
Department of EE & Department of CS
Stanford University

Robust Systems
From Today to the N3XT 1,000X

Subhasish Mitra

100101010101010101010101011
001010010101010101001101010
101010100111010011000101010
101011001010001110010100101
010101100010111010101010101
010011010010101010101010101
101010011001010110010101010
101101001011010101010101001
111100111110111010010010111
010101101010110101010101010
101010111001001001010101010	

Abundant-data Internet of Everything Genomics

Smart Cities

Military Science

Finance

Security

Health Care Government

Computational demands
exceed

Processing capability

Slide	
 can	
 be	
 changed	
 to	
 reflect	
 any	

feedback	
 in	
 aesthe5cs/	
 message.	

World Relies on Computing

2

Genomics

Smart Cities

Military Science

Finance

Security

Health Care Government

World Relies on Computing

3

l  Ensure robust operation

l  Meet computation demands

l  New application horizon

Research Topics

4

l  Robust operation

§  Bugs, reliability, security

l  Revolutionize nanosystems

§  1,000X opportunity

l  Program human brain

§  SNI Big Ideas in Neuroscience initiative

Outline

5

l  Robust operation: silicon CMOS reliability

l  Beyond silicon

l  Conclusion

l  Radiation-induced soft errors

§  Fatal flip-flop errors

l  Early-life failures (ELF)

§  Burn-in: difficult, expensive

l  Variations: Vdd, thermal, circuit aging

§  Worst-case guardbands expensive

6

Silicon CMOS Reliability Challenges

Definitions
l  Malfunction (often referred to as failure)

§  Deviation from specified behavior

§  Underlying cause: failure

l  Error: incorrect signal value

l  Fault model

§  (Logic) representation of effect of failure

7

System Output Response to Failure
l  Error on output: non-critical apps. (e.g., games ?)

l  Fault-secure: correct outputs or error indication

§  Retry adequate (e.g., banks)

l  Fault masked: correct outputs

§  Fault in specified class (e.g., spacecraft)

l  Fail safe: correct or “safe” outputs

8

Definitions
l  Reliability: R(t)

§  Probability system works correctly up to time t

l  Exponential model

§  R(t) = e-λt, λ = failure rate

l  Mean Time to Failure (MTTF)

9

MTTF = t ×R(t)dt
0

∞

∫ =
1
λ

Definitions
l  Availability: A(t)

§  Probability system works correctly AT time t

l  Assume: system repaired after failure

§  Mean Time to Repair (MTTR)

l  Steady-state availability:

l  How to improve availability ?

10

MTTF
MTTF +MTTR

Error Effects: Vanished

11

Start

Finish

Output
File, display, …

Golden output
File, display, …

=

Error Effects: Output Mismatch

12

Start

Finish

Output
File, display, …

Golden output
File, display, …

≠

Silent data corruption (SDC)

No error indication

13

l  Output file incorrect

l  No error indication

Error-free

Output Mismatch

Error

Silent Data Corruption (SDC)

Error Effects: Unexpected Termination

14

Start

Finish

e.g.,

- Divide-by-zero

- Memory access violation

- Application-detected errors

- …

Hang

> 2 × error-free execution time

Start

Does not finish / terminate

Soft Error Effects

16 [Cho DAC 13]

Output Mismatch: 0.8%

Unexpected Termination: 7.7%

Hang: 0.3%

Vanished: 91.2%

All injected flip-flop errors Detected but Uncorrected
Errors (DUE)

Soft Error Effects: BZip2 on IBM Power6

17

Vanished

Recovered

Checkstop

Incorrect
architecture state

Injected
errors

[Sanda 08] (graphic contributed by Dr. Pia Sanda, ex-IBM)

3.5%

0.6%

50%

No impact

Software detected

SDC
15%

Fault-Tolerance: Rich Literature

18

Expensive

Early pioneers Early systems

How Low Cost ?

19

Low-cost detection / correction

BISER, LEAP

Circuit failure prediction

Applications

No

Yes

O
ut

pu
t e

rr
or

s

Approach

Light-weight correction

Error Resilient System Arch. (ERSA)

[Cho IEEE TCAD 12]

Low-Cost Techniques

20

Wearout Early-life failures
(ELF)

Lifetime Time

Fa
ilu

re
 ra

te

Circuit Failure Prediction
CASP on-line self-test, diagnostics, self-repair & adaptation

Burn-in
challenging

Circuit aging
margins expensive Soft Error Resilience

BISER + LEAP:
Errors reduced: 1,000X

How Low Cost?

21

“multiple error resilience techniques from different layers
of the system stack cooperate to achieve cost-effective

error resilience”

[Gupta IBM, IRPS 14]

[Pedram, NSF 12]

[Henkel, DAC 14]

[Carter Intel, DATE 10]

[DARPA, PERFECT BAA 12]

[Chandra ARM, DAC 14]

[Borkar Intel, IEEE Micro 05]

Solution: cross-layer resilience?

Existing Resilience Techniques

22

Structural Integrity Checking [Lu, IEEE Trans. Computers 1982]

ARGUS [Meixner, Micro 2007]

DIVA [Austin, Micro 1999]

Razor [Blaauw, ISSCC 2008]

Relax [de Kruijf, ISCA 2010] Svalinn [Szafaryn, IEEE Micro 2013]

z990 [Meaney, T-DMR 2005]

Scalable Hardware [Chippa, DAC 2010]

Resilience Actuators [Kleeberger, IEEE Micro 2013]

HLS-driven [Campbell, DAC 2015] Multi-Layer [Henkel, DAC 2014]

RSE [Nakka, DSN 2004]

ABFT for matrix [Huang, IEEE Trans. Computers 1984]

ABFT HPC [Bosilca, Journal Parallel and Distributed Computing 2008]

Stable codes [Chen, Lecture Notes in Computer Science 2005]
ABFT arrays [Nair, IEEE Trans. Computers 1990]

EDDI [Oh, Trans. Reliability 2002]

CFCSS [Oh, Trans. Reliability 2002]

Assertions [Sahoo, DSN, 2008]

Relyzer [Hari, DSN 2012]

Parity checking [Spainhower, IBM Journal 1999]

LEAP [Lee, IRPS 2010]

DICE [Calin, Trans. Nuclear Science 1996] BCDMR [Furuta, VLSI Circuits 2010]

BISER [Mitra, IEEE Computer 2005]

RCC [Seifert, IRPS 2010]

Residue code [Ando, JSSC 2003]

Berger code [Berger, Information and Control 1961]

Bose-Lin code [Bose, IEEE Trans. Computers 1985]

RMT [Mukherjee, ISCA 2002]

Shoestring [Feng, Comp. Arch. News 2010]

Error detectors [Pattabiraman, DSC 2007]

Reliability-driven transforms [Rehman, CADICS 2014]

