92

Chapter 4

Preliminary discussion of the logical
design of an electronic computing
instrument?! /

Arthur W. Burks / Herman H. Goldstine /
John von Neumann

PART |

1. Principal components of the machine

1.1. Inasmuch as the completed device will be a general-purpose
computing machine it should contain certain main organs relating
to arithmetic, memory-storage, control and connection with the
human operator. It is intended that the machine be fully automatic
in character, i.. independent of the human operator after the
computation starts. A fuller discussion of the implications of this
remark will be given in Sec. 3 below.

1.2. It is evident that the machine must be capable of storing
in some manner not only the digital information needed in a given
computation such as boundary values, tables of functions (such
as the equation of state of a fluid) and also the intermediate results
of the computation (which may be wanted for varying lengths of
time), but also the instructions which govern the actual routine
to be performed on the numerical data. In a special-purpose
machine these instructions are an integral part of the device and
constitute a part of its design structure. For an all-purpose machine
it must be possible to instruct the device to carry out any compu-
tation that can be formulated in numerical terms. Hence there
must be some organ capable of storing these program orders. There
must, moreover, be a unit which can understand these instructions
and order their execution.

1.3. Conceptually we have discussed above two different
forms of memory: storage of numbers and storage of orders. If,
however, the orders to the machine are reduced to a numerical
code and if the machine can in some fashion distinguish a number
from an order, the memory organ can be used to store both num-

1From A. H. Taub (ed.), “Collected Works of John von Neumann,” vol. 5,
pp. 34-79, The Macmillan Company, New York, 1963. Taken from
report to U. S. Army Ordnance Department, 1946. See also Bibliography
Burks, Goldstine and von Neumann, 19624, 1962b, 1963; and Goldstine and
von Neumann 1963a, 1963b, 1963c, 1963d.

bers and orders. The coding of orders into numeric form is dis-
cussed in 6.3 below.

14. If the memory for orders is merely a storage organ there
must exist an organ which can automatically execute the orders
stored in the memory. We shall call this organ the Control.

1.5. Inasmuch as the device is to be a computing machine
there must be an arithmetic organ in it which can perform certain
of the elementary arithmetic operations. There will be, therefore,
a unit capable of adding, subtracting, multiplying and dividing.
It will be seen in 6.6 below that it can also perform additional
operations that occur quite frequently.

The operations that the machine will view as elementary are
clearly those which are wired into the machine. To illustrate, the
operation of multiplication could be eliminated from the device
as an elementary process if one were willing to view it as a prop-
erly ordered series of additions. Similar remarks apply to division.
In general, the inner economy of the arithmetic unit is determined
by a compromise between the desire for speed of operation—a
non-elementary operation will generally take a long time to per-
form since it is constituted of a series of orders given by the
control—and the desire for simplicity, or cheapness, of the ma-
chine.

1.6. Lastly there must exist devices, the input and output
organ, whereby the human operator and the machine can com-
municate with each other. This organ will be seen below in 4.5,
where it is discussed, to constitute a secondary form of automatic’
memory.

2. First remarks on the memory

2.1. Itis clear that the size of the memory is a critical considera-
tion in the design of a satisfactory general-purpose computing

Chapter 4

machine. We proceed to discuss what quantities the memory
should store for various types of computations.

2.2. Inthe solution of partial differential equations the storage
requirements are likely to be quite extensive. In general, one must
remember not only the initial and boundary conditions and any
arbitrary functions that enter the problem but also an extensive
number of intermediate results.

a For equations of parabolic or hyperbolic type in two inde-
pendent variables the integration process is essentially a
double induction. To find the values of the dependent vari-
ables at time ¢t + At one integrates with respect to x from
one boundary to the other by utilizing the data at time ¢
as if they were coeficients which contribute to defining the
problem of this integration.

Not only must the memory have sufficient room to store
these intermediate data but there must be provisions
whereby these data can later be removed, i.e. at the end
of the (t + Af) cycle, and replaced by the corresponding
data for the (t + 2A1) cycle. This process of removing data
from the memory and of replacing them with new informa-
tion must, of course, be done quite automatically under the
direction of the control.

b For total differential equations the memory requirements
are clearly similar to, but smaller than, those discussed in
(a) above.

¢ Problems that are solved by iterative procedures such as
systems of linear equations or elliptic partial differential
equations, treated by relaxation techniques, may be ex-
pected to require quite extensive memory capacity. The
memory requirement for such problems is apparently much
greater than for those problems in (a) above in which one
needs only to store information corresponding to the in-
stantaneous value of one variable [# in (a) above], while now
entire solutions (covering all values of all variables) must
be stored. This apparent discrepancy in magnitudes can,
however, be somewhat overcome by the use of techniques
which permit the use of much coarser integration meshes
in this case, than in the cases under (a).

2.3. It is reasonable at this time to build a machine that can
conveniently handle problems several orders of magnitude more
complex than are now handled by existing machines, electronic
or electro-mechanical. We consequently plan on a fully automatic
electronic storage facility of about 4,000 numbers of 40 binary
digits each. This corresponds to a precision of 274 ~ 0.9 X 1072,
i.e. of about 12 decimals. We believe that this memory capacity
exceeds the capacities required for most problems that one deals

Preliminary discussion of the logical design of an electronic computing instrument 93

with at present by a factor of about 10. The precision is also safely
higher than what is required for the great majority of present day
problems. In addition, we propose that we have a subsidiary
memory of much larger capacity, which is also fully automatic,
on some medium such as magnetic wire or tape.

3. First remarks on the control and code

3.1. It is easy to see by formal-logical methods that there exist
codes that are in abstracto adequate to control and cause the
execution of any sequence of operations which are individually
available in the machine and which are, in their entirety, con-
ceivable by the problem planner. The really decisive considera-
tions from the present point of view, in selecting a code, are more
of a practical nature: simplicity of the equipment demanded by
the code, and the clarity of its application to the actually impor-
tant problems together with the speed of its handling of those
problems. It would take us much too far afield to discuss these
questions at all generally or from first principles. We will therefore
restrict ourselves to analyzing only the type of code which we
now envisage for our machine.

32. There must certainly be instructions for performing the
fundamental arithmetic operations. The specifications for these
orders will not be completely given until the arithmetic unit is
described in a little more detail.

3.3. It must be possible to transfer data from the memory to
the arithmetic organ and back again. In transferring information
from the arithmetic organ back into the memory there are two
types we must distinguish: Transfers of numbers as such and trans-
fers of numbers which are parts of orders, The first case is quite
obvious and needs no further explication. The second case is more
subtle and serves to illustrate the generality and simplicity of the
system. Consider, by way of illustration, the problem of interpola-
tion in the system. Let us suppose that we have formulated the
necessary instructions for performing an interpolation of order n
in a sequence of data. The exact location in the memory of the
(n + 1) quantities that bracket the desired functional value is, of
course, a function of the argument. This argument probably is
found as the result of a computation in the machine. We thus need
an order which can substitute a number into a given order—in
the case of interpolation the location of the argument or the group
of arguments that is nearest in our table to the desired value. By
means of such an order the results of a computation can be in-
troduced into the instructions governing that or a different com-
putation. This makes it possible for a sequence of instructions to
be used with different sets of numbers located in different parts
of the memory. ‘

y .
94 Part 2 |, The instruction-set processor: main-line computers

To summarize, transfers into the memory will be of two sorts:
Total substitutions, whereby the quantity previously stored is
cleared out and replaced by a new number. Partial substitutions
in which that part of an order containing a memory location-
number—we assume the various positions in the memory are
enumerated serially by memory location-numbers—is replaced by
a new memory location-number. ’

3.4. It is clear that one must be able to get numbers from
any part of the memory at any time. The treatment in the case
of orders can, however, be more methodical since one can at least
partially arrange the control instructions in a linear sequence.
Consequently the control will be so constructed that it will nor-
mally proceed from place n in the memory to place (n + 1) for
its next instruction.

35. The utility of an automatic computer lies in the possi-
bility of using a given sequence of instructions repeatedly, the
number of times it is iterated being either preassigned or depend-
ent upon the results of the computation. When the iteration is
completed a different sequence of orders is to be followed, so we
must, in most cases, give two parallel trains of orders preceded
by an instruction as to which routine is to be followed. This choice
can be made to depend upon the sign of a number (zero being
reckoned as plus for machine purposes). Consequently, we intro-
duce an order (the conditional transfer order) which will, depend-
ing on the sign of a given number, cause the proper one of two
routines to be executed.

Frequently two parallel trains of orders terminate in a common
routine. It is desirable, therefore, to order the control in either
case to proceed to the beginning point of the common routine.
This unconditional transfer can be achieved either by the artificial
use of a conditional transfer or by the introduction of an explicit
order for such a transfer.

3.6. Finally we need orders which will integrate the input- -

output devices with the machine. These are discussed briefly in
6.8. ‘

3.7. We proceed now to a more detailed discussion of the
machine. Inasmuch as our experience has shown that the moment
one chooses a given component as the elementary memory unit,
one has also more or less determined upon much of the balance
of the machine, we start by a consideration of the memory organ.
In attempting an exposition of a highly integrated device like a
computing machine we do not find it possible, however, to give
an exhaustive discussion of each organ before completing its
description. It is only in the final block diagrams that anything
approaching a complete unit can be achieved.

The time units to be used in what follows will be:

Section 1 | Processors with one address per instruction

1 psec = 1 microsecond = 10-6 seconds
1 msec = 1 millisecond = 10~3 seconds

4. The memory organ

4.1. Ideally one would desire an indefinitely large memory ca-
pacity such that any particular aggregate of 40 binary digits, or
word (cf. 2.3), would be immediately available—i.e. in a time
which is somewhat or considerably shorter than the operation time
of a fast electronic multiplier. This may be assumed to be practical
at the level of about 100 psec. Hence the availability time for a
word in the memory should be 5 to 50 psec. It is equally desirable
that words may be replaced with new words at about the same
rate. It does not seem possible physically to achieve such a capac-
ity. We are therefore forced to recognize the possibility of con-
structing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.

The most common forms of storage in electrical circuits are
the flip-flop or trigger circuit, the gas tube, and the electro-
mechanical relay. To achieve a memory of n words would, of
course, require about 40n such elements, exclusive of the switching
elements. We saw earlier (cf. 2.2) that a fast memory of several
thousand words is not at all unreasonable for an all-purpose instru-
ment. Hence, about 10° flip-flops or analogous elements would be
required! This would, of course, be entirely impractical.

We must therefore seek out some more fundamental method
of storing electrical information than has been suggested above.
One criterion for such a storage medium is that the individual
storage organs, which accommodate only one binary digit each,
should not be macroscopic components, but rather microscopic
elements of some suitable organ. They would then, of course, not
be identified and switched to by the usual macroscopic wire con-
nections, but by some functional procedure in manipulating that
organ.

One device which displays this property to a marked degree
is the iconoscope tube. In its conventional form it possesses a linear
resolution of about one part in 500. This would correspond to a
(two-dimensional) memory capacity of 500 X 500 = 2.5 X 10°.
One is accordingly led to consider the possibility of storing elec-
trical charges on a dielectric plate inside a cathode-ray tube.
Effectively such a tube is nothing more than a myriad of electrical
capacitors which can be connected into the circuit by means of
an electron beam. '

Actually the above mentioned high resolution and concomitant
memory capacity are only realistic under the conditions of tele-
vision-image storage, which are much less exigent in respect to

Chapter 4

the reliability of individual markings than what one can accept
in the storage for a computer. In this latter case resolutions of
one part in 20 to 100, i.e. memory capacities of 400 to 10,000,
would seem to be more reasonable in terms of equipment built
essentially along familiar lines.

At the present time the Princeton Laboratories of the Radio
Corporation of America are engaged in the development of a
storage tube, the Selectron, of the type we have mentioned above.
This tube is also planned to have a non-amplitude-sensitive switch-
ing system whereby the electron beam can be directed to a given
spot on the plate within a quite small fraction of a millisecond.
Inasmuch as the storage tube is the key component of the machine
envisaged in this report we are extremely fortunate in having
secured the cooperation of the RCA group in this as well as in
various other developments.

An alternate form of rapid memory organ is the acoustic feed-
back delay line described in various reports on the EDVAC. (This
is an electronic computing machine being developed for the
Ordnance Department, U.S. Army, by the University of Pennsyl-
vania, Moore School of Electrical Engineering.) Inasmuch as that
device has been so clearly reported in those papers we give no
further discussion. There are still other physical and chemical
properties of matter in the presence of electrons or photons that
might be considered, but since none is yet beyond the early dis-
cussion stage we shall not make further mention of them.

4.2. We shall accordingly assume throughout the balance of
this report that the Selectron is the modus for storage of words
at electronic speeds. As now planned, this tube will have a capac-
ity of 21% = 4,096 ~ 4,000 binary digits. To achieve a total elec-
tronic storage of about 4,000 words we propose to use 40 Selec-
trons, thereby achieving a memory of 22 words of 40 binary digits
each. (Cf. again 2.3.)

4.3. There are two possible means for storing a particular
word in the Selectron memory—or, in fact, in either a delay line
memory or in a storage tube with amplitude-sensitive deflection.
One method is to store the entire word in a given tube and then
to get the word out by picking out its respective digits in a serial
fashion. The other method is to store in corresponding places in
each of the 40 tubes one digit of the word. To get a word from
the memory in this scheme requires, then, one switching mech-
anism to which all 40 tubes are connected in parallel, Such a
switching scheme seems to us to be simpler than the technique
needed in the serial system and is, of course, 40 times faster. We
accordingly adopt the parallel procedure and thus are led to con-
sider a so-called parallel machine, as contrasted with the serial
principles being considered for the EDVAC. (In the EDVAC the

Preliminary discussion of the logical design of an electronic computing instrument 95

peculiar characteristics of the acoustic delay line, as well as various
other considerations, seem to justify a serial procedure. For more
details, cf. the reports referred to in 4.1.) The essential difference
between these two systems lies in the method of performing an
addition; in a parallel machine all corresponding pairs of digits
are added simultaneously, whereas in a serial one these pairs are
added serially in time.

4.4.. Tosummarize, we assume that the fast electronic memory
consists of 40 Selectrons which are switched in parallel by a com-
mon switching arrangement. The inputs of the switch are con-
trolled by the control.

4.5. Inasmuch as a great many highly important classes of
problems require a far greater total memory than 22 words, we
now consider the next stage in our storage hierarchy. Although
the solution of partial differential equations frequently involves
the manipulation of many thousands of words, these data are
generally required only in blocks which are well within the 212
capacity of the electronic memory. Our second form of storage
must therefore be a medium which feeds these blocks of words
to the electronic memory. It should be controlled by the control
of the computer and is thus an integral part of the system, not
requiring human intervention.

