
Computer Architecture (263-2210-00L), Fall 2018

HW 5: Cache Partitioning, Memory Coherence, Memory Consistency,
Multi-Core, GPU Programming

Instructor: Prof. Onur Mutlu
TAs: Mohammed Alser, Can Firtina, Hasan Hassan, Jeremie Kim, Juan Gómez Luna,

Geraldo Francisco de Oliveira, Minesh Patel, Giray Yaglikci

Assigned: Thursday, Dec 6, 2018
Due: Friday, Dec 21, 2018

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:

//safari.ethz.ch/review/architecture18/. Please, check your inbox, you should have
received an email with the password you should use to login. If you didn’t receive any
email, contact comparch@lists.ethz.ch. In the first page after login, you should click in
“Architecture - Fall 2018 Home”, and then go to “any submitted paper” to see the list of
papers.

• Handin - Questions (2-8). Please upload your solution to the Moodle (https://moodle-
app2.let.ethz.ch/) as a single PDF file. Please use a typesetting software (e.g.,
LaTeX) or a word processor (e.g., MS Word, LibreOfficeWriter) to generate
your PDF file. Feel free to draw your diagrams either using an appropriate
software or by hand, and include the diagrams into your solutions PDF.

1 Critical Paper Reviews [200 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5% of your total grade for each good review.

• Lecture slides on guidelines for reviewing papers. Please, follow this format.
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f18-

how-to-do-the-paper-reviews.pdf

• Some sample reviews can be found here: https://safari.ethz.ch/architecture/fall2018/doku.

php?id=readings

(a) Write a one-page critical review for the first paper of the following list and at least one of the other 4
papers:

• M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt, “Accelerating critical
section execution with asymmetric multi-core architectures,” ASPLOS 2009. https://people.inf.
ethz.ch/omutlu/pub/acs_asplos09.pdf

• Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, “Bottleneck Identification and
Scheduling in Multithreaded Applications,” ASPLOS 2012. https://people.inf.ethz.ch/omutlu/
pub/bottleneck-identification-and-scheduling_asplos12.pdf

• G. Pekhimenko, V. Seshadri, O. Mutlu, P.B. Gibbons, M.A. Kozuch, T.C. Mowry, “Base-Delta-
Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012. https:

//people.inf.ethz.ch/omutlu/pub/bdi-compression_pact12.pdf

• V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address filter: A unified
mechanism to address both cache pollution and thrashing,” PACT 2012. https://people.inf.

ethz.ch/omutlu/pub/eaf-cache_pact12.pdf

• N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C. Das, M. Kandemir,
T. C. Mowry, and O. Mutlu, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: En-
abling Flexible Data Compression with Assist Warps,” ISCA 2015. https://people.inf.ethz.ch/
omutlu/pub/caba-gpu-assist-warps_isca15.pdf

1/17

https://safari.ethz.ch/review/architecture18/
https://safari.ethz.ch/review/architecture18/
https://moodle-app2.let.ethz.ch/
https://moodle-app2.let.ethz.ch/
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f18-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f18-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/doku.php?id=readings
https://safari.ethz.ch/architecture/fall2018/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
https://people.inf.ethz.ch/omutlu/pub/bdi-compression_pact12.pdf
https://people.inf.ethz.ch/omutlu/pub/bdi-compression_pact12.pdf
https://people.inf.ethz.ch/omutlu/pub/eaf-cache_pact12.pdf
https://people.inf.ethz.ch/omutlu/pub/eaf-cache_pact12.pdf
https://people.inf.ethz.ch/omutlu/pub/caba-gpu-assist-warps_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/caba-gpu-assist-warps_isca15.pdf


2 Utility-Based Cache Partitioning [100 points]

(a) Does utility-based cache partitioning guarantee a minimum amount of cache space to each thread/core
sharing the cache? Why or why not? Explain.

(b) If yes, describe (and analyze) the minimum level of guarantee provided by utility based cache partitioning
to each thread. If no, describe how the basic utility-based cache partitioning mechanism can be modified
to provide a minimum amount of cache space to each thread.

