
Computer Architecture (263-2210-00L), Fall 2018

HW 3: SIMD Processing and Branch Handling

Instructor: Prof. Onur Mutlu
TAs: Mohammed Alser, Can Firtina, Hasan Hassan, Jeremie Kim, Juan Gómez Luna,

Geraldo Francisco de Oliveira, Minesh Patel, Giray Yaglikci

Assigned: Friday, Oct 26, 2018
Due: Sunday, Nov 11, 2018

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:

//safari.ethz.ch/review/architecture18/. Please check your inbox. You should have
received an email with the password you can use to login to the paper review system. If you
have not received any email, please contact comparch@lists.ethz.ch. In the first page after
login, you should click in “Architecture - Fall 2018 Home”, and then go to “any submitted
paper” to see the list of papers.
• Handin - Questions (2-9). Please upload your solution to the Moodle (https://moodle-
app2.let.ethz.ch/) as a single PDF file. Please use a typesetting software (e.g.,
LaTeX) or a word processor (e.g., MS Word, LibreOfficeWriter) to generate
your PDF file. Feel free to draw your diagrams either using an appropriate
software or by hand, and include the diagrams into your solutions PDF.

1 Critical Paper Reviews [150 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5% of your total grade for each good review.

• Lecture slides on guidelines for reviewing papers. Please follow this format.
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f18-

how-to-do-the-paper-reviews.pdf

• Some sample reviews can be found here: https://safari.ethz.ch/architecture/fall2018/doku.

php?id=readings

(a) Write a one-page critical review for the following paper:
B. C. Lee, E. Ipek, O. Mutlu and D. Burger. “Architecting phase change memory as a scalable DRAM
alternative.” ISCA 2009. https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf

(b) Write a one-page critical review for two of the following papers:

• McFarling, Scott. “Combining branch predictors”. Vol. 49. Technical Report TN-36, Digital Western
Research Laboratory, 1993. https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.

php?media=combining.pdf

• Yeh, Tse-Yu, and Yale N. Patt. “Two-level adaptive training branch prediction.” Proceedings of the
24th annual international symposium on Microarchitecture. ACM, 1991. https://safari.ethz.ch/
architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf

• Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D. “GPUs and the future of
parallel computing.” IEEE Micro, 2011. https://safari.ethz.ch/architecture/fall2017/lib/

exe/fetch.php?media=ieee-micro-gpu.pdf

1/14

https://safari.ethz.ch/review/architecture18/
https://safari.ethz.ch/review/architecture18/
https://moodle-app2.let.ethz.ch/
https://moodle-app2.let.ethz.ch/
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f18-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/lib/exe/fetch.php?media=onur-comparch-f18-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2018/doku.php?id=readings
https://safari.ethz.ch/architecture/fall2018/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=combining.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=combining.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=ieee-micro-gpu.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=ieee-micro-gpu.pdf

2 Vector Processing I [200 points]

You are studying a program that runs on a vector computer with the following latencies for various instruc-
tions:

• VLD and VST: 50 cycles for each vector element; fully interleaved and pipelined.

• VADD: 4 cycles for each vector element (fully pipelined).

• VMUL: 16 cycles for each vector element (fully pipelined).

• VDIV: 32 cycles for each vector element (fully pipelined).

• VRSHF (right shift): 1 cycle for each vector element (fully pipelined).

Assume that:
• The machine has an in-order pipeline.

• The machine supports chaining between vector functional units.

• In order to support 1-cycle memory access after the first element in a vector, the machine interleaves
vector elements across memory banks. All vectors are stored in memory with the first element mapped
to bank 0, the second element mapped to bank 1, and so on.

• Each memory bank has an 8 KB row buffer. Vector elements are 64 bits in size.

• Each memory bank has two ports (so that two loads/stores can be active simultaneously), and there
are two load/store functional units available.

(a) What is the minimum power-of-two number of banks required in order for memory accesses to never
stall? (Assume a vector stride of 1.)

(b) The machine (with as many banks as you found in part a) executes the following program (assume that
the vector stride is set to 1):

VLD V1 = A
VLD V2 = B
VADD V3 = V1 , V2
VMUL V4 = V3 , V1
VRSHF V5 = V4 , 2

It takes 111 cycles to execute this program. What is the vector length?

If the machine did not support chaining (but could still pipeline independent operations), how many
cycles would be required to execute the same program?

(c) The architect of this machine decides that she needs to cut costs in the machines memory system. She
reduces the number of banks by a factor of 2 from the number of banks you found in part (a) above.
Because loads and stores might stall due to bank contention, an arbiter is added to each bank so that
pending loads from the oldest instruction are serviced first. How many cycles does the program take to
execute on the machine with this reduced-cost memory system (but with chaining)?

Now, the architect reduces cost further by reducing the number of memory banks (to a lower power of
2). The program executes in 279 cycles. How many banks are in the system?

(d) Another architect is now designing the second generation of this vector computer. He wants to build a
multicore machine in which 4 vector processors share the same memory system. He scales up the number
of banks by 4 in order to match the memory system bandwidth to the new demand. However, when
he simulates this new machine design with a separate vector program running on every core, he finds
that the average execution time is longer than if each individual program ran on the original single-core
system with 1/4 the banks. Why could this be? Provide concrete reason(s).

What change could this architect make to the system in order to alleviate this problem (in less than 20
words), while only changing the shared memory hierarchy?

