Conversion of Control Depemdence

to Data Depemdence

J.R. Allen
Ken Kennedy
Carrie Porterfield
Joe Warren

Department of Mathematical Sciences
Rice University
Houston, Texas 77251

Abstract

Program analysis methods, especially those
which support automatic vectorization, are based
on the concept of interstatement dependence, where
a dependenee holds between two statements when one
of the statements computes values needed by the
other. Powerful program tramnsformstion systems
that convert sequential programs to a form more
suitable for vector or parallel machines have been
developed using this concept [Al1K 82, KKLW 80].

The dependence analysis in these systems is
based on data dependence. In the presence of com-
plex control flow, data dependence is not suffi-
cient to transform programs because of the intro-
duction of control dependences. A control depen-
dence exists between two statements when the exe~
cution of one statement can prevent the execution
of the other., Control dependences do not fit com-
veniently into dependence-based program transla-
tors.

One solution is to convert all control depen-
dences to data dependences by eliminatiag goto
statements and introducing logical variables to
control the execution of statements in the pro-
gram. In this scheme, action statements are con-
verted to IF statements. The variables in the con-
ditional expression of an IF statement <can be
viewed as inputs to the statement being con-
trolled. The result is that control dependences
between statements become explicit data depen-
dences expressed through the definitions and uses
of the controlling logical variables.

This paper presents a method for systemati-

cally converting control dependences to data
dependences in this fashion. The algorithms
1

Support for this research was provided by IBM
Corporation.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or afee.
© 1983 ACM 0-89791-090-7...$5.00

177

presented here have been implemented in PFC, an
experimental vectorizer written at Rice Universi-
ty.

l. Motivation
1.1. Dependence and Vectorization
The development of computer architectures

with powerful vector processing units has spawned
an interest in languages that permit the explicit
specification of vector and array operatioms. In
fact, it seems clear that the next ANSI standard
for Fortran (hereafter referred to as Fortran 8x)
will contain such explicit vector operations.
This language should enable programmers to write
high level programs that fully utilize vector
hardware [ANSI 81].

Unfortunately, the many millions of lines of
Fortran developed prior to Fortran 8x were written
without the benefit of explicit vector operations.
If this existing code is to use vector hardware
effectively, it must be translated to a language
from which vector operations may be invoked --
either vector machine langwage or a high level
language with vector operations. This translation
must replace the implicit vector operations in the
original TFortran program with explicit vector
aoperations. At Rice, we are developing a transla-
tors known as Parallel Fortran Comverter (or PFC),

that converts Fortran 66 and 77 programs into
equivalent vector programs in Fortran 8x
[Al1k 82].

The natural place to look for vector opera-~

is the Fortram DO loop. Ideally, each
assignment in a DO loop would be converted to a
vector assignment by translating the subscripts to
vector iterators.

tions

For example, the loop

DO 100 I =1, 100
A1) = A(I) + C
100 CONTINUE

could be translated to the statement

A(1:100) = A(1:100) + C

However, the translation process is not quite that
simple, because the semantics of vector assignment
in Fortran 8x require "fetch before store."™ That
is, while a scalar assignment in a loop intermixes
loads and stores, a vector assignment behaves as
if all components of the right hand side are
fetched before any component of the left hand side
is stored. The following loop illustrates this
difference.
Do 100 T = 1, 100
A(1) = A(I-1) + B(I)
100 CONTINUE

Since the intent is that the component of A com-
puted on one iteration be used as input on the
next,B the statement cannot be simulated by a vec-
tor statement of the form

A(1:100) = A(0:99) + B(1:100)

with "fetch before store®™ semantics. By contrast,
the statement in our first example loop did not
intermix loads and stores in the same array, so
its effect can be simulated with vector semantics.

Thus, 8 statement that computes a value on
one iteration of the loop that is used directly or
indirectly by the same statement on another itera-
tion cannot be vectorized by transliteration; oth-
erwise, the statement may be vectorized.
Correctly distinguishing between these two cases
requires a study of the flow of values between
uses and definitioms.

Classical data flow analysis models the rela-
tionship between definitions and uses of variables
as a directed graph in which each vertex
represents a statement and each edge a data. flow
link from definition to use; these links are often
called def-use chains [Kenn 78]. However, follow-
ing Kuck [Kuck 77], the term dependence denotes
the relationship between 2 statement Sy that uses
the value that Sy might have created. 83 directly
depends upon S if the value computed by S; might
be an input to S, at run time. S, depends upon S5}
if there exists a sequence of statements X]s.e.s¥p
such that X=81, X,=83, and X;j+) depends directly
upon X; for all i, O<i<n. In these terms, a
statement can be vectorized only if it does not
depend upon itself.

PFC employs a slightly wore sophisticated
concept, called loop-carried dependence, which
associates each dependence with the iteration of a
particular loop. For example, the dependence of
81 on itself in

DO 100 I =1, 10
DO 90 J =1, 10

51 A(1,3) = A(I-1,3) + ...

90 CONTINUE
100 CONTINUE

is clearly due to the loop on I. Within any
specific iteration of the I loops S) does not use
its own results; only when I is incremented does
8) fetch from a location of A that it has also
stored in. Since the dependence (and hence the
cycle) disappears when the I loop is run sequen-
tiallys S; can be correctly vectorized in the J
loop to produce
Do 100 I =1, 10
S1 A(I,1:10) = A(I-1,1:10) + ...

100 CONTINUE

Using the concept of loop-carried dependence, Ken-
nedy developed a recursive algorithm to vectorize
statements in the maximum number of dimensions
permitted by its dependence relations. [Kenn 801.

1.2. Control Dependence

Data dependence alcne is not sufficient to
describe all important considerations in vectori-
zation. Consider the following loop:

DO 100 I = 1, N
51 IF (A(1).6T.0) GO TO 100
S, A(1+1) = B(I) + 10
100 CONTINUE

The theory of data dependence would not preclude
vectorization of S5. Certainly §; directly
depends on S5. But Sy does not depend on itself
or on Sy for any of its inputs. Nevertheless,
neitber §; mor Sz can be correctly vectorized
because of the existence of a gontrol dependence
of S; on Sp. That is, the outcome of the test in
S1 determines whether Sy will be executed. When
the control dependence is copsidered, both 81 and
S9 depend on themselves indirectly.