(c) Describe how you would perform utility based cache partitioning if each core has an identical prefetcher
that prefetches into the shared cache. What needs to be modified in the utility based cache partitioning
mechanism described by Qureshi and Patt (MICRO 2006) to take into account prefetches? Explain the
new hardware design.

2/17



3 Cache Coherence [100 points]

We have a system with 4 byte-addressable processors. Each processor has a private 256-byte, direct-mapped,
write-back L1 cache with a block size of 64 bytes. Coherence is maintained using the Illinois Protocol (MESI),
which sends an invalidation to other processors on writes, and the other processors invalidate the block in
their caches if the block is present (NOTE: On a write hit in one cache, a cache block in Shared state becomes
Modified in that cache).

Accessible memory addresses range from 0x50000000 − 0x5FFFFFFF. Assume that the offset within a cache
block is 0 for all memory requests. We use a snoopy protocol with a shared bus.

Cosmic rays strike the MESI state storage in your coherence modules, causing the state of a single cache
line to instantaneously change to another state. This change causes an inconsistent state in the system. We
show below the initial tag store state of the four caches, after the inconsistent state is induced.

Inital State

Cache 0
Tag MESI state

Set 0 0x5FFFFF M
Set 1 0x5FFFFF E
Set 2 0x5FFFFF S
Set 3 0x5FFFFF I

Cache 1
Tag MESI state

Set 0 0x522222 I
Set 1 0x510000 S
Set 2 0x5FFFFF S
Set 3 0x533333 S

Cache 2
Tag MESI state

Set 0 0x5F111F M
Set 1 0x511100 E
Set 2 0x5FFFFF S
Set 3 0x533333 S

Cache 3
Tag MESI state

Set 0 0x5FF000 E
Set 1 0x511100 S
Set 2 0x5FFFF0 I
Set 3 0x533333 I

(a) What is the inconsistency in the above initial state? Explain with reasoning.

3/17



(b) Consider that, after the initial state, there are several paths that the program can follow that access
different memory instructions. In b.1-b.4, we will examine whether the followed path can potentially
lead to incorrect execution, i.e., an incorrect result.

b.1) Could the following path potentially lead to incorrect execution? Explain.

order Processor 0 Processor 1 Processor 2 Processor 3

1st ld 0x51110040
2nd st 0x5FFFFF40
3rd st 0x51110040
4th ld 0x5FFFFF80
5th ld 0x51110040
6th ld 0x5FFFFF40

b.2) Could the following path potentially lead to incorrect execution? Explain.

order Processor 0 Processor 1 Processor 2 Processor 3
1st ld 0x51110040
2nd ld 0x5FFFFF00
3rd ld 0x51234540
4th st 0x5FFFFF40
5th ld 0x51234540
6th ld 0x5FFFFF00

4/17



After some time executing a particular path (which could be a path different from the paths in parts b.1-
b.4) and with no further state changes caused by cosmic rays, we find that the final state of the caches is as
follows.

Final State

Cache 0
Tag MESI state

Set 0 0x5FFFFF M
Set 1 0x5FFFFF E
Set 2 0x5FFFFF S
Set 3 0x5FFFFF E

Cache 1
Tag MESI state

Set 0 0x5FF000 I
Set 1 0x510000 S
Set 2 0x5FFFFF S
Set 3 0x533333 I

Cache 2
Tag MESI state

Set 0 0x5F111F M
Set 1 0x511100 E
Set 2 0x5FFFFF S
Set 3 0x533333 I

Cache 3
Tag MESI state

Set 0 0x5FF000 M
Set 1 0x511100 S
Set 2 0x5FFFF0 I
Set 3 0x533333 I

(c) What is the minimum set of memory instructions that leads the system from the initial state to the final
state? Indicate the set of instructions in order, and clearly specify the access type (ld/st), the address
of each memory request, and the processor from which the request is generated.

