Agenda for Today

- GPU as an accelerator
 - Program structure
 - Bulk synchronous programming model

- Memory hierarchy and memory management

- Performance considerations
 - Memory access
 - SIMD utilization
 - Atomic operations
 - Data transfers

- Collaborative computing
Recommended Readings

- CUDA Programming Guide

An Example GPU
Recall: Evolution of NVIDIA GPUs
Recall: NVIDIA GeForce GTX 285

- **NVIDIA-speak:**
 - 240 stream processors
 - “SIMT execution”

- **Generic speak:**
 - 30 cores
 - 8 SIMD functional units per core
Recall: NVIDIA V100

- **NVIDIA-speak:**
 - 5120 stream processors
 - “SIMT execution”

- **Generic speak:**
 - 80 cores
 - 64 SIMD functional units per core

 - Specialized Functional Units for Machine Learning (tensor “cores” in NVIDIA-speak)
Recall: NVIDIA V100 Block Diagram

80 cores on the V100

https://devblogs.nvidia.com/inside-volta/
Recall: NVIDIA V100 Core

15.7 TFLOPS Single Precision
7.8 TFLOPS Double Precision
125 TFLOPS for Deep Learning (Tensor “cores”)

https://devblogs.nvidia.com/inside-volta/
Recall: Latency Hiding via Warp-Level FGMT

- **Warp**: A set of threads that execute the same instruction (on different data elements)

- **Fine-grained multithreading**
 - One instruction per thread in pipeline at a time (No interlocking)
 - Interleave warp execution to hide latencies

- Register values of all threads stay in register file

- FGMT enables long latency tolerance
 - Millions of pixels

Slide credit: Tor Aamodt
Recall: Warp Execution

32-thread warp executing ADD A[tid], B[tid] \rightarrow C[tid]

Execution using one pipelined functional unit

Execution using four pipelined functional units

A[27] B[27]
A[22] B[22]

Time

Time

Space

Slide credit: Krste Asanovic
Recall: SIMD Execution Unit Structure

- **Registers for each Thread**
 - Registers for thread IDs 0, 4, 8, ...
 - Registers for thread IDs 1, 5, 9, ...
 - Registers for thread IDs 2, 6, 10, ...
 - Registers for thread IDs 3, 7, 11, ...

- **Functional Unit**

- **Lane**

- **Memory Subsystem**
Can overlap execution of multiple instructions

- Example machine has 32 threads per warp and 8 lanes
- Completes 24 operations/cycle while issuing 1 warp/cycle

Slide credit: Krste Asanovic
GPU Programming
Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
 ++ Vector operations
 -- Very inefficient if parallelism is irregular
 -- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder must make the data structures in the code fit nearly exactly the regular structure built into the hardware. That’s hard to do in first place, and just as hard to change. One tweak, and the low-level code has to be rewritten by a very smart and dedicated programmer who knows the hardware and often the subtleties of the application area. Often the rewriting is

General Purpose Processing on GPU

- Easier programming of SIMD processors with SPMD
 - GPUs have democratized High Performance Computing (HPC)
 - Great FLOPS/$, massively parallel chip on a commodity PC
- Many workloads exhibit inherent parallelism
 - Matrices
 - Image processing
- However, this is not for free
 - New programming model
 - Algorithms need to be re-implemented and rethought
- Still some bottlenecks
 - CPU-GPU data transfers (PCIe, NVLINK)
 - DRAM memory bandwidth (GDDR5, GDDR6, HBM2)
 - Data layout
CPU vs. GPU

- Different design philosophies
 - CPU: A few out-of-order cores
 - GPU: Many in-order FGMT cores

Slide credit: Hwu & Kirk
GPU Computing

- Computation is **offloaded to the GPU**
- Three steps
 - CPU-GPU data transfer (1)
 - GPU kernel execution (2)
 - GPU-CPU data transfer (3)
Traditional Program Structure

- CPU threads and GPU kernels
 - Sequential or modestly parallel sections on CPU
 - Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)

