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Effective data prefetching requires accurate mechanisms 
to predict both "which" cache blocks to prefetch and 
"when" to prefetch them. This paper proposes the Dead- 
Block Predictors (DBPs), trace-based predictors that accu- 
rately identify "when" an L1 data cache block becomes 
evictable or "dead". Predicting a dead block significantly 
enhances prefetching lookahead and opportunity, and 
enables placing data directly into L1, obviating the need 
for auxiliary prefetch buffers. This paper also proposes 
Dead-Block Correlating Prefetchers (DBCPs), that use 
address correlation to predict "which" subsequent block to 
prefetch when a block becomes evictable. A DBCP enables 
effective data prefetching in a wide spectrum of pointer- 
intensive, integer, and floating-point applications. 

We use cycle-accurate simulation of an out-of-order 
superscalar processor and memory-intensive benchmarks 
to show that: (1) dead-block prediction enhances prefetch- 
ing lookahead at least by an order of magnitude as com- 
pared to previous techniques, (2) a DBP can predict dead 
blocks on average with a coverage of 90% only mispredict- 
ing 4% of the time, (3) a DBCP offers an address prediction 
coverage of  86% only mispredicting 3% of the time, and (4) 
DBCPs improve performance by 62% on average and 
282% at best in the benchmarks we studied. 

1 Introduction 

Increasing processor clock speeds along with microar- 
chitectural innovation have led to a tremendous gap 
between processor and memory performance. Architects 
have primarily relied on deeper cache hierarchies, where 
each level trades off faster lookup speed for larger capacity, 
to reduce this performance gap. Conventional cache hierar- 
chies employ a demand-fetch memory access model, in 
which data are fetched into higher levels upon processor 
requests. Unfortunately, the limited capacity in higher 
cache levels and the simple data placement mechanisms 
used in conventional hierarchies often result in high miss 
rates and reduce performance. While superscalar engines 
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with non-blocking caches [19] allow overlapping the miss 
latency among the higher cache levels, limited available 
instruction-level parallelism and long access latencies to 
lower cache levels often expose the miss latency in many 
important classes of applications. 

Many architects have additionally relied on the prefetch 
memory access model to mitigate the shortcomings of the 
demand-fetch model. Prefetching helps fetch data in 
advance to hide the memory latency by predicting future 
memory requests. While prefetching can be initiated in 
either hardware [17,5,10,3,15,4,6] or software [9,8,14,12], 
many researchers and vendors opt for hardware implemen- 
tations for transparency and due to availability of runtime 
information which can significantly improve prefetching's 
effectiveness. Most previous proposals for hardware 
prefetchers target specific memory access patterns - -  such 
as strided accesses [15,4,6] and accesses to linked data 
structures [17]. While effective for the targeted access pat- 
terns, these prefetchers have limited general applicability 
across a wide spectrum of applications. 

There are a number of prefetcher proposals in the litera- 
ture that target generalized memory access patterns [5,3] - -  
including strided accesses, and indirect accesses to linked 
data structures and arrays. These proposals primarily rely 
on miss address correlation [1] as a technique to predict 
and prefetch memory addresses. These prefetchers, which 
we refer to as Miss Correlating Prefetchers (MCPs), record 
a history of prior L1 cache miss addresses, and correlate the 
history to a subsequent miss to trigger a prefetch. 

Unfortunately, MCPs suffer from several key shortcom- 
ings. First, LI cache misses are often clustered, especially 
in out-of-order engines with high-bandwidth L I caches, 
significantly limiting the lookahead and opportunity for 
timely prefetching. Second, rather than predicting block 
evictability, these prefetchers place the (prefetched) data in 
small associative buffers, and look them up either in paral- 
lel with L1 thereby increasing L l ' s  critical access path or 
upon an L1 miss thereby increasing the prefetch hit latency. 
Finally, miss address correlation has not been shown to 
offer both high prediction accuracy (i.e., correct predictions 
as a fraction of all predictions) and high coverage (i.e., cor- 
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rect predictions as a fraction of all misses) [5]. 
This paper proposes the Dead-Block Predictors (DBPs) 

and the Dead-Block Correlating Prefetchers (DBCPs). A 
DBP is a novel hardware mechanism that predicts "when" a 
block in a data cache becomes evictable. In a recent paper 
[7], we proposed trace-based predictors that record a trace 
of shared memory references to predict a last reference to a 
cache block prior to an invalidation in a multiprocessor. 
Similarly, a DBP records a trace of memory references that 
accurately predict the lastreference to a block in an L1 data 
cache, prior to the block's eviction. A DBCP uses address 
correlation in conjunction with dead-block traces to predict 
a subsequent address upon a dead-block prediction. Accu- 
rate predicton of a block's evictability enables timely 
prefetching of data directly into an L1 data cache. 

We use a cycle-accurate simulation of an aggressive out- 
of-order superscalar processor and a spectrum of memory- 
intensive benchmarks to show the following: 

• For critical cache misses (that are not fully overlapped 
by computation and incur stalls), on average 92% of the 
intervals between a last reference to a block until its 
eviction from L1 are larger than L2 latency, indicating 
excellent lookahead opportunity for DBCP. In contrast, 
on average only 38% of the intervals between two sub- 
sequent cache misses are larger than L2 latency, indicat- 
ing a much lower opportunity for MCPs. 

• A DBP predicts a block's evictability on average for 
90% of the time and only mispredicts 4% of the time. 

• We show for the first time that correlating two prior 
addresses significantly enhances MCPs' accuracy and 
coverage. 

• Using a 2M on-chip implementation, a DBCP offers 
timely prefetching and on average speeds up applica- 
tions by 62% and at best by 282%. In contrast, ideal 
MCP implementations assuming unlimited storage 
increase performance on average only by 17% and at 
best by 51%. 