Unfortunately, control dependence does not
fit nicely into the dependence machinery of PFC
because .the dependence is not associated with any
variable. When the same loop is rewritten as

DO 100 T =1, N
BRI = A(I).GT.0
IF (BR1) A(I+1) = B(I) + 10
100 CONTINUE

(thereby associating the dependence with the vari-
able BR1) the problem becomes much. simpler. By
viewing the variables in the conditiom.controlling
S9 as inputs to the statement, the relationship of
these two statements is now clear in terms of data
flow. Control dependence has been completely con-
verted to data dependence.

178

The beauty of this scheme is that conditional
assignments are straightforward to vectorize if
the scalar conditions are expanded into arrays.
For example, consider a slight variation on our
example loop.

DO 100 T = 1, N
BR1 = A(I).GT.0

IF (BR1) A(I)
100 CONTINUE

B(I) + 10

This version could be transformed to vector form
by using the Fortran 8x WHERE statement.

BR1{1:N) = A(1:N).GT.0

WHERE (BR1(1:N)) A(l:N) = B(1:N) + 10
Many vector machines have hardware to support con-
ditional vector operations, usually via a logical
mask to select the positions in which the computa-
tion is to be applied.

By generalizing this idea into a method for
converting control dependences to data depen-
dences, PFC can vectorize statements in loops
which contain conditional transfers. The IF
conversion phase of PFC is responmsible for this
transformation.

2, Fundamentals of IF Conversgsion

Central to IF conversion is the notion that
Fortran Statements can be classified into four
groups:

(1) action statements -- statements which cause
some change in the state of the computation
or produce some important side effect. Exam-
ples: assignment, read, write, call,

(2) branch statements -- statements which make an
explicit transfer of control to amother loca-
tion in the program. Examples: goto, com~
puted goto, assigned goto. Note that call is
treated as an action statement because within
a given module it may be viewed as a macro-
action,

(3) iterative statements =-- statements which
cause another statement or a block of state-
ments to be iterated. Example: DO statement.

(4) placeholder statements -- statements which
take no action but which c¢an be used as
placeholders for the computation. Example:
CONTINUE.

Notice that the Fortran IF statement has no place
in our classification. The reason is that we view
the IF clause as a qualifier that can be attached
to any action or branch statement, In other
words, every action or branch statement can be
viewed as a conditional statement.

The IF conversion phase of PFC attempts to
eliminate all goto statements in the program. The

execution order of the original program is main-
tained by computing a logical conditiom for each
action statement. This condition is called a

guard.

Definition: The guard for an action or conditional
action statement is a Boolean expression which
represents the conditions wunder which the
statement is executed. That is, when control
reaches the statement, the original statement
is executed if and only if its guard evaluates
to true. [0

The original program is transformed by replacing
simple action statements with conditional action
statements of the form:

IF (guard) statement

IF statements (other than conditional branches)
can be replaced by IF statements in which the
guard is conjoined to the original condition. If
the guard of a statement is identically true, it
can be written without the IF qualifier.

For the purpose of analysis, branches can be
categorized into three types:

(1) exit brapch: a branch that terminates one or
more loops, as in

Do 100 T = 1, 100
IF (ABS(A(I)-B(I)) .LE. DEL) GOTO 200
100 CONTINUE

see

200 CONTINUE

(2) forward branch: a branch whose target occurs
after the branch but at the same loop nesting
level. Note that since branches into the
range of a DO loop are not permitted, a
branch to a label after the branch must be
either a forward branch (if the label is at
the same nesting level) or an exit branch (if
the label is outside the loop in which the
branch occurs),

Do 100 T =1, 10
IF (A(I).EQ.0.0) GOTO 100

B(1) = B(1) / A(1)
100 CONTINUE

(3) backward branch: an branch to a statement
occurring lexically before the branch but at
the same nesting level, as in

10 I=1+1
A(L) = A(I) + B(I)
IF (I .LE, 100) GOTO 10

In accordance with this classification, IF conver-
sion uses two different tramsformations to elim-
inate braneches within the program.

(1) Branch relocation moves branches out of loops
until the branch and its target are nested in

179

the same number of DO loops. This procedure
converts each exit branch into either a for-
ward branch or a backward branch.

(2) Branch removal eliminates forward branches by
computing guard expressions for action state-
ments under their control and conditioning
execution on these expressions. Backward

branches are left in place.

The following sections present these two tech-
niques in more detail.

3. Exit branches

Exit branches differ from other branches in
that exit branches affect the execution of state-
ments both before and after the branch. That 1is,
since a branch out of a DO loop terminates execu-
tion of the loop, it affects all the statements in
the loop. Comsider the following example:

Do 100 I = 1,100

S1
IF (X(I)) GOTO 200
S2
100 CONTINUE
S3
200 84

Once the jump is taken, the DO loop is terminated
and neither statement S nor S; will be executed
thereafter, If the DO loop were not present, pro-
ducing

51
IF (X(I)) GOTO 200

S2

S3

200 S4

statement §; is completely wunaffected by the
branch. Thus, exit branches are more complicated
than forward branches., since eliminating them
requires modification of the guards of all state-
ments within the loop exited.

If all exit bramnches can somehow be converted
into forward or backward branches, then the prob-
lem of IF conversion becomes much simpler, In
other words, if PFC can relocate the branches so
that every branch is nested in exactly the same DO
loops as its targets branch removal will then
eliminate these branches naturally with forward
branches.

The basis proceduwre used in branch relocation
and elimination is the computation of a Boolean

guard expression for each statement, This guard
evaluates to true if and only if the statement
would be execnted in the original program. By
converting the guard to a logical expression in
Fortran and using it as a condition in an IF
clauses PFC can then test for vectorization using
only data dependence.