KernelA<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<< nBlk, nThr >>>(args);

Slide credit: Hwu & Kirk
Recall: SPMD

- Single procedure/program, multiple data
 - This is a programming model rather than computer organization

- Each processing element executes the same procedure, except on different data elements
 - Procedures can synchronize at certain points in program, e.g. barriers

Essentially, **multiple instruction streams execute the same program**

- Each program/procedure 1) works on different data, 2) can execute a different control-flow path, at run-time
- Many scientific applications are programmed this way and run on MIMD hardware (multiprocessors)
- Modern GPUs programmed in a similar way on a SIMD hardware
CUDA/OpenCL Programming Model

- SIMT or SPMD

- Bulk synchronous programming
 - Global (coarse-grain) synchronization between kernels

- The host (typically CPU) allocates memory, copies data, and launches kernels

- The device (typically GPU) executes kernels
 - Grid (NDRange)
 - Block (work-group)
 - Within a block, shared memory, and synchronization
 - Thread (work-item)
Transparent Scalability

- Hardware is **free to schedule** thread blocks

Each block can execute in any order relative to other blocks.
Memory Hierarchy
Traditional Program Structure in CUDA

- Function prototypes

  ```c
  float serialFunction(...);
  __global__ void kernel(...);
  ```

- main()

 1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);
 2) Transfer data from host to device – cudaMemcpy(d_in, h_in, ...);
 3) Execution configuration setup: #blocks and #threads
 4) Kernel call – kernel<<<execution configuration>>>(args...);
 5) Transfer results from device to host – cudaMemcpy(h_out, d_out, ...);

- Kernel – __global__ void kernel(type args,...)

 - Automatic variables transparently assigned to registers
 - Shared memory: __shared__
 - Intra-block synchronization: __syncthreads();

Slide credit: Hwu & Kirk
CUDA Programming Language

- **Memory allocation**

  ```c
cudaMalloc((void**) &d_in, #bytes);
  ```

- **Memory copy**

  ```c
cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);
  ```

- **Kernel launch**

  ```c
  kernel<<< #blocks, #threads >>>(args);
  ```

- **Memory deallocation**

  ```c
cudaFree(d_in);
  ```

- **Explicit synchronization**

  ```c
  cudaDeviceSynchronize();
  ```
Images are 2D data structures

- height x width
- Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width
Image Layout in Memory

- **Row-major layout**
- \(\text{Image}[j][i] = \text{Image}[j \times \text{width} + i] \)

Stride = width

\(\text{Image}[0][1] = \text{Image}[0 \times 8 + 1] \)

\(\text{Image}[1][2] = \text{Image}[1 \times 8 + 2] \)
Indexing and Memory Access: 1D Grid

- One GPU thread per pixel
- Grid of Blocks of Threads
 - `gridDim.x, blockDim.x`
 - `blockIdx.x, threadIdx.x`

```
blockIdx.x
threadIdx.x
```

```
6 * 4 + 1 = 25
```

```
blockIdx.x * blockDim.x + threadIdx.x
```
Indexing and Memory Access: 2D Grid

- **2D blocks**
 - `gridDim.x, gridDim.y`

```
Row = blockIdx.y * blockDim.y + threadIdx.y
Col = blockIdx.x * blockDim.x + threadIdx.x
```

\[
\begin{align*}
\text{Row} &= 1 \times 2 + 1 = 3 \\
\text{Col} &= 0 \times 2 + 1 = 1
\end{align*}
\]

\[
\text{Image}[3][1] = \text{Image}[3 \times 8 + 1]
\]
Brief Review of GPU Architecture (I)

- Streaming Processor Array
 - Tesla architecture (G80/GT200)
Brief Review of GPU Architecture (II)

- Streaming Multiprocessors (SM)
 - Streaming Processors (SP)

- Blocks are divided into **warps**
 - SIMD unit (32 threads)

Figure:

- **Streaming Multiprocessor**:
 - **Instruction Cache**
 - **Warp Scheduler**
 - **Dispatch Unit**
 - **Register File**
 - **SP**
 - **LD/ST**
 - **SFU**

