinAccuracy = InterferenceReduction+
(BetterCorrelation� T rainingT imeIncrease)

The sum (Better Correlation { Training Time Increase)
can be approximated by the increase in performance of
interference-free predictor. By subtracting this term from
the total change in PHT accuracy, we are left with the
change in accuracy due to interference reduction. Table 2
lists estimates of what percentage of total improvement in
accuracy is due to reduced interference as predictor size is
increased from 1K to 64K{entries. These calculations imply
that, as the PHT size is increased, interference reduction
is responsible for most (over 71%) of the improvement in
prediction accuracy.

4.2 Characterizing Positive, Neutral, Negative In-
terference

There are three classes of interference: positive, neutral and
negative. We de�ne an occurrence of positive interference
as a branch being predicted correctly by a predictor when
it would have been mispredicted by a similar predictor with
no interference. Neutral interference occurs when the real-
istic predictor and interference-free predictor are both cor-
rect or both incorrect. Negative interference occurs if the
interference-free predictor is correct, but the realistic pre-
dictor mispredicts.

Table 2: Estimated percent of improvement from reduced
interference when going from a 1K{ entry PHT to a 64K{
entry PHT conventional scheme.

Benchmark
gcc 93.70%
go 71.46%

m88ksim 96.08%
perl 100.0%
vortex 98.56%
xlisp 89.10%

Table 3 shows the percentage of occurrences of positive,
neutral, and negative interference for conventional and agree
predictors for each benchmark and predictor size.

This table con�rms many of our hypotheses. In general,
as the predictor size is increased, most of the interference
ends up being neutral. We also see that negative interference
occurs much more often than positive interference. Finally,
these �gures show the agree predictor e�ectively converts
negative interference into positive and neutral interference.
As with overall prediction accuracy, the reduction of nega-
tive interference lessens as the predictor size increases.

4.3 Warm-up Study

One of the problems with two-level branch prediction is the
number of times a new branch instruction must execute be-
fore the predictor \warms up". This section studies the
relative performance of the agree predictor versus the con-
ventional two-level predictor for branches seen 1 to 16 times
previously (we choose the �rst 16 branches because that is
the length of the largest BHR simulated). We refer to this
as the predictor's warm-up period for a new branch. The
agree predictor achieves a higher accuracy than the con-
ventional predictor during this period due to the increased
likelihood that the PHT entry in the agree predictor will al-
ready be in a trained (agree) state. Figures 11 and 12 show
the prediction accuracies of each predictor for all branches
encountered exactly N times. Recall that for branches seen
for the very �rst time (N = 1), the agree predictor is using
the branch o�set's sign for the biasing bit. Because of this,
for some benchmarks, the conventional two-level predictor
sometimes achieves higher accuracy on the �rst prediction
for a new branch.

These results demonstrate the ability of an agree predic-
tor to, in e�ect, warm up more quickly than a conventional
predictor of the same history length. This is an advantage
for prediction in the presence of context switches, as an agree
predictor would adapt more quickly.

4.4 Choosing the Biasing Bit

In these experiments, we use the direction of the branch the
�rst time it was executed after being placed in the BTB as
the biasing bit. Once it is de�ned, it does not change over
the course of the program, unless the branch is replaced in
the BTB and later retrieved. We refer to this as the \�rst
time" selection mechanism. It has been suggested that a
better biasing bit selection mechanism would be to set the
biasing bit to the direction most often taken by that branch
over run of the entire benchmark. We refer to this hypo-
thetical mechanism as \most often". As a �rst step toward
determining an optimal biasing bit selection mechanism, we



Table 3: Percentage of total interference classi�ed as positive, neutral, and negative.

Benchmark Positive Neutral Negative
(conv,agree) (conv,agree) (conv,agree)

gcc

1K 1.15%,1.23% 83.51%,89.59% 15.35%,9.18%
2K .99%,1.11% 86.29%,90.99% 12.71%,7.90%
4K .91%,1.03% 88.53%,92.09% 10.56%,6.88%
8K .83%,.98% 90.29%,92.88% 8.88%,6.14%
16K .79%,.96% 91.60%,93.56% 7.61%,5.48%
32K .75%,.96% 92.77%,94.03% 6.48%,5.01%
64K .72%,.96% 93.90%,94.49% 5.37%,4.55%

go

1K 4.15%,4.10% 70.68%,76.03% 25.17%,19.87%

2K 3.60%,3.62% 72.31%,77.09% 24.09%,19.29%

4K 3.10%,3.13% 73.85%,78.05% 23.05%,18.82%

8K 2.59%,2.65% 75.97%,79.55% 21.43%,17.79%

16K 2.11%,2.21% 79.39%,81.75% 18.50%,16.04%

32K 1.68%,1.83% 83.45%,84.61% 14.87%,13.56%

64K 1.29%,1.51% 87.63%,87.43% 11.08%,11.06%

m88ksim

1K .18%,.19% 96.41%,97.90% 3.40%,1.91%

2K .10%,.08% 97.86%,98.51% 2.04%,1.40%

4K .09%,.07% 98.51%,98.93% 1.41%,1.00%

8K .03%,.03% 99.19%,99.47% .78%, .50%

16K .01%,.01% 99.60%,99.57% .38%, .42%

32K .02%,.02% 99.85%,99.64% .13%, .33%

64K .01%,.01% 99.91%,99.76% .08%, .22%

vortex

1K .12%,.18% 88.25%,96.69% 11.63%,3.12%

2K .11%,.12% 92.68%,97.38% 7.21%,2.50%

4K .09%,.09% 94.69%,98.10% 5.22%,1.81%

8K .07%,.08% 97.06%,98.53% 2.87%,1.39%

16K .02%,.04% 98.54%,98.83% 1.44%,1.13%

32K .04%,.05% 99.06%,99.06% .91%, .88%

64K .03%,.04% 99.27%,99.20% .70%, .76%

xlisp

1K .21%,.23% 94.53%,97.70% 5.26%,2.07%

2K .10%,.08% 96.34%,98.48% 3.55%,1.44%

4K .13%,.15% 97.53%,98.10% 2.34%,1.75%

8K .04%,.03% 98.67%,99.49% 1.28%, .47%

16K .10%,.03% 99.11%,99.40% .79%, .56%

32K .02%,.02% 99.28%,99.61% .70%, .37%

64K .08%,.04% 99.54%,99.76% .39%, .20%



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Times a Branch Has Been Executed