Guards in PFC are based on a system of formal
logic. The atoms of this logical system are
predicates expressing conditions that may hold at
various points in the program. For example, one
possible predicate is p = "A(I).LT.0 was true on
the most recent execution of statement 300." If
"A(I).LT.0" is the condition for a jump past
statement 350, the predicate p should certainly be
part of the guard for that statement. The opera-
tions which may be applied to predicates are con-
junction (A), disjunction (V) and negation (7).
Hence a guard might be the conjunction of several
predicates, e.g.

pr A p2 A 3

In order to separate the issue of correctness from
the issue of simplification, we will distinguish
between the logic used to represent guards inter-
nally and their actual appearance in the output
language. In our logic, we can compute a provably
correct guard for a particular statement; however,
this does not imply that we can find, in a reason-
able time, the most concise Fortran representation
for that guard.

The duality of the logic of conditions and
their externmal representation is mirrored by our
implementation, We represent the guards inter-
nally in a form quite different from the external
representation (see Section 7). Notationally., we
will use the function p to map the internal
representation of conditipns to a realization in
the language being generated. An internal condi-
tion may have many external representations; we
therefore assume that g will choose one that is
suitably concise. For example, p might employ the
Quine-McCluskey prime implicant simplification
procedure to generate a simple external represen~
tation of a given internal guard [Quin 52,
McCl 561, The use of p allows us to delay con-
gideration of any simplification issues until Sec-
tion 6.

Returning to branch relocation, movement of
an exit branch out of a loop requixes that the
execution of each statement in the loop be guarded
by an expression which will be true in the modi-
fied program only while the branch has not beenr
taken in the original program. More generally.
each statement will be guarded by an expresasion
which is the conjunction of exik .£lags, denoted
eXjs where an exit flag is a Boolean variable
associated with a particular branch in the origi-
nal program.. The exit flag ex; is defined to be
true at a statement if the branch associated with
the flag would not have been taken before control
reached the statement in the origimal program. In
orxder to compute a realizatijon for exj, we will
introduce a corresponding logical variable EXi

180

into the program. EXi will be used to capture the

condition controlling the loop exit each time that

condition is evaluated, so that p(ex;) = EXi. We
will use the convention that lower case variables
represent conditions and upper case variables

represent their realizations as Fortran logical
variables.

In the case of branches out of a single loop,
there is one exit flag for each exit branch. Upon
entry to the loop, all exit flags are true, since
the loop has not yet been exited. Each exit

branch of the form
IF (P) GOTO S
within the 1loop
assignment of the form
EXi = .NOT. P

is associated replaced by an

"the exit

its most

the
branch would not have been taken at
recent execution.™ A new branch of the form

IF (.NOT. EXi) GOTO S;

which captures condition exj =

is generated immediately following the loop to
simulate the effect of the branch in the loop.
Note that this branch will be taken only if the
exit branch would have been taken in the original
program. Finally, the guards of all statements
within the 1loop (including the newly generated
assignment} are modified by conjoining each exit
flag for that loop:

ex] A exg A ... A exy.

The overall effect is to arrange the modified
program so that an exit flag is set to false when-
ever the corresponding exit branch in the original
program would have been taken. Thus, once an exit
flag becomes false, no other statement in the loop
will be executed, even though the DO statement
will continue to run iteratioms.

Here is the previous example after reloca-

tion:

EX1 = ,TRUE.

DO 100 I = 1,100
IF (EX1) s
IF (EX1) EX1 = .NOT. X(I)
IF (EX1) S,

CONTINUE

IF (.NOT. EX1) GO TO 200

S3

84

100

200

This method is easily extended to multiple
loops by treating a branch out of more than ome
loop as a branch out of the outermost loop. GCon-
sider the following more complicated example:

181

DO 200 1 =1,100
50 81
DO 100 J=1,100
52
IF X(1,J) GO TO 300

S3
IF Y(1,J) GO TO 50

84
100 CONT INUE
S5
200 CONTINUE
300 8¢
After the branch relocation, this code becomes
EX1 = ,TRUE.
DO 200 I =1,100
50 IF (EX1) S;
IF (EX1) EX2 = .TRUE.
DO 100 J=1,100
IF (EX1 .AND. EX2) Sy
IF (EX1 .AND, EX2) EX1 = ,NOT. X(I,J)
IF (EX1 .AND. EX2) S3
IF (EX! .AND., EX2) EX2 = .NOT. Y(I,J)
IF (EX1 .AND, EX2) S4
100 CONT INUE
IF (EX1 .AND. .NOT. EX2) GOTOQ 50
IF (EX1) S5
200 CONTINUE
IF (.NOT. EX1) GOTO 300
300 Sg

This transformation is effected by applying the
simple method to the first jump with respect to
the outer loop and the second jump with respect to
the inner loop. Note that the exit flags are
mutually exclusive; that is, once any exit flag is
set to false (indicating that an exit branch has
been taken), no other exit flag in any loop that
the corresponding jump would have left can be set
to false. Hence, if a loop is implicitly ter-
minated by an exit branch, that branch can be
identified by scanning the exit flags for the one
which is false.

The algorithm for branch relocation is given
in Figure 1. The guard on every statement other
than an IF initially true. The algorithm
proceeds by computing the loop guard for this
loops, applying itself recursively to nested DO
loops (which computes guards for the statements in
those loops) then conjoining the loop guard for
the current loop to the guard of every statement
under its control.

is

After the procedure is called on every DO
statement at the outmost level, no exit branches
will remain in the program. To demonstrate the
correctness of branch relocation, we must show two

things:

(1) the algorithm removes all exit branches, and

(2) the modified version performs exactly the
same computation as the original.