- **NVIDIA Fermi architecture**
Brief Review of GPU Architecture (III)

- **Streaming Multiprocessors** (SM) or Compute Units (CU)
 - SIMD pipelines

- **Streaming Processors** (SP) or CUDA “cores”
 - Vector lanes

- **Number of SMs x SPs** across generations
 - Tesla (2007): 30 x 8
 - Fermi (2010): 16 x 32
 - Kepler (2012): 15 x 192
 - Maxwell (2014): 24 x 128
 - Pascal (2016): 56 x 64
 - Volta (2017): 80 x 64
Performance Considerations
Performance Considerations

- Main bottlenecks
 - Global memory access
 - CPU-GPU data transfers

- Memory access
 - Latency hiding
 - Occupancy
 - Memory coalescing
 - Data reuse
 - Shared memory usage

- SIMD (Warp) Utilization: Divergence

- Atomic operations: Serialization

- Data transfers between CPU and GPU
 - Overlap of communication and computation
Memory Access
Latency Hiding

- **FGMT** can hide long latency operations (e.g., memory accesses)
- **Occupancy**: ratio of active warps
Occupancy

- SM resources (typical values)
 - Maximum number of warps per SM (64)
 - Maximum number of blocks per SM (32)
 - Register usage (256KB)
 - Shared memory usage (64KB)

- Occupancy calculation
 - Number of threads per block (defined by the programmer)
 - Registers per thread (known at compile time)
 - Shared memory per block (defined by the programmer)
Memory Coalescing

- When accessing global memory, we want to make sure that concurrent threads access nearby memory locations.
- **Peak bandwidth** utilization occurs when all threads in a warp access one cache line.

![Diagram showing memory coalescing](image)

Slide credit: Hwu & Kirk
Uncoalesced Memory Accesses

Access direction in Kernel code

Time Period 1
- T1
- T2
- T3
- T4

Time Period 2
- T1
- T2
- T3
- T4

M0,0, M1,0, M2,0, M3,0
M0,1, M1,1, M2,1, M3,1
M0,2, M1,2, M2,2, M3,2
M0,3, M1,3, M2,3, M3,3

Slide credit: Hwu & Kirk
Coalesced Memory Accesses

Access direction in Kernel code

Time Period 1
T₁ T₂ T₃ T₄

Time Period 2
T₁ T₂ T₃ T₄

...
AoS vs. SoA

- Array of Structures vs. Structure of Arrays

Tenemos 2 data layouts principales (AoS y SoA) y uno nuevo propuesto (ASTA).

ASTA permite transformar uno en otro más rápido y facilita hacerlo in-place, para ahorrar memoria.

En la siguiente figura se ven los tres:

La granularidad en ASTA, es decir, el ancho del tile, estará relacionado con la granularidad de acceso a la memoria (warp_size = 32, por ejemplo).

Convertir entre los distintos layouts, en realidad es transponer. Por ejemplo, AoS a ASTA:

Y transponer es permutar (los números representan posiciones en la memoria y los colores, tipo de dato):

```
struct foo{
    float a[8];
    float b[8];
    float c[8];
    int d[8];
} A;
```

```
struct foo{
    float a[8];
    float b[8];
    float c[8];
    int d[8];
} A;
```
CPUs Prefer AoS, GPUs Prefer SoA

- Linear and strided accesses

Throughput (GB/s) vs Stride (Structure size)

GPU

CPU

AMD Kaveri A10-7850K

Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012
Data Reuse

- Same memory locations accessed by neighboring threads

```c
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}
```
Data Reuse: Tiling

- To take advantage of data reuse, we divide the input into tiles that can be loaded into shared memory

```c
__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
...
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];
    }
}
```
Shared Memory

- Shared memory is an interleaved (banked) memory
 - Each bank can service one address per cycle

- Typically, 32 banks in NVIDIA GPUs
 - Successive 32-bit words are assigned to successive banks
 - Bank = Address % 32