The rest of the paper is organized as follows. Section 2 
describes previous work on miss correlating prefetchers. In 
Section 3, we present the design details of our predictors 
and prefetchers. In Section 4, we present the methodology 
and results. Finally, we discuss the related work in 
Section 5 and conclude the paper in Section 6. 

2 Miss correlating prefetchers 

There is a myriad of proposals for hardware and soft- 
ware data prefetching. We will briefly describe these previ- 
ous proposals in the related work in Section 5. In this 
section, we will focus on Miss Correlating Prefetchers 
(MCPs) [3], the most effective of current hardware 
prefetchers applicable to generalized memory access pat- 
terns. Prefetching relies on two key mechanisms to success- 
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F IGURE 1. A Miss Corre lat ing Prefetcher.  

fully fetch and place data prior to a processor reference: (1) 
an accurate memory address predictor to predict "which" 
data to prefetch, and (2) and an accurate predictor of 
"when" to prefetch the data. MCPs rely on correlating 
cache miss addresses to predict both which data to prefetch 
and when to prefetch it. 

Figure 1 depicts the anatomy of an MCP. An MCP uses 
a miss address predictor and a prefetch buffer. Much as 
two-level branch predictors, the miss address predictor con- 
sists of two storage levels. A history register maintains an 
encoding of the most recent miss addresses. A correlation 
table, organized as a cache, records a prediction for a subse- 
quent address given a history encoding. Upon prediction, 
MCP prefetches a block and places it in the prefetch buffer 
for lookup by the processor. The lookup occurs either in 
parallel with L1, increasing L l ' s  critical access path, or 
upon an L1 miss incurring high prefetch hit latency. 

A recent study [5] evaluated MCPs in detail and con- 
cluded that miss address correlation alone results in low 
prediction accuracy and coverage independently of the 
number of addresses recorded in the history. They proposed 
Markov prefetchers that recorded and prefetched up to four 
subsequent missing addresses for every history entry. We 
present results in this paper that indicate that encoding two 
previous addresses results in high prediction accuracy and 
coverage in the spectrum of pointer-intensive, integer, and 
floating-point applications we studied. 

Despite a high address prediction accuracy and cover- 
age, prefetching using MCPs is often not timely. Figure 1 
depicts an example of MCPs' shortcomings. A reference to 
block B 1 results in a cache miss which triggers a prefetch to 
cache block C2. Cache blocks C 1 and C2 are mapped to the 
same block frame in the cache. While the last reference (or 
"last touch") to C 1 may occur well in advance of the refer- 
ence to C2, the block frame in the cache holds C1 until C2 
is moved from the prefetch buffer into the frame upon a 
processor reference. In contrast, predicting the last touch to 
C1 would allow replacing C1 by C2 in the corresponding 
block frame earlier. 
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Recent out-of-order superscalar engines further reduce 
lookahead in MCPs. These processors rely on non-blocking 
L1 caches and often issue multiple accesses in parallel, 
reducing the distance between two misses. Furthermore, 
these engines issue cache accesses out of program order, 
resulting in a re-ordering of miss addresses and address 
misprediction. The degree of re-ordering and its impact on 
prediction accuracy highly depends on the available paral- 
lelism in the application and a processor's issue-window 
size. While using the ordered (i.e., committed) miss address 
stream [5] would help increase accuracy, it significantly 
reduces the timeliness in prefetching because MCPs have 
limited prefetching lookahead. 

3 Dead-block correlating prefetchers 

In this paper, we propose the Dead-Block Correlating 
Prefetchers (DBCPs),  that predict a last reference to a block 
frame in a data cache, replace the contents of the block 
frame upon the last reference, and subsequently predict and 
prefetch a new cache block. Cache block frames alternate 
between two states: (a) a "live" state which begins with a 
miss and is followed by a sequence of hits to the frame, and 
(b) a "dead" state which begins after the last hit to the frame 
and ends with a subsequent miss. The key observation 
behind a DBCP is that the time during which a frame is 
"dead" is quite long [20,11] and well more than the time 
needed to fetch a cache block from the bottom of the hierar- 
chy. Therefore, by accurately predicting both when a frame 
becomes "dead" and what cache block the processor will 
reference next, an DBCP can eliminate the miss and 
improve performance. 

A DBCP uses a two-level predictor to predict both a 
cache block replacement and a subsequent address to 
prefetch for the corresponding block frame. In a recent 
paper [7], we proposed Last-Touch Predictors (LTPs) to 
predict memory invalidations for shared data in a multipro- 
cessor. In this paper, we derive predictors from LTPs that 
predict the last reference to a cache block prior to its evic- 
tion (i.e., when the block "dies") in the L1 cache and corre- 
late a subsequent address to prefetch with every last touch. 

Much like MCPs, DBCPs rely on repetitive memory 
access behavior in programs to prefetch effectively. Unlike 
MCPs, DBCPs primarily capitalize on repetitive instruction 
sequences - -  rather than memory address sequences - -  to 
predict memory access behavior. Figure 2 depicts prefetch- 
ing using a DBCP for our example of memory references. 
The predictor encodes the trace of memory references to 
A2 from the time it is fetched (by the reference at PCi) into 
L1. Upon a last reference to A2 by PCk, the DBCP predicts 
that A2 is "dead", replaces A2 and prefetches A3. Because 
the last reference to A2 often arrives much earlier than a 
subsequent reference to A3 (at PCI), DBCP hides the 
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latency for fetching A3. In the rest of the section, we will 
describe in detail DBCP's prediction/prefetching mecha- 
nisms and their implementation. 