The first point follows rather trivially from

statement S; of the algorithm. The body of loop

procedure relocate_branches (x);

/* x is the DO statement for the loop */
/* loop_guard will be the conjunction of */
/* all exit flags for the loop */

loop. guard = true;

Si:for each exit branch IF (P) GOTO §)
that exits the loop headed by x deo
begin
create a new unique exit flag exj
with realization EXi;
insert the assignment "EXi = ,TRUE,"
prior to x;
loop_guard = loop.guard A exj;
insert the branch "IF (.NOT. EXi) GOTO S"
after the loop;
So: replace the exit branch by
the assignment "EXi = ,NOT, P"
end

for ecach DO statement y contained in x do
relocate_branches (y);

S3:for each non-DO statement y contained in x do
guard(y) = guard(y) A loop_guard;

end relocate_branches;

Figure 1: Branch Relocation

S} converts a particulsr exit bramch to an issign-
Since no new exit branches are created by
the procedure (the generated brancbes must be at
the same level as their targets), and since S; is
executed for each exit branch in a loop, the modi-
fied code will contain no exit branches.

nent .

The second point follows from twe observa-
tions about the transformations being applied.

(1) The only difference between action statements
in the original program and the modified pro-
gram is that all exit flags for loops in
which the statement is contained are con-
joined to its guard.

(2) Each exit branch. is replaced by an asgignment
statement that sets the corresponding exit
flag to false if the condition controlling
the branch is true =-..in other words, if the
branch would have been taken the exit flag
becomes false.

One important. concern aboui correctness is
that the transformation might have introduced side
effects that would mot have occurred in the origi-
nal program.
effects is the computsation of guard values. The
branch removal algorithm is very careful to cou-
pute branch conditions at the point where they
would have taken place in the original program and
save them in logical variables.

A possible source of such side

The computation

of guards then amounts to evaluating logical

expressions in these logical variables, thereby

avoiding the problems of side effects.

Since all branches out of the loop have been
eliminated, every DO loop in the modified program,
once entered, will run its course - even though
some exit flag is false and no real computation is
being done. This is an essential part of the
transformation, but it may have the unfortunate
effect of unexpectedly long running times when the
purpose of the DO loop iteration is to provide a
bound large enough to insure that the loop would
be terminated by a branch on detection of a spe-
Hopefully, the speedup gained
than offset this

cial condition.
from vectorization will more
inefficiency.

Branch relocation is an elegant prepass to
branch removal for many reasons. First, it makes
no distinction between backward branches and for-
Second, it allows the identifica-
tion of branches and targets,

information necessary for branch removal.

ward branches,
thus providing

4, Forward Branches

The simplest type of control dependence
results from forward branches. Since the execu-
tion of the statements between the branch and its
target clearly depend on the value of the vari-
ables in the hranch expression, IF conversion must
guards that correctly reflect this

Once the guards are in place, the

determine
dependence
jump 1is . unnecessary and is removed. The process
of _eliminating forward branches is known as for-
ward branch removal.

Fundamental to all phases of branch removal
is the idea of a current condition, which is sim-
ply a logical expression (guard) reflecting the
conditions under which the statement presently
under consideration will be executed. As branch
removal moves from statement to statement in the
prograus it coujoing or disjoins Boolean variables
with the current coandition Lo generate the guard
for the next .statemeunt. These Boolean variasbles
represeat facts aboul the forward branches of the
program (such as whether or not they would be
taken).

A forward branch. affects control flow at two
locations: at the branch, where control flow can
diverge from ordinury sequential flow; and at the
target label, where the split rejoins sequential

flow. Thus, the curreni condition (oxr cc) must. be
medified at these ©points to remove forward
branches.

(1) At the branch: In the absence of other son-
trol flow changes, the statement immediately

182

following a forward branch is executed only
when control flow reaches the branch and the
Thus,
condition at the forward branch is ccj and
the predicate controlling the branch is p,

branch is not taken. if the current

the guard for the following statements will
be ccy A -p.

At the rarget:
reach the target of the branch either sequen-

(2) Similarly, control flow can
tially from the previous statement or via the
branch itself.
tions, if the guard on the statement prior to
the target is ccgs the guard on the target
should be ccy V (cey A p). In the absence of
other changes in control flow (so that ccg =

Under the previous assump-

cc] A p), the guard on the target statement
is (cey A 4p) Vv (cey A p) which simplifies to
ccy. In other words, if control flow reaches
the branchs control flow will reach the tar-
get regardless of which execution path
taken.

is

An example should make these ideas clearer.

DO 100 I =1, 100
IF (A(I).GT.10) GO TO 60
A(L) = A(I) + 10
IF ¢B(1).GT.10) GO TO 80
Sg B(1I) = B(x) + 10
83 60 A(1) = B(I) + AQ1)
S4 80 B(1) = A(I) - 5
100 CONTINUE

5y

We introduce two Boolean variables brj and brgp to
capture the two branch conditions in the loop.
Such variables are <called branch flags. The
branch flag br; is defined to be. true if and only
if "A(I).GT.10™ evaluates to..true in the first IF
statement. We use the Fartran logical variables
BR1l and BR2 to capture the values of brj and brg,
so BRl = p(bry) and BR2Z = p(brp). In the program
text this is accomplished by inserting the assign-

ments:
BR1 = A(I).GT.l10
BR2 = B(I).GT.10
in place of the two IF statements, By using logi-

cal variables to capture the values of conditions
at the original point of evaluation, PFC ensures
that 1later assignments in the program cannot
accidentally change the conditions controlling
statements.

Following the conventions for forward branch
removal described above, we find that the state-
ments in the loop are controlled by the following
conditions.