- Bank conflicts are only possible within a warp
 - No bank conflicts between different warps
Bank conflict free

- Linear addressing: stride = 1
- Random addressing 1:1
Shared Memory Bank Conflicts (II)

- N-way bank conflicts

2-way bank conflict: stride = 2

8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk
Reducing Shared Memory Bank Conflicts

- Bank conflicts are only possible within a warp
 - No bank conflicts between different warps

- If strided accesses are needed, some optimization techniques can help
 - Padding
 - Randomized mapping
 - Hash functions
SIMD Utilization
A GPU uses a SIMD pipeline to save area on control logic
- Groups scalar threads into warps

Branch divergence occurs when threads inside warps branch to different execution paths

This is the same as conditional/predicated/masked execution. Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt
Intra-warp divergence

```c
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){
    Do_this(threadIdx.x);
}
else{
    Do_that(threadIdx.x);
}
```
Increasing SIMD Utilization

- **Divergence-free execution**

```c
Compute(threadIdx.x);
if (threadIdx.x < 32){
    Do_this(threadIdx.x * 2);
}
else{
    Do_that((threadIdx.x%32)*2+1);
}
```
Program with low SIMD utilization

```c
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {
    __syncthreads();

    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t + stride];
}
```
Divergence-Free Mapping (I)

- All active threads belong to the same warp

Slide credit: Hwu & Kirk
Program with high SIMD utilization

```c
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 1; stride >>= 1){
  __syncthreads();

  if (t < stride)
    partialSum[t] += partialSum[t + stride];
}
```
Atomic Operations
Atomic Operations are needed when threads might update the same memory locations at the same time.

CUDA: int atomicAdd(int*, int);

PTX: atom.shared.add.u32 %r25, [%rd14], %r24;

SASS:

```
/*00a0*/ LDSLK P0, R9, [R8];
/*00a8*/ @P0 IADD R10, R9, R7;
/*00b0*/ @P0 STSCUL P1, [R8], R10;
/*00b8*/ @!P1 BRA 0xa0;
```

Native atomic operations for 32-bit integer, and 32-bit and 64-bit atomicCAS.
Atomic Conflicts

- We define the intra-warp conflict degree as the number of threads in a warp that update the same memory position.
- The conflict degree can be between 1 and 32.

No atomic conflict = concurrent updates

Atomic conflict = serialized updates
Histogram Calculation

- Histograms count the number of data instances in disjoint categories (bins)

```c
for (each pixel i in image I){
    Pixel = I[i]  // Read pixel
    Pixel’ = Computation(Pixel)  // Optional computation
    Histogram[Pixel’]++  // Vote in histogram bin
}
```
Histogram Calculation of Natural Images

- Frequent conflicts in natural images
Optimizing Histogram Calculation

- **Privatization**: Per-block sub-histograms in shared memory

Data Transfers between CPU and GPU
Data Transfers

- Synchronous and asynchronous transfers
- Streams (Command queues)
 - Sequence of operations that are performed in order
 - CPU-GPU data transfer
 - Kernel execution
 - D input data instances, B blocks
 - GPU-CPU data transfer
 - Default stream
Asynchronous Transfers

- Computation divided into \(n \text{Streams} \)
 - \(D \) input data instances, \(B \) blocks
 - \(n \text{Streams} \)
 - \(D/n\text{Streams} \) data instances
 - \(B/n\text{Streams} \) blocks

- Estimates
 \[
 t_E + \frac{t_T}{n\text{Streams}} \geq t_T \quad \text{(dominant kernel)}

 t_T + \frac{t_E}{n\text{Streams}} > t_E \quad \text{(dominant transfers)}
 \]
Applications with independent computation on different data instances can benefit from asynchronous transfers. For instance, video processing.