5/17



4 Memory Consistency [100 points]

A programmer writes the following two C code segments. She wants to run them concurrently on a multicore
processor, called SC, using two different threads, each of which will run on a different core. The processor
implements sequential consistency, as we discussed in the lecture.

Thread T0
Instr. T0.0 a = X[0];

Instr. T0.1 b = a + Y[0];

Instr. T0.2 while(*flag == 0);

Instr. T0.3 Y[0] += 1;

Thread T1
Instr. T1.0 Y[0] = 1;

Instr. T1.1 *flag = 1;

Instr. T1.2 X[1] *= 2;

Instr. T1.3 a = 0;

X, Y, and flag have been allocated in main memory, while a and b are contained in processor registers. A
read or write to any of these variables generates a single memory request. The initial values of all memory
locations and variables are 0. Assume each line of the C code segment of a thread is a single instruction.

(a) What is the final value of Y[0] in the SC processor, after both threads finish execution? Explain your
answer.

(b) What is the final value of b in the SC processor, after both threads finish execution? Explain your
answer.

6/17



With the aim of achieving higher performance, the programmer tests her code on a new multicore
processor, called RC, that implements weak consistency. As discussed in the lecture, the weak consistency
model has no need to guarantee a strict order of memory operations. For this question, consider a very
weak model where there is no guarantee on the ordering of instructions as seen by different cores.

(c) What is the final value of Y[0] in the RC processor, after both threads finish execution? Explain your
answer.

7/17



After several months spent debugging her code, the programmer learns that the new processor includes
a memory fence() instruction in its ISA. The semantics of memory fence() is as follows for a given
thread that executes it:

1. Wait (stall the processor) until all preceding memory operations from the thread complete in the
memory system and become visible to other cores.

2. Ensure no memory operation from any later instruction in the thread gets executed before the
memory fence() is retired.

(d) What minimal changes should the programmer make to the program above to ensure that the final value
of Y[0] on RC is the same as that in part (a) on SC? Explain your answer.

8/17



5 Building Multicore Processors [200 points]

You are hired by Amdahl’s Nano Devices (AND) to design their newest multicore processor.
Ggl, one of AND’s largest customers, has found that the following program can predict people’s happiness.

for (i = 12; i < 2985984; i++) {

past = A[i-12]

current = A[i]

past *= 0.37

current *= 0.63

A[i] = past + current

}

A is a large array of 4-byte floating point numbers, gathered by Ggl over the years by harvesting people’s
private messages. Your job is to create a processor that runs this program as fast as possible.

Assume the following:

• You have magically fast DRAM that allows infinitely many cores to access data in parallel. We will
relax this strong assumption in parts (d), (e), (f).

• Each floating point instruction (addition and multiplication) takes 10 cycles.

• Each memory read and write takes 10 cycles.

• No caches are used.

• Integer operations and branches are fast enough that they can be ignored.

(a) Assuming infinitely many cores, what is the maximum steady state speedup you can achieve for this
program? Please show all your computations.

9/17



(b) What is the minimum number of cores you need to achieve this speedup?

(c) Briefly describe how you would assign work to each core to achieve this speedup.

It turns out magic DRAM does not exist except in Macondo1. As a result, you have to use cheap, slow,
low-bandwidth DRAM. To compensate for this, you decide to use a private L1 cache for each processor. The
new specifications for the DRAM and the L1 cache are:

• DRAM is shared by all processors. DRAM may only process one request (read or write) at a time.

• DRAM takes 100 cycles to process any request.

• DRAM prioritizes accesses of smaller addresses and write requests. (Assume no virtual memory)

• The cache is direct-mapped. Each cache block is 16 bytes.

• It takes 10 cycles to access the cache. Therefore, a cache hit is processed in 10 cycles and a cache miss
is processed in 110 cycles.

All other latencies remain the same as specified earlier. Answer parts (d), (e), (f) assuming this new system.

(d) Can you still achieve the same steady state speedup as before? Circle one: YES NO

Please explain.

1An imaginary town featured in One Hundred Years of Solitude by the late Colombian author Gabriel Garćıa Márquez
(1927-2014).