SWIFT [Reis, ISCG 2005]

Fault screening [Racunas, HPCA 2007]

ANT [Hedge, ISLPED 1999]

SSNoC [Varatkar, ISSCC 2007]

l  Many point solutions

§  Some cross-layer, some single-layer

l  Missing

§  End-to-end cross-layer resilience framework

CLEAR
Cross-Layer Exploration for Architecting Resilience

23

Resilience
Library

Circuit

Logic

Architecture

Software

Application

Layout Evaluation

Synopsys

Design
Compiler

IC
Compiler

PrimeTime

28nm

Library
cells

SRAM
compiler

Reliability Analysis /
Execution Time Evaluation

Emulation
 cluster FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA

 Stampede
supercomputer RTL RTL RTL RTL

Reliability, Area, Power,
Energy, Clock Frequency,

Application Runtime

RTL: ARM, IVM, Leon,
OpenSPARC T2 SoC,
uncore, accelerators

[Cheng DAC 16]

Today’s Focus

24

l  Radiation-induced soft errors in flip-flops

§  Single-Event Upsets (SEUs)

§  Single-Event Multiple Upsets (SEMUs)

l  Combinational logic soft errors not critical

CLEAR: Extensive Study

25

l  Designs: wide variety

§  ARM, LEON3, Alpha, OpenSPARC multi-core SoC, accelerators

l  Thorough flip-flop error injections

§  FPGA clusters, Stampede supercomputer (522,080 cores)

§  Full workloads (SPEC, PARSEC, PERFECT, proprietary)

l  Detailed physical design

§  Wire routing, process / voltage / temperature corners

l  Cross-layer always best?

l  All cross-layer solutions equally good?

l  Application constraints (e.g., soft real-time)?

l  Benchmark dependence?

l  Definitive guidelines for new resilience techniques

Many Cross-Layer Questions Answered

26

l  From black art to science

l  5-50x resilience, 0.2-6% energy cost

§  Circuit + logic + micro-arch. recovery

l  Circuit alone (application-guided)

§ ~1% extra energy vs. best cross-layer

Key Message

27

Circuit

Logic

Arch.

SW

Alg.

Several layers,
Numerous combinations

Resilience
Library

Circuit

Logic

Architecture

Software

Application

Layout Evaluation

Synopsys

Design
Compiler

IC
Compiler

PrimeTime

28nm

Library
cells

SRAM
compiler

Reliability Analysis /
Execution Time Evaluation

Emulation
 cluster FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA

 Stampede
supercomputer RTL RTL RTL RTL

Reliability, Area, Power,
Energy, Clock Frequency,

Application Runtime

RTL: ARM, IVM, Leon,
OpenSPARC T2 SoC,
uncore, accelerators

CLEAR
Cross-Layer Exploration for Architecting Resilience

28

29

Dual Interlocked Cell (DICE)
Bistable Cross-coupled Dual Modular Redundancy (BCDMR)

Built-In Soft Error Resilience (BISER)

Reinforced Charge Collection (RCC)

Razor

Residue Code
Berger Code

Bose-Lin Code

Error Correcting Code (ECC)
BulletProof Redundant Multi Threading (RMT)

Shoestring
Error Detectors Reliability-driven Transforms

Software Implemented Fault Tolerance (SWIFT)

Fault Screening

Algorithmic Noise Tolerance (ANT)
Algorithm Based Fault Tolerance(ABFT) Correction

Error Detection by Duplicated Instructions (EDDI)
Control Flow Checking by Software Signatures (CFCSS)

Assertions

Monitor Cores

Data Flow Checking (DFC)

Parity Checking

Layout design through Error Aware transistor Positioning
(LEAP)

Error Detection Sequential (EDS)

Algorithm

Software

Architecture

Logic

Circuit

Control Flow Checking (CFC)

Algorithm Based Fault Tolerance (ABFT) Detection
1. Algorithm Based Fault Tolerance (ABFT) Correction
2. ABFT Detection

3. Software Assertions
4. Control Flow Checking by Software Signatures (CFCSS)
5. Error Detection by Duplicated Instructions (EDDI)

6. Data Flow Checking (DFC)
7. Monitor Cores

8. Logic Parity

9. Layout design through Error-Aware transistor Positioning
 (LEAP)
10. Error Detection Sequential (EDS)

Dual Interlocked Cell (DICE)
Bistable Cross-coupled Dual Modular Redundancy (BCDMR)

Built-In Soft Error Resilience (BISER)

Reinforced Charge Collection (RCC)

Razor

Residue Code
Berger Code

Bose-Lin Code

Error Correcting Code (ECC)
BulletProof Redundant Multi Threading (RMT)

Shoestring
Error Detectors Reliability-driven Transforms

Software Implemented Fault Tolerance (SWIFT)

Fault Screening

Algorithmic Noise Tolerance (ANT)
Algorithm Based Fault Tolerance(ABFT) Correction

Error Detection by Duplicated Instructions (EDDI)
Control Flow Checking by Software Signatures (CFCSS)

Assertions

Monitor Cores

Data Flow Checking (DFC)

Parity Checking

Layout design through Error Aware transistor Positioning
(LEAP)

Error Detection Sequential (EDS)

Control Flow Checking (CFC)

Algorithm Based Fault Tolerance (ABFT) Detection

Micro-arch. Recovery
1. Flush
2. Reorder Buffer (RoB)
3. Instruction Replay (IR)
4. Extended IR (EIR)

Micro-architecture Recovery
Flush recovery

Reorder Buffer (RoB) recovery

Instruction Replay (IR) recovery

Extended Instruction Replay (EIR) recovery

Flush recovery

Reorder Buffer (RoB) recovery

Instruction Replay (IR) recovery

Extended Instruction Replay (EIR) recovery

10 error detection /
correction techniques +
4 recovery techniques

798 combinations

Representative Resilience Techniques

45nm: up to 1,000X benefits

D

C

D

C

Latch

Redundant Latch (Scan Test & Debug reuse)

Q

Q

Weak keeper

OUT

Combinational
logic IN

Clock
C-element

A

B

30

BISER: Built-In Soft Error Resilience

[Mitra IEEE Computer 05, TVLSI 06]

l  Single-event multiple upsets (SEMUs)

31

LEAP: Layout by Error Aware transistor Positioning

NMOS
ON

VDD
GND

PMOS
OFF

in = 1

out

logic 1

V(out)

Time logic 0

J
Reduced
transient

Single Error Assumption Inadequate

[Lee IRPS 10, Lilja IEEE TNS 13]