Summary

- **GPU as an accelerator**
 - Program structure
 - Bulk synchronous programming model
 - Memory hierarchy and memory management

- **Performance considerations**
 - Memory access
 - Latency hiding: occupancy (TLP)
 - Memory coalescing
 - Data reuse: shared memory
 - SIMD utilization
 - Atomic operations
 - Data transfers
Collaborative Computing
Review

- Device allocation, CPU-GPU transfer, and GPU-CPU transfer
 - `cudaMalloc();`
 - `cudaMemcpy();`

```c
// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>>(d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);
```
Unified Memory

- Unified Virtual Address
- CUDA 6.0: **Unified memory**
- CUDA 8.0 + Pascal: **GPU page faults**
Unified Memory

- Easier programming with **Unified Memory**
 - `cudaMallocManaged();`

```c
// Allocate input
malloc(input, ...);
cudaMallocManaged(d_input, ...);
memcpy(d_input, input, ...); // Copy to managed memory

// Allocate output
cudaMallocManaged(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>>(d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();
```
Collaborative Computing Algorithms

- Case studies using CPU and GPU
- **Kernel launches are asynchronous**
 - CPU can work while waits for GPU to finish
 - Traditionally, this is the most efficient way to exploit heterogeneity

```c
// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>>(d_output, d_input, ...);

// CPU can do things here

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);
```
Fine-Grained Heterogeneity

- **Fine-grain heterogeneity** becomes possible with Pascal/Volta architecture
- **Pascal/Volta Unified Memory**
 - CPU-GPU memory coherence
 - System-wide atomic operations

```c
// Allocate input
cudaMallocManaged(input, ...);

// Allocate output
cudaMallocManaged(output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (output, input, ...);

// CPU can do things here
output[x] = input[y];

output[x+1].fetch_add(1);
```
CUDA 8.0

- Unified memory

 \[
 \text{cudaMallocManaged(&h_in, in_size)};
 \]

- System-wide atomics

 \[
 \text{old = atomicAdd_system(&h_out[x], inc)};
 \]
OpenCL 2.0

- **Shared virtual memory**

  ```c
  XYZ * h_in = (XYZ *)clSVMAlloc(
      ocl.clContext, CL_MEM_SVM_FINE_GRAIN_BUFFER, in_size, 0);
  ```

- **More flags:**

  ```c
  CL_MEM_READ_WRITE
  CL_MEM_SVM_ATOMICS
  ```

- **C++11 atomic operations**

  ```c
  (memory_scope_all_svm_devices)

  old = atomic_fetch_add(&h_out[x], inc);
  ```
C++AMP (HCC)

- **Unified memory space (HSA)**

 \[
 \text{XYZ} \,*h_{\text{in}} = (\text{XYZ} \,*)\text{malloc}(\text{in_size});
 \]

- **C++11 atomic operations**

 (memory_scope_all_svm_devices)

 - **Platform atomics (HSA)**

 \[
 \text{old} = \text{atomic_fetch_add}(&h_{\text{out}[x]}, \text{inc});
 \]
Collaborative Patterns

Program Structure

data-parallel tasks

coarse-grained synchronization

Device 1

Device 2

Data Partitioning
Collaborative Patterns

Program Structure

data-parallel tasks

Coarse-grained synchronization

Collaborative Patterns

Coarse-grained Task Partitioning
Collaborative Patterns

Program Structure

data-parallel tasks

sequential sub-tasks

coarse-grained synchronization

Device 1
Device 2

Fine-grained Task Partitioning
Histogram

- Previous generations: separate CPU and GPU histograms are merged at the end

```
malloc(CPU image);
cudaMalloc(GPU image);
cudaMemcpy(GPU image, CPU image, ...,
Host to Device);
malloc(CPU histogram);
memset(CPU histogram, 0);
cudaMalloc(GPU histogram);
cudaMemset(GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaMemcpy(GPU histogram, DeviceToHost);
// Launch CPU threads for merging
```
System-wide atomic operations: one single histogram

cudaMallocManaged(Histogram);
cudaMemset(Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd_system)
Bézier Surfaces