183

statement controlling condition
S “brg
So “brjA+brsy
S3 bryv(+brjA1bry)
S4 br1V(abrjAbry)v(abrjAbrj)

In order to prevent the proliferation of long
expressions involving logical variables 1like BRI
and BR2, the IF conversion procedure must be able
to recognize
expressions.

identities and logical
For example, it should surely recog-
nize that the condition controlling Sy is always

simplify

true. Thus, simplification is an important aspect
of IF conversion. With simplification, the IF
conversion procedure in PFC would convert the
example loop above into the following.
DO 100 I = 1, 100
BR1 = A(I).GT.10

S1 IF (.NOT. BR1) A(T) = A(T) + 10
IF (.NOT. BR1) BR2 = B(I).GT.1l0

S9 IF (.NOT. BR1 .AND, .NOT. BR2)

X B(I) = B(I) + 10
S3 IF (BR1 .OR. .NOT. BR2)

X A(1) = B(I) + A(T)
S4 B(I) = A(I) + 5

100 CONTINUE

Note that the condition controlling S3 is dif-
ferent from what one would initially expect. When
we first ran this example on a prototype PFC sys-
tem that used the Quine-McCluskey prime implicant
simplifier [Quin 52, McCl 56], we. thought the sim-
plifier was incorrect, After some thought how-
ever, we realized that the simplifier had indeed
produced a correct (and simpler) version of this
condition,

Figure 2 outlines the algorithm used to elim-
inate forward branches. The procedure
forwa£d~ponvert is called on each statement in the
original code. ccg is initialized to TRUE before
the first call, and is then reset by each succeed-
ing call. Tbhe algorithm assumes the.existence of
a set of queues (in the array predicate_list) and
basic queue primitives. Note that only forward
branches. are converted; therefore all the expres-
sions to be disjoined at a target must be in its
predicate list at the time the guard for that tar-
get is created.

5. Backward Branches

While branch removal can eliminate forward
branches quite handily, it cannot remove the last
backward branches.
cannot be directly

type of control dependence -
In fact, backward branches
eliminated from a program, because a backward
branch creates an implicit. loop. A looping con-
struct cannot be simulated with guarded state-
mentss thus backward branches cannot be directly
eliminated.

procedure forward_convert (x, ccq)
returns condition;

/* x is the statement under consideration */
/* ccqg is the condition prior to x, */
/* ccy will be the condition guardimg x */
/* predicate_list(x) is a queue of all *x/
/% predicates that must be disjoined */
/* at x because of branches to x. *x/

ccy] € ceqQsl

while not_empty (predicate_list(x)) deo
begin
p <- get_from queue (predicate_list(x));
ccy] +ccy Vp
end

case statement_type(x) im

/* IF -(P) GOTO y (forward to same level) */
begina
create a new branch flag brj
with realization BRij
replace x with "IF (p(ccy)) BRi = P3™;
add_to_queue (predicate_list(y),
e€cq A bri);
€cy] + ¢cc] A +bry
end

/* 60T0 y
begin
add_to_gueue (predicate_list(y), ccy J;
ccy + false;
delete statement x

*/

(forward to same level)

end
/* All other type statements */
begin
guard x by cc)
end
esac;

return (ccy)

end forward_convert;

Figure 2, Forward Branch Removal.

Backward branches create more problems than

implicit loops. however. Forward branch

removal in the presence of backward branches can-

not be handled by the algorithm

because of code like the following:
IF (X) GO TO 200

S1

just

in Figure 2,

100

S2

200

IF (Y) GO TO 100

Forward branch removal as illustrated in Figure 2
would set the guard for $; to X. This guard is
incorrect because it would prevent §; from being
executed when X is true and the backward branch to

184

100 is taken.

One possible approach to IF conversion that
avoids the complications of backward branches is
to isolate these branches, leaving the code under
their control (known as an implicitly iterative
region) untouched.
bits removal of any forward branches
implicitly iterative region.

0f course, this approach inhi-
into an

This

must consider the problem more carefully.

limitation seems quite severe, so we
A guard

for §; must reflect two alternatives:

(1) 8; is executed on the first pass through the
code only if X is false.
(2) sy is always executed any time that backward

branch is taken.

These alternatives suggest a generalized approach:
one set of conditions is used to guard the first
pass through an implicitly iterative region and a
different set is used to guard subsequent passes.
These guard conditions can be established by using
a Boolean variable which is false on the first
pass through the region and true whenever the
backward branch has been taken. In other words, a
branch back flag bb (with realization BB) will
denote the fact that the backward jump has been
taken.

Applying this idea to the previous example
would produce:

Statement Guard
BRl = X true
eee bry
BBl = ,FALSE, true
100 84 abry v (bry A bbp)
e “bry v (brT A bbl)
200 s, true
IF (Y) THEN
BBl = ,TRUE.
GOTO 100
ENDIF

One noteworthy point is that BBl is set to true
only if a branch back occurs.

Corresponding to our two alternatives, there
are two ways that the target y of & backward
branch can be reached from the start of the pro-
gram.

(1) Fall through: control can fall through from
the statement before y. The condition under
which this path 1is taken is completely
encoded by the current condition on exit from

the predecessor,

Backward branch: control can enter the
implicitly iterative regiom by a branch with
branch flag brj and branch backward (flag
bbj) to y. The condition under which this

(2)

can happer is br; A bbj. Since bbj is set to
true when the branch occurs, it incorporates
the condition that the backward branch was
reached from the target of the forward branch
and the backward branch condition was true.

Hence, the guard at the target of the backward

branch is
ccy v (brj A bbj)
If there is more than one jump into the iterative

region, the second term should be the disjunction
of the each branch condition conjoined with bbj.

The condition generated at the target must
also be slightly modified. Consider the following
example.

IF (X) GO TO 200

100 81
GO TO 300
200 89

IF (Y) GO TO 100
300 S5

The correct guard for Sy must be br) A -bbjs since
82 is executed if and only if the forward branch
to 200 was taken and the backwards branch has not
been taken. In order to remove the branch preced-
ing S3, the term -<bb; must be in the target condi-
tion. In general, the target condition for a for-
ward branch into multiple implicitly iterative
regiong is the conjunction of the branch flag and
the negation of the branch back flag for each
region. The negations of the branch back flags in
the target condition signifies that countrol may
pass to the target statement only on the first
iteration of these regions. The previous example
after complete branch removal becomes

BR1 = X

100 IF (.NOT.BR1 .OR. BBl.AND.BR1) S
/* GO TO 300 has been eliminated */
200 IF (.NOT. BBl .AND. BR1) Sy
IF (.NOT. BBl .AND. BRl .AND. Y) THEN
BBl = ,TRUE.
GO TO 100
ENDIF
300 53

At S3» the current condition of -bbj A br; is dis-
joined with. the target condition +bry V bbjy A brj.
The result after simplification is true which mir-
rors the fact that S3 should always be executed.