There are evidently two distinct problems raised above. One
can choose a given medium for storage such as teletype tapes,
magnetic wire or tapes, movie film or similar media. There still
remains the problem of automatic integration of this storage
medium with the machine, This integration is achieved logically
by introducing appropriate orders into the code which can instruct
the machine to read or write on the medium, or to move it by
a given amount or to a place with given characteristics. We discuss
this question a little more fully in 6.8.

Let us return now to the question of what properties the sec-
ondary storage medium should have. It clearly should be able to
store information for periods of time long enough so that only a
few per cent of the total computing time is spent in re-registering
information that is “fading off.” It is certainly desirable, although
not imperative, that information can be erased and replaced by
new data. The medium should be such that it can be controlled,
i.e. moved forward and backward, automatically. This considera-
tion makes certain media, such as punched cards, undesirable.
While cards can, of course, be printed or read by appropriate
orders from some machine, they are not well adapted to problems
in which the output data are fed directly back into the machine,
and are required in a sequence which is non-monotone with re-
spect to the order of the cards. The medium should be capable
of remembering very large numbers of data at a much smaller price

\

96 Part 2

The instruction-set processor: main-line computers

than electronic devices. It must be fast enough so that, even when
it has to be used frequently in a problem, a large percentage of
the total solution time is not spent in getting data into and out
of this medium and achieving the desired positioning on it. If this
condition is not reasonably well met, the advantages of the high
electronic speeds of the machine will be largely lost.

Both light- or electron-sensitive film and magnetic wires or
tapes, whose motions are controlled by servo-mechanisms inte-
grated with the control, would seem to fulfil our needs reasonably
well. We have tentatively decided to use magnetic wires since we
have achieved reliable performance with them at pulse rates of
the order of 25,000/sec and beyond.

4.6. Lastly our memory hierarchy requires a vast quantity of
dead storage, i.e. storage not integrated with the machine. This
storage requirement may be satisfied by a library of wires that
can be introduced into the machine when desired and at that time
become automatically controlled. Thus our dead storage is really
nothing but an extension of our secondary storage medium. It
differs from the latter only in its availability to the machine.

4.7. 'We impose one additional requirement on our secondary
memory. It must be possible for a human to put words on to the
wire or other substance used and to read the words put on by
the machine. In this manner the human can control the machine’s
functions. It is now clear that the secondary storage medium is
really nothing other than a part of our input-output system, cf.
6.8.4 for a description of a mechanism for achieving this.

4.8. There is another highly important part of the input-
output which we merely mention at this time, namely, some
mechanism for viewing graphically the results of a given compu-
tation. This can, of course, be achieved by a Selectron-like tube
which causes its screen to fluoresce when data are put on it by
an electron beam. _

49, For definiteness in the subsequent discussions we assume
that associated with the output of each Selectron is a flip-flop.
This assemblage of 40 flip-flops we term the Selectron Register.

5. The arithmetic organ

5.1. In this section we discuss the features we now consider
desirable for the arithmetic part of our machine. We give our
tentative conclusions as to which of the arithmetic operations
should be built into the machine and which should be pro-
grammed. Finally, a schematic of the arithmetic unit is described.

5.2. In a discussion of the arithmetical organs of a computing
machine one is naturally led to a consideration of the number
system to be adopted. In spite of the longstanding tradition of

Section 1 | Processors with one address per instruction

building digital machines in the decimal system, we feel strongly
in favor of the binary system for our device. Our fundamental unit
of memory is naturally adapted to the binary system since we do
not attempt to measure gradations of charge at a particular point
in the Selectron but are content to distinguish two states. The
flip-flop again is truly a binary device. On magnetic wires or tapes
and in acoustic delay line memories one is also content to recog-
nize the presence or absence of a pulse or (if a carrier frequency
is used) of a pulse train, or of the sign of a pulse. (We will not
discuss here the ternary possibilities of a positive-or-negative-
or-no-pulse system and their relationship to questions of reliability
and checking, nor the very interesting possibilities of carrier fre-
quency modulation.) Hence if one contemplates using a decimal
system with either the iconoscope or delay-line memory one is
forced into a binary coding of the decimal system—each decimal
digit being represented by at least a tetrad of binary digits. Thus
an accuracy of ten decimal digits requires at least 40 binary digits.
In a true binary representation of numbers, however, about 33
digits suffice to achieve a precision of 1010, The use of the binary
system is therefore somewhat more economical of equipment than
is the decimal.

The main virtue of the binary system as against the decimal
is, however, the greater simplicity and speed with which the
elementary operations can be performed. To illustrate, consider
multiplication by repeated addition. In binary multiplication the
product of a particular digit of the multiplier by the multiplicand
is either the multiplicand or null according as the multiplier digit
is 1 or 0. In the decimal system, however, this product has ten
possible values between null and nine times the multiplicand,
inclusive. Of course, a decimal number has only log;,2 ~ 0.3 times
as many digits as a binary number of the same accuracy, but even
so multiplication in the decimal system is considerably longer than
in the binary system. One can accelerate decimal multiplication
by complicating the circuits, but this fact is irrelevant to the point
just made since binary multiplication can likewise be accelerated
by adding to the equipment. Similar remarks may be made about
the other operations.

An additional point that deserves emphasis is this: An important
part of the machine is not arithmetical, but logical in nature. Now
logics, being a yes-no system, is fundamentally binary. Therefore
a binary arrangement of the arithmetical organs contributes very
significantly towards producing a more homogeneous machine,
which can be better integrated and is more efficient.

The one disadvantage of the binary system from the human
point of view is the conversion problem. Since, however, it is
completely known how to convert numbers from one base to

Chapter 4 | Preliminary discussion of the logical design of an electronic computing instrument. 97

another and since this conversion can be effected solely by the
use of the usual arithmetic processes there is no reason why the
computer itself cannot carry out this conversion. It might be
argued that this is a time consuming operation. This, however,
is not the case. (Cf. 9.6 and 9.7 of Part II. Part II is a report issued
under the title Planning and Coding of Problems for an Electronic
Computing Instrument.!) Indeed a general-purpose computer, used
as a scientific research tool, is called upon to do a very great
number of multiplications upon a relatively small amount of input
data, and hence the time consumed in the decimal to binary
conversion is only a trivial percentage of the total computing time.
A similar remark is applicable to the output data.

In the preceding discussion we have tacitly assumed the de-
sirability of introducing and withdrawing data in the decimal
system. We feel, however, that the base 10 may not even be a
permanent feature in a scientific instrument and consequently will
probably attempt to train ourselves to use numbers base 2 or 8
or 16. The reason for the bases 8 or 16 is this: Since 8 and 16
are powers of 2 the conversion to binary is trivial; since both are
about the size of 10, they violate many of our habits less badly
than base 2. (Cf. Part II, 9.4.)

5.3. Several of the digital computers being built or planned
in this country and England are to contain a so-called “floating
decimal point”. This is a mechanism for expressing each word as
a characteristic and a mantissa—e.g. 123.45 would be carried in
the machine as (0.12345,03), where the 3 is the exponent of 10
associated with the number. There appear to be two major pur-
poses in a “floating” decimal point system both of which arise from
the fact that the number of digits in a word is a constant, fixed
by design considerations for each particular machine. The first of
these purposes is to retain in a sum or product as many significant
digits as possible and the second of these is to free the human
operator from the burden of estimating and inserting into a prob-
lem “scale factors”—multiplicative constants which serve to keep
numbers within the limits of the machine.

There is, of course, no denying the fact that human time is
consumed in arranging for the introduction of suitable scale fac-
tors. We only argue that the time so consumed is a very small
percentage of the total time we will spend in preparing an inter-
esting problem for our machine. The first advantage of the floating
point is, we feel, somewhat illusory. In order to have such a floating
point one must waste memory capacity which could otherwise be
used for carrying more digits per word. It would therefore seem

1See Bibliography [Goldstine and von Neumann, 1963b, 1963c, 1963d].
References in this chapter are all to this report.

to us not at all clear whether the modest advantages of a floating
binary point offset the loss of memory capacity and the increased
complexity of the arithmetic and control circuits.

There are certainly some problems within the scope of our
device which really require more than 2-4° precision. To handle
such problems we wish to plan in terms of words whose lengths
are some fixed integral multiple of 40, and program the machine
in such a manner as to give the corresponding aggregates of 40
digit words the proper treatment. We must then consider an addi-
tion or multiplication as a complex operation programmed from
a number of primitive additions or multiplications (cf. §9, Part
II). There would seem to be considerable extra difficulties in the
way of such a procedure in an instrument with a floating binary
point.

The reader may remark upon our alternate spells of radicalism
and conservatism in deciding upon various possible features for
our mechanism. We hope, however, that he will agree, on closer
inspection, that we are guided by a consistent and sound principle
in judging the merits of any idea. We wish to incorporate into
the machine—in the form of circuits—only such logical concepts
as are either necessary to have a complete system or highly con-
venient because of the frequency with which they occur and the

“influence they exert in the relevant mathematical situations.

5.4. On the basis of this criterion we definitely wish to build
into the machine circuits which will enable it to form the binary
sum of two 40 digit numbers. We make this decision not because
addition is a logically basic notion but rather because it would
slow the mechanism as well as the operator down enormously if
each addition were programmed out of the more simple operations
of “and”, “or”, and “not”. The same is true for the subtraction.
Similarly we reject the desire to form products by programming
them out of additions, the detailed motivation being very much
the same as in the case of addition and subtraction. The cases for
division and square-rooting are much less clear.

It is well known that the reciprocal of a number @ can be
formed to any desired accuracy by iterative schemes. One such
scheme consists of improving an estimate X by forming X’ =
2X — aX?. Thus the new error 1 — aX’ is (1 — aX)?, which is the
square of the error in the preceding estimate. We notice that in
the formation of X', there are two bona fide multiplications—we
do not consider multiplication by 2 as a true product since we
will have a facility for shifting right or left in one or two pulse
times. If then we somehow could guess 1/a to a precision of 25,
6 multiplications—3 iterations—would suffice to give a final result
good to 2749, Accordingly a small table of 2¢ entries could be used
to get the initial estimate of 1/a. In this way a reciprocal 1/a

3

)
98 Part 2 |. The instruction-set processor: main-line computers

could be formed in 6 multiplication times, and hence a quotient:

b/ain 7 multiplication times. Accordingly we see that the question
of building a divider is really a function of how fast it can be made
to operate compared to the iterative method sketched above: In
order to justify its existence, a divider must perform a division in
a good deal less than 7 multiplication times. ‘We have, however,
conceived a divider which is much faster than these 7 multipli-
cation times and therefore feel justified in building it, especially
since the amount of equipment needed above the requirements
of the maltiplier is not important.

It is, of course, also possible to handle square roots by iterative
techniques. In fact, if X is our estimate of a2, then X' =
V(X + a/X) is a better estimate. We see that this scheme involves
one division per iteration. As will be seen below in our more detailed
examination of the arithmetic organ we do not include a square-
rooter in our plans because such a device would involve more
equipment than we feel is desirable ina first model. (Concerning the
jterative method of square-rooting, cf. 8.10 in Part IL)

5.5. The first part of our arithmetic organ requires little dis-
cussion at this point. It should be a parallel storage organ which
can receive a number and add it to the one already in it, which
is also able to clear its contents and which can transmit what it
contains. We will call such an organ an Accumulator. It is quite
conventional in principle in past and present computing machines
of the most varied types, e.g. desk multipliers, standard IBM
counters, more modern relay machines, the ENIAC. There are of,
course, numerous ways to build such a binary accumulator. We
distinguish two broad types of such devices: static, and dynamic
or pulse-type accumulators. These will be discussed in 5.11, but
it is first necessary to make a few remarks concerning the arith-
metic of binary addition. In a parallel accumulator, the first step
in an addition is to add each digit of the addend to the corre-
sponding digit of the augend. The second step is to perform the
carries, and this must be done in sequence since a carry may
produce a carry. In the worst case, 39 carries will occur. Clearly
it is inefficient to allow 39 times as much time for the second
step (performing the carries) as for the first step (adding the digits).
Hence either the carries must be accelerated, or use must be made
of the average number of carries or both.

56. We shall show that for a sum of binary words, each of
length n, the length of the largest carry sequence is on the average
not in excess of 2log n. Let p,(v) designate the probability that
a carry sequence is of length v or greater in the sum of two binary
words of length n. Then clearly p,(v) — p,(v + 1) is the proba-
bility that the largest carry sequence is of length exactly v and
the weighted average

Section 1 | Processors with one address per instruction

a, = 20 olpa(0) — palo + 1]

is the average length of such carry. Note that’

3 fpulo) = pafo + D) = 1

v=0

since p,(v) = 0 if v > n. From these it is easily inferred that

a, = 02:31 Pal0)

We now proceed to show that p,(0) = min[1, (n — v + 1)/2°+1],
Observe first that

1 - pn—v(v) i f

<<
Qv+l v="n

pu(v) = pn—l(v) +

Indeed, p,,(v) is the probability that the sum of two n-digit numbers
contains a carry sequence of length =v. This probability obtains
by adding the probabilities of two mutually exclusive alternatives:
First: Either the n — 1 first digits of the two numbers by them-
selves contain a carry sequence of length =ov. This has the proba-
bility p,_,(v). Second: The n — 1 first digits of the two numbers
by themselves do not contain a carry sequence of length =v. In
this case any carry sequence of length =v in the total numbers
(of length n) must end with the last digits of the total sequence.
Hence these must form the combination 1, 1. The next v — 1 digits
must propagate the carry, hence each of these must form the
combination 1, 0 or 0, 1. (The combinations 1, 1 and 0, 0 do not
propagate a carry.) The probability of the combination 1, 1 is %,
that one of the alternative combinations 1, 0 or 0, 1 is Y. The
total probability of this sequence is therefore ¥ (%)’ = (%)
The remaining n — v digits must not contain a carry sequence
of length =v. This has the probability 1 —Pp-p(0). Thus the
probability of the second case is [1 — Pp—p(0)]/2°+1. Combining
these two cases, the desired relation

1 — puy(®)
2v+1

pn(o) = pn—l(v) +

obtains. The observation that p,(v) = 0 if v > n is trivial.

We see with the help of the formulas proved above that
Pa(0) — Ppy(v) is always =<1/2%*1, and hence that the sum

2 i(©) — Pia(O)] = Pal®)

Chapter 4

is not in excess of (n — v 4+ 1)/2"*! since there are n — v + 1
terms in the sum; since, moreover, each p,(v) is a probability, it
is not greater than 1. Hence we have

n-—v+l]

Pa(v) = min[l, o7l

Finally we turn to the question of getting an upper bound on
n = Sp=1Px(0). Choose K so that 2X < n =< 25+, Then

8
i

K-1 n K-1 n n n
a"=2pn(v)+zpn(u)§zl+z W:K—-l-{-?
v=1 v=K v=1 v=K

This last expression is clearly linear in n in the interval
< pn=<2K1 and it is =K for n =2 and =K + 1 for
n = 2%+1 je. it is =2log n at both ends of this interval. Since
the function %log n is everywhere concave from below, it follows
that our expression is =2log n throughout this interval. Thus
a, = %log n. This holds for all K, i.e. for all n, and it is the in-
equality which we wanted to prove.