- Bézier surface: 4x4 net of control points
Bézier Surfaces

- Parametric non-rational formulation
 - Bernstein polynomials
 - Bi-cubic surface $m = n = 3$

$$S(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} P_{i,j} B_{i,m}(u) B_{j,n}(v), \quad (1)$$

$$B_{i,m}(u) = \binom{m}{i} (1 - u)^{(m-i)} u^i, \quad (2)$$
Bézier Surfaces

- Collaborative implementation
 - Tiles calculated by GPU blocks or CPU threads
 - Static distribution
Bézier Surfaces

■ **Without Unified Memory**

```c
// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
malloc(surface, ...);
cudaMalloc(d_surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>>(d_surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

// Copy gpu part of surface to host memory
cudaMemcpy(&surface[end_of_cpu_part], d_surface, ..., DeviceToHost);
```
Bézier Surfaces

- Execution results
 - Bezier surface: 300x300, 4x4 control points
 - %Tiles to CPU
 - NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 17% speedup wrt GPU only
Bézier Surfaces

- **With Unified Memory (Pascal/Volta)**

```c
// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
cudaMallocManaged(surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();
```
Bézier Surfaces

- **Static vs. dynamic implementation**

 (a) Static Distribution

 (b) Dynamic Distribution

- **Pascal/Volta Unified Memory:** system-wide atomic operations

```cpp
while(true){
    if(threadIdx.x == 0)
        my_tile = atomicAdd_system(tile_num, 1); // my_tile in shared memory; tile_num in UM
    __syncthreads(); // Synchronization
    if(my_tile >= number_of_tiles) break; // Break when all tiles processed
    ...
}
```
Benefits of Collaboration

- Data partitioning improves performance
 - AMD Kaveri (4 CPU cores + 8 GPU CUs)

Bézier Surfaces
(up to 47% improvement over GPU only)
Padding

- Matrix padding
 - Memory alignment
 - Transposition of near-square matrices

- Traditionally, it can only be performed out-of-place
Padding

- Execution results
 - Matrix size: 4000x4000, padding = 1
 - NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 29% speedup wrt GPU only
In-Place Padding

- Pascal/Volta Unified Memory

Coherent memory

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Flags

<table>
<thead>
<tr>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

GPU temporary location

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

CPU temporary location

| | 30 | 31 | 32 | 33 | 34 |

Adjacent synchronization: CPU and GPU In-place implementation will be possible
Benefits of Collaboration

- Optimal number of devices is not always max
 - AMD Kaveri (4 CPU cores + 8 GPU CUs)
Chai Benchmark Suite

- Collaboration patterns
 - 8 data partitioning benchmarks
 - 3 coarse-grain task partitioning benchmarks
 - 3 fine-grain task partitioning benchmarks

https://chai-benchmarks.github.io
We did not cover the following slides in lecture. These are for your preparation for the next lecture.
Stream Compaction

- Stream compaction
 - Saving memory storage in sparse data
 - Similar to padding, but local reduction result (non-zero element count) is propagated

```
Input: 2 1 3 0 0 1 3 4 0 0 2 1

Predicate: Element > 0

Output: 2 1 3 1 3 4 2 1
```
Stream Compaction

- Execution results
 - Array size: 2 MB, Filtered items = 50%
 - NVIDIA Jetson TX1 (4 ARMv8 + 2 SMX): 25% speedup wrt GPU only
Benefits of Collaboration

- Data partitioning improves performance
 - AMD Kaveri (4 CPU cores + 8 GPU CUs)

![Graph showing execution time for different configurations with up to 82% improvement over GPU only]
Breadth-First Search

- Small-sized and big-sized frontiers
 - Top-down approach
 - Kernel 1 and Kernel 2
- **Atomic-based block synchronization**
 - Avoids kernel re-launch
- Very small frontiers
 - Underutilize GPU resources
- **Collaborative implementation**
Atomic-Based Block Synchronization

- Combine Kernel 1 and Kernel 2
- We can avoid kernel re-launch
- We need to use persistent thread blocks
 - Kernel 2 launches \(\frac{\text{frontier}_\text{size}}{\text{block}_\text{size}} \) blocks
 - Persistent blocks: up to \(\text{number}_\text{SMs} \times \text{max}_\text{blocks}_\text{SM} \)
Atomic-Based Block Synchronization