Errors Corrected: SEUs and SEMUs

32

l  Radiation beam experiments

§  40nm, 28nm, 20nm, 14nm

§  Bulk, SOI

l  VDD: nominal, near-threshold

Flip-flop Soft Error Rate (SER) Area Power Delay Energy

Baseline 1 1 1 1 1

LEAP-DICE 2×10-4 2 1.8 1 1.8

Extensive LEAP Characterization

[Lee IRPS 10; Lilja IEEE T. Nucl. Sci. 13, SEE 16; Quinn NSREC 15, REDW 15; Turowski SEE 15]

Memory ECC and SEMUs
l  Don’t implement multiple error correction blindly

l  Multiple physically adjacent errors

33

Memory ECC and SEMUs
Option 1

l  Memory interleaving

§  2 physically adjacent errors

•  Single errors in 2 separate words

L Cost, difficult for smaller geometries

Option 2

l  Adjacent bit error correction [Dutta ITC 07]

34

Bit1/W1 Bit1/W2 Bit2/W1

Memory ECC Challenges
l  Performance overhead

§  Pipelining

•  Additional latency, verification effort

§  Detection followed by correction

•  Variable latency, verification effort

l  Small distributed memories

35

Error Masking
l  No error on outputs

§  Triple Modular Redundancy (TMR)

36

Module 3

Module 2

Module 1

Voter

Voted
Outputs

TMR Reliability

l  Rm: individual module reliability

l  Pessimistic: non-overlapping errors

l  Optimistic: correlated / common-mode failures

l  TMR MTTF < Simplex MTTF

37

RTMR = Rvoter ×[Rm
3 + Rm

2 × (1− Rm)]

TMR Reliability

l  TMR reliability = simplex reliability

§  Time = loge2 × Simplex MTTF (perfect voter)

38

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Simplex

TMR Reliability

Time (1 unit = MTTF of Simplex)

TMR Reliability vs. Mission Time

l  TMR effective for “short” mission times

l  Other options: TMR-Simplex, TMR + Duplex-Repair

39

0.98

0.99

1

0
0.04 0.08 0.12 0.16 0.2

Time (1 unit = MTTF of Simplex)

TMR Reliability

Simplex

Reliability

0

Concurrent Error Detection (CED)

l  Normal system operation

l  Preserve data integrity

§  Correct outputs or

§  Error indicated

•  Incorrect outputs

§ aka fault-secure

Function f

Output
Characteristic

Predictor

Input

Output
Checker

Error

40

Output “Characteristics”

l  Output itself: duplication

§  Major challenges if not “fine-grained”

l  Output parity

l  Output residue

l  1s or 0s count in output word

l  Many others (extensive literature)

l  Self-checking checkers

41

Processor Duplication Challenges

l  Synchronization !!

l  False DUEs when out of sync

§  e.g., error correction event in one processor

§  Mismatch when output pins compared

42

Single-Bit Logic Parity Prediction

l  P = Z1 ⊕ Z2 ⊕ … ⊕ Zm

l  Disjoint output logic (no logic sharing)

§  Only for combinational logic errors

43

Parity Checker

Error

P = Predicted
Parity

Z1 Z2 Zm

Multiple-Bit Logic Parity Prediction

l  Main purpose: cost reduction (sharing, routing, logic)

§  Can be still expensive

44

P1 = Z1 ⊕ Z2
P2 = Z3 ⊕ Z4

Parity Checker

Error

Z2 Z3 Z1 P1 Z4 P2

Parity Checker

Error

Logic Parity Checking: Flip-Flop Errors

45

predictor

checker comb.
logic

maintain clock period

Original design
Parity logic
Pipeline flip-flops

Logic parity parity group

Parameters: parity size, flip-flop vulnerability, floorplan location, timing path slack, etc.

Logic parity: Naïve 200 MHz clock speed impact

Logic parity: Incorrect heuristic 80% additional energy impact

Logic parity: CLEAR heuristic No clock speed impact
Minimal energy impact

Parity Prediction for Datapath Circuits

l  S = A + B (n-bit operation)

l  Parity (S) = S1 ⊕ S2 ⊕ S3 ⊕ … Sn

 = (A1 ⊕ B1 ⊕ C1) ⊕ (A2 ⊕ B2 ⊕ C2) … (An ⊕ Bn ⊕ Cn)

 = (A1 ⊕ A2 … An) ⊕ (B1 ⊕ B2 … Bn) ⊕ (C1 ⊕ C2 … Cn)

 = Parity (A) ⊕ Parity (B) ⊕ Parity (internal carries)

l  Parity (internal carries) expensive

§  Several strategies for high-performance adders

46

Residue Codes for Datapath

l  y = x mod b: y is residue of x (modulo b)

l  Residue (A + B) = Residue (A) + Residue (B)

l  Residue (A×B) = Residue (A)×Residue (B)

l  Choice of b: Mersenne prime (form 2m-1)

§  Coverage, checker complexity

l  Issues: bit-wise logic, operand residue, checker cost

§  Often used for multipliers

47

Application-Specific CED

l  LZ compression: loss-less, invertible

§  Compression: complex

§  Decompression: simple

9% area overhead, 0.5% delay overhead [Huang 00]
48

Error Detection Sequentials (EDS)

49 Slide obtained from K. Bowman, J. Tschanz, et al., Intel

Errors in Processors

V1

V2

V3

V4

ERROR
V1

 mov r1, 0
 mov r2, 1
 mov r3, 5

XOR

Control flow error
Incorrect instruction sequence

Computational error
Incorrect computation

Memory error
Incorrect value or address

50

Program Representation:
Control Flow Graph

 mov r1, 0
 mov r2, 1

 mov r3, 5
L1:

 inc r1

 bge r1, 10, L2
 mul r4, r3, r1

 add r5, r2, r4
 br L1

L2:

…

V1

Basic Block
(BB)

V2

V3

V4

V1

V2

V3

V4

i=0; x=1; y=5;

While (i < 10) {

 z = x + y * i;

 i = i + 1;

}

51

SIHFT

l  Software Implemented Hardware Fault Tolerance

§  Automated by compiler

§  EDDI [Oh, IEEE Trans. Reliability 02]

§  CFCSS [Oh IEEE Trans. Reliability 02b]

§  ED4I [Oh IEEE Trans. Computers 02]

§  Lots of recent publications

52

EDDI

l  Error Detection using Duplicated Instructions

l  Duplicate instructions inside basic blocks

§  Different registers

l  Duplicate data structures

l  Comparison before memory stores

l  Performance penalty 13% - 111%

§  Reduced by Instruction Level Parallelism (ILP)

53

EDDI Example
ADD R3, R1, R2 ; R3 ← R1 + R2
MUL R4, R3, R5 ; R4 ← R3 * R5

ST 0(SP), R4 ; store R4 in location pointed by SP

ADD R3, R1, R2 ; R3 ← R1 + R2 master
ADD R23, R21, R22 ; R23 ← R21 + R2 shadow

MUL R4, R3, R5 ; R4 ← R3 * R5 master
MUL R24, R23, R25 ; R24 ← R23 * R25 shadow

BNE R4, R24, Error_Handler ; compare

ST 0(SP), R4 ; store master result
ST offset(SP), R24 ; store shadow result

54

EDDI Design Choices

l  Check after each instruction ?

l  Storeless basic blocks (SBB) ?