Figure 3 contains the general branch. removal
algorithm which incorporates these observations.
The only major modification to the algorithm in
Figure 2 is the check, encapsulated in
process_branch (Figure 4), on whether forward
branches jump_ into implicitly iterative regions.
Also. note that block IF statements are not .gen-
erated at the backward branch, since these .would
defeat the purpose .of IF comversion. Instead, a
sequence of equivalent assignments is generated.

185

procedure remove_branches (x, ceq)
returns condition;

/* x is the statement under consideration. */
/* ccg is the current condition prior to x */
/* ccy is the current condition after x *x/

cc] + ceps
while not_empty (predicate_list(x)) do
begin
p + get_from_queue (predicate_list (x));
cc) € cey Vp
end
case statement_type(x) im

/* IF (P) GOTO y (forward to same level) */
begia
create a new logical guard brj
with realization BRi;
replace x with W"IF (p(ccl)) BRi = P";
process_branch (xs y, cc] A bri);
cc] + ccy A brg

end
/% -GOTO y (forward to same level) */
begin

processbranch (x, y, cc]);

cey « false;

delete statement x
end
/% IF-(P) GOTO y (backward to same level)x/
begin

let bb: be branch-back flag associated
witﬁ this branch (realization: BBj);

insert "BBj-= ,FALSE.™ before y;

let TPk be a new temporary variable;

replace x with the statements

TPk = pleey)"
"IF (TPk) TPk = P"
®IF (TPk) BB:; = .. TRUE."

®IF (TPk) GOJTO y"

end;
#%-A11 other statements */
begin
guard (x) + guard (x) A cey
end
esac}

return (cey?)
end remove branches;

Figure 3: Complete branch removal

The branch removal procedure used in PFC has
several advantages. First, no special cases are
needed for backward branches unless there is .a
branch into the region under the control of that
backward branch. Without the presence of another
branch, the branch back flag never enters the
current condition. Second. the branch back flag
simplifies out of the current condition after the
target of the last forward branch into the impli-
citly iterative region. This simplification
reflects the fact that the condition for execution
of all statcments after the last possible external

entry to the Dbackwards branch should be

independent of any specific iteration of the back-
wards branch. Most important, however, is the
ability of the algorithm to handle any pathologi-
cal combination of backwards branches with minimal
effort.

6. Boolean Simplification

In developing the conceptual basis for IF
conversion, we have purposely attempted to factor
out issues of representation. We have referred to
two representations, one internal and one exter-
nal, for the conditions constructed by IF conver-
sion. The basic method insures that the guards
attached to the output program will be correct,
but we need some mechanism to insure that the out-
put program will be clean and readable. In other
words, we need to find external representations
for the conditions which are as simple as possi-
ble.

The simplification function is built into the
operator p which maps internal representations to
external representations. Internally, the guards
are maintained in a form suitable for quickly per-
forming the fundamental operations of branch remo-
val -- creating a new branch flag and merging two
conditions at a label, The actual simplification
is performed by applying a version of the Quine-
McCluskey prime implicant simplifier [Quin 52,
McCl 561.

6.1. Prelimimaries

We begin with a bit of notation for the ensu-
ing discussion. In a Boolean formula, variables
and negations of varishles will be referred to as
literals. A conjunction of literals is known as a
fundamental formula if no variable appears in it
twice. Any alternation of fundamental formulas is
a (disjunctive) normal formula and the fundamental
formulas of which it is an alternation are called
ferms.

Let ¥ be a set. of variables. We denote by
nf(Y¥) the set. of.all normal formulas over ¥. A
fundamental formula t.is. .a minterm over ¥ if each
variable in ¥ occurs in it exactly once. If there
are n variables in V, there are 2P minterms,. since
each minterm can contain either a variable or its
negation.

Every Boolean formula,K can . be. written .as the
alternation of minterms; we refer to this
representation as. . the caponical expansion or
canonical disjunctive .pormal form. The Quine-
McCluskey procedure simplifies Boolean formulas by
reducing them to canonical disjunctive normal form
and then finding a minimal set of prime implicants
for the set of minterms., A fundamental formuls ¢
is prime implicant of a formula ¥ if ¢ > ¥ and

there exists no shorter conjunction of a subset of
the literals in @ that also implies .

Hence the Quine-McCluskey procedure contains
three phases:

(1) Reduction to of the formula ¥ to canonical
form.

(2) Construction of the set P of all prime impli-
cants for the formula., If VP is the alterna-
tion of all members of P, then VR = 3.

(3) Selection of the shortest set § © P such that
VP = @&.

Phase 3 1is of combinatorial complexity in the
number of prime implicants, but since the best
simplification is not strictly necessary, a good
heuristic to select § is acceptable. Phase 2 can
be implemented in time proportional to nl.58y
where n is the number of minterms and m is the
number of variables used in & [AIKW 82]. However,
the method requires O0(3®) storages so it is
impractical for m larger than eight or nine. How-
ever, there exist slightly slower methods which
have much smaller storage
McCluskey's original technique is one such
[McCl 56]. Phase 1 is also potentially exponen-
tial since a few short formulas in m variables can
give rise to 2% minterms.

requirements.

6.2, Simplification in PFC

In PFC, we avoid phase 1 of the Quine-
McCluskey procedure by internally maintaining the
guards as a set of minterms over the set of branch
flags active at the time the guard is created.
This representation allows us to take advantage of
the observation that conditions are modified dur-
ing branch removal in only two ways:

(1) At a forward branch & new . branch flag is
created and two new conditions are formed
from it by .conjoining it and its negation to
the current condition at the branch. Inter-
nally, this result can be effected by con-
joining the new flag and its negationm to
every minterm in. the current condition col-
lection, . The. ones with the negation comprise
the current condition for the next statement
while the ones with .the unnegated flag
comprise the condition attached to the
branch.