For our case n = 40 we have g, < log,40 ~ 5.3,i.e. an average
length of about 5 for the longest carry sequence. (The actual value
of a,, is 4.62.)

5.7. Having discussed the addition, we can now go on to the
subtraction. It is convenient to discuss at this point our treatment
of negative numbers, and in order to do that right, it is desirable
to make some observations about the treatment of numbers in
general. :

Our numbers are 40 digit aggregates, the left-most digit being
the sign digit, and the other digits genuine binary digits, with
positional values 2-1, 2-2, . . . , 273% (going from left to right). Our
accumulator will, however, treat the sign digit, too, as a binary
digit with the positional value 2°—at least when it functions as
an adder. For numbers between 0 and 1 this is clearly all right:
The left-most digit will then be 0, and if 0 at this place is taken
to represent a + sign, then the number is correctly expressed with
its sign and 39 binary digits.

Let us now consider one or more unrestricted 40 binary digit
numbers. The accumulator will add them, with the digit-adding

and the carrying mechanisms functioning normally and identically

in all 40 positions. There is one reservation, however: If a carry
originates in the left-most position, then it has nowhere to go from
there (there being no further positions to the left) and is “lost”.
This means, of course, that the addend and the augend, both
numbers between 0 and 2, produced a sum exceeding 2, and the
accumulator, being unable to express a digit with a positional
value 21, which would now be necessary, omitted 2. That is, the

Preliminary discussion of the logical design of an electronic computing instrument 99

sum was formed correctly, excepting a possible error 2. If several
such additions are performed in succession, then the ultimate error
may be any integer multiple of 2. That is, the accumulator is an
adder which allows errors that are integer multiples of 2—it is
an adder modulo 2.

It should be noted that our convention of placing the binary
point immediately to the right of the left-most digit has nothing
to do with the structure of the adder. In order to make this point
clearer we proceed to discuss the possibilities of positioning the
binary point in somewhat more detail.

We begin by enumerating the 40 digits of our numbers (words)
from left to right. In doing this we use an index h = 1, . . ., 40.
Now we might have placed the binary point just as well between
digits jand j + 1, = 0, . . ., 40. Note, that j == .0 corresponds
to the position at the extreme left (there is no digit h = § = 0);
j = 40 corresponds to the position at the extreme right (there is
no position h = f + 1 = 41); and j = 1 corresponds to our above
choice. Whatever our choice of j, it does not affect the correctness
of the accumulator’s addition. (This is equally true for subtraction,
cf. below, but not for multiplication and division, cf. 5.8.) Indeed,
we have merely multiplied all numbers by 2/-1 (as against our
previous convention), and such a “change of scale” has no effect
on addition (and subtraction). However, now the accumulator is
an adder which allows errors that are integer multiples of 2/ it
is an adder modulo 2/. We mention this because it is occasionally
convenient to think in terms of a convention which places the
binary point at the right end of the digital aggregate. Then j = 40,
our numbers are integers, and the accumulator is an adder modulo
2%0, We must emphasize, however, that all of this, i.e. all attribu-
tions of values to j, are purely convention—i.e. it is solely the
mathematician’s interpretation of the functioning of the machine
and not a physical feature of the machine. This convention will
necessitate measures that have to be made effective by actual
physical features of the machine—i.e. the convention will become
a physical and engineering reality only when we come to the
organs of multiplication.

We will use the convention § = 1, i.e. our numbers lie in 0 and
2 and the accumulator adds modulo 2. _

This being so, these numbers between 0 and 2 can be used to
represent all numbers modulo 2. Any real number x agrees modulo
2 with one and only one number ¥ between 0 and 2—or, to be
quite precise: 0 = % < 2. Since our addition functions modulo 2,
we see that the accumulator may be used to represent and to add
numbers modulo 2.

This determines the representation of negative numbers: If
x < 0, then we have to find the unique integer multiple of 2, 2s

10'0 Part 2 | The instruction-set processor: main-line computers

(s=1,2,...) such that 0 = F< 2 forT=x + 25 (ie. — 25 =
x < 2(1 —), and represent x by the digitalization of X

In this way, however, the sign digit character of the left-most
digit is lost: It can be 0 or 1 for both x = 0 and x <0, hence
0 in the left-most position can no longer be associated with the
+ sign of x. This may seem a bad deficiency of the system, but
it is easy to remedy—at least to an extent which suffices for our
purposes. This is done as follows:

‘'We usually work with numbers x between —1 and 1—or, to
be quite precise: —1 = x < 1. Now the Fwith 0 <% < 2, which
differs from x by an integer multiple of 2, behaves as follows: If
x=0,then 0 =x <1 henceT=1x, ands0o 0 =31, the left-
most digit of is 0. If x < 0, then —1 =x <0, hencex = x + 2,
and so 1 %< 2, the left-most digit of % is 1. Thus the left-most
digit (of @ is now a precise equivalent of the sign (of x): 0 corre-
sponds to + and 1 to — .

Summing up:

The accumulator may be taken to represent all real numbers
modulo 2, and it adds them modulo 2. If x lies between —1 and
1 (precisely: —1 = x < 1)—as it will in almost all of our uses of
the machine—then the left-most digit represents the sign: 0 is +
and 1 is — .

Consider now a negative number x with —1 = x < 0. Put
x = —y, 0 <y =1 Then we digitalize x by representing it as
x+2=2—y=14 (1 —y). That is, the left-most (sign) digit
of x = —y is, as it should be, 1; and the remaining 39 digits are
those of the complement of y = —x = |x|, i.e. those of 1 — y.
Thus we have been led to the familiar representation of negative
numbers by complementation.

The connection between the digits of x and those of —x is now
easily formulated, for any x S 0. Indeed, —x is equivalent to

/

39
9 x= (@ —2%) —x) + 29 = (Z gt x) +2-%

i=0

(This digit index { = 1, . . ., 39 is related to our previous digit
index h=1,..., 40 by ¢ = h — 1. Actually it is best to treat
i as if its domain included the additional value i = 0—indeed
i = 0 then corresponds to h = 1, i.e. to the sign digit. In any case
i expresses the positional value of the digit to which it refers more
simply than h does: This positional value is 2~ = 2-*-%. Note
that if we had positioned the binary point more generally between
jandj + 1, as discussed further above, this positional value would
have been 2-%—?, We now have, as pointed out previously, j = 1.)
Hence its digits obtain by subtracting every digit of x from 1—by
complementing each digit, i.e. by replacing 0 by 1 and 1 by

Section 1 | Processors with one address per instruction

0—and then adding 1 in the right-most position (and effecting
all the carries that this may cause). (Note how the left-most
digit, interpreted as a sign digit, gets inverted by this procedure
as it should be.)

A subtraction x — y is therefore performed by the accumulator,
Ac, as follows: Form x + y’, where y’ has a digit 0 or 1 where
y has a digit 1 or 0, respectively, and then add 1 in the right-most
position. The last operation can be performed by injecting a carry
into the right-most stage of Ac—since this stage can never receive
a carry from any other source (there being no further positions
to the right).

5.8. In the light of 5.7 multiplication requires special care,
because here the entire modulo 2 procedure breaks down. Indeed,
assume that we want to compute a product xy, and that we had
to change one of the factors, say x, by an integer multiple of 2,
say by 2. Then the product (¥ + 2)y obtains, and this differs from
the desired xy by 2y. 2y, however, will not in general be an integer
multiple of 2, since y is not in general an integer.

We will therefore begin our discussion of the multiplication
by eliminating all such difficulties, and assume that both factors
x, y lie between 0 and 1. Or, to be quite precise: 0 = x < 1,
0=y<L

To effect such a multiplication we first send the multiplier x
into a register AR, the Arithmetic Register, which is essentially just
a set of 40 flip-flops whose characteristics will be discussed below.
We place the multiplicand y in the Selectron Register, SR (cf. 4.9)
and use the accumulator, Ac, to form and store the partial prod-
ucts. We propose to multiply the entire multiplicand by the
successive digits of the multiplier in a serial fashion, There are,
of course, two possible ways this can be done: We can either start
with the digit in the lowest position—position 2-3°—or in the
highest position—position 2~1—and proceed successively to the

- left or right, respectively. There are a few advantages from our

point of view in starting with the right-most digit of the multiplier.
We therefore describe that scheme.

The multiplication takes place in 39 steps, which correspond
to the 39 (non-sign) digits of the multiplier x =0, £,,§,, . . .,
£a9 = (08465, . . . , &), enumerated backwards: £, . . ., &5
Assume that the k — 1 first steps (k = 1, . . ., 39) have already
taken place, involving multiplication of the multiplicand y with
the k — 1 last digits of the multiplier: {5, . . . , £4;_4; and that we
are now at the kth step, involving multiplication with the kth last
digit: £,9_x-. Assume furthermore, that Ac now contains the quantity
Py the result of the k — 1 first steps. [This is the (k — 1)st partial
product. For k = 1 clearly p, = 0.] We now form 2p, = p,., +

$g0-1Y> e,

Chapter 4

for.
for

=0
=y

540—7: =0

2py = Pr1 + Yo Y {)

§a0-1 = 1
That is, we do nothing or add y, according to whether £, , = 0
or 1. We can then form p; by halving 2p,.

Note that the addition of (1) produces no carry beyond the 2°
position, i.e. the sign digit: 0 =< p, < 1 is true for h = 0, and if
it is-true for A = k — 1, then (1) extends it to h = k also, since
0 = y;, < 1. Hence the sum in (1) is =0 and <2, and no carries
beyond the 2° position arise.

Hence p,, obtains from 2p, by a simple right shift, which is
combined with filling in the sign digit (that is freed by this shift)
with a 0. This right shift is effected by an electronic shifter that
is part of Ac.

Now

P39 = %;1[2‘1[2—1{ o (27Mgey + bagy) c o0 } + Ey) + &9
=z§i 2%y = xy

Thus this process produces the product xy, as desired. Note that
this xy is the exact product of x and y.

Since x and y are 39 digit binaries, their exact product xy is
a 78 digit binary (we disregard the sign digit throughout). How-
ever, Ac will only hold 39 of these. These are clearly the left 39
digits of xy. The right 39 digits of xy are dropped from Ac one
by one in the course of the 39 steps, or to be more specific, of
the 39 right shifts. We will see later that these right 39 digits of
xy should and will also be conserved (cf. the end of this section
and the end of 5.12, as well as 6.6.3). The left 39 digits, which
remain in Ac, should also be rounded off, but we will not discuss
this matter here (cf. loc. cit. above and 9.9, Part II).

To complete the general picture of our multiplication tech-
nique we must consider how we sense the respective digits of our
multiplier. There are two schemes which come to one’s mind in
this connection. One is to have a gate tube associated with each
flip-flop of AR in such a fashion that this gate is open if a digit
is 1 and closed if it is null. We would then need a 39-stage counter
to act as a switch which would successively stimulate these gate

tubes to react. A more efficient scheme is to build into AR a shifter .

circuit which enables AR to be shifted one stage to the right each
time Ac is shifted and to sense the value of the digit in the right-
most flip-flop of AR. The shifter itself requires one gate tube per
stage. We need in addition a counter to count out the 39 steps
of the multiplication, but this can be achieved by a six stage binary
counter. Thus the latter is more economical of tubes and has one
additional virtue from our point of view which we discuss in the
next paragraph.

Preliminary discussion of the logical design of an electronic computing instrument 101

The choice of 40 digits to a word (including the sign) is prob-
ably adequate for most computational problems but situations
certainly might arise when we desire higher precision, i.e. words
of greater length. A trivial illustration of this would be the com-
putation of 7 to more places than are now known (about 700
decimals, i.e. about 2,300 binaries). More important instances are
the solutions of N linear equations in N variables for large values
of N. The extra precision becomes probably necessary when N
exceeds a limit somewhere between 20 and 40. A justification of
this estimate has to be based on a detailed theory of numerical
matrix inversion which will be given in a subsequent report. It
is therefore desirable to be able to handle numbers of 39k digits
and signs by means of program instructions. One way to achieve
this end is to use k words to represent a 39k digit number with
signs. (In this way 39 digits in each 40 digit word are used, but
all sign digits excepting the first one, are apparently wasted; cf.
however the treatment of double precision numbers in Chapter
9, Part IL) It is, of course, necessary in this case to instruct the
machine to perform the elementary operations of arithmetic in
a manner that conforms with this interpretation of k-word com-
plexes as single numbers. (Cf. 9.8-9.10, Part IL) In order to be
able to treat numbers in this manner, it is desirable to keep not
39 digits in a product, but 78; this is discussed in more detail in
6.6.3 below. To accomplish this end (conserving 78 product digits)
we connect, via our shifter circuit, the right-most digit of Ac with
the left-most non-sign digit of AR. Thus, when in the process of
multiplication a shift is ordered, the last digit of Ac is transferred
into the place in AR made vacant when the multiplier was shifted.

5.9. To conclude our discussion of the multiplication of posi-
tive numbers, we note this:

As described thus far, the multiplier forms the 78 digit product,
xy, for a 39 digit multipler x and a 39 digit multiplicand y. We
assumed x = 0, y = 0 and therefore had xy = 0, and we will only
depart from these assumptions in 5.10. In addition to these, how-
ever, we also assumed x < 1, y < 1, i.e. the x, y have their binary
points both immediately right of the sign digit, which implied the
same for xy. One might question the necessity of these additional
assumptions.

Prima facie they may seem mere conventions, which affect only
the mathematician’s interpretation of the functioning of the ma-
chine, and not a physical feature of the machine. (Cf. the cor-
responding situation in addition and subtraction, in 5.7.) Indeed,
if x had its binary point between digits j and j + 1 from the left
(cf. the discussion of 5.7 dealing with this j; it also applies to k
below), and y between k and k + 1, then our above method of
multiplication would still give the correct result xy, provided that

oy
102 Part 2 | The instruction-set processor: main-line computers

the position of the binary point in xy is appropriately assigned. :

Specifically: Let the binary point of xy be between digits ! and
I + 1. x has the binary point between digits j and j + 1, and its
sign digit is 0, hence its range is 0 = x < 21, Similarly y has the
range 0 = y < 2¥%, and xy has the range 0 = xy < 2'-1, Now the
ranges of x and y imply that the range of xy is necessarily
0<xy <2121 =2+k-2 Hencel=j +k— 1. Thus it might
seem that our actual positioning of the binary point—immediately
right of the sign digit, i.e. j = k = 1—is still a mere convention.

