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l  Ensure robust operation 
 

l  Meet computation demands 
 

l  New application horizon 



Research Topics 
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l  Robust operation 

§  Bugs, reliability, security 
 

l  Revolutionize nanosystems 

§  1,000X opportunity 
 

l  Program human brain 

§  SNI Big Ideas in Neuroscience initiative 



Outline 
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l  Robust operation: silicon CMOS reliability 
 

l  Beyond silicon 

l  Conclusion 



l  Radiation-induced soft errors 

§   Fatal flip-flop errors 

 
l  Early-life failures (ELF) 

§   Burn-in: difficult, expensive 

 
l  Variations: Vdd, thermal, circuit aging 

§   Worst-case guardbands expensive 
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Silicon CMOS Reliability Challenges 



Definitions 
l  Malfunction (often referred to as failure) 

§  Deviation from specified behavior 

§  Underlying cause: failure 
 

l  Error: incorrect signal value 
 

l  Fault model 

§  (Logic) representation of effect of failure 

7 



System Output Response to Failure 
l  Error on output: non-critical apps. (e.g., games ?) 

l  Fault-secure: correct outputs or error indication 

§  Retry adequate (e.g., banks) 

l  Fault masked: correct outputs 

§  Fault in specified class (e.g., spacecraft) 

l  Fail safe: correct or “safe” outputs 

8 



Definitions 
l  Reliability: R(t) 

§  Probability system works correctly up to time t 

l  Exponential model 

§  R(t) = e-λt, λ = failure rate 

l  Mean Time to Failure (MTTF) 
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MTTF = t ×R(t)dt
0
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Definitions 
l  Availability: A(t) 

§  Probability system works correctly AT time t 

l  Assume: system repaired after failure 

§  Mean Time to Repair (MTTR) 

l  Steady-state availability: 
 

l  How to improve availability ? 

10 

MTTF
MTTF +MTTR



Error Effects: Vanished 
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Start 

Finish 

Output  
File, display, … 

Golden output  
File, display, … 

= 



Error Effects: Output Mismatch 
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Start 

Finish 

Output  
File, display, … 

Golden output  
File, display, … 

≠ 

Silent data corruption (SDC) 

No error indication  
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l  Output file incorrect 

l  No error indication 

Error-free 

Output Mismatch 

Error 

Silent Data Corruption (SDC) 



Error Effects: Unexpected Termination 
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Start 

Finish 

e.g., 

- Divide-by-zero 

- Memory access violation 

- Application-detected errors 

- …  



Hang 

> 2 × error-free execution time 

Start 

Does not finish / terminate 



Soft Error Effects 

16 [Cho DAC 13] 

Output Mismatch: 0.8% 

Unexpected Termination: 7.7% 

Hang: 0.3% 

Vanished: 91.2% 

All injected flip-flop errors Detected but Uncorrected 
Errors (DUE) 



Soft Error Effects: BZip2 on IBM Power6 
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Vanished 

Recovered 

Checkstop 

Incorrect  
architecture state 

Injected 
errors 

[Sanda 08] (graphic contributed by Dr. Pia Sanda, ex-IBM) 

3.5% 
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No impact 

Software detected 
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Fault-Tolerance: Rich Literature 
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Expensive 

Early pioneers Early systems 



How Low Cost ? 
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Low-cost detection / correction 
 

BISER, LEAP 
 

Circuit failure prediction 

Applications 

No 
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Approach 

Light-weight correction 
 

Error Resilient System Arch. (ERSA)                            

[Cho IEEE TCAD 12]  



Low-Cost Techniques 
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Wearout Early-life failures 
(ELF) 

Lifetime Time 
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Circuit Failure Prediction 
CASP on-line self-test, diagnostics, self-repair & adaptation 

Burn-in 
challenging 

Circuit aging 
margins expensive Soft Error Resilience 

BISER + LEAP:            
Errors reduced: 1,000X 



How Low Cost? 
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“multiple error resilience techniques from different layers 
of the system stack cooperate to achieve cost-effective 

error resilience” 

[Gupta IBM, IRPS 14] 

[Pedram, NSF 12] 

[Henkel, DAC 14] 

[Carter Intel, DATE 10] 

[DARPA, PERFECT BAA 12] 

[Chandra ARM, DAC 14] 

[Borkar Intel, IEEE Micro 05] 

Solution: cross-layer resilience? 