3.1 A dead-block predictor 

The first predictor we derive is a Dead-Block Predictor 
(DBP) for L1 data caches. Figure 3 (top) depicts the anat- 
omy of a trace-based DBP. A history table duplicates the L1 
tag array and stores a trace encoding associated with every 
tag. We use truncated addition (as before [7]) to maintain a 
fixed-size encoding for every instruction trace. In practice, 
truncated addition allows a compact encoding (i.e., -12 
bits) while offering high prediction accuracy and coverage. 
We also studied using xor  (used in other predictors [13]) 
and found that repetition of PCs (due to iterative control 
flow) prevents xor from accurately encoding a trace. While 
other encoding functions are possible, a more detailed 
study of encoding is beyond the scope of this paper. 

A dead-block table maintains encoded traces, called sig- 
natures, that end with a dead block. Upon a new history 
encoding, a DBP looks up in the dead-block table to match 
the trace against a signature. When learning, an L1 replace- 
ment places the block's history encoding as a signature in 
the dead-block table. To reduce misprediction frequency, a 
DBP uses two-bit saturating counters for every signature to 
estimate prediction confidence. 

Due to control flow irregularities in applications, multi- 
ple cache blocks may have dead-block signatures that are 
proper subsequences of each other resulting in subtrace 
aliasing [7]. To prevent aliasing, DBP maintains dead- 
block signatures per cache block address. Because, the 
number of signatures highly varies across blocks (as data 
structure usage varies across application phases), we use a 
simple hash function to distribute the signatures across the 
table. Results in Section 4 indicate that xor works well as a 
hash function in practice. 

The figure depicts prediction in DBP using our example 
of memory references. The trace in the history table for 
block A2 is {PCi,PCj}. A memory reference to A2 from 
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PCk updates the corresponding history table entry and 
looks it up in the dead-block table. Because the table indi- 
cates a match, the DBP predicts that block A2 is dead. 

3.2 A dead-block correlating address predictor 

We derive a Dead-Block Correlating address Predictor, 
from DBPs, that correlates the trace leading to a dead block 
to a subsequent memory address. In this paper, we use the 
abbreviation DBCP to refer to both the address predictor 
and the prefetcher we propose. In its minimal form, a 
DBCP is a DBP where each dead-block entry also includes 
a (prediction for) subsequent address. The dead-block table 
simply keeps track of the address referenced the last time a 
recorded trace resulted in a dead block. In general, a DBCP 
can also include prior address information in the dead- 
block traces for improved address prediction accuracy and 
coverage at the cost of higher storage overhead. In 
Section 4.3, however, we show that in practice, unlike 
MCPs, DBCPs exhibit high address prediction accuracy 
and coverage without prior address correlation. 

Figure 3 (bottom) depicts the anatomy of a DBCP. A 
history table entry encodes a list of prior memory addresses 
(mapped to the block frame) along with the current PC 
trace. A dead-block correlation table records history entries 
that result in a dead block, and includes a prediction for a 
subsequent memory address. For instance, in our example 
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FIGURE 4. Using a DBCP in an out-of-order core. 

in the figure, the predictor maintains a history of a prior 
memory address, A1, previously mapped to the same block 
frame as A2, with the trace { PCi,PCj }. Upon a reference to 
A2 by PCk, the dead-block correlation table predicts that 
A2 is dead and predicts A3 for prefetching. 

A key difference between MCPs and DBCPs is that 
MCPs correlate and predict the miss address stream across 
block frames whereas DBCPs correlate and predict the miss 
address stream in a given block frame. Intuitively, neither 
address stream is fundamentally more predictable than the 
other because MCPs' cache address stream is just an inter- 
leaving of DBCP's block frame address stream. In practice, 
we present results in Section 4.3 that indicate that the best 
achievable address prediction accuracy and coverage for 
MCP and DBCP are comparable. 

3.3 P r e d i c t o r  & prefetcher implementation 

Unlike previous MCP studies [5,3] that evaluated the 
prefetcher's effectiveness for single-issue in-order proces- 
sors, we incorporate and evaluate our prefetchers in a wide- 
issue out-of-order superscalar engine (Figure 4). Because 
cache block deadtimes are typically large (e.g., hundreds to 
thousands of cycles), a DBCP can tolerate high latencies in 
dead-block and prefetch address prediction without sacri- 
ficing timeliness. Moreover, the execution order of instruc- 
tions and the instruction issue width have little impact on a 
DBCP's effectiveness because of the large prediction/ 
prefetch lookahead. Therefore, unlike MCPs, DBCPs can 
monitor and record the program ordered (i.e., committed) 
memory reference stream. Because the history table main- 
tains a copy of the L1 tags, the ordered memory reference 
stream in the history table also produces an ordered L1 miss 
address stream. 

As in any table-based predictor, a key design parameter 
affecting a DBCP's accuracy is the size and organization of 
the correlation table. Due to DBCP's large tolerance for 
latency, the table can be built as a highly associative struc- 
ture to minimize the number of conflicts among the signa- 
tures and increase accuracy and coverage. Moreover, the 
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table can be built either on chip to reduce interference with 
off-chip traffic, or off chip to optimize for size at the cost of 
a higher required bandwidth. Alternatively, the table can be 
built as a hierarchy with the on-chip storage holding the 
signatures for all the cache blocks in L1 backed up by main 
memory. Prefetching a block into L1 would simultaneously 
initiate bringing the block's dead-block signatures into the 
on-chip table. In this paper, we evaluate standalone (fast) 
on-chip and (slow) off-chip table implementations. 