It is therefore important to realize that this is not so: The
choices of j and k actually correspond to very real, physical, engi-
neering decisions. The reason for this is as follows: It is desirable
to base the running of the machine on a sole, consistent mathe-
matical interpretation. It is therefore desirable that all arithmeti-
cal operations be performed with an identically conceived posi-
tioning of the binary point in Ac. Applying this principle to x and
y givesj = k. Hence the position of the binary point for xy is given
by j + k — 1 = 2j — 1. If this is to be the same as for x, and y,
then 2j — 1 = j, i.e. = 1 ensues—that is, our above positioning
of the binary point immediately right of the sign digit.

There is one possible escape: To place into Ac not the left 39
digits of xy (not counting the sign digit 0), but the digitsj toj + 38
from the left. Indeed, in this way the position of the binary point
of xy will be (2j — 1) — (j — 1) = j, the same as for x and y.

This procedure means that we drop the left j — 1 and right
40 + f digits of xy and hold the middle 39 in Ac. Note-that posi-
tioning of the binary point-means that x < 2/-%, y < 2! and xy
can only be used if xy < 2/-1. Now the assumptions secure only
xy < 2%-2, Hence xy must be 2/~* times smaller than it might be.
This is just the thing which would be secured by the vanishing
of the left j — 1 digits that we had to drop from Ac, as shown
above.

If we wanted to use such a procedure, with those dropped left
i — 1 digits really existing, i.e. with j7 1, then we would have
to make physical arrangements for their conservation elsewhere.
Also the general mathematical planning for the machine would
be definitely complicated, due to the physical fact that Ac now
holds a rather arbitrarily picked middle stretch of 39 digits from
among the 78 digits of xy. Alternatively, we might fail to make
such arrangements, but this would necessitate to see to it in the
mathematical planning of each problem, that all products turn
out to be 21 times smaller than their a priori maxima. Such an
observance is not at all impossible; indeed similar things are un-
avoidable for the other operations. [For example, with a factor
2 in addition (of positives) or subtraction (of opposite sign quanti-
ties). Cf. also the remarks in the first part of 5.12, dealing with

Section 1 | Processors with one address per instruction

keeping “within range”.] However, it involves a loss of significant
digits, and the choice j = 1 makes it unnecessary in multiplication.

We will therefore make our choice j = 1, i.e. the positioning
of the binary point immediately right of the sign digit, binding
for all that follows.

5.10. We now pass to the case where the multiplier x and
the multiplicand y may have either sign + or —, i.e. any combi-
nation of these signs.

It would not do simply to extend the method of 5.8 to include
the sign digits of x and y also. Indeed, we assume —1=x <1,
—1 = y < 1, and the multiplication procedure in question is defi-
nitely based on the =0 interpretations of x and y. Hence if x <O,
then it is really using « + 2, and if y < 0, then it is really using
y + 2. Hence for x <0, y = 0 it forms

(x+2)y =2y + 2y

for x = 0, y < 0 it forms

My +2) =xy + 2«

for x < 0, x < 0, it forms

(x+ 2y +2) =xy +2x+ 2y + 4

or since things may be taken modulo 2, xy + 2x + 2y. Hence
correction terms. —2y, —2x would be needed for x < 0, y <0,
respectively (either or both).

This would be a possible procedure, but there is one difficulty:
As xy is formed, the 39 digits of the multiplier x are gradually
lost from AR, to be replaced by the right 39 digits of xy. (Cf. the
discussion at the end of 5.8.) Unless we are willing to build an
additional 40 stage register to hold x, therefore, x will not be
available at the end of the multiplication. Hence we cannot use
it in the correction 2x of xy, which becomes necessary for y < 0.

Thus the case x < 0 can be handled along the above lines, but
not the case y < 0.

It is nevertheless possible to develop an adequate procedure,
and we now proceed to do this. Throughout this procedure we
will maintain the assumptions —1=x<1, -1=y <1, We
proceed in several successive steps.

First: Assume that the corrections necessitated by the possi-
bility of y < 0 have been taken care of. We permit therefore
y = 0. We will consider the corrections necessitated by the possi-
bility of x < 0.

Let us disregard the sign digit of x, which is 1, i.e. replace it
by 0. Then x goes over into ¥ = 2 — 1 and as —1 = x <0, this
x will actually behave like (x — 1) + 2 = x + 1. Hence our
multiplication procedure will produce 'y = (x + L)y = xy + y,

Chapter 4

and therefore a correction —y is needed at the end. (Note that
we did not use the sign digit of x in the conventional way. Had
we done so, then a correction —2y would have been necessary,
as seen above.)

We see therefore: Consider x = 0. Perform first all necessary
steps for forming ¥'y(y = 0), without yet reaching the sign digit
of x (i.e. treating x as if it were =0). When the time arrives at
which the digit £, of x has to become effective—i.e. immediately
after {, became effective, after 39 shifts (cf. the discussion near
the end of 5.8)—at which time Ac contains, say, p (this corresponds
to the pgq of 5.8), then form

._.{:ﬁ if £0=0
Poy i f=1

This P is xy. (Note the difference between this last step, forming
P> and the 39 preceding steps in 5.8, forming p,, P, - . - , Pag.)

Second: Having disposed of the possibility x < 0, we may now
assume x = 0. With this assumption we have to treat all y = 0.
Since y = O brings us back entirely to the familiar case of 5.8, we
need to consider the case y < 0 only.

Let y’ be the number that obtains by disregarding the sign dlglt
of y’ which is 1, i.e. by replacing it by 0. Again y’ acts not like
y — 1, but like (y — 1) + 2 = y + 1. Hence the multiplication
procedure of 5.8 will produce 2y’ = x(y + 1) = xy + x, and there-
fore a correction x is needed. (Note that, quite similarly to what
we saw in the first case above, the suppression of the sign digit
of y replaced the previously recognized correction —2x by the
present one —x.) As we observed earlier, this correction —x cannot
be applied at the end to the completed xy’ since at that time x
is no longer available. Hence we must apply the correction —x
digitwise, subtracting every digit at the time when it is last found
in AR, and in a way that makes it effective with the proper posi-
tional value.

Third: Consider then x = 0, £, §,, . .., &3 = (1, &5+ - - &59)-
The 39 digits £, . . . £5 of x are lost in the course of the 39 shifts
of the multiplication procedure of 5.8, going from right to left.
Thus the operation No. k + 1 (k=0, 1, ..., 38, cf. 5.8) finds
§30-; in the right-most stage of AR, uses it, and then loses it
through its concluding right shift (of both Ac and AR). After this
step 39 — (k + 1) = 38 — k further steps, i.e. shifts follow, hence
before its own concluding shift there are still 39 — k shifts to come.
Hence the positional values are 239 times higher than they will
be at the end. £&,,_, should appear at the end, in the correcting
term —x, with the sign — and the positional value 2-%9-®, Hence
we may inject it during the step k + 1 (before its shift) with the

Preliminary discussion of the logical design of an electronic computing instrument 103

sign — and the positional value 1. That is to say, —&;,_, in the
sign”digit. '

This, however, is inadmissible. Indeed, £5,_; might cause carries
(if é39_r = 1), which would have nowhere to go from the sign digit
(there being no further positions to the left). This error is at its
origin an integer multiple of 2, but the 39 — k subsequent shifts
reduce its positional value 23%-* times. Hence it might contribute
to the end result any integer multiple of 2-8-%__and this is a
genuine error.

Let us therefore add 1 — £, , to the sign digit, i.e. 0 or 1 if
€301 is 1 or 0, respectively. We will show further below, that with
this procedure there arise no carries of the inadmissible kind.
Taking this momentarily for granted, let us see what the total
effect is. We are correcting not by —x but by 372,
27t — x = 1 — 2739 — x, Hence a final correctionby —1 + 2% s
needed. Since this is done at the end (after all shifts), it may be
taken modulo 2. That is to say, we must add 1 4 2739, j.e. 1 in
each of the two extreme positions. Adding 1 in the right-most
position has the same effect as in the discussion at the end of 5.7
(dealing with the subtraction). It is equivalent to injecting a carry
into the right-most stage of Ac. Adding 1 in the left-most position,
i.e. to the sign digit, produces a 1, since that digit was necessarily
0. (Indeed, the last operation ended in a shift, thus freeing the
sign digit, cf. below.)

Fourth: Let us now consider the question of the carries that
may arise in the 39 steps of the process described above. In order
to do this, let us describe the kth step (k = 1, .. ., 39), which
is a variant of the kth step described for a positive multiplication
in 5.8, in the same way in which we described the original kth
step loc. cit. That is to say, let us see what the formula (1) of 5.8
has become. It is clearly 2p, = p;_y + (1 — &,0-1) + bgo_iy’s i€

=1
yk{

, fiox =0
2Py, = Pr-a + Yio y for oy @)

That is, we add 1 (y’s sign digit) or y’ (y without its sign digit),
according to whether £,, ; = 0 or 1. Then p,, should obtain from
2p;, again by halving. '

Now the addition of (2) produces no carries beyond the 2°
position, as we asserted earlier, for the same reason as the addition
of (1) in 5.8. We can argue in the same way as there: 0 < p, < 1
is true for b = 0, and if it is true for h = k — 1, then (1) extends
it to h = k also, since 0 = y’, = 1. Hence the sum in (2) is =0
and <2, and no carries beyond the 2° position arise.

Fifth: In the three last observations we assumed y < 0. Let
us now restore the full generality of y = 0. We can then describe

104 Part 2

The instruction-set processor: main-line computers

the equations (1) of 5.8 (valid for y = 0) and (2) above (valid for
y < 0) by a single formula,

20 = Px-1 + Yi
= y’s sign digit for

€401 =0
3
Y [= y without its sign digit for &

§0-x =1

Thus our verbal formulation of (2) applies here, too: We add y’s
sign digit or y without its sign, according to whether £,_;, =0
or 1. All p, are =0 and <1, and the addition of (3) never originates
a carry beyond the 2° position. p; obtains from 2p,, by a right
shift, filling the sign digit with a 0. (Cf. however, Part I1, Table
2 for another sort of right shift that is desirable in explicit form,
i.e. as an order.)

For y = 0, xy is pgy, for y < 0, xy obtains from pg, by injecting
a carry into the right-most stage of Ac and by placing a 1 into
the sign digit in Ac.

Sixth: This procedure applies for x = 0. For x < 0 it should
also be applied, since it makes use of x’s non-sign digits only, but
‘at the end y must be subtracted from the result.

This method of binary multiplication will be illustrated in some
examples in 5.15.

. 5.11. To complete our discussion of the multiplicative organs
of our machine we must return to a consideration of the types
of accumulators mentioned in 5.5. The static accumulator operates
as an adder by simultaneously applying static voltages to its two
inputs—one for each of the two numbers being added. When
steady-state operation is reached the total sum is formed complete
with all carries. For such an accumulator the above discussion is
substantially complete, except that it should be remarked that such
a circuit requires at most 39 rise times to complete a carry.
Actually it is possible that the duration of these successive rises
is proportional to a lower power of 39 than the first one.

Each stage of a dynamic accumulator consists of a binary
counter for registering the digit and a flip-flop for temporary
storage of the carry. The counter receives a pulse if a 1 is to be
added in at that place; if this causes the counter to go from 1
to 0 a carry has occurred and hence the carry flip-flop will be
. set. It then remains to perform the carries. Each flip-flop has
associated with it a gate, the output of which is connected to the
next binary counter to the left. The carry is begun by pulsing all
carry gates. Now a carry may produce a carry, so that the process
needs to be repeated until all carry flip-flops register 0. This can
be detected by means of a circuit involving a sensing tube con-
nected to each carry flip-flop. It was shown in 5.6 that, on the
average, five pulse times (flip-flop reaction times) are required for
the complete carry. An alternative scheme is to connect a gate

s with one address per instruction

tube to each binary counter which will detect whether an incom-
ing carry pulse would produce a carry and will, under this cir-

" cumstance, pass the incoming carry pulse directly to the next

stage. This circuit would require at most 39 rise times for the
completion of the carry. (Actually less, cf. above.)

At the present time the development of a static accumulator
is being concluded. From preliminary tests it seems that it will
add two numbers in about 5 psec and will shift right or left in
about 1 psec. '

We return now to the multiplication operation. In a static
accumulator we order simultaneously an addition of the multi-
plicand with sign deleted or the sign of the multiplicand (cf. 5.10)
and a complete carry and then a shift for each of the 39 steps.
In a dynamic accumulator of the second kind just described we
order in succession an addition of the multiplicand with sign
deleted or the sign of the multiplicand, a complete carry, and a
shift for each of the 39 steps. In a dynamic accumulator of the
first kind we can avoid losing the time required for completing
the carry (in this case an average of 5 pulse times, cf. above) at
each of the 39 steps. We order an addition by the multiplicand
with sign deleted or the sign of the multiplicand, then order one
pulsing of the carry gates, and finally shift the contents of both
the digit counters and the carry flip-flops. This process is repeated
39 times. A simple arithmetical analysis which may be carried out
in a later report, shows that at each one of these intermediate
stages a single carry is adequate, and that a complete set of carries
is needed at the end only. We then carry out the complement
corrections, still without ever ordering a complete set of carry
operations. When all these corrections are completed and after
round-off, described below, we then order the complete carry
mentioned above. '

5.12. It is desirable at this point in the discussion to consider

 rules for rounding-off to n-digits. In order to assess the charac-

teristics of alternative possibilities for such properly, and in par-
ticular the role of the concept of “unbiasedness”, it is necessary
to visualize the conditions under which rounding-off is needed.

Every number x that appears in the computing machine is an
approximation of another number «’, which would have appeared
if the calculation had been performed absolutely rigorously. The
approximations to which we refer here are not those that are
caused by the explicitly introduced approximations of the numeri-
cal-mathematical set-up, e.g. the replacement of a (continuous)
differential equation by a (discrete) difference equation. The effect
of such approximations should be evaluated mathematically by the
person who plans the problem for the machine, and should not
be a direct concern of the machine. Indeed, it has to be handled

Chapter 4

by a mathematician and cannot be handled by the machine, since
its nature, complexity, and difficulty may be of any kind, depend-
ing upon the problem under consideration. The approximations
which concern us here are these: Even the elementary operations
of arithmetic, to which the mathematical approximation-formula-
tion for the machine has to reduce the true (possibly transcenden-
tal) problem, are not rigorously executed by the machine. The
machine deals with numbers of n digits, where n, no matter how
large, has to be a fixed quantity. (We assumed for our machine
40 digits, including the sign, i.e. n = 39.) Now the sum and differ-
ence of two n-digit numbers are again n-digit numbers, but their
product and quotient (in general) are not. (They have, in general,
2n or oo-digits, respectively.) Consequently, multiplication and
division must unavoidably be replaced by the machine by two
different operations which must produce n-digits under all condi-
tions, and which, subject to this limitation, should lie as close as
possible to the results of the true multiplication and division. One
might call them pseudo-multiplication and pseudo-division; how-
ever, the accepted nomenclature terms them as multiplication and
division with round-off. (We are now creating the impression that
addition and subtraction are entirely free of such shortcomings.
This is only true inasmuch as they do not create new digits to
the right, as multiplication and division do. However, they can
create new digits to the left, i.e. cause the numbers to “grow out
of range”. This complication, which is, of course, well known, is
normally met by the planner, by mathematical arrangements and
estimates to keep the numbers “within range”. Since we propose
to have our machine deal with numbers between —1 and 1,
multiplication can never cause them to “grow out of range”.
Division, of course, might cause this complication, too. The plan-
ner must therefore see to it that in every division the absolute
value of the divisor exceeds that of the dividend.)