Existing Resilience Techniques 
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Structural Integrity Checking [Lu, IEEE Trans. Computers 1982] 

ARGUS [Meixner, Micro 2007] 

DIVA [Austin, Micro 1999] 

Razor [Blaauw, ISSCC 2008] 

Relax [de Kruijf, ISCA 2010] Svalinn [Szafaryn, IEEE Micro 2013] 

z990 [Meaney, T-DMR 2005] 

Scalable Hardware [Chippa, DAC 2010] 

Resilience Actuators [Kleeberger, IEEE Micro 2013] 

HLS-driven [Campbell, DAC 2015] Multi-Layer [Henkel, DAC 2014] 

RSE [Nakka, DSN 2004] 

ABFT for matrix [Huang, IEEE Trans. Computers 1984] 

ABFT HPC [Bosilca, Journal Parallel and Distributed Computing 2008] 

Stable codes [Chen, Lecture Notes in Computer Science 2005] 
ABFT arrays [Nair, IEEE Trans. Computers 1990] 

EDDI [Oh, Trans. Reliability 2002] 

CFCSS [Oh, Trans. Reliability 2002] 

Assertions [Sahoo, DSN, 2008] 

Relyzer [Hari, DSN 2012] 

Parity checking [Spainhower, IBM Journal 1999] 

LEAP [Lee, IRPS 2010] 

DICE [Calin, Trans. Nuclear Science 1996] BCDMR [Furuta, VLSI Circuits 2010] 

BISER [Mitra, IEEE Computer 2005] 

RCC [Seifert, IRPS 2010] 

Residue code [Ando, JSSC 2003] 

Berger code [Berger, Information and Control 1961] 

Bose-Lin code [Bose, IEEE Trans. Computers 1985] 

RMT [Mukherjee, ISCA 2002] 

Shoestring [Feng, Comp. Arch. News 2010] 

Error detectors [Pattabiraman, DSC 2007] 

Reliability-driven transforms [Rehman, CADICS 2014] 

SWIFT [Reis, ISCG 2005] 

Fault screening [Racunas, HPCA 2007] 

ANT [Hedge, ISLPED 1999] 

SSNoC [Varatkar, ISSCC 2007] 

l  Many point solutions 

§  Some cross-layer, some single-layer 

l  Missing 

§  End-to-end cross-layer resilience framework 



CLEAR 
Cross-Layer Exploration for Architecting Resilience 

23 
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Today’s Focus 
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l  Radiation-induced soft errors in flip-flops 

§  Single-Event Upsets (SEUs) 

§  Single-Event Multiple Upsets (SEMUs) 

l  Combinational logic soft errors not critical 



CLEAR: Extensive Study 
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l  Designs: wide variety 

§  ARM, LEON3, Alpha, OpenSPARC multi-core SoC, accelerators 

l  Thorough flip-flop error injections 

§   FPGA clusters, Stampede supercomputer (522,080 cores) 

§  Full workloads (SPEC, PARSEC, PERFECT, proprietary) 
 

l  Detailed physical design 

§  Wire routing, process / voltage / temperature corners 



l  Cross-layer always best? 

l  All cross-layer solutions equally good? 

l  Application constraints (e.g., soft real-time)?  

l  Benchmark dependence? 
 

l  Definitive guidelines for new resilience techniques 

 

Many Cross-Layer Questions Answered 

26 



l  From black art to science 
 

 

l  5-50x resilience, 0.2-6% energy cost 

§  Circuit + logic + micro-arch. recovery 
 

 

l  Circuit alone (application-guided) 

§ ~1% extra energy vs. best cross-layer 

Key Message 

27 

Circuit 

Logic 

Arch. 

SW 

Alg. 

Several layers, 
Numerous combinations 
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Dual Interlocked Cell (DICE) 
Bistable Cross-coupled Dual Modular Redundancy (BCDMR) 

Built-In Soft Error Resilience (BISER) 

Reinforced Charge Collection (RCC) 

Razor 

Residue Code 
Berger Code 

Bose-Lin Code 

Error Correcting Code (ECC) 
BulletProof Redundant Multi Threading (RMT) 

Shoestring 
Error Detectors Reliability-driven Transforms 

Software Implemented Fault Tolerance (SWIFT) 

Fault Screening 

Algorithmic Noise Tolerance (ANT) 
Algorithm Based Fault Tolerance( ABFT) Correction 

Error Detection by Duplicated Instructions (EDDI) 
Control Flow Checking by Software Signatures (CFCSS) 

Assertions 

Monitor Cores 

Data Flow Checking (DFC) 

Parity Checking 

Layout design through Error Aware transistor Positioning 
(LEAP) 

Error Detection Sequential (EDS) 

Algorithm 

Software 

Architecture 

Logic 

Circuit 

Control Flow Checking (CFC) 

Algorithm Based Fault Tolerance (ABFT) Detection 
1. Algorithm Based Fault Tolerance (ABFT) Correction 
2. ABFT Detection 
 
3. Software Assertions 
4. Control Flow Checking by Software Signatures (CFCSS) 
5. Error Detection by Duplicated Instructions (EDDI) 
 
6. Data Flow Checking (DFC) 
7. Monitor Cores 
 
8. Logic Parity 
 
 
9. Layout design through Error-Aware transistor Positioning 
     (LEAP) 
10. Error Detection Sequential (EDS) 

Dual Interlocked Cell (DICE) 
Bistable Cross-coupled Dual Modular Redundancy (BCDMR) 

Built-In Soft Error Resilience (BISER) 

Reinforced Charge Collection (RCC) 

Razor 

Residue Code 
Berger Code 

Bose-Lin Code 

Error Correcting Code (ECC) 
BulletProof Redundant Multi Threading (RMT) 