§  No branch or store except final instruction

l  Why SBB ?

§  Correctness defined by program output

§  Erroneous branches: stores skipped ?

• Check at branches too

55

CFCSS

l  Control Flow Checking using Software Signatures

s1

s2

s3

s4

s5

d12 = s1 xor s2
l  Each node

§ Unique signature

l  Each edge

§ Transition between 2 signatures

§ Difference function: XOR

56

CFCSS

l  Runtime signature G

l  Basic block i to j

§ G = si XOR di,j

§ Check G = sj

57

CFCSS Implementation

l  Global variable G holds run-time signature

l  Compute & check signature: start of each basic block

58

CFCSS: Branch Fan-in

l  Basic block with multiple predecessors

l  Run-time adjusting signature D differentiates fan-in

59

ED4I

l  Error Detection using Diverse Data & Duplicated

Instructions

l  Duplicated instructions, data diversity

§ Expressions in shadows multiply by k (-1, -2, …)

l  k = -2: good choice

l  Transient errors & most permanent faults detected

l  Issues: floating point, pointers

60

SIHFT Results [Lovelette 02]

l  COTS in space: no hardware redundancy

l  ARGOS satellite experiment

§  Compare rad-hard processor vs. COTS

l  Undetected errors in rad-hard processor

l  COTS: 5.55 SEUs / Mbyte / day, 99.7% coverage

l  98.8% successful recovery: software ECC + restart

l  COTS + SIHFT: faster than rad-hard

61

Multi-Threading for CED

l  Same application computed by two threads

§  [Rotenberg 99, Saxena 00, Mukherjee 02]

Memory System (incl. L1 caches)

Output
Comparison

Input
Replication

Leading
Thread

Trailing
Thread

62

63

Instruction Replay (IR)

LEAP-DICE protected
Recovery logic

Cross-layer protected

Flush

Instruction Replay Flush recovery

Overhead for recovery hardware 16% area,
21% energy

0.6% area,
0.9% energy

Recovery latency 47 cycles 7 cycles

fe
tc

h

de
co

de

re
gi

st
er

ex

ec
ut

e
m

em
or

y

ex
ce

pt
io

n
w

rit
e

ctrl

re
gi

st
er

 fi
le

 shadow file

fe
tc

h

de
co

de

re
gi

st
er

ex
ec

ut
e

m
em

or
y

ex
ce

pt
io

n
w

rit
e

ctrl
Style 1:

“Instruction Replay”
Style 2:
“Flush”

What About Recovery?

Resilience
Library

Circuit

Logic

Architecture

Software

Application

Layout Evaluation

Synopsys

Design
Compiler

IC
Compiler

PrimeTime

28nm

Library
cells

SRAM
compiler

Reliability Analysis /
Execution Time Evaluation

Emulation
 cluster FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

BEE3
FPGA FPGA FPGA FPGA FPGA FPGA FPGA

 Stampede
supercomputer RTL RTL RTL RTL

Reliability, Area, Power,
Energy, Clock Frequency,

Application Runtime

RTL: ARM, IVM, Leon,
OpenSPARC T2 SoC,
uncore, accelerators

CLEAR
Cross-Layer Exploration for Architecting Resilience

64

Radiation-Induced Soft Errors

65

≈

Soft errors Flip-flop
error injection

Simulation /
Emulation

…

Bit-flips
0 ↔ 1

Radiation
beam testing

The Los Alamos
Neutron Science Center

Soft Error Injection

66

Flip-flop

102 cycles / sec

L3 Cache DRAM

Simulation speed

Architectural register

107 cycles / sec

L3 Cache DRAM

Program variable

109 cycles / sec

L3 Cache DRAM DRAM

High-level error injection

Soft Error Injection

67

Flip-flop

102 cycles / sec

L3 Cache DRAM

Architecture register

107 cycles / sec

L3 Cache DRAM

Program variable

109 cycles / sec

L3 Cache DRAM DRAM

Accuracy

Ground truth ? ?
High-level error injection

68

l  Output file incorrect

l  No error indication

Error-free

Output Mismatch

Error

Detected but Uncorrected Error (DUE) also considered

Silent Data Corruption (SDC)

Perils of Inaccurate Estimation

69

Overprotection Overestimation

Unhappy customers Underestimation

SDC

SDC

Little Prior Work

70

[Li HPCA 07]
[Sloan DSN 07]

[Chang DSN 07]

[Nakka DSN 07]

[Sakata DSN 07]

[Kruijf ISCA 10]

[Dimitrov PACT 10]

[Avirneni DSN 09]

[Wang Trans. Dependable and Secure Computing 06]

[Wang ISCA 07]

[Baraza TVLSI 08]

[Reddy DSN 07]

[Reddy ICCD 06]
[Li ASPLOS 08]

[Lee DAC 01]

[Lima DAC 03]

[Thompto DAC 10]

[Ignat DATE 06]

[Narayanasam DATE 07]
[Vadlamani DATE 10]

[Ejlali DSN 03]

[Pandit DSN 09]

[Lanigan DSN 10]

[Sahoo DSN 08]

[Mukherjee HPCA 05]

[Seward ITC 03]

[Ray MICRO 01]

[Romanescu PACT 08]

Error injection studies

[Arlat TCOMP 03]

[Chen ASPDAC 06]

[Chen PRDC 08]

[Choi Trans. Reliability 90] [Feng ASPLOS 10]

[Gu DSN 04]

[Kanawati AIAA 93]

[Maniatakos TCOMP 11]

[Miskov-Zivanov TCAD 10]

[Pellegrini DATE 12]

[Ramachandran DSN 08]

[Racunas HPCA 07]

[Wang DSN 04]

[Yim DSN 10]

[Zhang PACT 10] [Rimen FTCS 94]

[Rebaudengo IOLTW 02]

Quantified comparison

[Kalbarczyk Trans. Software Eng. 99]

[Michalak Trans. Device and Materials Reliability 12]

[Pattabiraman Trans. Dependable and Secure Computing 11]

[Alderighi Trans. Nucl. Sci. 08]

[Blome Workshop on Architectural Reliability 08]

[Cheng TCAD 99]

[Choi Trans. Reliability 90]

[Choi ICCAD 93] [Christmansson ISSRE 98]

[Constantinescu DSN 12]

[Andres TVLSI 08]

[Ferna TCAD 12]

[Goswami FTCS 93]

[Goswami FTCS 93]

[Gracia DFT 01]

[Gschwind ICCD 11]

[Hari MICRO 09]

[Hari ASPLOS 12]

[Li HPCA 09]

[Li DSN 05]

[Meixner Micro 07]

[Pattabiraman DSN 08]

[Reis TACO 05]

[Saggese DSN 05]

[Sterpone DDECS 11]

[Stott DSN 02]

[Rimen FTCS 94]

[Rebaudengo IOLTW 02]

What We Found

71

l  Naïve high-level injections highly inaccurate

l  How inaccurate?