Thus the round-off is intended to produce satisfactory n-digit
approximations for the product xy and the quotient x/y of two
n-digit numbers. Two things are wanted of the round-off: (1) The
approximation should be good, i.e. its variance from the “true”
xy or x/y should be as small as practicable; (2) The approximation
should be unbiased, i.e. its mean should be equal to the “true”
xy or x/y. .

These desiderata must, however, be considered in conjunction
with some further comments. Specifically: (a) x and y themselves
are likely to be the results of similar round-offs, directly or in-
directly inherent, i.e. x and y themselves should be viewed as
unbiased n-digit approximations of “true” x’ and y’ values; (b) by
talking of “variances” and “means” we are introducing statistical
concepts. Now the approximations which we are here considering

Preliminary discussion of the logical design of an electronic computing instrument 105

are not really of a statistical nature, but are due to the peculiarities
(from our point of view, inadequacies) of arithmetic and of digital
representation, and are therefore actually rigorously and uniquely
determined. It seems, however, in the present state of mathe-
matical science, rather hopeless to try to deal with these matters
rigorously. Furthermore, a certain statistical approach, while not
truly justified, has always given adequate practical results. This
consists of treating those digits which one does not wish to use
individually in subsequent calculations as random variables with
equiprobable digital values, and of treating any two such digits
as statistically independent (unless this is patently false).

These things being understood, we can now undertake to dis-
cuss round-off procedures, realizing that we will have to apply
them to the multiplication and to the division.

Letx = (4; ... §,) andy = (- . . . n,) be unbiased approxi-
mations of x” and y’. Then the “true” xy = (£, . . . §,£,,, - . . &2,)
and the “true” x/y = (w;...w,w, 1 W,q...) (this goes on ad
infinituml) are approximations of x’y’ and x’/y’. Before we discuss
how to round them off, we must know whether the “true” xy and
x/y are themselves unbiased approximations of 'y’ and x'/y’. xy
is indeed an unbiased approximation of x’y’, i.e. the mean of xy
is the mean of x(= x’) times the mean of y(= y’), owing to the
independence assumption which we made above. However, if x
and y are closely correlated, e.g. for x = y, i.e. for squaring, there
is a bias. It is of the order of the mean square of x — «/, i.e. of
the variance of x. Since x has n digits, this variance is about 1/22"
(If the digits of «’, beyond n are entirely unknown, then our original
assumptions give the variance 1/12.22%.) Next, x/y can be written
as x.y~1, and since we have already discussed the bias of the
product, it suffices now to consider the reciprocal y~—1. Now if
y is an unbiased estimate of ’, then y~1 is not an unbiased estimate
of 471, i.e. the mean of y’s reciprocal is not the reciprocal of y’s
mean. The difference is ~y~2 times the variance of y, ie. it is
of essentially the same order as the bias found above in the case
of squaring,

It follows from all this that it is futile to attempt to avoid biases
of the order of magnitude 1/22" or less. (The factor Y, above may
seem to be changing the order of magnitude in question. However,
it is really the square root of the variance which matters and
V(¥ ~ 0.3 is a moderate factor.) Since we propose touse n == 39,
therefore 1/278(~3 x 10~2%) is the critical case. Note that this
possible bias level is 1/23%(~2 X 10-'2) times our last significant
digit. Hence we will look for round-off rules to n digits for
the “true” axy = (& ...&6&1 .. &) and x/y =(w,...
W 0, 1Wsys - - -). The desideratum (1) which we formulated
previously, that the variance should be small, is still valid. The

106 Part 2

The instruction-set processor: main-line computers

desideratum (2), however, that the bias should be zero, need,
according to the above, only be enforced up to terms of the order
1/2%,

The round-off procedures, which we can use in this connection,
fall into two broad classes. The first class is characterized by its
ignoring all digits beyond the nth, and even the nth digit itself,
which it replaces by a 1. The second class is characterized by the
procedure of adding one unit in the (n + L)st digit, performing
the carries which this may induce, and then keeping only the n
first digits.

When applied to a number of the form (7, . . . ¥,V 1¥pip -« -)
(ad infinitum!), the effects of either procedure are easily estimated.
In the first case we may say we are dealing with (v, ..., ¥,_y)
plus a random number of the form (..., 0v Py y¥psp - - -)
i.e. random in the interval 0, 1/2%-1, Comparing with the rounded
off (w7, . . . v,_41), we therefore have a difference random in the
interval —1/2%, 1/2", Hence its mean is 0 and its variance %; + 22"
In the second case we are dealing with (.7, . v,) plus a random
number of the form (0 ... 00v,,,7,,, . . .), i.e. random in the
interval 0, 1/2". The “rounded-off ” value will be (.7, . .. #,) in-
creased by 0 or by 1/2", according to whether the random number
in question lies in the interval 0, 1/27+1 or in the interval 1/2"+,
1/2%. Hence comparing with the “rounded-off” value, we have
a difference random in the intervals 0, 1/27+1, and 0, —1/2"+1,
i.e. in the interval —1/27+1, 1/27+1 Hence its mean is 0 and its
variance (¥,)2%".

If the number to be rounded—off has the form (7, .
VaVusiVniz -+ + Vnsp) (p finite), then these results are somewhat
affected. The order of magnitude of the variance remains the same;
indeed for large p even its relative change is negligible. The mean
difference may deviate from 0 by amounts which are easily esti-
mated to be of the order 1/2% - 1/2? = 1/2™,

In division we have the first situation, x/y = (g ...

Wp@ns1@ps2 - - «), 1:€. p is infinite. In multiplication we have the
secondone, xy = (.&; . . . &ufpsy - - - £an)rie.p = n.Hence for the
division both methods are applicable without modification. In
multiplication a bias of the order of 1/22* may be introduced. We
have seen that it is pointless to insist on removing biases of this
size. We will therefore use the unmodified methods in this case,
too. :
It should be noted that the bias in the case of multiplication
can be removed in various ways. However, for the reasons set forth
above, we shall not complicate the machine by introducing such
corrections.

Thus we have two standard “round-off ” methods, both unbiased
to the extent to which we need this, and with the variances

s with one address per instruction

1/3 - 22", and (¥,,)22", that is, with the dispersions (1/ V3)(1/2%)
= 0.58 times the last digit and (1/2+/3)(1/2") = 0.29 times the
last digit. The first one requires no carry facilities, the second one
requires them.

Inasmuch as we propose to form the product 'y’ in the accu-
mulator, which has carry facilities, there is no reason why we
should not adopt the rounding scheme described above which has
the smaller dispersion, i.e. the one which may induce carries. In
the case, however, of division we wish to avoid schemes leading
to carries since we expect to form the quotient in the arithmetic
register, which does not permit of carry operations. The scheme
which we accordingly adopt is the one in which w, is replaced
by 1. This method has the decided advantage that it enables us
to write down the approximate quotient as soon as we know its
first (n — 1) digits. It will be seen in 5.14 and 6.6.4 below that
our procedure for forming the quotient of two numbers will always
lead to a result that is correctly rounded in accordance with the
decisions just made. We do not consider as serious the fact that
our rounding scheme in the case of division has a dispersion twice
as large as that in multiplication since division is a far less frequent
operation.

A final remark should be made in connection with the possible,
occasional need of carrying more than n = 39 digits. Our logical
control is sufficiently flexible to permit treating k (=2, 3, .. .)
words as one number, and thus effecting n = 39k. In this case the
round-off has to be handled differently, cf. Chapter 9, Part IL. The
multiplier produces all 78 digits of the basic 39 by 39 digit multi-
plication: The first 39 in the Ac, the last 39 in the AR. These must
then be manipulated in an appropriate manner. (For details, cf.
6.6.3 and 9.9-9.10, Part I1.) The divider works for 39 digits only:
In forming x/y, it is necessary, even if x and y are available to
39k digits, to use only 39 digits of each, and a 39 digit result will
appear. It seems most convenient to use this result as the first step
of a series of successive approximations. The successive improve-
ments can then be obtained by various means. One way consists
of using the well known iteration formula (cf. 5.4). For k = 2 one
such step will be needed, for k = 3, 4, two steps, for k = 5, 6,
7, 8 three steps, etc. An alternative procedure is this: Calculate
the remainder, using the approximate, 39 digit, quotient and the
complete, 39 digit, divisor and dividend. Divide this again by
the approximate, 39 digit, divisor, thus obtaining essentially the
next 39 digits of the quotient. Repeat this procedure until the full
39k desired digits of the quotient have been obtained.

5.13. We might mention at this time a complication which
arises when a floating binary point is introduced into the machine.
The operation of addition which usually takes at most Yo of a

Chapter 4 | Preliminary discussion of the logical design of an electronic computing instrument 107

multiplication time becomes much longer in a machine with
floating binary since one must perform shifts and round-offs as well
as additions. It would seem reasonable in this case to place the
time of an addition as about ¥ to ¥, of a multiplication. At this
rate it is clear that the number of additions in a problem is as
important a factor in the total solution time as are the number
of multiplications. (For further details concerning the floating
binary point, cf. 6.6.7.)

5.14. We conclude our discussion of the arithmetic unit with
a description of our method for handling the division operation.
To perform a division we wish to store the dividend in SR, the
partial remainder in Ac and the partial quotient in AR. Before
proceeding further let us consider the so-called restoring and
non-restoring methods of division. In order to be able to make
certain comparisons, we will do this for a general base m = 2,
3.

Assume for the moment that divisor and dividend are both
positive. The ordinary process of division consists of subtracting
from the partial remainder (at the very beginning of the process
this is, of course, the dividend) the divisor, repeating this until
the former becomes smaller than the latter. For any fixed positional
value in the quotient in a well-conducted division this need be
done at most m — 1 times. If, after preciselyk = 0,1,..., m -1
repetitions of this step, the partial remainder has indeed become
less than the divisor, then the digit k is put in the quotient (at
the position under consideration), the partial remainder is shifted
one place to the left, and the whole process is repeated for the
next position, etc. Note that the above comparison of sizes is only
neededatk = 0,1, ..., m — 2, i.e. before step 1 and after steps
1, ..., m— 2 If the value k = m — 1, i.e. the point after step
m — 1, is at all reached in a well-conducted division, then it may
be taken for granted without any test, that the partial remainder
has become smaller than the divisor, and the operations on the
position under consideration can therefore be concluded. (In the
binary system, m = 2, there is thus only one step, and only one
comparison of sizes, before this step.) In this way this scheme,
known as the restoring scheme, requires a maximum of m — 1 com-
parisons and utilizes the digits 0, 1, ..., m — 1in each place in the
quotient. The difficulty of this scheme for machine purposes is that
usually the only economical method for comparing two numbers
as to size is to subtract one from the other. If the partial remainder
7, were less than the dividend d, one would then have to add d
back into r, — d in order to restore the remainder. Thus at every
stage an unnecessary operation would be performed. A more sym-
metrical scheme is obtained by not restoring. In this method (from
here on we need not assume the positivity of divisor and dividend)

one compares the signs of r, and d; if they are of the same sign,
the dividend is repeatedly subtracted from the remainder until
the signs become opposite; if they are opposite, the dividend is
repeatedly added to the remainder until the signs again become
like. In this scheme the digits that may occur in a given place
in the quotient are evidently *1, £2, ..., =(m — 1), the posi-
tive digits corresponding to subtractions and the negative ones to
additions of the dividend to the remainder.

Thus we have 2(m — 1) digits instead of the usual m digits.
In the decimal system this would mean 18 digits instead of 10.
This is a redundant notation. The standard form of the quotient
must therefore be restored by subtracting from the aggregate of
its positive digits the aggregate of its negative digits. This requires
carry facilities in the place where the quotient is stored.

We propose to store the quotient in AR, which has no carry
facilities. Hence we could not use this scheme if we were to
operate in the decimal system. .

The same objection applies to any base m for which the digital
representation in question is redundant—i.e. when 2(m — 1) > m.
Now 2(m — 1) > m whenever m > 2, but 2(m — 1) =m for
m = 2. Hence; with the use of a register which we have so far
contemplated, this division scheme is certainly excluded from the
start unless the binary system is used.

Let us now investigate the situation in the binary system. We
inquire if it is possible to obtain a quasi-quotient by using the
non-restoring scheme and by using the digits 1, 0 instead of 1,
—1. Or rather we have to ask this question: Does this quasi-
quotient bear a simple relationship to the true quotient?

Let us momentarily assume this question can be answered
affirmatively and describe the division procedure. We store the
divisor initially in Ac, the dividend in SR and wish to form the
quotient in AR. We now either add or subtract the contents of
SR into Ac, according to whether the signs in Ac and SR are
opposite or the same, and insert correspondingly a 0 or 1 in the
right-hand place of AR. We then shift both Ac and AR one place
left, with electronic shifters that are parts of these two aggregates.

At this point we interrupt the discussion to note this: multipli-
cation required an ability to shift right in both Ac and AR (cf.
5.8). We have now found that division similarly requires an ability
to shift left in both Ac and AR. Hence both organs must be able to
shift both ways electronically. Since these abilities have to be
present for the implicit needs of multiplication and division, it is just
as well to make use of them explicitly in the form of explicit orders.
These are the orders 20, 21 of Table 1, and of Table 2, Part IL. It will,
however, turn out to be convenient to arrange some details in the
shifts, when they occur explicitly under the control of those orders,

108 Part 2

The instruction-set processor: main-line computers

differently from when they occur implicitly under the control of a
multiplication or a division. (For these things, cf. the discussion of
the shifts near the end of 5.8 and in the third remark below on one
hand, and in the third remark in 7.2, Part 11, on the other hand.)

Let us now resume the discussion of the division. The process
described above will have to be repeated as many times as the
number of quotient digits that we consider appropriate to produce
in this way. This is likely to be 39 or 40; we will determine the
exact number further below.

In this process we formed digits§; = Oor1 for the quotient, when
the digit should actually have been§; = —lorl,with§ = 2§ — 1.
Thus we have a difference between the true quotient 2 (based on
the digits £;) and the quasi-quotient 2’ (based on the digits £;), but
at the same time a one-to-one connection. It would be easy to
establish the algebraical expression for this connection between z’
and z directly, but it seems better to do this as part of a discussion
which clarifies all other questions connected with the process of
division at the same time.

We first make some general remarks:

First: Let x be the dividend and y the divisor. We assume, of
course, —1 =x <1, -1 =y <L Itwillbe found that our pres-
ent process of division is entirely unaffected by the signs of x and
y, hence no further restrictions on that score are required.