Shoestring 
Error Detectors Reliability-driven Transforms 

Software Implemented Fault Tolerance (SWIFT) 

Fault Screening 

Algorithmic Noise Tolerance (ANT) 
Algorithm Based Fault Tolerance( ABFT) Correction 

Error Detection by Duplicated Instructions (EDDI) 
Control Flow Checking by Software Signatures (CFCSS) 

Assertions 

Monitor Cores 

Data Flow Checking (DFC) 

Parity Checking 

Layout design through Error Aware transistor Positioning 
(LEAP) 

Error Detection Sequential (EDS) 

Control Flow Checking (CFC) 

Algorithm Based Fault Tolerance (ABFT) Detection 

Micro-arch. Recovery 
1. Flush 
2. Reorder Buffer (RoB) 
3. Instruction Replay (IR) 
4. Extended IR (EIR) 

Micro-architecture Recovery 
Flush recovery 

Reorder Buffer (RoB) recovery 

Instruction Replay (IR) recovery 

Extended Instruction Replay (EIR) recovery 

Flush recovery 

Reorder Buffer (RoB) recovery 

Instruction Replay (IR) recovery 

Extended Instruction Replay (EIR) recovery 

10 error detection / 
correction techniques +  
4 recovery techniques 

 
 

798 combinations 

Representative Resilience Techniques 



45nm: up to 1,000X benefits 
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BISER: Built-In Soft Error Resilience 

[Mitra IEEE Computer 05, TVLSI 06] 



l  Single-event multiple upsets (SEMUs) 
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LEAP: Layout by Error Aware transistor Positioning 

NMOS 
ON 

VDD 
GND 

PMOS 
OFF 

in = 1 

out 

logic 1 

V(out) 

Time logic 0 

J 
Reduced 
transient 

Single Error Assumption Inadequate 

[Lee IRPS 10, Lilja IEEE TNS 13] 

Errors Corrected: SEUs and SEMUs 
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l  Radiation beam experiments 

§  40nm, 28nm, 20nm, 14nm 

§  Bulk, SOI 
 

l  VDD: nominal, near-threshold 

Flip-flop  Soft Error Rate (SER) Area Power Delay Energy 

Baseline 1 1 1 1 1 

LEAP-DICE 2×10-4 2 1.8 1 1.8 

Extensive LEAP Characterization 

[Lee IRPS 10; Lilja IEEE T. Nucl. Sci. 13, SEE 16; Quinn NSREC 15, REDW 15; Turowski SEE 15] 



Memory ECC and SEMUs 
l  Don’t implement multiple error correction blindly 

l  Multiple physically adjacent errors 

33 



Memory ECC and SEMUs 
Option 1 

l  Memory interleaving 

§  2 physically adjacent errors 

•   Single errors in 2 separate words 

L Cost, difficult for smaller geometries 

Option 2 

l  Adjacent bit error correction [Dutta ITC 07] 

34 

Bit1/W1     Bit1/W2                   Bit2/W1   



Memory ECC Challenges 
l  Performance overhead 

§  Pipelining 

•   Additional latency, verification effort 

§  Detection followed by correction 

•   Variable latency, verification effort 

l  Small distributed memories 

35 



Error Masking 
l  No error on outputs 

§  Triple Modular Redundancy (TMR) 
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Module 3 

Module 2 

Module 1 

Voter 

Voted 
Outputs 



TMR Reliability 

l  Rm: individual module reliability 

l  Pessimistic: non-overlapping errors 

l  Optimistic: correlated / common-mode failures 

l  TMR MTTF < Simplex MTTF 

37 

RTMR = Rvoter ×[Rm
3 + Rm

2 × (1− Rm )]



TMR Reliability 

l  TMR reliability = simplex reliability 

§  Time = loge2 × Simplex MTTF (perfect voter) 

38 
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TMR Reliability vs. Mission Time 

l  TMR effective for “short” mission times 

l  Other options: TMR-Simplex, TMR + Duplex-Repair 

39 
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Concurrent Error Detection (CED) 

l  Normal system operation 

l  Preserve data integrity 

§  Correct outputs or 

§  Error indicated 

•   Incorrect outputs 

§ aka fault-secure 

Function f 

Output 
Characteristic 

Predictor 

Input 

Output 
Checker 

Error 

40 



Output “Characteristics” 

l  Output itself: duplication 

§  Major challenges if not “fine-grained” 

l  Output parity 

l  Output residue 

l  1s or 0s count in output word 

l  Many others (extensive literature) 

l  Self-checking checkers 

41 



Processor Duplication Challenges 

l  Synchronization !! 

l  False DUEs when out of sync 

§  e.g., error correction event in one processor 

§  Mismatch when output pins compared 

42 



Single-Bit Logic Parity Prediction 

l  P = Z1 ⊕ Z2 ⊕  … ⊕ Zm 

l  Disjoint output logic (no logic sharing) 

§  Only for combinational logic errors 

43 

Parity Checker 

Error 

P = Predicted 
Parity 

Z1 Z2 Zm 



Multiple-Bit Logic Parity Prediction 

l  Main purpose: cost reduction (sharing, routing, logic) 

§  Can be still expensive 

44 

P1 = Z1 ⊕ Z2  
P2 = Z3 ⊕ Z4 

Parity Checker 

Error 

Z2 Z3 Z1 P1 Z4 P2 

Parity Checker 

Error 



Logic Parity Checking: Flip-Flop Errors 

45 

predictor 

checker comb. 
logic 

maintain clock period 

Original design 
Parity logic 
Pipeline flip-flops 

Logic parity parity group 

Parameters: parity size, flip-flop vulnerability, floorplan location, timing path slack, etc. 