40

60

80

100

P
re

di
ct

io
n 

A
cc

ur
ac

y

Interference-Free
Agree
Conventional

Figure 11: Prediction of branches during warm-up period
with a 16-bit BHR for gcc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Times a Branch Has Been Executed

40

60

80

100

P
re

di
ct

io
n 

A
cc

ur
ac

y

Interference-Free
Agree
Conventional

Figure 12: Prediction of branches during warm-up period
with a 16-bit BHR for go.

compare the agree predictor's performance using \�rst time"
selection to the performance using \most often" selection.

We simulate the hypothetical \most often" selection
scheme by running the benchmark twice. The �rst run
records, for each static branch in the benchmark's instruc-
tion stream, whether the branch is more often taken or not
taken. This information is used to set the biasing bits for
the second run. Table 4 shows the results of this exper-
iment. Our heuristic of \�rst time" is comparable to the
hypothetical \most often" mechanism. Future agree predic-
tor studies will examine other dynamic schemes for selecting
biasing bits.

Table 4: Comparison of prediction accuracies for \�rst time"
versus \most often" biasing bit selection for gcc.

PHT Entries First Time Most Often Di�erence
1K 87.52% 89.44% 1.92%
2K 88.88% 90.43% 1.55%
4K 89.99% 91.29% 1.30%
8K 90.84% 92.01% 1.17%
16K 91.59% 92.66% 1.07%
32K 92.17% 93.17% 1.00%
64K 92.84% 93.81% .97%

5 Conclusions

This paper proposes a new method for reducing negative in-
terference in two-level branch predictors. We have shown

that an interference-free predictor performs much better
than a conventional two-level predictor scheme. By rede�n-
ing the operation of the PHT in a two-level predictor, we can
recover some of the lost prediction accuracy due to interfer-
ence. The agree scheme, while relatively simple to imple-
ment, achieves a signi�cant improvement in branch predic-
tion accuracy. This improvement stems from two sources.
First, the agree scheme e�ectively converts negative PHT
interference to positive and neutral interference. Second,
prediction accuracy during warm-up periods is improved.
The most dramatic improvements by the agree scheme over
the conventional predictors can be seen in benchmarks with
large branch footprints and in predictors with small PHT
sizes. The agree predictor reduces misprediction rates in
gcc ranging from 8.62% with a 64K{entry PHT up to 33.3%
with a 1K{entry PHT.

6 Acknowledgments

This work is the result of collaborative research performed
jointly by researchers at the University of Michigan and at
Ross Technology and was funded in part by a gift from Ross
Technology. We gratefully acknowledge their support. We
also acknowledge the contributions of Sanjay Patel, Jared
Stark, and Daniel Friendly, PhD students at Michigan who
have been very helpful to our work.

References

[1] B. Calder and D. Grunwald, \Fast and Accurate Instruc-
tion Fetch and Branch Prediction", Proceedings of the
21st International Symposium on Computer Architecture,
(April 1994), pp. 2-11.

[2] S. McFarling and J. Hennessy, \Reducing the Cost of
Branches", Proceedings of the 13th International Sympo-
sium on Computer Architecture, (1986), pp. 396-403.

[3] J. A. Fisher and S. M. Freudenberfer, \Predicting Con-
ditional Branch Directions from Previous Runs of a Pro-
gram", Proceedings 5th Annual International Conference
on Architectural Support for Programming Languages
and Operating Systems, (October 1992).

[4] T-Y. Yeh and Y. N. Patt, \Two-Level Adaptive Train-
ing Branch Prediction", 24th ACM/IEEE International
Symposium on Microarchitecture, (November 1991), pp.
51-61.

[5] T-Y. Yeh and Y. N. Patt, \A Comprehensive Instruction
Fetch Mechanism for Processor Supporting Speculative
Execution", 25th ACM/IEEE International Symposium
on Microarchitecture, (December 1992), pp. 129-139.

[6] B. Calder, D. Grunwald, and J. Emer, \A System Level
Perspective on Branch Architecture Performance," 28th
ACM/IEEE International Symposium on Microarchitec-
ture, (November 1995).



[7] A. R. Talcott, M. Nemirovsky, and R. C. Wood. \The In-

uence of Branch Prediction Table Interference on Branch
Prediction Scheme Performance", International Confer-
ence on Parallel Architectures and Compilation Tech-
niques, (1995).

[8] C. Young, N. Gloy, and M. D. Smith, \A Comparative
Analysis of Schemes for Correlated Branch Prediction",
Proceedings of the 22nd Annual International Symposium
on Computer Architecture, (1995), pp. 276-286.

[9] S. McFarling, \Combining Branch Predictors", Techni-
cal Report TN-36, Digital Western Research Laboratory,
(June 1993).

[10] P-Y. Chang, M. Evers, and Y.N. Patt, \Improving
Branch Prediction Accuracy by Reducing Pattern History
Table Interference", International Conference on Paral-
lel Architectures and Compilation Techniques, (October
1996).