(2) At. a target some collection . of conditions
must be disjoined. This disjunction. is han-
dled by extending the minterms to be over the
same set of variables, then simply taking the
union of all minterms in the various collec-
tions.,

186

Conditions in PFC are actually represented by two
parts. The first part (the branch flag list) is a
list of branch flags present in the condition,
maintained in the order that the forward branches
they represent were encountered. The second part
is a set of minterms. The disjunction of these
minterms represents the actual condition.

A simple example should clarify the method
used. Consider the following code:
IF (X) GOTO 300
IF (?) GOTO 100
IF (Z) GOTO 200
100 CONTINUE
200 CONTINUE

300 CONTINUE

As each of the branches are passed, the current
condition is conjoined with the branch flags to
produce 2 single minterm abry A abry A abrjz as
the current condition after all branches. The
expresgion to be disjoined at statement 100 is
abry A brjy. Since the current condition includes
brzs which is not in the target condition, we
expand the target condition by rewriting it as the
disjunction of two minterms: (+bry A bry A br3) v
(abr] A bry A ~br3). When this expression is dis-
joined with the current conditiom, no simplifica-
tion can be performed (other than reversing the
transformation made in the target condition).
Thus the current condition after statement 100 is

procedure process_branch (x, y, br);

/* x is the branch */
/* y is the target */
/* br is the condition on the branch */

stmt_guard « truej
for each implicitly iterative region
that x jumps into do
begin
let bb: be the branch back flag
cengrolling the region;
let Xy be -the target of
the backward branechj
add_to_gqueue (predicate_list(xj). brAbbj);
stmt_guard + stmt_guard A 1bbj
end

add_to_queue (predicate_list(y),
br A stmt_guard);

end process_branch;

Figure 4. Forward Branch Processing

(4brjA+bryAbr3)V(brAbrgAbr3)V(brAbrgA-brs)

At statement 200, the expression br] A bry A brj
is disjoined with the current condition, giving:

(4brjAbrpA+bry)V(4br)AbroAbry)v
(4brAbrgAabr3)v(abr)Abroabry)

The first and last minterms simplify to 1br; A
tbra. The second and third minterms simplify to
tbr) A bry. These minterms combine to produce
7bry. Finally, at statement 300, the flag -br; is
simplified out, resetting the current condition to
true.

This example leads to several new observa-
tions.

(1) Once a branch flag is simplified out of the
current condition, it never reenters the con-
dition. The disappearance of a flag implies
that all possible execution paths since the
branch associated with the flag have merged
together. Whether or not the branch was
taken will have no effect on the execution of
subsequent statements.

(2} The order in which branch flage may be sim-
plified out of the condition is exactly the
reverse of the order in which the branch
flags are introduced., The previous example
demonstrates this point clearly, since brg
must be removed from the current condition
before bry can be removed.

The proof of these statements is straightforward
but . not obvious. In the interest. of space, we
will omit it here. The interested reader is
referred to a technical report on simplification
in PFC [Al1RW 82].

The minterm representation for guards. can be
exponentially larger than the shortest representa-
tion, as our earlier discussions. indicate. How-
ever, this growth occurs emnly.when. the last branch
jumps around a section of code containing the tax-
gets of all previous branches. For local, struc-
tured . branches, branch flags simplify out .very
shortly after entry. . Since the growth of minterms
can be. exponential in the worst case, regardless
of the representation, we. chose. this method in
order . to optimize the time required to. simplify
structured code. Note that simplification with
this representation merely involves testing the
set of minterms to see if each element ...Abr, has
a .partner ...Adbry. If so, bry. may be removed
from the minterm, and its predecessor checked for
the same condition; otherwise, the condition is in
simplest terms. . By carefully ordering the min-
texms as they are added to the condition, we can
insure that simplification is acceptably effi-
cient.

187

Afterwards the simplified condition may be
2 and 3 of the Quine-
McCluskey procedure. These phases are required
only when the actual current condition is altered.

generated using phases

This scheme can also be expanded to handle back-
wards branch flags by adding the backward branch
flag to the current condition's branch flag list
and into the
implicitly iterative region is encountered.

expanding when the first branch

7. Implementation

IF conversion in PFC is performed in three
separate passes over the program. The first pass
analyzes the branches in the code, marking back-
ward branches ~and exit branches. Next branch
relocation is performed, followed by branch remo-
val, These passes are basically as described
above, although the algorithms differ slightly in
order to promote efficiency and simpler condi-
tions. Simplification using the _ abstract
representation described previously is performed
only during branch Afterwards, the
guards are converted to the same intermediate form
as all other expressions. A final pass over the
program unlocks backward branches and converts
them to WHILE loops. At this point, all branches
have been removed from the program.

removal.

Figure 5 briefly outlines the structure of

PFC, Prior to IF conversion, PFC normalizes DO
loops and analyzes the program to uncover its
basic block structure [Kenn 81]. DO loop

Scanner |- DO Loep -— Basie Block |-

Parser Normalization Analysis

|~ IF -
Conversion
¥
Global - Dependence —3 Parallel Code

Optimization Analysis Generation

Figure 5: Structure of PFC

188

normalization modifies all loops to run from one
In
new loop induction variables are gen-

to some upper bound by increments of one.
doing sos
erated which allow easy identification of the loop
controlled. Additiomnally,

every statement is mnoted,

the nesting level of
thereby allowing easy
determination of jumps out of loops.

Basic block analysis is not important to IF
conversion directlys but it is vital to the global
optimization phase following IF conversion. Note
that by explicitly guarding every statement in the
IF the
number of basic blocks in a program. Specifi-
cally, every guard and every statement has become
a block to itself.
global optimizations the analysis would be horren-
dously slow, and in many cases, far less accurate
than possible.

program, conversion greatly increases

If these blocks were used in

However, by making use of the fact
that IF conversion does not change the execution
order of the program, we are able to use the basic
blocks constructed before IF conversion to suc-
cessfully optimize the program as it exists after
IF In addition, the use of basic
blocks can facilitate the incorporation of unvec-
torized IF statements into block IF constructs.

conversion.