On the other hand, the quotient z = x/y must also fulfil
—1=2z< L. It seems somewhat simpler although this is by no
means necessary, to exclude for the purposes of this discussion

z= —1, and to demand |z| < 1. This means in terms of the
dividend x and the divisor y that we exclude x = —y and assume
Izl <y.

Second: The division takes place in n steps, which correspond
to the n digits &, . . ., &, of the pseudo-quotient #', n being yet to
be determined (presumably 39 or 40). Assume that the k — 1 first
steps (k = 1, . . . , n) have already taken place, having produced
the k — 1 first digits: &, . . ., &g and that we are now at the
kth step, involving production of the kth digit; £,. Assume
furthermore, that Ac now contains the quantity ,_;, the result
of the k — 1 first steps. (This is the (k — L)st partial remainder.
For k = 1 clearly ry = x.) We then form r;: 21,4 F Y, accord-
ing to whether the signs of r,_, and y do or do not agree, i.e.

r, = 2r, By
{is — if the signs of 7,_, and y do agree
is + if the signs of r,_, and y do not agree

Let us now see what carries may originate in this procedure.
We can argue as follows: |r,| < |y| is true for h = 0|7 =

Section 1 | Processors with one address per instruction

lz| < |y|), and if it is true for h = k — 1, then (4) extends it to
h = k also, since r,_, and By have opposite signs. The last point
may be elaborated a little further: because of the opposite signs

Ire] = 2|mg| — lyl <20yl — ly! = lyl

Hencewehavealways |r,| < |y|,and thereforeafortiori |r,| <1,
ie. —1<r <L

Consequently in equation (4) one summand isnecessarily > —2,
<2, the other is =1, <1, and the sum is > —1, <1. Hence we
may carry out the operations of (4) modulo 2, disregarding any
possibilities of carries beyond the 29 position, and the resulting
r, will be automatically correct (in the range > -1, <71).

Third: Note however that the sign of r,_;, which plays an
important role in (4) above, is only then correctly determinable
from the sign digit, if the number from which it is derived is = —1,
< 1. (Cf. the discussion in 5.7.) This requirement however is met,
as we saw above, by r,_,, but not necessarily by 2r,_,. Hence the
sign of r,_, (i.e. its sign digit) as required by (4), must be sensed
before r,_, is doubled.

This being understood, the doubling of r,,_, may be performed
as a simple left shift, in which the left-most digit (the sign digit)
is allowed to be lost—this corfesponds to the disregarding of
carries beyond the 2° position, which we recognized above as being
permissible in (4). (Ct. however, Part I1, Table 2, for another sort
of left shift that is desirable in explicit form, i.. as an order.)

Fourth: Consider now the precise implication of (4) above.
& =1 or 0 corresponds to B = — or +, respectively. Hence
(4) may be written

1 = 21y + (1 — 28)y
ie.

2-—krk - 2—0‘—1)"1‘:—1 + (2—k — 2—-(k—1)£;c)y

Summing over k =1, ..., n gives
9y =z + {(1 — gy =) gt } y
k=1 \
ie.

n
X = (- 14+ 2 2~(k—1>§;c + 2—n) y + 2-1.,"
k=1 ,

This makes it clear, thatZ= —1 + $}_,2~%Dg, 4 27" corre:
sponds to true quotient z = x/y and 27"r,, with an absolute value
<27*|y| = 27" tothe remainder. Hence, if we disregard the tern
—1 for a moment £,&, ..., £, 1 are then 41 first digits o
what may be used as a true quotient, the sign digit being par
of this sequence.

Chapter 4

Fifth: It we do not wish to get involved in more complicated
round-off procedures which exceed the immediate capacity of the
only available adder Ac, then the above result suggests that we
shouldputn + 1 = 40,n = 39.The §, . . . , £3; are then 39 digits
of the quotient, including the sign digit, but not including the
right-most digit.

The right-most digit is taken care of by placing a 1 into the
right-most stage of Ac.

At this point an additional argument in favor of the procedure
that we have adopted here becomes apparent. The procedure
coincides (without a need for any further corrections) with the
second round-off procedure that we discussed in 5.12.

There remains the term —1. Since this applies to the final
result, and no right shifts are to follow, carries which might go
beyond the 29 position may be disregarded. Hence this amounts
simply to changing the sign digit of the quotient Z: replacing 0
or 1 by 1 or 0, respectively.

This concludes our discussion of the division scheme. We wish,

Preliminary discussion of the logical design of an electronic computing instrument 109

however, to re-emphasize two very distinctive features which it
possesses: ‘

First: This division scheme applies equally for any combina-
tions of signs of divisor and dividend. This is a characteristic of
the non-restoring division schemes, but it is not the case for any
simple known multiplication scheme. It will be remembered, in
particular, that our multiplication procedure of 5.9 had to contain
special correcting steps for the cases where either or both factors
are negative.

Second: This division scheme is practicable in the binary sys-
tem only; it has no analog for any other base.

This method of binary division will be illustrated on some
examples in 5.15. B

5.15. We give below some illustrative examples of the opera-
tions of binary arithmetic which were discussed in the preceding
sections. . '

Although it presented no difficulties or ambiguities, it seems

best to begin with an example of addition.)

Binary notation

Augend o 0.010110011

Addend o 0.011010111
Sum. ... e 0.110001010
(Carries) 1111 111

In what follows we will not show the carries any more.
We form the negative of a number (cf. 5.7):

Binary notation
0.101110100

Complement: 1.010601011
1

1.010001100

A subtraction {cf. 5.7):

Binary notation

Subtrahend 0.011010111
Minuend 0.110001010
Complement of subtrahend 1.100101000

1
Difference 0.010110011

Decimal notation (fractional form)

179/512
215/512

394/512

Decimal notation (fractional form)
372/512

-1 +140/512

Decimal notation (fractional form)
215/512
394/512

-1 +297/512
179/512

'

110 Part 2 | The instruction-set pr : main-line

Some multiplications (cf. 5.8 and 5.9):

Binary notation

Multiplicando i
Multiplier.

Section 1 | Processors with one address per instruction

Decimal notation (fractional form)
5/8
3/8

Product

Multiplicand. oo
Multiplier.

15/64

Decimal notation (fractional form)
-3/8
-5/8

Correction 11

1 1

Correction 2§ (Complement of the multiplicand).

1.110111
0.010
1

A division (cf. 5.14):

Binary notation

DIVISOr. . e s
Dividend

0.001111

1.011000
0.001111

15/64

Decimal notation (fractional form)

- ~5/8
15/64

QD§

0.011110
1.011000

1.110110

1.101100
0.100111
1

0.010100

0.101000
1.011000

0.000000

0.000000
1.011000

1.011000

0.110000
0.100111
1

1.011000

Quotient (uncorrected).
" (corrected)

0.10011
1.100111

Z1 + 39/64 = —25/64

4 For the sign of the multiplicand.

§ For the sign of the multiplier.

§ Quotient digit.

Chapter 4

Note that this deviates by Y,, i.e. by one unit of the right-most
position, from the correct result —3;. This is a consequence of

our round-off rule, which forces the right-most digit to be 1 under .

all conditions. This occasionally produces results with unfamiliar
and even annoying aspects (e.g. when quotients like 0:y or y:y
are formed), but it is nevertheless unobjectionable and self-
consistent on the basis of our general principles.

6. The control

6.1. It has already been stated that the computer will contain
an organ, called the control, which can automatically execute the
orders stored in the Selectrons. Actually, for a reason stated in
6.3, the orders for this computer are less than half as long as a
forty binary digit number, and hence the orders are stored in the
Selectron memory in pairs.

Let us consider the routine that the control performs in direct-
ing a computation. The control must know the location in the
Selectron memory of the pair of orders to be executed. It must
direct the Selectrons to transmit this pair of orders to the Selectron
register and then to itself. It must then direct the execution of
the operation specified in the first of the two orders. Among these
orders we can immediately describe two major types: An order
of the first type begins by causing the transfer of the number,
which is stored at a specified memory location, from the Selectrons
to the Selectron register. Next, it causes the arithmetical unit to
perform some arithmetical operations on this number (usually in
conjunction with another number which is already in the arith-
metical unit), and to retain the resulting number in the arith-
metical unit. The second type order causes the transfer of the
number, which is held in the arithmetical unit, into the Selectron
register, and from there to a specified memory location in the
Selectrons. (It may also be that this latter operation will permit
a direct transfer from the arithmetical unit into the Selectrons.)
An additional type of order consists of the transfer orders of 3.5.
Further orders control the inputs and the outputs of the machine.
The process described at the beginning of this paragraph must
then be repeated with the second order of the order pair. This
entire routine is repeated until the end of the problem.

6.2. It is clear from what has just been stated that the control
must have a means of switching to a specified location in the
Selectron memory, for withdrawing both numbers for the compu-
tation and pairs of orders. Since the Selectron memory (as tenta-
tively planned) will hold 212 = 4,096 forty-digit words (a word is
either a number or a pair of orders), a twelve-digit binary number
suffices to identify a memory location. Hence a switching mecha-

Preliminary discussion of the logical design of an electronic computing instrument 111

nism is required which will, on receiving a twelve-digit binary
number, select the corresponding memory location.

The type of circuit we propose to use for this purpose is known
as a decoding or many-one function table. It has been developed
in various forms independently by J. Rajchman [Rajchman, 1943]
and P. Crawford [Crawford, 19??]. It consists of n flip-flops which
register an n-digit binary number. It also has a maximum of 2"
output wires. The flip-flops activate a matrix in which the inter-
connections between input and output wires are made in such a
way that one and only one of 2" output wires is selected (i.e. has
a positive voltage applied to it). These interconnections may be
established by means of resistors or by means of non-linear ele-
ments (such as diodes or rectifiers); all these various methods are
under investigation. The Selectron is so designed that four such
function table switches are required, each with a three digit entry
and eight (2%) outputs. Four sets of eight wires each are brought
out of the Selectron for switching purposes, and a particular loca-
tion is selected by making one wire positive with respect to the
remainder. Since all forty Selectrons are switched in parallel, these
four sets of wires may be connected directly to the four function
table outputs.

6.3. Since most computer operations involve at least one
number located in the Selectron memory, it is reasonable to adopt
a code in which twelve binary digits of every order are assigned
to the specification of a Selectron location. In those orders which
do not require a number to be taken out of or into the Selectrons
these digit positions will not be used.

Though it has not been definitely decided how many operations
will be built into the computer (i.e. how many different orders
the control must be able to understand), it will be seen presently
that there will probably be more than 25 but certainly less than

. 28, For this reason it is feasible to assign 6 binary digits for the

order code. It thus turns out that each order must contain eighteen
binary digits, the first twelve identifying a memory location and
the remaining six specifying an operation. It can now be explained
why orders are stored in the memory in pairs. Since the same
memory organ is to be used in this computer for both orders and
numbers, it is efficient to make the length of each about equivalent.
But numbers of eighteen binary digits would not be sufficiently
accurate for problems which this machine will solve. Rather, an
accuracy of at least 1010 or 2-33 is required. Hence it is preferable
to make the numbers long enough to accommodate two orders.

As we pointed out in 2.3, and used in 4.2 et seq. and 5.7 et
seq., our numbers will actually have 40 binary digits each. This
allows 20 binary digits for each order, i.e. the 12 digits that specify
a memory location, and 8 more digits specifying the nature of the

112 Part 2 | The instruction-set processor: main-line computers

operation (instead of the minimum of 6 referred to above). It is
convenient, as will be seen in 6.8.2. and Chapter 9, Part II, to
group these binary digits into tetrads, groups of 4 binary digits.
Hence a whole word consists of 10 tetrads, a half word or order
of 5 tetrads, and of these 3 specify a memory location and the
remaining 2 specify the nature of the operation. Outside the
machine each tetrad can be expressed by a base 16 digit. (The
base 16 digits are best designated by symbols of the 10 decimal
digits O to 9, and 6 additional symbols, e.g. the letters a to f. Cf.
Chapter 9, Part IL.) These 16 characters should appear in the
typing for and the printing from the machine. (For further details
of these arrangements, cf. loc. cit. above.)

The specification of the nature of the operation that is involved
in an order occurs in binary form, so that another many-one or
decoding function is required to decode the order. This function
table will have six input flip-flops (the two remaining digits of the
order are not needed). Since there will not be 64 different orders,
not all 64 outputs need be provided. However, it is perhaps
worthwhile to connect the outputs corresponding to unused order
possibilities to a checking circuit which will give an indication
whenever a code word unintelligible to the control is received
in the input flip-flops.

The function table just described energizes a different output
wire for each different code operation. As will be shown later,
many of the steps involved in executing different orders overlap.
(For example, addition, multiplication, division, and going from
the Selectrons to the register all include transferring a number from
the Selectrons to the Selectron register.) For this reason it is
perhaps desirable to have an additional set of control wires, each
of which is activated by any particular combination of different
code digits. These may be obtained by taking the output wires
of the many-one function table and using them to operate tubes
which will in tumn operate a one-many (or coding) function table,
Such a function table consists of a matrix as before, but in this
case only one of the input wires are activated. This particular table
may be referred to as the recoding function table.

The twelve flip-flops operating the four function tables used
in selecting a Selectron position, and the six flip-flops operating
the function table used for decoding the order, are referred to as
the Function Table Register, FR.

6.4. Let us consider next the process of transferring a pair
of orders from the Selectrons to the control. These orders first go
into SR. The order which is to be used next may be transferred
directly into FR. The second order of the pair must be removed
from SR (since SR may be used when the first order is executed),
but cannot as yet be placed in FR. Hence a temporary storage

Section 1 | Processors with one addréss per instruction

is provided for it. The storage means is called the Control Register,
CR, and consists of 20 (or possibly 18) flip-flops, capable of re-
ceiving a number from SR and transmitting a number to FR.

As already stated (6.1), the control must know the location of
the pair of orders it is to get from the Selectron memory. Normally
this location will be the one following the location of the two
orders just executed. That is, until it receives an order to do
otherwise, the control will take its orders from the Selectrons in
sequence. Hence the order location may be remembered in a
twelve stage binary counter (one capable of counting 2'%) to which
one unit is added whenever a pair of orders is executed. This
counter is called the Control Counter, CC.

The details of the process of obtaining a pair of orders from
the Selectron are thus as follows: The contents of CC are copied
into FR, the proper Selectron location is selected, and the contents
of the Selectrons are transferred to SR. FR is then cleared, and
the contents of SR are transferred to it and CR. CC is advanced
by one unit so the control will be prepared to select the next pair
of orders from the memory. (There is, however, an exception from
this last rule for the so-called transfer orders, cf. 3.5. This may
feed CC in a different manner, cf. the next paragraph below.) First
the order in FR is executed and then the order in CR is transferred
to FR and executed. It should be noted that all these operations
are directed by the control itself—not only the operations specified
in the control words sent to FR, but also the automatic operations
required to get the correct orders there.