Logic parity: Naïve   200 MHz clock speed impact 

Logic parity: Incorrect heuristic 80% additional energy impact 

Logic parity: CLEAR heuristic No clock speed impact 
Minimal energy impact 



Parity Prediction for Datapath Circuits 

l  S = A + B (n-bit operation) 

l  Parity (S) = S1 ⊕ S2 ⊕ S3 ⊕ … Sn 

     = (A1 ⊕ B1 ⊕ C1) ⊕ (A2 ⊕ B2 ⊕ C2) … (An ⊕ Bn ⊕ Cn) 

     = (A1 ⊕ A2 … An) ⊕ (B1 ⊕ B2 … Bn) ⊕ (C1 ⊕ C2 … Cn) 

     = Parity (A) ⊕ Parity (B) ⊕ Parity (internal carries) 

l  Parity (internal carries) expensive 

§  Several strategies for high-performance adders 

46 



Residue Codes for Datapath 

l  y = x mod b: y is residue of x (modulo b) 

l  Residue (A + B) = Residue (A) + Residue (B) 

l  Residue (A×B) = Residue (A)×Residue (B) 

l  Choice of b: Mersenne prime (form 2m-1) 

§  Coverage, checker complexity 

l  Issues: bit-wise logic, operand residue, checker cost 

§  Often used for multipliers 

47 



Application-Specific CED 

l  LZ compression: loss-less, invertible 

§  Compression: complex 

§  Decompression: simple 

9% area overhead, 0.5% delay overhead [Huang 00] 
48 



Error Detection Sequentials (EDS) 

49 Slide obtained from K. Bowman, J. Tschanz, et al., Intel 



Errors in Processors 

V1 

V2 

V3 

V4 

ERROR 
V1 

       mov  r1, 0 
       mov  r2, 1 
       mov  r3, 5 
 

XOR 

Control flow error 
Incorrect instruction sequence 

Computational error 
Incorrect computation 
 

Memory error 
Incorrect value or address 

50 



Program Representation: 
Control Flow Graph 

       mov  r1, 0 
       mov  r2, 1 

       mov  r3, 5 
L1: 

       inc   r1 

       bge   r1, 10, L2 
       mul  r4, r3, r1 

       add  r5, r2, r4 
       br     L1 

L2: 

… 

V1 

Basic Block 
(BB) 

V2 

V3 

V4 

V1 

V2 

V3 

V4 

i=0; x=1; y=5; 

While (i < 10) { 

 z = x + y * i; 

 i = i + 1; 

} 

51 



SIHFT 

l  Software Implemented Hardware Fault Tolerance 

§  Automated by compiler 

§  EDDI [Oh, IEEE Trans. Reliability 02] 

§  CFCSS [Oh IEEE Trans. Reliability 02b] 

§  ED4I [Oh IEEE Trans. Computers 02] 

§  Lots of recent publications 

52 



EDDI 

l  Error Detection using Duplicated Instructions 

l  Duplicate instructions inside basic blocks 

§  Different registers 

l  Duplicate data structures 

l  Comparison before memory stores 

l  Performance penalty 13% - 111% 

§  Reduced by Instruction Level Parallelism (ILP) 

53 



EDDI Example 
ADD R3, R1, R2    ; R3 ← R1 + R2 
MUL R4, R3, R5    ; R4 ← R3 * R5 

ST  0(SP), R4                 ; store R4 in location pointed by SP 

ADD R3, R1, R2    ; R3 ← R1 + R2 master 
ADD R23, R21, R22                ; R23 ← R21 + R2 shadow 

MUL R4, R3, R5    ; R4 ← R3 * R5 master 
MUL R24, R23, R25                ; R24 ← R23 * R25 shadow 

BNE R4, R24, Error_Handler               ; compare 

ST  0(SP), R4                 ; store master result 
ST  offset(SP), R24    ; store shadow result 

54 



EDDI Design Choices 

l  Check after each instruction ? 

l  Storeless basic blocks (SBB) ? 

§  No branch or store except final instruction 

l  Why SBB ? 

§  Correctness defined by program output 

§  Erroneous branches: stores skipped ? 