[Cho DAC 13]

What We Found

72

l  Naïve high-level injections highly inaccurate

l  How inaccurate?

[Cho DAC 13]

 Designs:

 LEON3 (in-order, single-issue), ALPHA (out-of-order, superscalar)

 Applications: SPEC 2000

 Error injection samples: 6 million

Inaccuracy Quantification

73
Flip-flop Architectural

register
Program
variable

Undetected
output error

rate

0.8%
1x

6x 13x

What We Found

74

l  Naïve high-level injections highly inaccurate

l  How inaccurate?

§  Up to 45X

§  Neither optimistic nor pessimistic

[Cho DAC 13]

What We Found

75

l  Naïve high-level injections highly inaccurate

l  How inaccurate?

§  Up to 45X

§  Neither optimistic nor pessimistic

l  Why inaccurate?

§  Only 3% flip-flop error propagations modeled

[Cho DAC 13]

Uncore Components

76

Uncore
12%

Processor cores
12%

Memories
76%

OpenSPARC T2 SoC

Uncore

[Li ITC 13]

Intel i7 quad-core SoC

[Gupta USENIX 12]

Uncore Processor cores
60.2%

Uncore
39.8%

Area

Power

[Li HPCA 07]
[Sloan DSN 07]

[Chang DSN 07]

[Nakka DSN 07]

[Sakata DSN 07]

[Kruijf ISCA 10]

[Dimitrov PACT 10]

[Avirneni DSN 09]

[Wang Trans. Dependable and Secure Computing 06]

[Wang ISCA 07]

[Baraza TVLSI 08]

[Reddy DSN 07]

[Reddy ICCD 06]
[Li ASPLOS 08]

[Lee DAC 01]

[Lima DAC 03]

[Thompto DAC 10]

[Ignat DATE 06]

[Narayanasam DATE 07]
[Vadlamani DATE 10]

[Ejlali DSN 03]

[Pandit DSN 09]

[Lanigan DSN 10]

[Sahoo DSN 08]

[Mukherjee HPCA 05]

[Seward ITC 03]

[Ray MICRO 01]

[Romanescu PACT 08]

Existing Work

Errors in processor cores

[Arlat TCOMP 03]

[Chen ASPDAC 06]

[Chen PRDC 08]

[Choi Trans. Reliability 90] [Feng ASPLOS 10]

[Gu DSN 04]

[Kanawati AIAA 93]

[Maniatakos TCOMP 11]

[Miskov-Zivanov TCAD 10]

[Pellegrini DATE 12]

[Ramachandran DSN 08]

[Racunas HPCA 07]

[Wang DSN 04]

[Yim DSN 10]

[Zhang PACT 10]

[Kalbarczyk Trans. Software Eng. 99]

[Michalak Trans. Device and Materials Reliability 12]

[Pattabiraman Trans. Dependable and Secure Computing 11]

[Alderighi Trans. Nucl. Sci. 08]

[Blome Workshop on Architectural Reliability 08]

[Cheng TCAD 99]

[Choi Trans. Reliability 90]

[Choi ICCAD 93] [Christmansson ISSRE 98]

[Constantinescu DSN 12]

[Andres TVLSI 08]

[Ferna TCAD 12]

[Goswami FTCS 93]

[Goswami FTCS 93]

[Gracia DFT 01]

[Gschwind ICCD 11]

[Hari MICRO 09]

[Hari ASPLOS 12]

[Li HPCA 09]

[Li DSN 05]

[Meixner Micro 07]

[Pattabiraman DSN 08]

[Reis TACO 05]

[Saggese DSN 05]

[Sterpone DDECS 11]

[Stott DSN 02]

[Rimen FTCS 94]

[Rebaudengo IOLTW 02]

[May DATE 10]

Errors in uncore?

Distribution Statement A: Approved for Public Release, Distribution Unlimited
HUNDREDs of publications

77

Uncore Soft Errors: First Extensive Study

78

l  New error injection: fast & accurate

§  20,000x speedup vs. RTL

l  Reliability impact: uncore ≈ processor cores

§  BUT, long error propagation latency

[Cho DAC 15]

0%

100%

Error
propagation

latency (cycles) 1 1K 1M 1B

Errors
(cumulative)

100%

0%

Processor core errors

Uncore errors

Lots of CLEAR Results

79

798 total combinations

E
ne

rg
y

co
st

 (%
)

% SDCs covered

0

3

6

9

300

100

30

0 20 40 60 80 100

High-Level Enough?

80

Circuit
Logic

Architecture
Software
Algorithm

0

2

4

6

8

Silent Data Corruption (SDC) Rate

×
Im

pr
ov

em
en

t

Architecture Software Algorithm

Data-flow
check

Assertions CFCSS EDDI ABFT
correct

ABFT
detect

1x

Monitor
cores

19x

38x

19

38

0

4

8

Cross-Layer Combinations

81

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x

SDC improvement
Error bar: 0.5% energy cost (additive)

0

4

8

Cross-Layer Combinations

82

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x

SDC improvement
Error bar: 0.5% energy cost (additive)

LEAP-DICE + logic parity + flush recovery

0

4

8

Cross-Layer Combinations

83

Circuit
Logic

Architecture
Software
Algorithm

5x 50x

SDC improvement
Error bar: 0.5% energy cost (additive)

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x

LEAP-DICE + logic parity + flush recovery

0

4

8

Cross-Layer Combinations

84

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x

SDC improvement
Error bar: 0.5% energy cost (additive)

LEAP-DICE + logic parity + flush recovery

0

4

8

Cross-Layer Combinations

85

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x

SDC improvement
Error bar: 0.5% energy cost (additive)

LEAP-DICE + logic parity:
special optimization

LEAP-DICE + logic parity + flush recovery

0

40

80

120

Architecture & Software:
Too Expensive

86

Circuit
Logic

Architecture
Software
Algorithm

2x 5x 50x

LE
O

N
3

en
er

gy
 c

os
t (

%
)

SDC improvement

EDDI + …

DFC + …

CFCSS + …

Assertions + …

87

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

SDC improvement

Circuit-only (Application-guided):
Highly Effective

0

4

8

12

16 22

2x 5x 50x 5,000x

LEAP-DICE + logic parity + flush recovery

88

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

SDC improvement

Circuit-only (Application-guided):
Highly Effective

0

4

8

12

16 22

2x 5x 50x 5,000x

Circuit-only: LEAP-DICE error correction

(application-guided insertion)