- Code (simplified)

```c
// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while(frontier_size != 0){
    for(node = gtid; node < frontier_size; node += blockDim.x*gridDim.x){
        // Visit neighbors
        // Enqueue in output queue if needed (global or local queue)
    }
    // Update frontier_size
    // Global synchronization
}
Atomic-Based Block Synchronization

- Global synchronization (simplified)
  - At the end of each iteration

```c
const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
...
frontier++;
if(tid == 0){
 atomicAdd(ptr_threads_end, 1); // Thread block finishes iteration
}
if(gtid == 0){
 while(atomicAdd(ptr_threads_end, 0) != gridDim.x){} // Wait until all blocks finish
 atomicExch(ptr_threads_end, 0); // Reset
 atomicAdd(ptr_threads_run, 1); // Count iteration
}
if(tid == 0 && gtid != 0){
 while(atomicAdd(ptr_threads_run, 0) < frontier){} // Wait until ptr_threads_run is updated
}
__syncthreads(); // Rest of threads wait here
...
```
Collaborative Implementation

- **Motivation**
  - Small-sized frontiers underutilize GPU resources
    - NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
    - New York City roads
Collaborative Implementation

- Choose the most appropriate device

- small frontiers processed on CPU
- large frontiers processed on GPU
Collaborative Implementation

- Choose **CPU or GPU depending on frontier size**

```c
// Host code
while(frontier_size != 0){
 if(frontier_size < LIMIT){
 // Launch CPU threads
 }
 else{
 // Launch GPU kernel
 }
}
```

- **CPU threads or GPU kernel keep running while the condition is satisfied**
Collaborative Implementation

- Execution results
Collaborative Implementation

- **Without** Unified Memory
  - Explicit memory copies

```cpp
// Host code
while(frontier_size != 0){
 if(frontier_size < LIMIT){
 // Launch CPU threads
 }
 else{
 // Copy from host to device (queues and synchronization variables)
 // Launch GPU kernel
 // Copy from device to host (queues and synchronization variables)
 }
}
```
Collaborative Implementation

- **Unified Memory**
  - `cudaMallocManaged();`
  - Easier programming
  - No explicit memory copies

```c
// Host code
while(frontier_size != 0){
 if(frontier_size < LIMIT){
 // Launch CPU threads
 }
 else{
 // Launch GPU kernel
 cudaDeviceSynchronize();
 }
}
```
Collaborative Implementation

- **Pascal/Volta Unified Memory**
  - CPU/GPU coherence
  - System-wide atomic operations
  - No need to re-launch kernel or CPU threads
  - Possibility of CPU and GPU working on the same frontier
Benefits of Collaboration

- **SSSP** performs more computation than BFS

Single Source Shortest Path
(up to 22% improvement over GPU only)
Egomotion Compensation and Moving Objects Detection

- Hexapod robot OSCAR
  - Rescue scenarios
  - Strong egomotion on uneven terrains

**Algorithm**
- Random Sample Consensus (RANSAC): F-o-F model
Egomotion Compensation and Moving Objects Detection

Fast moving object in strong egomotion scenario detected by vector clustering
SISD and SIMD phases

- **RANSAC** (Fischler *et al.* 1981)