A DBCP can use reference filters to reduce storage and 
lookup bandwidth requirements for the tables. In out-of- 
order engines with non-blocking caches, cache misses in L 1 
that hit in L2 (e.g., conflict misses that are temporally 
close) are often overlapped and do not introduce memory 
stalls on the execution path. In this paper, we augment the 
processor's re-order buffer with a single bit that indicates 
whether a load/store instruction at the head of the buffer 
stalls (i.e., takes two or more cycles to retire). Such a load/ 
store instruction incurs a critical miss. The correlation table 
only allocates entries for these critical misses. All signa- 
tures that do not result in a critical miss are therefore fil- 
tered and are not placed in the correlation table. In general, 
a DBCP can benefit from more elaborate hardware or soft- 
ware techniques to accurately identify the instructions 
responsible for a high fraction of memory stalls. 

4 Results 

We use SimpleScalar 3.0 to simulate an aggressive out- 
of-order processor with a cache hierarchy. Table 1 depicts 
the configuration parameters for the base system. We have 
augmented the simulator to accurately model contention at 
the LI/L2 and memory buses accurately. The buses always 
give priority to processor requests over prefetch requests. 

To gauge the full potential of the predictors and the 
effectiveness of the entropy they encode independently of 
storage, we assume correlation tables with an unlimited 

Benchmarks Inputs & parameters 

bh 
em3d 
health 
mst 
treeadd 
compress 
perl 
gcc 
mcf 
ammp 
art 
equake 
mgrid 
swim 

8192 bodies 
2000 nodes, arity 2, 50 iter. 
5 levels, 500 iter. 
1024 nodes 
1.6M nodes, 16 levels, 100 iter. 
train.in 
prime.pl 
166.i-o 166.s 
inp.in 
ammp.in 
reference input 
inp.in 
mgrid.in 
swim.in 

L1 miss 
rate (%) 

2 
18i 
19 

9 
4 
4 
1 

11 
24 
14 
46 

6 
4 
5 

L2 miss 
rate (%) 

7O 
1 

22 
53 

2 
4 
0 

22 
49 
74 

• 40 
49 
25 
30 

TABLE 2. Benchmarks and input parameters. 

number of entries in our predictor studies (Sections 4.2 and 
4.3). For performance evaluation (Section 4.4), we consider 
practical implementations of DBCP with cache-like corre- 
lation tables. We consider an on-chip configuration with 
2M (including tag and data) 8-way set-associative table 
with 18-cycle access latency (including -64K entries), and 
an off-chip configuration with 7.6M (including tag and 
data) 16-way set-associative table with 70-cycle access 
latency (containing -460K entries). Both configurations use 
a 1K-entry (as many entries as the tag array in the 32K-LI 
D) history table and 12-bit signatures. The off-chip configu- 
ration eliminates all capacity and conflict misses in the cor- 
relation table and is the maximum size needed by all the 
applications we studied. 

The correlation table entries consist of a 19-bit data (17- 
bit next cache block address equal to an L1 block tag and a 
two-bit saturating counter) and a 27-bit tag and index 
(including the current address and the dead-block signa- 
ture). We use 27 bits from the L1 cache block's tag and 
index and xor it with the 12-bit signature from the history 
table. We use this resulting 27 bits as tag and index for the 
correlation table. We have found that this placement func- 
tion in practice eliminates conflicts in the tables. 

All prefetchers use a request queue with 128 entries. 
When the request queue is full, new entries in the queue 
replace the old (unissued) ones at the queue head. The 
MCPs also use a 128-entry (fully-associative) prefetch 
buffer with a 1-cycle access latency in parallel with L1. As 
in the request queue, new entries in the buffer remove old 
(unreferenced) entries. Prefetch requests are only issued at 
most one per cycle when the L1/L2 bus is free. 

Table 2 describes the benchmarks we studied, their 
inputs, and the corresponding L1 and L2 miss ratios. These 
benchmarks include five pointer-intensive applications (i.e., 
bh, em3d, health, mst, and treeadd) from the Olden suite 
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[2], and four integer and five floating-point applications 
from the SPEC2K (i.e., gcc, mcf, ammp, art, and equake) 
and SPEC95 (i.e., compress, perl, mgrid, and swim). All 
tested SPEC benchmarks use reference inputs except for 
compress. In the interest of reduced simulation time, we 
simulated the benchmarks for three billions cycles (six bil- 
lion cycles for equake) after skipping an initialization 
period of one billion cycles. Compress requires simulating 
the entire input to benefit from repetitive memory access 
behavior. Instead we simulated its train input. 

The benchmarks in this study all exhibit a large fraction 
of  memory stall cycles in their execution with varying 
degrees of  memory parallelism and overlap.l On one end of  
the spectrum, some of the Olden benchmarks primarily 
exhibit a high degree dependent memory accesses, expos- 
ing all the miss latencies on the critical path. On the other 
end, the floating-point benchmarks exhibit a high degree of  
memory parallelism, but are primarily limited by the pro- 
cessor's inability to hide long L2 miss latencies. 

4.1 Lookahead opportunity 

In this section, we compare the lookahead opportunity 
for DBCPs and MCPs. Figure 5 (left), illustrates the cumu- 
lative distribution of  distances (in cycles) between a last 

I. We evaluated DBP's and DBCP's prediction accuracy/coverage for all 
of SPEC95 and those SPEC2K benchmarks compiled for SimpleScalar. 
While the benchmarks we omit exhibit as high a prediction accuracy/cov- 
erage as those presented in this paper, they incur a small number of mem- 
ory stalls and do not benefit from prefetching. 

reference to a cache block prior to the block's eviction due 
to a subsequent miss to another block. The graphs illustrate 
the deadtimes for critical misses, those misses which stall 
the reorder buffer because their latencies cannot be fully 
overlapped. The graphs indicate that except in perl, 80% of 
the deadtimes in all applications are 500 cycles are more, 
several times larger than the memory latency. Perl exhibits 
a high fraction of  conflict misses that are clustered in time, 
reducing the fraction of  deadtimes over 500 cycles to 50%. 
These results corroborate previous findings on cache block 
deadtimes [20,11 ], and show that the deadtimes offer excel- 
lent prefetch lookahead for DBCPs. 