After IF PFC applies global
optimization to the program,
These transformations include dead code elimina-
tions constant propagatiom. and induction variable
substitution. In addition to replacing implicit
induction varisbles with functions of the true
induction variables,

conversions
transformations

induction variable substitu-
tion propagates certain expressions forward within
loops (within the limits set by the basic block
analysis). This propagation will vreplace flags
that are constant within a loop by the .actual
expression_assigned to the flag. This transforma-
tion is advantageous for two reasons,. First,
scalars inside DO loops either inhibit or greatly
increase the cost of vectorization. Second,. the
resulting code is much closexr in. appearance to the
original code, making the transformations easier
to understand.

Another important transformation performed by
PFC is scalar expansion, which is part.
recurrence breaking phase during parallel

of a
code

generation. As described earlier, the use of
scalar flags inside DO loops can cause scalar
dependences, thereby inhibiting vectorization.

Scalar expansion will replace scalar variables. by
equivalent array variables, thereby breaking. some
of the dependences. There are three. distinct
advantages to using scalar flags in IF conversion,

rather than using logical arrays directly. First,
this approach allows IF conversion to focus
strictly on the problem of converting control

it need not be concerned with the
tedious details of converting scalars to arrays.
Second,

dependences --

this approach guarantees that arrays are
not created unless some vectorization is gained by
the approach., Strictly expanding every scalar can
greatly increase the amount of storage required by
a program, without necessarily permitting any vec-
torization at all. Scalar expansion, however,
will not expand a scalar unless some vectorization
results. Third,
tested for
analysis phase of PFC.

arrays created in IF conversion
the dependence
Unfortunately, dependence
testing is not exact in PFC;

are dependence in
PFC may determine
that two array references are dependent when in
actuality they are independent. In particular,
the expansion of exit flags gives rise to false
recurrences when tested by the dependence analysis
phase. Scalar expansion is sophisticated enough
to recognize that these dependences are false,
however, and ignores them, thereby permitting more

vectorization.

8. Conclusions

IF conversion has proved to be an extremely
valuable transformation ip PFC because it permits
vectorization of sections of code that PFC must
otherwise leave untouched. The present implemen-
tation of IF conversion is complete as described
here, with two exceptions. First, simplification
is not yet completed. As a result, IF conversion

can only be run on short examples, since the
current condition tends to rapidly become
unwieldy. Second, we have only briefly explored

the possibilities of converting guards in unvec-
torized code to block IF constructs.

IF conversion has implications far beyond the
applications to vectorization. By converting con-
trol dependences to data dependences, IF conver-
sion is useful in such applications 3s data flow
languages, code structuring, and goto elimipation.
More generally, it demonstrates in a practical
program transformation system that any branching
construct can be successfully converted to a
structured construct. This result, though well
known [BohJ 66, Hare 80], is intellectually pleas-
ing as well as practically useful,

References

[AllK 82] J.R. Allen and K. Kennedy, "PFC: a pro-
gram to cenvert Fortran to parallel
form," Report MASC TR 82-6, Department
of Mathematical Sciencesy Rice Univer-
sity, Houston, Texas, March, 1982.

[AIKW 82] J.R. Allen, K. Kennedy, and J. Warren,
MSimplifieation of Boolean formulas in
PFC," Dept. Mathematical Sciences, Rice

University, Houston, Texas, November

[ANSI

[Bane

[BohJ

[Burr

[GibK

[Hare

[Renn

[Ruck

[KKLP

[RKLW

[McCl

{Quin

[Towl

[Wolf

189

81]

761

661

771

811

801

801

771

81]

801

561]

521

761

78]

1982.

American National Standards Institute,
Inc., "Proposals approved for Fortran
8x," X3J3/56.80 (preliminary document),
November 30, 1981.

U. Banerjees, ™Data dependence in ordi-
nary programs," Report 76-837, Depart-
ment of Computer Science, University of
Illinois at Urbana-Champaign, Urbana,
Illinois, November 1976.

C. Bohm and G.
diagrams, Turing machines, and
languages with only two formation
rules, " Comm ACM 9, 5, May 1966.

Burroughs Corporations, "Implementation
of FORTRAN," Burroughs Scientific Pro-
cessor brochure, 1977.

Jacopini, "Flow

C. Gibbons, and K. Kennedy, "Simplifi-
cation of functions,"™ Rice Technical

Report 476-029-10, Rice University,
January 1981,
D. Harel, "0n folk theorems,™ Comm ACM

23, 5, July 1980, 379-389.

K. Kennedy, "Automatic translation of
Fortram programs to vector form," Rice

Technical Report 476-029-4, Rice
University, October 1980.
D.J. Kuck, "A survey of parallel

machxne organization and programming,™

Surveys 9, 1, March 1977,
29-59,
D.J.-Kucky, R.H. Kuhn, B. Leasure, D.A.
Padua, and M. Wolfe, "Compiler

transformation of dependence graphs,"
Conf. Record of the Eighth ACM Sympo-
gium on DPrinciples of Programming

Languages, Williamsburg, Va., January
1981,

D.J. Kueck, R.H. Kuhn, B. Leasure, and
M. Wolfe, "The structure of an advanced

vectorizer for pipelined processors,”

Proc. IEEE Qnmnntex Society Fourth

Interpational Software and
Applications Snni-. IEEE, Chicago,
October 1980.

E.Je McCluskey, "Minimization of

Boolean functions,™ Bell System Tech.
Jl. 35, 5, November 1956, 1417-1444.

W.V. Quine, "The problem of simplifying
truth functions,™ Am. Math. Monthly 59,
8, October 1952, 521-531.

R.A.

dence

Towle, "Gontrol and data depen-

for program transformations,"
Ph.D. Dissertation, Report 76-788,
Dept. of Computer Science, University
of Illinois at Yrbana-Champaign,
Urbana, Illinois, March 1976.

M.J. Wolfe, "leechniques for impreving
the inherent parallelism in programs,™
Report 78-929, Dept. of Computer Sci-
ence, University of Illinois at
Urbana-Champaign, Urbana, Illinois,
July 1978.