LEAP-DICE + logic parity + flush recovery

89

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

SDC improvement

Circuit-only (Application-guided):
Highly Effective

0

4

8

12

16 22

2x 5x 50x 5,000x

Circuit-only: LEAP-DICE error correction

(application-guided insertion)

LEAP-DICE + logic parity + flush recovery

Circuit-only: LEAP-DICE error correction

(application-guided insertion)

90

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

SDC improvement

Circuit-only (Application-guided):
Highly Effective

0

4

8

12

16

2x 5x 50x 5,000x

22

LEAP-DICE + logic parity + flush recovery

0

4

8

12

16

91

Circuit
Logic

Architecture
Software
Algorithm

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x

SDC improvement

Circuit-only (Application-guided):
Highly Effective

5,000x

22
Circuit-only: LEAP-DICE error correction

(without application-guided insertion)

Circuit-only: LEAP-DICE error correction

(application-guided insertion)

LEAP-DICE + logic parity + flush recovery

Circuit-only: LEAP-DICE error correction

(application-guided insertion)

LEAP-DICE + logic parity + flush recovery

ABFT correction + LEAP-DICE + logic parity + flush recovery

0

4

8

What About ABFT?

92

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x

SDC improvement

ABFT challenging for
general-purpose cores

Circuit
Logic

Architecture
Software
Algorithm

CLEAR Insights

93

l  Hidden costs & inefficiencies

l  Implementation matters

l  Inaccurate analysis

Example: “Hidden” Costs

94

Flip-flop Area Energy
Nominal 1 1

LEAP-DICE 2 1.8
EDS 1.5 1.4

Not just flip-flop overhead
Routing, recovery impact

0

10

20

30

LE
O

N
3

en
er

gy
 c

os
t (

%
)

2x 5x 50x
SDC improvement

LEAP-DICE (errors corrected)

Error Detection Sequential (EDS) + recovery

95

Data Flow Checking (DFC)

57%

Data Flow Checking (DFC)

30%

Few Flip-flops Protected Low SDC Coverage per Flip-flop

Data Flow Checking (DFC)

1.2x

Result: Low SDC Improvement

Example: Inefficiencies

[Meixner, MICRO 07]

Example: Implementation Matters

96

predictor

checker comb.
logic

maintain clock period

Original design
Parity logic
Pipeline flip-flops

Logic parity parity group

Parameters: parity size, flip-flop vulnerability, floorplan location, timing path slack, etc.

Logic parity: Naïve 200 MHz clock speed impact

Logic parity: Incorrect heuristic 80% additional energy impact

Logic parity: CLEAR heuristic No clock speed impact
Minimal energy impact

97

Example: Inaccurate Analysis

l  Software assertions: SDC improvement

§  Prior publications: 3.9x

•  Inaccurate error injection

§  Accurate analysis: 1.5x

[Sahoo DSN 08, Hari DSN 12]

Flip-Flop error
injection

Register Uniform error
injection

SDC improvement 1.5x 4.8x

How About Benchmark Dependence?

98

l  50 <training, evaluation> pairs

§  Training: 4 SPEC, Evaluation: 7 SPEC

Trained SDC improvement 5x 50x 500x

Evaluated SDC improvement 4.8x 39x 433x

Extra energy cost (additive) 2% 1% 0.8%

Final SDC improvement 19x 152x 1,326x

Add “lightweight” hardening
(e.g., LHL)

Light-Hardened LEAP (LHL)

99

Flip-Flop Soft Error
Rate (SER) Area Power Delay Energy

Baseline 1 1 1 1 1

LHL 2.5×10-1 1.2 1.1 1.2 1.3

LEAP-DICE 2×10-4 2 1.8 1 1.8

0

4

8

E
ne

rg
y

C
os

t (
%

)

100

0

4

8

E
ne

rg
y

C
os

t (
%

)

2x 1x 5x 50x 2x 1x 5x 50x

Target

Target

LEON3 SDC Improvement IVM SDC Improvement

LEAP-DICE + logic parity
+ flush recovery

LEAP-DICE
error correction

Target for Future Resilience Techniques

Outline

101

l  Robust operation: silicon CMOS reliability

l  Beyond silicon

l  Conclusion

US National Academy of Sciences (2011) 102

System
integration

Device
performance

Improve Computing Performance

103

Option 1: Better Transistors

§  Few experimental demos

§  Transistors ≠ system

System
integration

Device
performance

104

Option 2: Design Tricks

§  Limited “tricks”

§  Complexity à design bugs

Multi-cores

Power
management

System
integration

Device
performance

105

Improve Computing Performance

Multi-cores

Power
management

Target:
1,000× performance

New innovations required

System
integration

Device
performance

106

Solution: NanoSystems
Transform new nanotech

 into new systems
 enable new applications New devices

New fabrication

New sensors

imperfections?

large-scale fabrication?

variability?

New
Architectures

a	

107

Abundant-Data Explosion

 E
xa

B
 (B

ill
io

ns
 o

f G
B

)

0

40

K

 2006 Year 2020

 Unstructured data
Wide variety & complexity

“Swimming in sensors, drowning in data”

●  Mine, search, analyze: near real-time

▪  Data centers, mobile phones, robots
108

Today’s System Bottlenecks

109

Off-chip Memory

Compute

Compute
Compute

Compute

l  Separate compute & memory chips

l  Not enough on-chip memory

l  Capacity & bandwidth critical

Abundant-Data Applications

110

Huge memory wall: processors, accelerators

Compute

Natural language processing Genomics classification

5%

95%

18%

82%

…

Intel performance counter monitors 2 CPUs, 8-cores/CPU + 128GB DRAM

Energy Measurements

Memory

Abundant-Data Applications

111

Compute Memory

ResNet-152
(CNN)

Deep Learning Accelerators

AlexNet
(CNN)

…20%

80%

15%

85%

8%

92%

Language Model
(LSTM)

Huge memory wall: processors, accelerators

112

Nano-Engineered
Computing Systems Technology

[Aly IEEE Computer 15]

N3XT NanoSystems
Computation immersed in memory

113

Computation immersed in memory
N3XT NanoSystems

Memory

Increased functionality

Fine-grained,
ultra-dense 3D

Computing logic

Impossible with today’s technologies
114

N3XT Computation Immersed in Memory

115
thermal

thermal

MRAM
Quick access

3D Resistive RAM

Massive storage

No TSV

thermal

1D CNFET, 2D FET
Compute, RAM access

1D CNFET, 2D FET
Compute, RAM access

1D CNFET, 2D FET
Compute, Power, Clock

Ultra-dense,
fine-grained

vias

Silicon
compatible

Carbon Nanotube FET (CNFET)