• Check at branches too 

55 



CFCSS 

l  Control Flow Checking using Software Signatures 

s1 

s2 

s3 

s4 

s5 

d12 = s1 xor s2 
l  Each node 

§ Unique signature 

l  Each edge 

§ Transition between 2 signatures 

§ Difference function: XOR 

56 



CFCSS 

l  Runtime signature G 

l  Basic block i to j 

§ G = si XOR di,j 

§ Check G = sj 

57 



CFCSS Implementation 

l  Global variable G holds run-time signature 

l  Compute & check signature: start of each basic block 

58 



CFCSS: Branch Fan-in 

l  Basic block with multiple predecessors 

l  Run-time adjusting signature D differentiates fan-in 

59 



ED4I 

l  Error Detection using Diverse Data & Duplicated 

Instructions 

l  Duplicated instructions, data diversity 

§ Expressions in shadows multiply by k (-1, -2, …)  

l  k = -2: good choice 

l  Transient errors & most permanent faults detected 

l  Issues: floating point, pointers 

60 



SIHFT Results [Lovelette 02] 

l  COTS in space: no hardware redundancy 

l  ARGOS satellite experiment 

§  Compare rad-hard processor vs. COTS 

l  Undetected errors in rad-hard processor 

l  COTS: 5.55 SEUs / Mbyte / day, 99.7% coverage 

l  98.8% successful recovery: software ECC + restart 

l  COTS + SIHFT: faster than rad-hard 

61 



Multi-Threading for CED 

l  Same application computed by two threads 

§  [Rotenberg 99, Saxena 00, Mukherjee 02] 

Memory System (incl. L1 caches) 

Output 
Comparison 

Input 
Replication 

Leading 
Thread 

Trailing 
Thread 
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Instruction Replay (IR)  

LEAP-DICE protected 
Recovery logic 

Cross-layer protected 

Flush 

Instruction Replay Flush recovery 

Overhead for recovery hardware 16% area,              
21% energy 

0.6% area,          
0.9% energy 

Recovery latency 47 cycles 7 cycles 
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Radiation-Induced Soft Errors 
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≈ 

Soft errors Flip-flop 
error injection 

Simulation / 
Emulation  

…
 

Bit-flips 
0 ↔ 1 

Radiation 
beam testing 

The Los Alamos  
Neutron Science Center 



Soft Error Injection 
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Flip-flop 
 

102 cycles / sec 

L3 Cache DRAM 

Simulation speed 

Architectural register 
 

107 cycles / sec 

L3 Cache DRAM 

Program variable 
 

109 cycles / sec 

L3 Cache DRAM DRAM 

High-level error injection 



Soft Error Injection 
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Flip-flop 
 

102 cycles / sec 

L3 Cache DRAM 

Architecture register 
 

107 cycles / sec 

L3 Cache DRAM 

Program variable 
 

109 cycles / sec 

L3 Cache DRAM DRAM 

Accuracy 

Ground truth ? ? 
High-level error injection 
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l  Output file incorrect 

l  No error indication 

Error-free 

Output Mismatch 

Error 

Detected but Uncorrected Error (DUE) also considered 

Silent Data Corruption (SDC) 
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Overprotection Overestimation 

Unhappy customers Underestimation 

SDC 

SDC 
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l  Naïve high-level injections highly inaccurate 
 

l  How inaccurate? 

[Cho DAC 13] 
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l  Naïve high-level injections highly inaccurate 
 

l  How inaccurate? 

[Cho DAC 13] 

 Designs: 

 LEON3 (in-order, single-issue), ALPHA (out-of-order, superscalar) 
 

 Applications: SPEC 2000 
 

 Error injection samples: 6 million 



Inaccuracy Quantification 
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Flip-flop Architectural 

register 
Program 
variable 

Undetected 
output error 

rate 

0.8% 
1x 

6x 13x 
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l  Naïve high-level injections highly inaccurate 
 

l  How inaccurate? 

§  Up to 45X 

§  Neither optimistic nor pessimistic 
 

[Cho DAC 13] 



What We Found 

75 

l  Naïve high-level injections highly inaccurate 
 

l  How inaccurate? 

§  Up to 45X 

§  Neither optimistic nor pessimistic 

l  Why inaccurate? 

§  Only 3% flip-flop error propagations modeled 

[Cho DAC 13] 
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Uncore 
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Uncore 
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[Gupta USENIX 12] 

Uncore Processor cores 
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Uncore 
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Area 

Power 
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Uncore Soft Errors: First Extensive Study 
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l  New error injection: fast & accurate 

§  20,000x speedup vs. RTL 
 

l  Reliability impact: uncore ≈ processor cores 

§  BUT, long error propagation latency 

[Cho DAC 15] 
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High-Level Enough? 
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CLEAR Insights 
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l  Hidden costs & inefficiencies 

l  Implementation matters 

l  Inaccurate analysis 



Example: “Hidden” Costs 

94 

Flip-flop  Area Energy 
Nominal 1 1 

LEAP-DICE 2 1.8 
EDS 1.5 1.4 

Not just flip-flop overhead 
Routing, recovery impact 
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Data Flow Checking (DFC) 

57% 

Data Flow Checking (DFC) 

30% 

Few Flip-flops Protected Low SDC Coverage per Flip-flop 

Data Flow Checking (DFC) 

1.2x 

Result: Low SDC Improvement 

Example: Inefficiencies 

[Meixner, MICRO 07] 



Example: Implementation Matters 
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predictor 

checker comb. 
logic 

maintain clock period 

Original design 
Parity logic 
Pipeline flip-flops 

Logic parity parity group 

Parameters: parity size, flip-flop vulnerability, floorplan location, timing path slack, etc. 