Since the method by means of which the control takes order
pairs in sequence from the memory has been described, it only
remains to consider how the control shifts itself from one sequence
of control orders to another in accordance with the operations
described in 3.5. The execution of these operations is relatively
simple. An order calling for one of these operations contains the
twelve digit specification of the position to which the control is
to be switched, and these digits will appear in the left-hand twelve
flip-flops of FR. All that is required to shift the control is to transfer
the contents of these flip-flops to CC. When the control goes to
the Selectrons for the next pair of orders it will then go to the
Jocation specified by the number so transferred. In the case of the
unconditional transfer, the transfer is made automatically; in the
case of the conditional transfer it is made only if the sign counter
of the Accumulator registers zero.

6.5. In this report we will discuss only the general method
by means of which the control will execute specific orders, leaving
the details until later. It has already been explained (5.5) that when
a circuit is to be designed to accomplish a particular elementary
operation (such as addition), a choice must be made between a

Chapter 4

static type and a dynamic type circuit. When the design of the
control is considered, this same choice arises. The function of the
control is to direct a sequence of operations which take place in
the various circuits of the computer (including the circuits of the
control itself). Consider what is involved in directing an operation.
The control must signal for the operation to begin, it must supply
whatever signals are required to specify that particular operation,
and it must in some way know when the operation has been
completed so that it may start the succeeding operation. Hence
the control circuits must be capable of timing the operations. It
should be noted that timing is required whether the circuit per-
forming the operation is static or dynamic. In the case of a static
type circuit the control must supply static control signals for a
period of time sufficient to allow the output voltages to reach the
steady-state condition. In the case of a dynamic type circuit the
control must send various pulses at proper intervals to this circuit.
If all circuits of a computer are static in character, the control
timing circuits may likewise be static, and no pulses are needed
in the system. However, though some of the circuits of the com-
puter we are planning will be static, they will probably not all
"be so, and hence pulses as well as static signals must be supplied
by the control to the rest of the computer. There are many advan-
tages in deriving these pulses from a central source, called the
clock. The timing may then be done either by means of counters
counting clock pulses or by means of electrical delay lines (an RC
circuit is here regarded as a simple delay line). Since the timing
of the entire computer is governed by a single pulse source, the
computer circuits will be said to operate as a synchronized system.
The clock plays an important role both in detecting and in
localizing the errors made by the computer. One method of check-
ing which is under consideration is that of having two identical
computers which operate in parallel and automatically compare
each other’s results. Both machines would be controlled by the
same clock, so they would operate in absolute synchronism. It is
not necessary to compare every flip-flop of one machine with the
corresponding flip-flop of the other. Since all numbers and control
words pass through either the Selectron register or the accumu-
lator soon before or soon after they are used, it suffices to check
the flip-flops of the Selectron register and the flip-flops of the
accumulator which hold the number registered there; in fact, it
seems possible to check the accumulator only (cf. the end of 6.6.2).
The checking circuit would stop the clock whenever a difference
appeared, or stop the machine in a more direct manner if an
asynchronous system is used. Every flip-flop of each computer will
be located at a convenient place. In fact, all neons will be located
on one panel, the corresponding neons of the two machines being

Preliminary discussion of the logical design of an electronic computing instrument 113

placed in parallel rows so that one can tell at a glance (after the
machine has been stopped) where the discrepancies are.

The merits of any checking system must be weighed against
its cost. Building two machines may appear to be expensive, but
since most of the cost of a scientific computer lies in development
rather than production, this consideration is not so important as
it might seem. Experience may show that for most problems the
two machines need not be operated in parallel. Indeed, in most
cases purely mathematical, external checks are possible: Smooth-
ness of the results, behavior of differences of various types, validity
of suitable identities, redundant calculations, etc. All of these
methods are usually adequate to disclose the presence or absence
of error in toto; their drawback is only that they may not allow
the detailed diagnosing and locating of errors at all or with ease.
When a problem is run for the first time, so that it requires special
care, or when an error is known to be present, and has to be
located—only then will it be necessary as a rule, to use both
machines in parallel. Thus they can be used as separate machines
most of the time. The essential feature of such a method of check-
ing lies in the fact that it checks the computation at every point
(and hence detects transient errors as well as steady-state ones)
and stops the machine when the error occurs so that the process
of localizing the fault is greatly simplified. These advantages are
only partially gained by duplicating the arithmetic part of the
computer, or by following one operation with the complement
operation (multiplication by division, etc.), since this fails to check
either the memory or the control (which is the most complicated,
though not the largest, part of the machine).

The method of localizing errors, either with or without a dupli-
cate machine, needs further discussion. It is planned to design all
the circuits (including those of the control) of the computer so
that if the clock is stopped between pulses the computer will
retain all its information in flip-flops so that the computation may
proceed unaltered when the clock is started again. This principle
has already demonstrated its usefulness in the ENIAC, This makes
it possible for the machine to compute with the clock operating
at any speed below a certain maximum, as long as the clock gives
out pulses of constant shape regardless of the spacing between
pulses. In particular, the spacing between pulses may be made
indefinitely large. The clock will be provided with a mode of
operation in which it will emit a single pulse whenever instructed
to do so by the operator. By means of this, the operator can cause
the machine to go through an operation step by step, checking
the results by means of the indicating-lamps connected to the
flip-flops. It will be noted that this design principle does not
exclude the use of delay lines to obtain delays as long as these

114 Part 2

The instruction-set pre : main-line puters

are only used to time the constituent operations of a single step,
and have no part in determining the machine’s operating repeti-
tion rate. Timing coincidences by means of delay lines is excluded
since this requires a constant pulse rate.

6.6. The orders which the control understands may be divided
into two groups: Those that specify operations which are per-
formed within the computer and those that specify operations
involved in getting data into and out of the computer. At the

present time the internal operations are more completely planned

than the input and output operations, and hence they will be
discussed more in detail than the latter (which are treated briefly
in 6.8). The internal operations which have been tentatively
adopted are listed in Table 1. It has already been pointed out that
not all of these operations are logically basic, but that many can
be programmed by means of others. In the case of some of these
operations the reasons for building them into the control have
already been given. In this section we will give reasons for building
the other operations into the control and will explain in the case
of each operation what the control must do in order to exe-
cute it.

In order to have the precise mathematical meaning of the
symbols which are introduced in what follows clearly in mind,
the reader should consult the table at the end of the report for
each new symbol, in addition to the explanations given in the text.

6.6.1. Throughout what follows S(x) will denote the memory
location No. x in the Selectron. Accordingly the x which appears
in S(x) is a 12-digit binary, in the sense of 6.2. The eight addition
operations [S(x) = Ac+, S(x) > Ac—, S(x) > Ah+, S(x) > Ah—,
S(x)— Ac + M, S(x)—> Ac — M, S(x)— Ah + M, S(x)— Ah — M]
involves the following possible four steps:

First: Clear SR and transfer into it the number at S(x).

Second: Clear Ac if the order contains the symbol ¢; do not
clear Ac if the order contains the symbol h.

Third: Add the number in SR or its negative (i.e. in our present
system its complement with respect to2') into Ac. If the order does
not contain the symbol M, use the number in SR or its negative
according to whether the order contains the symbol + or —. If the
order contains the symbol M, use the number in SR or its negative

according to whether the sign of the number in SR and the symbol -

+ or — in the order do or do not agree.

Fourth: Perform a complete carry. Building the last four addi-
tion operations (those containing the symbol M) into the control
is fairly simple: It calls only for one extra comparison (of the sign
in SR and the + or — in the order, cf. the third step above), and
it requires, therefore, only a few tubes more than required for the
first four addition operations (those not containing the symbol M).

Section 1 | Processors with one address per instruction

These facts would seem of themselves to justify adding the opera-
tions in question: plus and minus the absolute value. But it should
be noted that these operations can be programmed out of the other
operations of Table 1 with correspondingly few orders (three for
absolute value and five for minus absolute value), so that some
further justification for building them in is required. The absolute
value order is frequently in connection with the orders L and R
(see 6.6.7), while the minus absolute value order makes the detec-
tion of a zero very simple by merely detecting the sign of — | N|.
(If —|N| =0, then N = 0.)

6.6.2. The operation of S(x) > R involves the following two
steps:

First: Clear SR, and transfer S(x) to it.

Second: Clear AR and add the number in the Selectron register
into it. The operation of R — Ac merits more detailed discussion,
since there are alternative ways of removing numbers from AR.
Such numbers could be taken directly to the Selectrons as well
as into Ac, and they could be transferred to Ac in parallel, in
sequence, or in sequence parallel. It should be recalled that while
most of the numbers that go into AR have come from the Selec-
trons and thus need not be returned to them, the result of a
division and the right-hand 39 digits of a product appear in AR.
Hence while an operation for withdrawing a number from AR is
required, it is relatively infrequent and therefore need not be
particularly fast. We are therefore considering the possibility of
transferring at least partially in sequence and of using the shifting
properties of Ac and of AR for this. Transferring the number to
the Selectron via the accumulator is also desirable if the dual
machine method of checking is employed, for it means that even
if numbers are only checked in their transit through the accumu-
lator, nevertheless every number going into the Selectron is
checked before being placed there.

6.6.3. The operation S(x) X R —> Ac involves the following six
steps:

First: Clear SR and transfer S(x) (the multiplicand) into it

Second: Thirty-nine steps, each of which consist of the twc
following parts: (a) Add (or rather shift) the sign digit of SR intc
the partial product in Ac, or add all but the sign digit of SR intc
the partial product in Ac—depending upon whether the right-mos!
digit in AR is 0 or 1—and effect the appropriate carries. (b) Shif
Ac and AR to the right, §ll the sign digit of Ac with a 0 and the
digit of AR immediately right of the sign digit (positional value
2-1) with the previously right-most digit of Ac. (There are way.
to save time by merging these two operations when the right-mos
digit in Ar is 0, but we will not discuss them here more fully.

Third: If the sign digit in SR is 1 (i.e. —), then inject a carr;

Chapter 4

into the right-most stage of Ac and place a 1 into the sign digit
of Ac.

Fourth: I the original sign digit of AR is 1 (i.e. —), then sub-
tract the contents of SR from Ac.

Fifth: If a partial carry system was employed in the main
process, then a complete carry is necessary at the end.

Sixth: The appropriate round-off must be effected. (Cf. Chapter
9, Part II, for details, where it is also explained how the sign digit
of the Arithmetic register is treated as part of the round-off
process.)

It will be noted that since any number held in Ac at the begin-
ning of the process is gradually shifted into AR, it is impossible
to accumulate sums of products in Ac without storing the various
products temporarily in the Selectrons. While this is undoubtedly
a disadvantage, it cannot be eliminated without constructing an
extra register, and this does not at this moment seem worthwhile,

On the other hand, saving the right-hand 39 digits of the answer
is accomplished with very little extra equipment, since it means
connecting the 2739 stage of Ac to the 271 stage of AR during the
shift operation. The advantage of saving these digits is that it
simplifies the handling of numbers of any number of digits in the
computer (cf. the last part of 5.12). Any number of 39k binary
digits (where k is an integer) and sign can be divided into k parts,
each part being placed in a separate Selectron position. Addition
and subtraction of such numbers may be programmed out of a
series of additions or subtractions of the 39-digit parts, the carry-
over being programmed by means of Cc— §(x) and Cc’— S(x)
operations. (If the 2° stage of Ac registers negative after the addi-
tion of two 39-digit parts, a carry-over has taken place and hence
2732 must be added to the sum of the next parts.) A similar proce-
dure may be followed in multiplication if all 78 digits of the
product of the two 39-digit parts are kept, as is planned. (For the
details, cf. Chapter 9, Part IL) Since it would greatly complicate
the computer to make provision for holding and using a 78 digit

dividend, it is planned to program 39k digit division in one of the '

ways described at the end of 5.12.

6.6.4. The operation of division Ac + S(x) — R involves the
following four steps:

First: Clear SR and transfer S(x) (the divisor) into it.

Second: Clear AR.

Third: Thirty-nine steps, each of which consists of the following
three parts: (a) Sense the signs of the contents of Ac (the partial
remainder) and of SR, and sense whether they agree or not. (b)
Shift Ac and AR left. In this process the previous sign digit of
Ac is lost. Fill the right-most digit of Ac (after the shift) with a
0, and the right-most digit of AR (before the shift) with 0 or 1,

Preliminary discussion of the logical design of an electronic computing instrument 115

depending on whether there was disagreement or agreement in
(a)- (¢) Add or subtract the contents of SR into Ac, depending on
the same alternative as above.

Fourth: Fill the right-most digit of AR with a 1, and change
its sign digit.

For the purpose of timing the 39 steps involved in division a
six-stage counter (capable of counting to 26 = 64) will be built
into the control. This same counter will also be used for timing
the 39 steps of multiplication, and possibly for controlling Ac when
a number is being transferred between it and a tape in either
direction (see 6.8.). \

8.6.5. The three substitution operations [At — S(x), Ap —> S(x),
and Ap’ — S(x)] involve transferring-all or part of the number held
in Ac into the Selectrons. This will be done by means of gate tubes
connected to the registering flip-flops of Ac. Forty such tubes are
needed for the total substitutions, At —> S(x). The partial substitu-
tion Ap — S(x) and Ap’ — S(x) requires that the left-hand twelve
digits of the number held in Ac be substituted in the proper places
in the left-hand and right-hand orders, respectively. This may be
done by means of extra gate tubes, or by shifting the number in
Ac and using the gate tubes required for At — S(x). (This scheme
needs some additional elaboration, when the order directing and
the order suffering the substltutlon are the two successive halves
of the same word; i.e. when the latter is already in FR at the time
when the former becomes operative in CR, so that the substitution
effected in the Selectrons comes too late to alter the order which
has already reached CR, to become operative at the next step in
FR. There are various ways to take care of this complication, either
by some additional equipment or by appropriate prescriptions in
coding. We will not discuss them here in more detail, since the
decisions in this respect are still open.)

The importance of the partial substitution operations can
hardly be overestimated. It has already been pointed out (3.3) that
they allow the computer to perform operations it could not other-
wise conveniently perform, such as making use of a function table
stored in the Selectron memory. Furthermore, these operations
remove a very sizeable burden from the person coding problems,
for they make possible the coding of classes of problems in contrast
to coding each individual problem separately. Because Ap — S(x)
and Ap’ — S(x) are available, any program sequence may be stated
in general form (that is, without Selectron location designations
for the numbers being operated on) and the Selectron locations
of the numbers to be operated on substituted whenever that se-
quence is used. As an example, consider a general code for nth
order integration of m total differential equations for p steps of
independent variable ¢, formulated in advance. Whenever a prob-

116 Part 2 | The instruction-set pr

macroas

1

: main-line puters

lem requiring this rule is coded for the computer, the general
integration sequence can be inserted into the statement of the
problem along with coded instructions for telling the sequence
where it will be located in the memory [so that the proper S(x)
designations will be inserted into such orders as Cu —> S(x), etc.].
Whenever this sequence is to be used by the computer it will
automatically substitute the correct values of m, n, p and At, as

“well as the locations of the boundary conditions and the descrip-

tions of the differential equations, into the general sequence. (For
the details of this particular procedure, cf. Chapter 13, Part 1L)
A library of such general sequences will be built up, and facilities
provided for convenient insertion of any of these into the coded
statement of a problem (cf. 6.8.4). When such a scheme is used,
only the distinctive features of a problem need be coded.