The results on block deadtimes have several implica- 
tions. First, because deadtimes are on average several times 
longer than memory latency, as the gap between processor 
and memory speeds increases, lookahead opportunity 
remains high allowing effective data prefetching. Second, 
prediction and prefetching techniques relying on block 
deadtimes may trade off speed for higher accuracy; the 
latency of  off-chip storage (or slow but large on-chip stor- 
age) for dead-block tables is not as critical if larger storage 
helps improve prediction accuracy and coverage. 

Figure 5 (right) illustrates the cumulative distribution of 
distance between two critical misses in the cache. As we 
can see, in 9 out of 14 applications, 20%-80% of the miss 
intervals are smaller than L2 latency, allowing insufficient 
lookahead to prefetch and overlap these misses. Moreover, 
in I0 of  the applications, 50% or more of  the miss intervals 
are smaller than memory latency preventing a prefetcher 
from overlapping L2 misses. These results indicate that 
cache misses are highly clustered, therefore even if MCPs 
offer high address prediction accuracy and coverage, they 
may be limited significantly by prefetching lookahead. 

The results on cache miss intervals also have several 
implications. First, as the gap between processors and 
memory speeds increases, lookahead opportunity using 
miss intervals relative to memory latency decreases. Sec- 
ond, aggressive wide-issue engines exacerbate the negative 
impact of miss clustering by issuing a larger number of 
memory references every cycle, thereby reducing the loo- 
kahead. Third, due to limited lookahead, MCPs require fast 
address prediction and prefetching mechanisms and cannot 
trade off accuracy for speed. Unlike DBCPs which can use 
the program ordered reference streams, MCPs must use the 
speculative reference stream which may be re-ordered and 
may reduce prediction accuracy and coverage. 

4.2 Dead-block prediction accuracy & coverage 

Figure 6 (bars labeled "A") presents the prediction accu- 
racy and coverage of a DBP for a 32K LI direct-mapped 
cache. The graphs plot the fraction of  correct dead-block 
predictions (hits), the fraction of  incorrect predictions 

149 



|hiti-ltraining []miss A=DBP B=64-stack C=256-stack [ ]=  >120% 
._.120 . . . . . . . .  

o 80 

60 

4o 

o 20 

,.=--o 

FIGURE 6. Accuracy and coverage of DBP, and 64- 
and 256-entry LRU stacks. 
The graphs only present bars with up to 20% of mispredicted dead blocks. 
High misprediction values are not plotted to enhance clarity of the cover- 
age numbers. The misprediction not plotted vary from 24% to 115%. 
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FIGURE 7. Accuracy and coverage of MCP and 
DBCP with history depths of one and two. 
The graphs only present bars with up to 40% of mispredicted L1 misses. 
High misprediction values are not plotted to enhance clarity of the cover- 
age numbers. The mispredictions not plotted vary from 44% to 96%. 

(misses), and the fraction of dead blocks not predicted due 
to predictor training. The graphs indicate that on average a 
DBP predicts 90% of dead blocks and mispredicts (i.e., pre- 
maturely predicts live blocks as dead) only 4% of the dead 
blocks. We also evaluated DBPs for set-associative caches 
an LRU replacement policy and various sizes and found 
similar prediction accuracy and coverage. However, we 
omit these results in this paper in the interest of brevity. 

These results indicate that the potential for trace-based 
predictors to predict memory system events is beyond just 
predicting memory invalidation and sharing for scientific 
applications in multiprocessors [7]. The results corroborate 
the intuition that because memory instructions drive the 
movement of data in the cache hierarchy, repetitive code 
fragments and the resulting instruction traces can help pre- 
dict the movement. 

Prediction coverage in rest is only 47% because mst's 
primary heap-based data structure is constantly modified, 
resulting in many of the dead-block signatures to be obso- 
lete upon creation. The two-bit saturating counters in DBP 
filter these signatures, preventing them from triggering a 
prediction. In health, DBP exhibits a subtrace aliasing 
problem because of the irregular control flow in the applica- 
tion's main two-Ievel nested loop, giving rise to a large 
number of mispredicted dead blocks. Compress has a pre- 
diction accuracy and coverage of 80% because of low pre- 
dictability in accesses to specific segments of the main data 
structure which is a compression hash table. 

Figure 6 also compares the prediction accuracy and cov- 
erage of DBP against simple LRU stacks (bars labeled "B" 
and "C") proposed by Peir, et al. [16] to predict evictability 
of L1 blocks. The LRU stacks simply maintain a list of 
least-recently used addresses. The key idea is that an appli- 
cation's working set has a finite number of cache blocks. 
The stacks estimate the maximum size of the working set. 
When an address falls out of the stack, the stack predicts 
that the corresponding block is dead. Unfortunately, 

because working set sizes in a cache may largely vary both 
within and across applications [ 18], LRU stacks fail to pre- 
dict dead blocks accurately. The graphs corroborate previ- 
ous findings [16] on stacks and indicate that a 64-entry 
stack achieves a coverage of 77% while prematurely pre- 
dicting dead blocks by over 100% (not shown). A 256-entry 
stack predicts dead blocks more conservatively and reduces 
the fraction of mispredicted dead blocks to 5%, only 
slightly over DBP's. However, the 256-entry stack's cover- 
age is much lower than DBR and is on average 60%. More- 
over, the stack fails to cover any dead blocks for perl and 
ammp due to conflict misses. 