Logic parity: Naïve   200 MHz clock speed impact 

Logic parity: Incorrect heuristic 80% additional energy impact 

Logic parity: CLEAR heuristic No clock speed impact 
Minimal energy impact 
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Example: Inaccurate Analysis 

l  Software assertions: SDC improvement 

§  Prior publications: 3.9x 

•  Inaccurate error injection 

§  Accurate analysis: 1.5x 

 

 

 
 

[Sahoo DSN 08, Hari DSN 12] 

Flip-Flop error 
injection 

Register Uniform error 
injection 

SDC improvement 1.5x 4.8x 



How About Benchmark Dependence? 

98 

l  50 <training, evaluation> pairs 

§  Training: 4 SPEC, Evaluation: 7 SPEC 

Trained SDC improvement 5x 50x 500x 

Evaluated SDC improvement 4.8x 39x 433x 

Extra energy cost (additive) 2% 1% 0.8% 

Final SDC improvement 19x 152x 1,326x 

Add “lightweight” hardening 
(e.g., LHL) 



Light-Hardened LEAP (LHL) 
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Flip-Flop Soft Error 
Rate (SER) Area Power Delay Energy 

Baseline 1 1 1 1 1 

LHL 2.5×10-1 1.2 1.1 1.2 1.3 

LEAP-DICE 2×10-4 2 1.8 1 1.8 
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Outline 
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l  Robust operation: silicon CMOS reliability 
 

l  Beyond silicon 

l  Conclusion 



US National Academy of Sciences  (2011) 102 



System  
integration 

Device 
performance 

Improve Computing Performance 

103 



Option 1: Better Transistors 

§  Few experimental demos 

§  Transistors ≠ system 

 

System  
integration 

Device 
performance 
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Option 2: Design Tricks 

§  Limited “tricks”  

§  Complexity à design bugs 
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System  
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Device 
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Improve Computing Performance 

Multi-cores 

Power 
management 

Target: 
1,000× performance 

New innovations required 

System  
integration 

Device 
performance 
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Solution: NanoSystems 
Transform new nanotech 

            into new systems 
                         enable new applications New devices 

New fabrication 

New sensors 

 
imperfections? 
 
large-scale fabrication? 
 
variability? 

New 
Architectures 

a	
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Abundant-Data Explosion 
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   Unstructured data 
Wide variety & complexity 

“Swimming in sensors, drowning in data” 

●  Mine, search, analyze: near real-time 

▪   Data centers, mobile phones, robots 
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Today’s System Bottlenecks 
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Off-chip Memory 

Compute 

Compute 
Compute 

Compute 

l  Separate compute & memory chips 

l  Not enough on-chip memory 

l  Capacity & bandwidth critical 



Abundant-Data Applications 
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Huge memory wall: processors, accelerators 

Compute 

Natural language processing Genomics classification 

5% 

95% 

18% 

82% 

… 

Intel performance counter monitors 2 CPUs, 8-cores/CPU + 128GB DRAM 

Energy Measurements 

Memory 



Abundant-Data Applications 
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Compute Memory 

ResNet-152 
(CNN) 

Deep Learning Accelerators 

AlexNet 
(CNN) 

…20% 

80% 

15% 

85% 

8% 

92% 

Language Model 
(LSTM) 

Huge memory wall: processors, accelerators 
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Nano-Engineered 
Computing Systems Technology 

[Aly IEEE Computer 15] 



N3XT NanoSystems 
Computation immersed in memory 
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Computation immersed in memory 
N3XT NanoSystems 

Memory 

Increased functionality 

Fine-grained,  
ultra-dense 3D 

Computing logic  
 

Impossible with today’s technologies 
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N3XT Computation Immersed in Memory 
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thermal 

thermal 

MRAM  
Quick access 

3D Resistive RAM 
 

Massive storage 
 

No TSV 
 

thermal 

1D CNFET, 2D FET 
Compute, RAM access 

1D CNFET, 2D FET 
Compute, RAM access 

1D CNFET, 2D FET 
Compute, Power, Clock 

Ultra-dense,             
fine-grained 

vias 

Silicon 
compatible 



Carbon Nanotube FET (CNFET) 
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CNT: d = 1.2nm 

2 µm

Gate

2 µm

Gate
Energy Delay Product 

§  ~ 10× benefit 

 

Full-chip case studies 

[IBM, IMEC, Stanford, 

other commercial] 

d 

CNFET 

Sub-litho 



CNFET Inverter 
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P+ Doped 

N+ Doped 

INPUT 



Big Promise, Major Obstacles 
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Mis-positioned CNTs Metallic CNTs 

l  Process advances alone inadequate 

[Zhang IEEE TCAD 12] 