10/17



(e) What is the minimum number of cores your processor needs to provide the maximum speedup?

(f) Briefly describe how you would assign work to each core to achieve this speedup.

11/17



6 Parallel Speedup [200 points]

You are a programmer at a large corporation, and you have been asked to parallelize an old program so that
it runs faster on modern multicore processors.

(a) You parallelize the program and discover that its speedup over the single-threaded version of the same
program is significantly less than the number of processors. You find that many cache invalidations are
occuring in each core’s data cache. What program behavior could be causing these invalidations (in 20
words or less)?

(b) You modify the program to fix this first performance issue. However, now you find that the program
is slowed down by a global state update that must happen in only a single thread after every parallel
computation. In particular, your program performs 90% of its work (measured as processor-seconds)
in the parallel portion and 10% of its work in this serial portion. The parallel portion is perfectly
parallelizable. What is the maximum speedup of the program if the multicore processor had an infinite
number of cores?

(c) How many processors would be required to attain a speedup of 4?

(d) In order to execute your program with parallel and serial portions more efficiently, your corporation
decides to design a custom heterogeneous processor.

• This processor will have one large core (which executes code more quickly but also takes greater
die area on-chip) and multiple small cores (which execute code more slowly but also consume less
area), all sharing one processor die.

• When your program is in its parallel portion, all of its threads execute only on small cores.

• When your program is in its serial portion, the one active thread executes on the large core.

• Performance (execution speed) of a core is proportional to the square root of its area.

• Assume that there are 16 units of die area available. A small core must take 1 unit of die area. The
large core may take any number of units of die area n2, where n is a positive integer.

• Assume that any area not used by the large core will be filled with small cores.

(i) How large would you make the large core for the fastest possible execution of your program?

12/17



(ii) What would the same program’s speedup be if all 16 units of die area were used to build a homo-
geneous system with 16 small cores, the serial portion ran on one of the small cores, and the parallel
portion ran on all 16 small cores?

(iii) Does it make sense to use a heterogeneous system for this program which has 10% of its work in
serial sections?
Why or why not?

(e) Now you optimize the serial portion of your program and it becomes only 4% of total work (the parallel
portion is the remaining 96%).

(i) What is the best choice for the size of the large core in this case?

(ii) What is the program’s speedup for this choice of large core size?

(iii) What would the same program’s speedup be for this 4%/96% serial/parallel split if all 16 units of
die area were used to build a homogeneous system with 16 small cores, the serial portion ran on one of
the small cores, and the parallel portion ran on all 16 small cores?

(iv) Does it make sense to use a heterogeneous system for this program which has 4% of its work in
serial sections?
Why or why not?

13/17



7 AoS vs. SoA on GPU [50 points]

The next figure shows the execution time for processing an array of data structures on a GPU. Abscissas
represent the number of members in a data structure. Consecutive GPU threads read consecutive structures,
and compute the sum reduction of their members. The result is stored in the first member of the structure.

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

A
ve
ra
ge
'a
cc
es
s'
*
m
e'
pe

r'
flo

at
'(n

s)
'

Structure'size'(number'of'floats)'

Array0of0Structure"

Discrete"Arrays"

(a) NVIDIA

0"

2"

4"

6"

8"

10"

12"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

A
ve
ra
ge
'a
cc
es
s'
*
m
e'
pe

r'
flo

at
'(n

s)
'

Structure'size'(number'of'floats)'

Array,of,Structure"

Discrete"Arrays"

(b) ATI

Figure 1: Speedup of Discrete-Array over AoS layout on a simple reduction kernel

for the next mapping. For example, we can use a column-
majored 3 ⇥ 5 matrix transposition example shown in Fig-
ure 3. We start with k1 = 1 (the location of A(1, 0)) and
map it to k0

1 = 5 (the location of A0(0, 1)). We can then use
k2 = 5 (the location of A(2, 1)) and map it to k0

2 = 11 (the
location of A0(1, 2)); the chain element at location 5 will be
shifted to location 11, and the element at location 11 will be
shifted to location 13, and so on. Eventually, we will return
to the original o↵set 1. This gives a cycle of (1 5 11 13 9

3 1). For brevity, we will omit the second occurrence of 1
and show the cycle as (1 5 11 13 9 3). The reader should
verify that there are five such cycles in transposing a 5 ⇥ 3
column-majored matrix: (0) (1 5 11 13 9 3)(7)(2 10 8

12 4 6)(14).