4 . 3  A d d r e s s  p r e d i c t i o n  a c c u r a c y  & c o v e r a g e  

While dead-block prediction offers high accuracy and 
• coverage, the success of a prefetcher also relies on accurate 
address prediction. In general, either MCP or DBCP can 
use an arbitrary history depth - -  i.e., record a history of an 
arbitrary number of previous addresses to predict a next 
address. Larger history depth in MCP and DBCP increases 
accuracy by reducing subtrace aliasing - -  i.e., identical 
address sequences leading to different subsequent 
addresses - -  at the cost of higher storage. Too large a his- 
tory depth, however, also reduces coverage by increasing 
the learning time for predictions that do not benefit from 
larger depth. Figure 7 illustrates prediction accuracy and 
coverage for MCP and DBCP with depths of one and two. 
We experimented with varying the depth and found little 
improvement in accuracy and a decrease in coverage with a 
higher depth. 

MCP-I and MCP-2 in the graphs correspond to MCPs 
with a history depth and one and two respectively. The 
graphs show that there is a significant improvement in pre- 
diction coverage from, 52% to 80%, for MCPs when the 
depth increases from one to two. Moreover, the fraction of 
mispredicted addresses on average drops from 47% to 13%, 
increasing the prediction accuracy. Previous studies evalu- 
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ating MCPs for technical and commercial workloads [5] 
reported no added advantage to more history than a single 
address. Our results clearly indicate that for the wide spec- 
trum of applications we study, the addition of another prior 
address enhances the predictor's effectiveness. Moreover, 
the previous study evaluated MCPs using a program- 
ordered stream of miss addresses from a single-issue in- 
order engine. The numbers we evaluate are for the 
addresses generated by our wide-issue out-of-order engine. 
We found that while the prediction coverage is slightly 
higher for the ordered stream, the ordered stream has mini- 
mal lookahead opportunity. 

The key intuition behind why a larger history depth 
increases an MCP's accuracy and coverage is that while 
data structures are often referenced in multiple distinct pro- 
gram contexts or phases [7] (e.g., a given sequence proce- 
dure invocations), they are not always used in conjunction 
with the same other data structures in every phase. More- 
over, a group of data structures referenced together are not 
always referenced in the same order. An increase in history 
depth helps correlate a reference (with a given address) to a 
program phase and consequently to a subsequent address. 

In DBCP, dead-block signatures can precisely pinpoint 
which program phase a reference is from and therefore 
what subsequent address is following the given reference in 
that phase. DBCP-1 and DBCP-2 correspond to a DBCP 
with a history depth of one and two prior addresses respec- 
tively. The graphs show that DBCP-I achieves a high cov- 
erage of 82% and with only 4% misprediction. However, 
the addition of a small number of extra bits increases cover- 
age and decreases the fraction of mispredicted addresses in 
DBCP-2 to 86% and 3% respectively. We experimented 
with varying the number of bits used from tile second prior 
address and found four bits to offer the best coverage while 
mm~mlzmg storage. 

There is a single application in which the addition of bits 
from a second prior address helps significantly improve the 
predictor's coverage. In em3d, the entire program runs in a 
single phase, generating common dead-block signatures. 
Because the program marches down a bipartite graph in 
which one graph node shares both multiple incoming edges 
and outgoing edges with other nodes, a dead-block signa- 
ture and the node's address alone cannot distinguish the 
subsequent addresses along the different edges. 

On average, MCP-2 and DBCP-2 achieve roughly the 
same prediction accuracy and coverage, with DBCP-2 hav- 
ing only a slight advantage over MCP-2. On a closer look, 
we also found that the number of entries the predictors 
maintain are roughly the same. Therefore, DBCP-2's pri- 
mary advantage is in prefetching lookahead opportunity. 
However, DBCP-2 effectively encodes the information as 
to when to prefetch and what to prefetch simultaneously, 
obviating the need for decoupling the predictors, and opti- 
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FIGURE 8. Accuracy and coverage of Markov and 
DBCP-2. 
The graphs only present bars with up to 40% of mispredicted L1 misses. 
The numbers on top indicate the maximum values for each bar. 

mizing for storage. 
Figure 8 compares DBCP-2 with a Markov predictor - -  

i.e., an MCP-1 predictor that predicts four LRU addresses 
rather than a single address. Markov predictors increase 
coverage at the cost of a much higher fraction of mispre- 
dicted addresses (only a single address out of the four pre- 
dicted can be correct). On average, Markov achieves a 
coverage of 81% (slightly less than DBCP-2) but increases 
the traction of mispredicted addresses to 229%. The 
mispredicted addresses may significantly increase traffic in 
the memory hierarchy and place a large demand on band- 
width. Fortunately, not all of the mispredicted addresses go 
to waste. By predicting multiple subsequent addresses and 
prefetching them into a prefetch buffer, Markov actually 
somewhat offsets the negative impact of miss address re- 
ordering due to either re-ordering of references to data 
structures across program phases or re-ordering of miss 
addresses in the out-of-order engine. 

In equake and mgrid, the number of different miss 
addresses after the current miss is often larger than four, 
because these applications reference different sets of arrays 
in different program phases (e.g., different procedures). 
Hence, Markov is unable to capture a large fraction of the 
misses in these applications. Because DBCP-2 identifies 
where the program is executing, it exhibits high prediction 
accuracy and coverage in these applications. DBCP-2 per- 
forms worse than Markov in health and rest because these 
two benchmarks have dynamically alternating sequences of 
memory references to their main data structures. Conse- 
quently, DBCP-2 spends much time in correlating these ref- 
erences, resulting in a low prediction coverage. In contrast, 
Markov captures these changes in groups of four, and 
yields a higher prediction coverage. 