```c
While (iteration < MAX_ITER){
 Fitting stage (Compute F-o-F model) // SISD phase
 Evaluation stage (Count outliers) // SIMD phase
 Comparison to best model // SISD phase
 Check if best model is good enough and iteration >= MIN_ITER // SISD phase
}
```

- Fitting stage picks two flow vectors randomly
- Evaluation generates motion vectors from F-o-F model, and compares them to real flow vectors
Collaborative Implementation

- Randomly picked vectors: **Iterations are independent**
  - We assign one iteration to one CPU thread and one GPU block
Chai Benchmark Suite

- Collaboration patterns
  - 8 data partitioning benchmarks
  - 3 coarse-grain task partitioning benchmarks
  - 3 fine-grain task partitioning benchmarks

https://chai-benchmarks.github.io
# Chai Benchmark Suite

<table>
<thead>
<tr>
<th>Collaboration Pattern</th>
<th>Short Name</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data Partitioning</strong></td>
<td>BS</td>
<td>Bézier Surface</td>
</tr>
<tr>
<td></td>
<td>CEDD</td>
<td>Canny Edge Detection</td>
</tr>
<tr>
<td></td>
<td>HSTI</td>
<td>Image Histogram (Input Partitioning)</td>
</tr>
<tr>
<td></td>
<td>HSTO</td>
<td>Image Histogram (Output Partitioning)</td>
</tr>
<tr>
<td></td>
<td>PAD</td>
<td>Padding</td>
</tr>
<tr>
<td></td>
<td>RSCD</td>
<td>Random Sample Consensus</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>Stream Compaction</td>
</tr>
<tr>
<td></td>
<td>TRNS</td>
<td>In-place Transposition</td>
</tr>
<tr>
<td><strong>Task Partitioning</strong></td>
<td>RSCT</td>
<td>Random Sample Consensus</td>
</tr>
<tr>
<td></td>
<td>TQ</td>
<td>Task Queue System (Synthetic)</td>
</tr>
<tr>
<td></td>
<td>TQH</td>
<td>Task Queue System (Histogram)</td>
</tr>
<tr>
<td><strong>Coarse-grain</strong></td>
<td>BFS</td>
<td>Breadth-First Search</td>
</tr>
<tr>
<td></td>
<td>CEDT</td>
<td>Canny Edge Detection</td>
</tr>
<tr>
<td></td>
<td>SSSP</td>
<td>Single-Source Shortest Path</td>
</tr>
</tbody>
</table>
Benefits of Unified Memory

- Comparable (same kernels, system-wide atomics make Unified sometimes slower)
- Unified kernels can exploit more parallelism
- Unified kernels avoid kernel launch overhead

Execution Time (normalized)

Kernel

Data Partitioning
- BS
- CEDD
- HSTI
- HSTOPAD
- RSCD
- SC
- TRNS

Task Partitioning
- RSCT
- TQ
- TQH

Fine-grain

Coarse-grain

117
Benefits of Unified Memory

Unified versions avoid copy overhead

Execution Time (normalized)

Data Partitioning

Task Partitioning

Kernel  Copy Back & Merge  Copy To Device

Fine-grain

Coarse-grain

BS  CEDHSTI  HSTOPAD  RSCD  SC  TRNS  RSCT  TQ  TQH  BFS  CEDTSSSP

D U  D U  D U  D U  D U  D U  D U  D U  D U  D U  D U

BFS  CEDTSSSP
Benefits of Unified Memory

The diagram illustrates the execution time for different tasks under fine-grain and coarse-grain data partitioning and task partitioning. SVM allocation seems to take longer, as indicated by the chart. The execution time is normalized and includes Kernel, Copy Back & Merge, Copy To Device, and Allocation.

Data Partitioning includes tasks such as BS, CE, D, HSTI, HSTOP, PAD, RSCD, SC, TRNS, RSCT, TQ, TQH, BFS, CEDT, TSSSP, and Fine-grain. Task Partitioning includes Coarse-grain tasks.
Benefits of Collaboration on FPGA

Case Study: Canny Edge Detection

Source: Collaborative Computing for Heterogeneous Integrated Systems. ICPE'17 Vision Track.
Benefits of Collaboration on FPGA

Case Study:
Random Sample Consensus

Source: Collaborative Computing for Heterogeneous Integrated Systems. ICPE’17 Vision Track.
Conclusions

- Possibility of having **CPU threads and GPU blocks collaborating** on the same workload
- Or having **the most appropriate cores** for each workload
- Easier programming with Unified Memory or Shared Virtual Memory
- System-wide atomic operations in NVIDIA Pascal/Volta and HSA
  - Fine-grain collaboration