116

CNT: d = 1.2nm

2 µm

Gate

2 µm

Gate
Energy Delay Product

§  ~ 10× benefit

Full-chip case studies

[IBM, IMEC, Stanford,

other commercial]

d

CNFET

Sub-litho

CNFET Inverter

117

P+ Doped

N+ Doped

INPUT

Big Promise, Major Obstacles

118

Mis-positioned CNTs Metallic CNTs

l  Process advances alone inadequate

[Zhang IEEE TCAD 12]

Imperfection-immune paradigm

CNT Growth circa 2005

119

l  Highly mis-positioned

10 µm

First Wafer-Scale Aligned CNT Growth

120

Quartz wafer
with catalyst

Aligned
CNT growth

Quartz wafer with CNTs

20µm

99.5% aligned CNTs

Stanford Nanofabrication Facility

[Patil VLSI Tech. 08, IEEE TNANO 09]

Wafer-Scale CNT Transfer

121 [Patil VLSI Tech. 08, IEEE TNANO 09]

High-temperature CNT growth

900 °C

CNT transfer

120 °C

Low-temperature circuit fabrication

Before transfer After transfer

SiO2/Si Quartz

2 µm
CNTs

2 µm

Mis-Positioned CNT-Immune NAND

122

1. Grow CNTs

[Patil IEEE TCAD 09]

Mis-Positioned CNT-Immune NAND

123

B A

A

B

Out

1. Grow CNTs

2. Extended gate, contacts

Vdd

Gnd

CRUCIAL

[Patil IEEE TCAD 09]

Mis-Positioned CNT-Immune NAND

124

B A

A

B

Out

1. Grow CNTs

2. Extended gate, contacts

3. Etch gate & CNTs

4. Dope P & N regions

Etched
region

essential

l  Arbitrary logic functions

§ Graph algorithms

Vdd

Gnd

[Patil IEEE TCAD 09]

Imperfection-Immune VLSI

125

l  Scalable m-CNT Removal l  Arbitrary logic functions

B A

A

B

Out

Etched
region

essential

Vdd

Gnd

Mis-positioned CNTs Metallic CNTs

m-CNTs Erased
(relaxed node)

Scaled circuits

[Patil Symp. VLSI Tech. 08, TCAD 09, Shulaker IEDM 15]

Most Importantly

126

l  VLSI processing

§  No per-unit customization

l  VLSI design

§  Immune CNT library

CNT Computer

127 [Shulaker Nature 13]

CNT Computer

128 [Shulaker Nature 13]

l  Turing-complete processor: entirely CNFETs

Instruction Fetch Data Fetch ALU Write-back

10× EDP, BUT…

129

How can we do better ?

N3XT Computation Immersed in Memory

130
thermal

thermal

MRAM
Quick access

3D Resistive RAM

Massive storage

No TSV

thermal

1D CNFET, 2D FET
Compute, RAM access

1D CNFET, 2D FET
Compute, RAM access

1D CNFET, 2D FET
Compute, Power, Clock

Ultra-dense,
fine-grained

vias

Silicon
compatible

Many Nano-scale Innovations

131

Memory & logic devices

30 µm thick

Vertical metal nanowire arrays

Phase change: hotspots suppressed

Embedded cooling

3D Resistive RAM (RRAM)

<1 nm

MoS2

2D FETs: large-area monolayer MoS2

3D Integration

132

l  Massive ILV density >> TSV density

Nano-scale
inter-layer vias (ILVs)

TSV (chip stacking)

Through silicon via
(TSV)

Dense, e.g., monolithic

Realizing Monolithic 3D

133

l  Low-temperature fabrication: < 400 °C

Device + Architecture Benefits

134

Top Electrode

Metal Oxide

Btm Electrode + +
Emerging

logic
Emerging
memory

Monolithic 3D
integration

Naturally enabled

[Wei IEDM 09, 13, Shulaker VLSI Tech 14]

3D NanoSystem

[Shulaker Nature 17]

Wafer-scale design + fabrication

135

1 2 3

4 5 6

7 8

3D NanoSystem

memory

sensing

logic

logic

>2 Million CNFETs, 1 Mbit Resistive RAM

136 [Shulaker Nature 17]

X10,000	

3D NanoSystem
l  Interwoven compute + memory + sensing

137 [Shulaker Nature 17]

Millions of sensors

Memory
1 Megabit RRAM

CNT computing logic

Ultra-dense
vertical connections

CNTs

X100,000

Abundant data: Terabytes / second

In-situ classification:
Extensive, accurate

Classification accelerator

3D NanoSystem

138 [Shulaker Nature 17]

3D NanoSystem Results

Nitrogen

Lemon juice

Vinegar

Rubbing Alcohol

Vodka

Wine

Beer

-0.5 0 0.5

-0.5

0

0.5

feature 1 (normalized units)

fe
at

ur
e

2
(n

or
m

al
iz

ed
 u

ni
ts

)

PCA classificaiton

gas 1: trial 3
gas 2: trial 1
gas 2: trial 2
gas 2: trial 3
gas 3: trial 1
gas 3: trial 2
gas 3: trial 3
gas 4: trial 1
gas 4: trial 2
gas 4: trial 3
gas 5: trial 1
gas 5: trial 2
gas 5: trial 3
gas 6: trial 1
gas 6: trial 2
gas 6: trial 3
gas 7: trial 1
gas 7: trial 2
gas 7: trial 3

Principle Component Analysis (PCA)

[Shulaker Nature 17] 139

N3XT Simulation Framework

140

Joint technology, design & app. exploration

Architecture exploration

Energy,
exec. time

Thermal

Physical design,
yield, reliability

Heterogeneous
technologies

System-level analysis
Abundant-

data
apps

[Aly IEEE Computer 15, Hwang CODES/ISSS 17]

Massive Benefits:
Deep Learning, Graph Analytics, …

141

IBM	
 graph	
 analy/cs	

64 processor cores

SRAM cache

64 GB off-chip DRAM

DDR3
interface

64 processor cores

STTRAM
cache

64 GB on-chip 3D RRAM

“Simple”
interface

2D Single-chip N3XT

Massive Benefits:
Deep Learning, Graph Analytics, …

142

~1,000× benefits, existing software

IBM	
 graph	
 analy/cs	

[Aly IEEE Computer 15]

0

20

40

60

80

PageRank SSSP Connected
Components

BFS Logistic
Regression

Linear
Regression

B
en

ef
its

Energy Execution Time

851x 656x 400x 510x 700x 970x

Massive Benefits:
Deep Learning, Graph Analytics, …

143

IBM	
 graph	
 analy/cs	

PageRank app.