Imperfection-immune paradigm 



CNT Growth circa 2005 
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l  Highly mis-positioned 

10 µm 



First Wafer-Scale Aligned CNT Growth 
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Quartz wafer  
with catalyst 

Aligned  
CNT growth 

Quartz wafer with CNTs 

20µm  

99.5% aligned CNTs 

Stanford Nanofabrication Facility 

[Patil VLSI Tech. 08, IEEE TNANO 09] 



Wafer-Scale CNT Transfer 

121 [Patil VLSI Tech. 08, IEEE TNANO 09] 

High-temperature CNT growth 

900 °C 

CNT transfer   
 

120 °C 

Low-temperature circuit fabrication 

Before transfer After transfer 

SiO2/Si Quartz 

2 µm 
CNTs 

2 µm 



Mis-Positioned CNT-Immune NAND 
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1. Grow CNTs 

[Patil IEEE TCAD 09] 



Mis-Positioned CNT-Immune NAND 
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B A

A 

B

Out 

1. Grow CNTs 

2. Extended gate, contacts 

Vdd 

Gnd 

CRUCIAL 

[Patil IEEE TCAD 09] 



Mis-Positioned CNT-Immune NAND 
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B A

A 

B

Out 

1. Grow CNTs 

2. Extended gate, contacts 

3. Etch gate & CNTs 

4. Dope P & N regions 

Etched 
region 

essential 

l  Arbitrary logic functions 

§ Graph algorithms 

Vdd 

Gnd 

[Patil IEEE TCAD 09] 



Imperfection-Immune VLSI 
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l  Scalable m-CNT Removal l  Arbitrary logic functions 

B A

A 

B

Out 

Etched 
region 

essential 

Vdd 

Gnd 

Mis-positioned CNTs Metallic CNTs 

m-CNTs Erased 
(relaxed node) 

Scaled circuits 

[Patil Symp. VLSI Tech. 08, TCAD 09, Shulaker IEDM 15] 



Most Importantly 
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l  VLSI processing 

§  No per-unit customization 
 

l  VLSI design 

§  Immune CNT library  



CNT Computer 

127 [Shulaker Nature 13] 



CNT Computer 

128 [Shulaker Nature 13] 

l  Turing-complete processor: entirely CNFETs 

Instruction Fetch Data Fetch ALU Write-back 



10× EDP, BUT… 
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How can we do better ? 



N3XT Computation Immersed in Memory 
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thermal 

thermal 

MRAM  
Quick access 

3D Resistive RAM 
 

Massive storage 
 

No TSV 
 

thermal 

1D CNFET, 2D FET 
Compute, RAM access 

1D CNFET, 2D FET 
Compute, RAM access 
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Compute, Power, Clock 
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fine-grained 

vias 
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Many Nano-scale Innovations 
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Memory & logic devices 

30 µm thick  

Vertical metal nanowire arrays 

Phase change: hotspots suppressed 

Embedded cooling 

3D Resistive RAM (RRAM) 

<1 nm 

MoS2 

2D FETs: large-area monolayer MoS2 



3D Integration 
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l  Massive ILV density  >>  TSV density 

Nano-scale  
inter-layer vias (ILVs) 

TSV (chip stacking) 

Through silicon via 
(TSV) 

Dense, e.g., monolithic 



Realizing Monolithic 3D 
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l  Low-temperature fabrication: < 400 °C 



Device + Architecture Benefits 
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Top Electrode 

Metal Oxide 

Btm Electrode + + 
Emerging 

logic 
Emerging 
memory 

Monolithic 3D 
integration 

Naturally enabled 

[Wei IEDM 09, 13, Shulaker VLSI Tech 14] 



3D NanoSystem 

[Shulaker Nature 17] 

Wafer-scale design + fabrication 
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1 2 3 

4 5 6 

7 8 



3D NanoSystem 

memory 

sensing 

logic 

logic 

>2 Million CNFETs, 1 Mbit Resistive RAM 

136 [Shulaker Nature 17] 



X10,000	
  

3D NanoSystem 
l  Interwoven compute + memory + sensing 

137 [Shulaker Nature 17] 



Millions of sensors 

Memory 
1 Megabit RRAM 

CNT computing logic 

Ultra-dense 
vertical connections 

CNTs 

X100,000 

Abundant data: Terabytes / second  

In-situ classification: 
Extensive, accurate 

Classification accelerator 

3D NanoSystem 

138 [Shulaker Nature 17] 



3D NanoSystem Results 
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N3XT Simulation Framework 
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Joint technology, design & app. exploration 
 
 
 
 
 
 
 
 
 
 
 

Architecture exploration 
 

Energy, 
exec. time 

 

Thermal 

Physical design,  
yield, reliability 

Heterogeneous 
technologies 

System-level analysis 
Abundant-

data 
apps 

 
 
 
 
 

[Aly IEEE Computer 15, Hwang CODES/ISSS 17] 



Massive Benefits: 
Deep Learning, Graph Analytics, … 
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IBM	
  graph	
  analy/cs	
  

64 processor cores 
 

SRAM cache 

64 GB off-chip DRAM 

DDR3 
interface 

64 processor cores 

STTRAM 
cache 

64 GB on-chip 3D RRAM 

“Simple” 
interface 

2D Single-chip N3XT 
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A. SIMD Challenge Loops

In this subsection, we describe the SIMD approach to
vectorizing five classes of loops, explaining the difficulties
SIMD compilers face using examples in the first two columns
of Figure 6. The examples in this figure are later revisited to
demonstrate the DySER compiler’s approach.