4.4 Prefetching performance 

In this section, we evaluate the prefetcher's effectiveness 
in improving performance. We compare DBCP against 
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Ideal L1 

bh 
em3d 
health 
mst 
treeadd 
compress 
perl 
gcc 
mcf 
ammp 
art 
equake 
mgrid 
swim 
"ABLE 3. 
)refetchers 

system. 

MOP-2 

61 28 
60 6 

135 26 
123 11 
36 17 
18 4 
10 5 
46 2 

185 15 
303 62 
155 4 
50 2 
56 i 4 
94 7 

Markov Markov DBCP-2 DBCP-2 
infb/w on chip offchip 

38 38 59 59 
6 13 35 42 

47 50 88 89 
24 28 18 18 
16 16 33 33 
5 6 7 6 
8 8 5 5 
9 11 24 27 

38 53 125 131 
63 69 282 283 

1 3 52 54 
10 11 2 27 
21 30 27 48 
25 33 31 51 

Performance compar ison of the 
against an ideal demand-fetched 

The table depicts percent speedup over our base demand-fetched sys- 
tem. Ideal L1 numbers correspond to an L1 with no capacity/conflict 
misses. MCP and DBCP use address history depth of 2 (i.e., MCP-2 and 
DBCP-2). The table also depicts Uarkov numbers with unlimited band- 
width to L2 and memory (Markov inf b/w). The DBCP numbers corre- 
spond to an on-chip implementation with 2M 8-way storage and 18-cycle 
latency and off-chip storage with 7.6M 16-way storage and 70-cycle 
latency. The numbers appear in italic are those which Markov outper- 
forms DBCE All results are normalized against the base system (no 
prefetch) using 12-cycle 1M L2. 

MCP implementations (i.e., both MCP-2 and Markov). To 
gauge MCPs' best performance independently of storage 
size, we assume correlation tables for MCPs that are large 
enough to fit all of the generated address encoding with a 
fast lookup latency of 12 cycles, equal to L2's latency (we 
also evaluated Markov with an ideal lookup latency of one 
cycle and observed less than 5% improvement in speed- 
ups). Because Markov can potentially benefit from extra 
bandwidth, we also present Markov numbers with unlim- 
ited bandwidth to L2 and memory. 

Table 3 compares a DBCP against an "ideal" L1 with no 
capacity/conflict misses. The comparison to "ideal" LI 
helps determine what fraction of the memory stalls the 
prefetchers can eliminate. The table presents speedups over 
a demand-fetched system. Our first observation is that all 
prefetchers improve performance over the demand-fetched 
system even though our base system is quite aggressive. On 
average, DBCP eliminates 62% of the memory stalls in L1 
and achieves a 62% speedup. In contrast, MCP and Markov 
only eliminate 22% and 30% of the memory stalls and 
achieve a speedup of only 14% and 17% respectively. 
While Markov benefits from extra L2 and memory band- 
width, the improvement is only on average an additional 
4%, not enough to break even with DBCP. 

Figure 9 breaks down the fraction of memory stalls 
removed and incurred in a prefetching system relative to a 
demand-fetched system. The incurred stalls are either stalls 

Removed stalls [Incurred stalls Extra prefetching stalls] 
prefetch hit ]~ late I I  bandwidth loss I 

D other hit [[-] training [7 cache pollution ] 

120 C=MCP-2 M=Markov D=DBCP-2 
110 

0 
CM°em3d mst compress gcc ammp equake sw/n: 
bh heal th treeadd perl mcf art mgrid 

FIGURE 9. Breakdown of all memory  stalls 
relative to a demand-fetched system.  
The DBCP numbers correspond to an off-chip table implementation. 
Incurred stalls are stalls that the prefetchers are unable to remove. These 
stalls are due to prefetcher training and late (not timely) prefetching. The 
extra prefetching stalls are extra memory stalls incurred because of 
prefetching. These stalls are bandwidth loss due to misprediction and 
cache pollution (in DBCP) because of incorrect prefetching into LI. 

originally present in the demand-fetched system or extra 
stalls due to incorrect or late prefetching. The removed 
stalls are either hits in the LI (for the case of DBCP) or 
prefetch buffer due to a successful (accurate and timely) 
prefetch, or hits in the prefetch buffer due to an earlier 
mispredicted prefetch. 

The figure indicates that DBCP is timely in most appli- 
cations. DBCP prefetches late in art, compress, gcc, and 
mcfdue to the bursty prefetch requests. These applications 
would benefit from multiple L2 cache ports and a higher 
bandwidth memory system. The request queue in these 
applications often becomes full and drops requests. Never- 
theless, DBCP eliminates a significant fraction of the mem- 
ory stalls in these applications even with a single L2 port. 

DBCP is extremely effective in Olden benchmarks 
which exhibit a high degree of data dependence through 
memory in linked data structures; DBCP virtually elimi- 
nates the dependence bottleneck in two applications and 
significantly reduces memory stalls in another two. Despite 
low prediction accuracy and coverage in mst, DBCP still 
speeds up execution by 18%. Mispredictions somewhat off- 
set the gains from prefetching in health and compress, due 
to cache pollution. Mcf and ammp have large footprints 
which do not fit in L2. DBCP, however, accurately predicts 
the references and successfully fetches the data into LI,  
reducing the memory stalls. Equake generates a large num- 
ber of correlation signatures due to a large working set of 
data. While DBCP only allocates signatures for critical 
misses, there are still more signatures than can fit in a 2M 
on-chip table. The off-chip table, however, fits all the signa- 
tures and significantly improves speedup in equake. 
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TABLE 4. Performance comparison of DBCP 
against demand-fetched systems with larger L2. 
The table presents percent speedups over our base demand-fetched sys- 
tem. The L2 numbers correspond to an ideal 12-cycle lookup latency and 
a more realistic 18-cycle latency. The numbers appear in italic are those 
which 3.1M L2 outperforms DBCP. 