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 14"13"

A 

A’ (0,0) (1,0) (2,0) (3,0) (2,1) (0,1) (1,1) (4,0) (3,1) (0,2) (4,1) (2,2) (1,2) (3,2) (4,2) 

(0,0) (1,0) (2,0) (0,1) (1,2) (2,1) (0,2) (1,1) (2,2) (1,3) (0,3) (0,4) (2,3) (1,4) (2,4) 

Figure 3: Converting Layout of Array F

An important observation is that an in-place transpose
algorithm can perform the data movement for these five sets
of o↵set locations independently. This means that we only
need to synchronize the data movement within each cycle.

Unfortunately, the number of cycles and the length of each
cycle vary with problem size and there is in general no lo-
cality between elements in a cycle [13] in in-place transposi-
tion. Note for square matrices, the size of a cycle is either 1
(diagonal) or 2 (other elements), but in the case of Array-of-
Structure, the aspect ratio is usually not 1:1, as the number
of elements in a structure is usually much smaller than the
total number of structure instances. We will address this
point further in Section 4.4.

4. APPROACH
The proposed approach consists of three parts: the ASTA

layout, in-place marshaling from AoS and DA to ASTA,
and the design of a dynamic runtime marshaling library for
OpenCL.

4.1 The ASTA Layout
Given an AoS layout, we can convert T adjacent structure

instances into a mini SoA. We call this scheme Array-of-
Structure-of-Tiled-Array (ASTA). In Listing 1, the structure
type in Lines 15–18 and kernel ASTA shown in line 20 is an
example of ASTA. Note the struct foo_2 is derived from
struct foo by merging 4 instances of struct foo and gen-
erate a “mini SoA” out of each merged section. E↵ectively,
each scalar member in struct foo is expanded to a short
vector in struct foo_2. We call the length of this short
vector (T ) the coarsening factor of the ASTA type. The
short vector is called a tile. Usually the coarsening factor is
at least the number of work-items participating in memory
coalescing. ASTA improves memory coalescing while keep-
ing the field members of the same original instance more
closely stored, and is thus potentially useful to reduce mem-
ory channel partition camping due to large strides [16, 15].

The AoS layout can be considered as an M ⇥ S array
where S is a small integer in row-major layout. In this way,
DA is S ⇥M . Similarly, ASTA is similar to M 0 ⇥ S ⇥ T
where M = M 0T .

At a high level, marshaling from AoS to ASTA is similar
to transpose M 0 instances of small T ⇥S matrices. Whereas
marshaling from DA to ASTA is similar to transpose a ma-
trix of S ⇥M 0 of T -sized tiles.

We propose three algorithms here to facilitate e�cient
in-place marshaling. For AoS to ASTA, when T ⇥ S is
small enough, a barrier-synchronization-based approach is
proposed. When T ⇥ S is larger (but still not as large as
a full matrix transposition), a fast cycle-following approach
that exploits locality within an ASTA instance is proposed.
For DA to ASTA, we exploit the fact that the T can cover
one or more cache lines, so there is good locality when mov-
ing tiles.

4.2 In-place Conversion from AoS

The green line is the time for a kernel that accesses an array that is stored as discrete sub-arrays, that is,
all i-th members of all array elements are stored in the i-th sub-array, in consecutive memory locations. The
red line is the kernel time with an array that contains members of the same structure in consecutive memory
locations.

• Why does the red line increase linearly? Why not the green line?

• How can the effect on the red line be alleviated?