6.66. The manner in which the control shift operations
[Cu—> S(x), Cu’ — S(x), Cc — S(x), and Cc’ — S(x)] are realized has
been discussed in 6.4 and needs no further comment.

6.6.7. One basic question which must be decided before a
computer is built is whether the machine is to have a so-called
floating binary (or decimal) point. While a floating binary point
is undoubtedly very convenient in coding problems, building it
into the computer adds greatly to its complexity and hence a
choice in this matter should receive very careful attention. How-
ever, it should first be noted that the alternatives ordinarily con-
sidered (building a machine with a floating binary point vs. doing
all computation with a fixed binary point) are not exhaustive and
hence that the arguments generally advanced for the floating
binary point are only of limited validity. Such arguments overlook
the fact that the choice with respect to any particular operation
(except for certain basic ones) is not between building it into the
computer and not using it at all, but rather between building it
into the computer and programming it out of operations built into

the computer. (One short reference to the floating binary point -

was made in 5.13.)

Building a floating binary point into the computer will not only
complicate the control but will also increase the length of a num-
ber and hence increase the size of the memory and the arithmetic
unit. Every number is effectively increased in size, even though
the floating binary point is not needed in many instances. Further-
more, there is considerable redundancy in a floating binary point
type of notation, for each number carries with it a scale factor,
while generally speaking a single scale factor will suffice for a
possibly extensive set of numbers. By means of the operations
already described in the report a floating binary point can be
programmed. While additional memory capacity is needed for this,
it is probably less than that required by a built-in floating binary

Section 1 | Processors with one address per instruction

point since a different scale factor does not need to be remembered
for each number.

To program a floating binary point involves detecting where
the first zero occurs in a number in Ac. Since Ac has shifting
facilities this can best be done by means of them. In terms of the
operations previously described this would require taking the given
number out of Ac and performing a suitable arithmetical operation
on it: For a (multiple) right shift a multiplication, for a (multiple)
left shift either one division, or as many doublings (i.e. additions)

as the shift has stages. However, these operations are inconvenient

and time-consuming, so we propose to introduce two operations
(L and R) in order that this (i.e. the single left and right shift)
can be accomplished directly. These operations make use of facili-
ties already present in Ac and hence add very little equipment
to the computer. It should be noted that in many instances a single
use of L and possibly of R will suffice in programming a floating
binary point. For if the two factors in a multiplication have no
superfluous zeros, the product will have at most one superfluous
zero (if ¥, < X < land % = Y < 1, then ¥/, = XY < 1). This is
similarly true in division (if ¥, = X <, and 1, £ Y <1, then
Y, < X/Y < 1). In addition and subtraction any numbers growing
out of range can be treated similarly. Numbers which decrease
in these cases, i.e. develop a sequence of zeros at the beginning,
are really (mathematically) losing precision. Hence it is perfectly
proper to omit formal readjustments in this event. (Indeed, such
a true loss of precision cannot be obviated by any formal proce-
dure, but, if at all, only by a different mathematical formulation
of the problem.)

6.7. Table 1 shows that many of the operations which the
control is to execute have common elements. Thus addition, sub-
traction, multiplication and division all involve transferring a
number from the Selectrons to SR. Hence the control may be
simplified by breaking some of the operations up into more basic
ones. A timing circuit will be provided for each basic operation,
and one or more such circuits will be involved in the execution
of an order. The exact choice of basic operations will depend upon
how the arithmetic unit is built.

In addition to the timing circuits needed for executing the
orders of Table 1, two such circuits are needed for the automatic
operations of transferring orders from the Selectron register to CR
and FR, and for transferring an order from CR to FR. In normal
computer operation these two circuits are used alternately, so a
binary counter is needed to remember which is to be used next.
In the operations Cu’ — S(x) and Cc — §(x) the first order of a pair
is ignored, so the binary counter must be altered accordingly.

The execution of a sequence of orders involves using the various

Chapter 4 | Preliminary discussion of the logical design of an electronic computing instrument 117

Table 1
Symbolization
Complete Abbreviated Operation

1 S(x) — Ac+ x Clear accumulator and add number located at position x in the Selectrons into it.

2 S(x) > Ac— x— Clear accumulator and subtract number located at position x in the Selectrons into it.

3 S(x) - AcM *M Clear accumulator and add absolute value of number located at position x in the Selectrons
into it.

4 S(x) » Ac - M x—M Clear accumulator and subtract absolute value of number located at position x in the Selec-
trons into it.

5 S(x) — Ah+ xh Add number located at position x in the Selectrons into the accumulator.

6 S(x) — Ah— xh— Subtract number located at position x in the Selectrons into the accumulator.

7 S(x) — ARM xhM Add absolute value of number located at position x in the Selectrons into the accumulator,

8 S(x) - Ah — M x — hM Subtract absolute value of number located at position x in the Selectrons into the accumulator.

9 S(x) » R xR Clear registert and add number located at position x in the Selectrons into it.

10 R—A A Clear accumulator and shift number held in register into it.

11 S(x) x R> A xX Clear accumulator and multiply the number located at position x in the Selectrons by the num-
ber in the register, placing the left-hand 39 digits of the answer in the accumulator and the
right-hand 39 digits of the answer in the register. ’

12 A+ S(x)-> R x4+ Clear register and divide the number in the accumulator by the number located in position x
of the Selectrons, leaving the remainder in the accumulator and placing the quotient in the
register.

13 Cu — S(x) xC Shift the control to the left-hand order of the order pair located at position x in the Selectrons.

14 Cu' — S(») %C’ Shift the control to the right-hand order of the order pair located at position x in the Selectrons.

15 Cec - S(x) xCc If the number in the accumulator is = 0, shift the control as in Cu — S(x)..

16 Cc — S(x) xC¢’ If the number in the accumulator is = 0, shift the control as in Cu’ —> S(x).

17 At — S(x) xS Transfer the number in the accumulator to position x in the Selectrons.

18 Ap — S(x) xSp Replace the left-hand 12 digits of the left-hand order located at position x in the Selectrons by
the left-hand 12 digits in the accumulator.

19 Ap’ - S(x) xSp’ Replace the left-hand 12 digits of the right-hand order located at position x in the Selectrons
by the left-hand 12 digits in the accumulator.

20 L L Multiply the number in the accumulator by 2, leaving it there.

21 R R Divide the number in the accumulator by 2, leaving it there.

t Register means arithmetic register.

Second: Some viewing tubes for graphical portrayal of results.
Third: A typewriter for feeding data directly into the com-

timing circuits in sequence. When a given timing circuit has
completed its operation, it emits a pulse which should go to the

timing circuit to be used next. Since this depends upon the partic-
ular operation being executed, these pulses are routed according
to the signals received from the decoding and recoding function
tables activated by the six binary digits specifying an order.

6.8. In this section we will consider what must be added to
the control so that it can direct the mechanisms for getting data
into and out of the computer and also describe the mechanisms
themselves. Three different kinds of input-output mechanisms are
planned.

First: Several magnetic wire storage units operated by servo-
mechanisms controlled by the computer.

puter, not to be confused with the equipment used for preparing
and printing from magnetic wires. As presently planned the latter
will consist of modified Teletypewriter equipment, cf. 6.8.2 and
6.8.4.

6.8.1. Since there already exists a way of transferring numbers
between the Selectrons and Ac, therefore Ac may be used for
transferring numbers from and to a wire. The latter transfer will
be done serially and will make use of the shifting facilities of Ac.
Using Ac for this purpose eliminates the possibility of computing
and reading from or writing on the wires simultaneously. However,
simultaneous operation of the computer and the input-output

3

118 Part 2

The instruction-set processor: main-line computers

organ requires additional temporary storage and introduces a syn-
chronizing problem, and hence it is not being considered for the
first model.

Since, at the beginning of the problem, the computer is empty,
facilities must be built into the control for reading a set of numbers
from a wire when the operator presses a manual switch. As each
number is read from a wire into Ac, the control must transfer it
to its proper location in the Selectrons. The CC may be used to
count off these positions in sequence, since it is capable of trans-
mitting its contents to FR. A detection circuit on CC will stop
the process when the specified number of numbers has been placed
in the memory, and the control will then be shifted to the orders
located in the first position of the Selectron memory.

It has already been stated that the entire memory facilities of
the wires should be available to the computer without human
intervention. This means that the control must be able to select
the proper set of numbers from those going by. Hence additional
orders are required for the code. Here, as before, we are faced
with two alternatives. We can make the control capable of exe-
cuting an order of the form: Take numbers from positions p to
p + s on wire No. k and place them in Selectron locations v to
o + s. Or we can make the control capable of executing some less
complicated operations which, together with the already given
control orders, are sufficient for programming the transfer opera-
tion of the first alternative. Since the latter scheme is simpler we
adopt it tentatively.

The computer must have some way of finding a particular
number on a wire. One method of arranging for this is to have
each number carry with it its own location designation. A method
more economical of wire memory capacity is to use the Selectron
memory facilities to remember the position of each wire. For
example, the computer would hold the number ¢, specifying which
number on the wire is in position to be read. If the control is
instructed to read the number at position p; on this wire, it will

compare p, with ¢;; and if they differ, cause the wire to move

in the proper direction. As each number on the wire passes by,
one unit is added or subtracted to ¢, and the comparison repeated.
When p, = t; numbers will be transferred from the wire to the
accumulator and then to the proper location in the memory. Then
both ¢, and p, will be increased by 1, and the transfer from the
wire to accumulator to memory repeated. This will be iterated,
until ¢, + s and p, + s are reached, at which time the control
will direct the wire to stop.

Under this system the control must be able to execute the
following orders with regard to each wire: Start the wire forward,
start the wire in reverse, stop the wire, transfer from wire to Ac,

Section 1 | Processors with one address per instruction

and transfer from Ac to wire. In addition, the wire must signal
the control as each digit is read and when the end of a number
has been reached. Conversely, when recording is done the control
must have a means of timing the signals sent from Ac to the wire,
and of counting off the digits. The 26 counter used for multiplica-
tion and division may be used for the latter purpose, but other
timing circuits will be required for the former.

If the method of checking by means of two computers operating
simultaneously is adopted, and each machine is built so that it
can operate independently of the other, then each will have a
separate input-output mechanism. The process of making wires
for the computer must then be duplicated, and in this way the
work of the person making a wire can be checked. Since the wire
servomechanisms cannot be synchronized by the central clock, a
problem of synchronizing the two computers when the wires are
being used arises. It is probably not practical to synchronize the
wire feeds to within a given digit, but this is unnecessary since
the numbers coming into the two organs Ac need not be checked
as the individual digits arrive, but only prior to being deposited
in the Selectron memory.

6.8.2. Since the computer operates in the binary system, some
means of decimal-binary and binary-decimal conversions is highly
desirable. Various alternative ways of handling this problem have
been considered. In general we recognize two broad classes of
solutions to this problem. :

First: The conversion problems can be regarded as simple arith-
metic processes and programmed as sub-routines out of the orders
already incorporated in the machine. The details of these programs
together with a more complete discussion are given fully in Chap-
ter 9, Part II, where it is shown, among other things, that the
conversion of a word takes about 5 msec. Thus the conversion time
is comparable to the reading or withdrawing time for a word—
about 2 msec—and is trivial as compared to the solution time for
problems to be handled by the computer. It should be noted that
the treatment proposed there presupposes only that the decimal
data presented to or received from the computer are in tetrads,
each tetrad being the binary coding of a decimal digit—the infor-
mation (precision) represented by a decimal digit being actually
equivalent to that represented by 3.3 binary digits. The coding
of decimal digits into tetrads of binary digits and the printing of
decimal digits from such tetrads can be accomplished quite simply
and automatically by slightly modified Teletype equipment, cf
6.8.4 below.

Second: The conversion problems can be regarded as unique
problems and handled by separate conversion equipment incor
porated either in the computer proper or associated with the

Chapter 4

mechanisms for preparing and printing from magnetic wires. Such
converters are really nothing other than special purpose digital
computers. They would seem to be justified only for those com-
puters which are primarily intended for solving problems in which
the computation time is small compared to the input-output time,
to which class our computer does not belong.

6.8.3. It is possible to use various types of cathode ray tubes,
and in particular Selectrons for the viewing tubes, in which case
programming the viewing operation is quite simple. The viewing
Selectrons can be switched by the same function tables that switch
the memory Selectrons. By means of the substitution operation
Ap — S(x) and Ap’ —> S(x), six-digit numbers specifying the abscissa
and ordinate of the point (six binary digits represent a precision
of one part in 2% = 64, i.e. of about 1.5 per cent which seems
reasonable in such a component) can be substituted in this order,
which will specify that a particular one of the viewing Selectrons
is to be activated.

6.8.4. As was mentioned above, the mechanisms used for
preparing and printing from wire for the first model, at least, will
be modified Teletype equipment. We are quite fortunate in having
secured the full cooperation of the Ordnance Development Divi-
sion of the National Bureau of Standards in making these modifi-
cations and in designing and building some associated equipment.

By means of this modified Teletype equipment an operator first
prepares a checked paper tape and then directs the equipment
to transfer the information from the paper tape to the magnetic
wire, Similarly a magnetic wire can transfer its contents to a paper

Preliminary discussion of the logical design of an electronic computing instrument 119

tape which can be used to operate a teletypewriter. (Studies are
being undertaken to design equipment that will eliminate the
‘necessity for using paper tapes.)

As was shown in 6.6.5, the statement of a new problem on a
wire involves data unique to that problem interspersed with data
found on previously prepared paper tapes or magnetic wires. The
equipment discussed in the previous paragraph makes it possible
for the operator to combine conveniently these data on to a single
magnetic wire ready for insertion into the computer,

It is frequently very convenient to introduce data into a com-
putation without producing a new wire. Hence it is planned to
build one simple typewriter as an integral part of the computer.
By means of this typewriter the opetator can stop the computation,
type in a memory location (which will go to the FR), type in a
number (which will go to Ac and then be placed in the first
mentioned location), and start the computation again.

6.8.5. There is one further order that the control needs to
execute. There should be some means by which the computer can
signal to the operator when a computation has been concluded,
or when the computation has reached a previously determined
point. Hence an order is needed which will tell the computer to
stop and to flash a light or ring a bell.

References
BurkA62a, BurkA62b; CrawP??; GoldH63q, b, ¢, d; RajcJ43.