0%

20%

40%

60%

80%

100%

2D N3XT
0%

20%

40%

60%

80%

100%

2D N3XT
Processor active Processor stall Memory access

0%

1%

2%

3%

0%

3%

5%

Energy: 37× Exec. Time: 23×

851× benefits

Massive Benefits:
Deep Learning, Graph Analytics, …

144 [Hwang CODES/ISSS 17] LSTM: Long Short Term Memory, CNN: Convolutional Neural Network

205x 1,950x 70x 210x

10X

100X

1000X

Captioning
(LSTM)

Lang. Model
(LSTM)

AlexNet
(CNN)

ResNet152
(CNN) S

ys
te

m
-L

ev
el

 B
en

ef
its

Batch 1 Batch 4 Batch 16

Chip stacking: 2 - 4× benefits

l  100× – 1,000× benefits (energy × execution time)

§  Deep learning accelerators

Complement with Software Solutions

145 DSL = Domain-Specific Language

Co-optimized
s/w + h/w

Runtime
optimization

Learning:
key

architectural
concept

Yield,
reliability

Cross-
Layer

Resilience
DSL

compiler

More Opportunities

146

Co-optimized hardware + software

Brain-inspired

Technology innovations

“Brain-Inspired Computing Exploiting Carbon Nanotube FETs and Resistive RAM:
Hyperdimensional Computing Case Study,” ISSCC 2018.

Outline

147

l  Robust operation: silicon CMOS reliability

l  Beyond silicon

l  Conclusion

Thanks to Research Group

148

Thanks to Sponsors & Collaborators

149

Hardware Software

Today

Tomorrow

The Day
 After Tomorrow

Commodity
hardware

CGRAs

N3XT
Brain

network

Advanced
image

analysis

Automatic
 video

 annotation

A. SIMD Challenge Loops

In this subsection, we describe the SIMD approach to
vectorizing five classes of loops, explaining the difficulties
SIMD compilers face using examples in the first two columns
of Figure 6. The examples in this figure are later revisited to
demonstrate the DySER compiler’s approach.

Reduction/Induction: Loops which have contiguous memory
access across iterations and lack control flow or loop depen-
dencies are easily SIMD-vectorizable. Figure 6(a) shows an
example reduction loop with an induction variable use. The
SIMD compiler can vectorize the reduction variable “c” by
accumulating to multiple variables (scalar expansion), vector-
izing the induction variable by hoisting initialization out of the
loop, and performing non vector-size divisible loop iterations
by executing a peeled loop (not shown in diagram).

Control Dependence: SIMD compilers typically vectorize
loops with control flow using if-conversion and masking.
Though vectorization is possible, the masking overhead can
be significant. One example, shown in Figure 6(b), is to apply
a masking technique where both “sides” of the branch are
executed, and the final result is merged using a mask created
by evaluating the predicate on the vector “C”. Note that four
extra instructions per loop are introduced for masking.

Strided Data Access: Strided data access can occur for a
variety of reasons, commonly for accessing arrays of structs.
Vectorizing compilers can sometimes eliminate the strided
access by transforming the data structure into a struct of arrays.
However, this transformation requires global information about
data structure usage, and is not always possible. Figure 6(c)
shows the transformations for a complex multiplication loop,
which cannot benefit from array-struct transformations. A
vectorized version, provided by Nuzman et al. [22], packs and
unpacks data explicitly with extra instructions on the critical
path of the computation.

Carried Dependencies: SIMD compilers attempt to break
loop-carried memory dependencies by re-ordering loops after
loop fission, or reordering memory operations inside a loop.
These techniques involve difficult tradeoffs and can have
significant overheads. The example code in Figure 6(d) shows
a loop with an unbreakable carried dependence, which cannot
be SIMD vectorized. The statements cannot be re-ordered or
separated because of the forward flow dependence through
c[i] and the backwards loop anti-dependence on a[i],
creating a serial dependence chain.

Partially Vectorizable: When contiguous memory patterns
occur only on some streams in a loop, SIMD compilers must
carefully weigh the benefits of vectorization against the draw-
backs of excessive shuffling. One example is in Figure 6(e),
where the loop has two streaming access patterns coming from
the arrays “a” and “b”. The accesses from “a” are contiguous,
but “b” is accessed indirectly through the “index” array. Here,
the compiler has chosen to perform scalar loads for non-
contiguous access and combine these values using additional
instructions. This transformation’s profitability relies on the
number of instructions required to construct vector “D2”.

Fig. 1. Conceptual Models of Vector SIMD and DySER

B. DySER’s Architecture and Execution Model

To address the challenges of SIMD compilation, we lever-
age the DySER architecture as our in-core accelerator. In this
subsection we briefly describe DySER, and further details are
in Govindaraju et al. [10], [9].

Architecture DySER is an array of configurable functional
units connected with a circuit switched network of simple
switches. A functional unit can be configured to receive
its inputs from any of its neighboring switches. When all
its inputs arrive, it performs the operation and delivers the
output to a neighboring switch. Switches can be configured
to route their inputs to any of their outputs, forming a circuit
switched network. With this configurable network of functional
units, a specialized hardware datapath can be created for a
sequence of computation. It supports pipelining and dataflow
execution with simple credit based flow control. The switches
in the edge of the array are connected to FIFOs, which are
exposed to the processor core as DySER’s input/output ports.
DySER is tightly integrated with a general purpose processor
pipeline, and acts as a long latency functional unit that has
a direct datapath from the register file and from memory.
The processor can send/receive data or load/store data to/from
DySER directly through ISA extensions.

Execution Model Figure 2 shows DySER’s execution model.
Before a program uses DySER, it configures DySER by pro-
viding the configuration bits for functional units and switches,
as shown in Figure 2c. Then it sends data to DySER either
from registers or from memory. Once data has arrived to
DySER’s input FIFO, it follows the configured path through
the switches. When the data reaches the functional units, the
functional units perform the operation in dataflow fashion.
Finally, the results of the computation are delivered to the
output FIFOs, from which the processor fetches the outputs
and sends them to the register file or to memory.

C. Overcoming SIMD Challenges with DySER

As shown in Figure 1, SIMD units and DySER exhibit
key similarities. They are tightly integrated to the core, are
composed of many functional units to exploit fine-grained par-
allelism and have wide memory interfaces. However, DySER’s
capability to overcome the challenges with SIMD arise from
three flexible mechanisms: i) configurable pipelined datapaths;
ii) native control capability; and iii) a flexible vector I/O
interface.

Configurable Datapath A SIMD unit’s datapath is fixed to
perform many equivalent operations in parallel. In contrast,

Conclusion
l  Robust systems

§  New solutions: elegantly simple, effective

150

Silicon CMOS Reliability

BISER, LEAP

Failure prediction

CLEAR cross-layer

Beyond silicon

CNFET nanosystems

N3XT monolithic 3D

1,000X opportunity