• How would both kernels perform on a single-core CPU with one level of cache? And on a dual-core
CPU with individual caches? And on a dual-core CPU with a shared cache?

14/17



8 Histogram Calculation on GPU [150 points]

Histograms are a powerful tool in many fields, such as image processing. Their implementation on GPU is
challenging because of the need for atomic operations. One way to accelerate their computation is using
privatization in the fast shared memory. The following code calculates the histogram of an image ”img”
using privatization:

1 extern __shared__ unsigned int Hs[];// Dynamic shared memory allocation

2 __global__ void histogram_kernel(

3 unsigned int* histo, unsigned int* img, int size, int BINS){

4 // Block and thread index

5 const int bx = blockIdx.x;

6 const int tx = threadIdx.x;

7 // Constants for read access

8 const int begin = bx * blockDim.x + tx;

9 const int end = size;

10 const int step = blockDim.x * gridDim.x;

11 // Sub-histogram initialization

12 for(int pos = tx; pos < BINS; pos += blockDim.x) Hs[pos]=0;

13 __syncthreads(); // Intra-block synchronization

14 // Main loop

15 for(int i = begin; i < end; i += step){

16 // Global memory read

17 unsigned int d = img[i];

18 // Atomic vote in shared memory

19 atomicAdd(&Hs[d], 1);

20 }

21 __syncthreads(); // Intra-block synchronization

22 // Merge in global memory

23 for(int pos = tx; pos < BINS; pos += blockDim.x){

24 unsigned int sum = 0;

25 sum = Hs[pos];

26 // Atomic addition in global memory

27 atomicAdd(histo + pos, sum);

28 }

29 }

(a) As natural images are smooth (that is, they present spatial correlation), it is very likely that neighboring
pixels fall into the same bin. To avoid atomic conflicts, R sub-histograms per block can be used (and
later merged). Lets analyze two different ways of accessing the sub-histograms (to replace line 19):

atomicAdd(&Hs[BINS * (tx % R) + d], 1); // Version 1

atomicAdd(&Hs[tx % R + d * R], 1); // Version 2

This graph shows the execution time for a 32-bins image histogram:

15/17



8.5

3.6

1.6

0.7
0.4 0.3

8.5

2.4

0.7
0.3 0.2 0.1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 t
im

e 
(m

s)

R = Number of sub-histograms per block

Version 1 Version 2

Why does version 2 obtain better results? What would happen for an odd-number-sized histogram?

(b) As can be seen in the above graph, increasing the number R of sub-histogram tends to reduce the number
of atomic conflicts, and consequently the execution time. Could you then explain the following graph?
(Note: Histograms of 256 bins are calculated. Tests have been carried out on a Kepler GPU with a
maximum of 64 warps per multiprocessor, and 48 KB of shared memory. Blocks of 256 threads are
used).

16/17



0.49

0.19

0.11 0.10 0.10

0.17

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 4 8 16 32

Ex
ec

u
ti

o
n

 t
im

e 
(m

s)

R = Number of sub-histograms per block

Version 2

(c) For very large histograms, privatization in shared memory is not possible, unless multiple passes are
carried out. Assume that, given the limited shared memory availability, N passes are needed. Atomic
operations in shared memory take 2 ns to complete. For each pass, 10% of the input data loads hit
the L2 cache. Compare this multi-pass approach to an approach where the histogram resides in global
memory. Assume a GPU with global memory atomic operations in L2. Each atomic operation takes
10 ns to complete in L2, and 200 ns to complete in DRAM. 95% of the atomic operations hit the L2
cache. Find the value of N that makes worthwhile each of the approaches. (Note: the global memory
bandwidth is 100 GB/s, and the L2 is 10 times faster).

17/17


	Critical Paper Reviews [200 points]
	Utility-Based Cache Partitioning [100 points]
	Cache Coherence [100 points]
	Memory Consistency [100 points]
	Building Multicore Processors [200 points]
	Parallel Speedup [200 points]
	AoS vs. SoA on GPU [50 points]
	Histogram Calculation on GPU [150 points]