Reduction/Induction: Loops which have contiguous memory
access across iterations and lack control flow or loop depen-
dencies are easily SIMD-vectorizable. Figure 6(a) shows an
example reduction loop with an induction variable use. The
SIMD compiler can vectorize the reduction variable “c” by
accumulating to multiple variables (scalar expansion), vector-
izing the induction variable by hoisting initialization out of the
loop, and performing non vector-size divisible loop iterations
by executing a peeled loop (not shown in diagram).

Control Dependence: SIMD compilers typically vectorize
loops with control flow using if-conversion and masking.
Though vectorization is possible, the masking overhead can
be significant. One example, shown in Figure 6(b), is to apply
a masking technique where both “sides” of the branch are
executed, and the final result is merged using a mask created
by evaluating the predicate on the vector “C”. Note that four
extra instructions per loop are introduced for masking.

Strided Data Access: Strided data access can occur for a
variety of reasons, commonly for accessing arrays of structs.
Vectorizing compilers can sometimes eliminate the strided
access by transforming the data structure into a struct of arrays.
However, this transformation requires global information about
data structure usage, and is not always possible. Figure 6(c)
shows the transformations for a complex multiplication loop,
which cannot benefit from array-struct transformations. A
vectorized version, provided by Nuzman et al. [22], packs and
unpacks data explicitly with extra instructions on the critical
path of the computation.

Carried Dependencies: SIMD compilers attempt to break
loop-carried memory dependencies by re-ordering loops after
loop fission, or reordering memory operations inside a loop.
These techniques involve difficult tradeoffs and can have
significant overheads. The example code in Figure 6(d) shows
a loop with an unbreakable carried dependence, which cannot
be SIMD vectorized. The statements cannot be re-ordered or
separated because of the forward flow dependence through
c[i] and the backwards loop anti-dependence on a[i],
creating a serial dependence chain.

Partially Vectorizable: When contiguous memory patterns
occur only on some streams in a loop, SIMD compilers must
carefully weigh the benefits of vectorization against the draw-
backs of excessive shuffling. One example is in Figure 6(e),
where the loop has two streaming access patterns coming from
the arrays “a” and “b”. The accesses from “a” are contiguous,
but “b” is accessed indirectly through the “index” array. Here,
the compiler has chosen to perform scalar loads for non-
contiguous access and combine these values using additional
instructions. This transformation’s profitability relies on the
number of instructions required to construct vector “D2”.

Fig. 1. Conceptual Models of Vector SIMD and DySER

B. DySER’s Architecture and Execution Model

To address the challenges of SIMD compilation, we lever-
age the DySER architecture as our in-core accelerator. In this
subsection we briefly describe DySER, and further details are
in Govindaraju et al. [10], [9].

Architecture DySER is an array of configurable functional
units connected with a circuit switched network of simple
switches. A functional unit can be configured to receive
its inputs from any of its neighboring switches. When all
its inputs arrive, it performs the operation and delivers the
output to a neighboring switch. Switches can be configured
to route their inputs to any of their outputs, forming a circuit
switched network. With this configurable network of functional
units, a specialized hardware datapath can be created for a
sequence of computation. It supports pipelining and dataflow
execution with simple credit based flow control. The switches
in the edge of the array are connected to FIFOs, which are
exposed to the processor core as DySER’s input/output ports.
DySER is tightly integrated with a general purpose processor
pipeline, and acts as a long latency functional unit that has
a direct datapath from the register file and from memory.
The processor can send/receive data or load/store data to/from
DySER directly through ISA extensions.

Execution Model Figure 2 shows DySER’s execution model.
Before a program uses DySER, it configures DySER by pro-
viding the configuration bits for functional units and switches,
as shown in Figure 2c. Then it sends data to DySER either
from registers or from memory. Once data has arrived to
DySER’s input FIFO, it follows the configured path through
the switches. When the data reaches the functional units, the
functional units perform the operation in dataflow fashion.
Finally, the results of the computation are delivered to the
output FIFOs, from which the processor fetches the outputs
and sends them to the register file or to memory.

C. Overcoming SIMD Challenges with DySER

As shown in Figure 1, SIMD units and DySER exhibit
key similarities. They are tightly integrated to the core, are
composed of many functional units to exploit fine-grained par-
allelism and have wide memory interfaces. However, DySER’s
capability to overcome the challenges with SIMD arise from
three flexible mechanisms: i) configurable pipelined datapaths;
ii) native control capability; and iii) a flexible vector I/O
interface.

Configurable Datapath A SIMD unit’s datapath is fixed to
perform many equivalent operations in parallel. In contrast,
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