In contrast, MCPs are timely for many of the Olden 
benchmarks. The benchmarks exhibit a high degree of data 
dependence and large cache miss intervals (Figure 5) allow- 
ing for prefetching lookahead. In SPEC benchmarks, the 
misses are bursty and often independent allowing little 
prefetching lookahead. Markov always improves perfor- 
mance over MCP-2 even though the predictors achieve 
comparable coverage (Section 4.3). Markov's effective cov- 
erage is higher than MCP-2 because some of the mispre- 
dicted prefetches placed in the buffer actually hit for 
subsequent misses. The bandwidth loss in MCPs is not sig- 
nificant because most prefetches are either late but accurate 
or early but inaccurate. In the former case, prefetches do 
not increase traffic as misses are merged with outstanding 
prefetch requests. In the latter case, inaccurate prefetches 
which are buffered are useful for subsequent misses. 

Besides equake, MCPs only improve performance over 
DBCP in mst and perl. In mst, Markov improves prediction 
coverage over DBCP (as discussed in Section 4.3) and 
removes relatively more stalls. Perl primarily incurs L1 
conflict misses satisfied by L2 and therefore neither 
prefetcher is timely for perl. However, hits in the prefetch 
buffer due to mispredicted prefetches significantly improve 
performance in Markov over DBCE 

Table 4 compares the on-chip 2M DBCP with a base IM 
L2 (with a 12-cycle hit latency) against an 3.1M 6-way L2 
with approximately equal storage cost including the tag 
overhead. We evaluate both an aggressive large L2 imple- 
mentation with the same 12-cycle hit latency as the base 
L2, and a slower but more realistic L2 hit latency of 18 
cycles. The table indicates that the addition of an on-chip 
DBCP is much more cost-effective than increasing L2's 
size. Half of the applications do not benefit from a larger 
L2. A larger L2 slightly outperforms DBCP only in two 
applications, health and gcc, in which the larger L2 cap- 
tures a significant fraction of their working sets. Moreover, 

in a realistic 3.1M L2 implementation with a longer access 
latency, seven of the applications actually exhibit slow- 
down because the out-of-order engine fails to overlap the 
long L2 latency. 

5 Related work 

There are a number of hardware-based data prefetching 
techniques, many of which customize hardware for specific 
memory reference patterns. Chert and Baer proposed stride 
prefetchers [4] that correlate non-unit data address strides 
with a memory instruction PC in a small table and prefetch 
based on the stride. Jouppi proposed stream buffers [6] to 
detect unit stride cache miss address sequences and corre- 
lated them with a "starting" address to prefetch them 
sequentially. Palacharla and Kessler [15] extended stream 
buffers to non-unit stride stream. Mehrorta and Harrison 
[10] proposed the indirect reference buffers to identify data 
address dependence in recursive or linked data structures. 
Roth, et al. [ 17], proposed prefetchers that capture memory 
reference dependence in linked data structures and associ- 
ate them with instruction PCs to initiate a prefetch. Charney 
and Reeves [3] were first to use address correlation in hard- 
ware on the L1 miss stream to prefetch. Joseph and Grun- 
wald [5] proposed Markov prefetchers that are miss 
correlating prefetchers associating multiple subsequent 
addresses with each correlation. 

Many software prefetchers rely on accurate compile- 
time analysis of memory access patterns to detect both what 
memory addresses are subsequently referenced and when 
the data can be placed in the cache. Mowry, et al. [12], 
show that for numerical and scientific applications, soft- 
ware prefetchers can successfully hide the memory access 
latency. Luk and Mowry [9], Lipasti, et al. [8], and Ozawa, 
et al. [14], also evaluate the effectiveness of heuristics- 
based techniques which insert compile-time prefetch 
instructions in pointer-intensive applications and applica- 
tions with recursive data structures. 

6 Conclusions 

In this paper, we proposed and evaluated Dead-Block 
Correlating Prefetchers (DBCPs). These prefetchers, use a 
novel mechanism, Dead-Block Predictors (DBPs), to pre- 
dict when LI data cache blocks become evictable. Previous 
techniques for data prefetching primarily relied on correlat- 
ing the L1 data miss address stream to predict and trigger a 
prefetch. Predicting a dead block, however, significantly 
enhances prefetching lookahead over previous techniques. 
DBCPs predict and prefetch a subsequent block address 
upon predicting a block's eviction. DBCPs enable effective 
data prefetching in a wide spectrum of pointer-intensive, 
integer, and floating-point applications with arbitrary mem- 
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ory access patterns. 
We used cycle-accurate simulation of an aggressive 

wide-issue out-of-order superscalar processor and memory-  
intensive benchmarks to show that: (1) dead-block predic- 
tion enhances prefetch lookahead by at least an order of 
magnitude over previous techniques, (2) a DBP can predict 
dead blocks on average with a coverage of 90% with only 
4% misprediction, (3) a DBCP offers an address prediction 
coverage of 86% with only 3% misprediction, and (4) 
DBCPs offer t imely prefetching of data directly into L1 and 
help improve performance by 62% on average and 282% at 
best. In contrast, the best current proposal for prefetching 
generalized memory access patterns achieves a speedup of  
only 17% and at best 51%. 
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