2/14

3 Vector Processing II [100 points]

Consider the following piece of code:

for (i = 0; i < 100; i++)

A[i] = ((B[i] * C[i]) + D[i])/2;

(a) Translate this code into assembly language using the following instructions in the ISA (note the number
of cycles each instruction takes is shown next to each instruction):

Opcode Operands Number of Cycles Description
LEA Ri, X 1 Ri ← address of X
LD Ri, Rj, Rk 11 Ri ← MEM[Rj + Rk]
ST Ri, Rj, Rk 11 MEM[Rj + Rk] ← Ri

MOVI Ri, Imm 1 Ri ← Imm
MUL Ri, Rj, Rk 6 Ri ← Rj × Rk
ADD Ri, Rj, Rk 4 Ri ← Rj + Rk
ADD Ri, Rj, Imm 4 Ri ← Rj + Imm

RSHFA Ri, Rj, amount 1 Ri ← RSHFA (Rj, amount)
BRcc X 1 Branch to X based on condition codes

Assume one memory location is required to store each element of the array. Also assume that there are
8 registers (R0 to R7).

Condition codes are set after the execution of an arithmetic instruction. You can assume typically
available condition codes such as zero, positive, and negative.

How many cycles does it take to execute the program?

(b) Now write Cray-like vector assembly code to perform this operation in the shortest time possible. Assume
that there are 8 vector registers and the length of each vector register is 64. Use the following instructions
in the vector ISA:

Opcode Operands Number of Cycles Description
LD Vst, #n 1 Vst ← n (Vst = Vector Stride Register)
LD Vln, #n 1 Vln ← n (Vln = Vector Length Register)

VLD Vi, X 11, pipelined
VST Vi, X 11, pipelined
Vmul Vi, Vj, Vk 6, pipelined
Vadd Vi, Vj, Vk 4, pipelined
Vrshfa Vi, Vj, amount 1

How many cycles does it take to execute the program on the following processors? Assume that memory
is 16-way interleaved.

(i) Vector processor without chaining, 1 port to memory (1 load or store per cycle).

(ii) Vector processor with chaining, 1 port to memory

(iii) Vector processor with chaining, 2 read ports and 1 write port to memory

3/14

4 Branch Prediction I [100 points]

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */

val = array[i]; /* TAKEN PATH for B1 */

if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */

}

if (val % 3 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */

}

if (val % 6 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */

}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

Now assume that the above piece of code is running on a processor that has a global branch predictor. The
global branch predictor has the following characteristics.

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–1023)

• Before the code is run, all PHTEs are initially set to 0.

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

4/14

(c) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the
shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE? Then
consider...

Show your work.

1 0

GHR

O
ld
e
r

Y
o
u
n
g
e
r

PHT

TT

NN

TN

NT

1
st
PHTE

2
nd
PHTE

3
rd
PHTE

4
th
PHTE

5/14

5 Branch Prediction II [100 points]

Suppose we have the following loop executing on a pipelined MIPS machine.

DOIT SW R1, 0(R6)

ADDI R6, R6, 2

AND R3, R1, R2

BEQ R3, R0 EVEN

ADDI R1, R1, 3

ADDI R5, R5, -1

BGTZ R5 DOIT

EVEN ADDI R1, R1, 1

ADDI R7, R7, -1

BGTZ R7 DOIT

Assume that before the loop starts, the registers have the following decimal values stored in them:

Register Value

R0 0
R1 0
R2 1
R3 0
R4 0
R5 5
R6 4000
R7 5

The fetch stage takes one cycle, the decode stage also takes one cycle, the execute stage takes a variable
number of cycles depending on the type of instruction (see below), and the store stage takes one cycle.

All execution units (including the load/store unit) are fully pipelined and the following instructions that use
these units take the indicated number of cycles:

Instruction Number of Cycles
SW 3

ADDI 2
AND 3

BEQ/BGTZ 1

Data forwarding is used wherever possible. Instructions that are dependent on the previous instructions
can make use of the results produced right after the previous instruction finishes the execute stage.

The target instruction after a branch can be fetched when the branch instruction is in ST stage. For example,
the execution of an AND instruction followed by a BEQ would look like:

ADD F | D | E1 | E2 | E3 | ST

BEQ F | D | - | - | E1 | ST

TARGET F | D

A scoreboarding mechanism is used.

6/14

Answer the following questions:

1. How many cycles does the above loop take to execute if no branch prediction is used (the pipeline
stalls on fetching a branch instruction, until it is resolved)?

2. How many cycles does the above loop take to execute if all branches are predicted with 100% accuracy?

3. How many cycles does the above loop take to execute if a static BTFN (backward taken-forward not
taken) branch prediction scheme is used to predict branch directions? What is the overall branch
prediction accuracy? What is the prediction accuracy for each branch?

7/14

6 Interference in Two-Level Branch Predictors [50 points]

Assume a two-level global predictor with a global history register and a single pattern history table shared
by all branches (call this “predictor A”).

1. We call the notion of different branches mapping to the same locations in a branch predictor ”branch
interference”. Where do different branches interfere with each other in these structures?

2. Compared to a two-level global predictor with a global history register and a separate pattern history
table for each branch (call this “predictor B”),

(a) When does predictor A yield lower prediction accuracy than predictor B? Explain. Give a concrete
example. If you wish, you can write source code to demonstrate a case where predictor A has
lower accuracy than predictor B.

(b) Could predictor A yield higher prediction accuracy than predictor B? Explain how. Give a
concrete example. If you wish, you can write source code to demonstrate this case.

(c) Is there a case where branch interference in predictor structures does not impact prediction accu-
racy? Explain. Give a concrete example. If you wish, you can write source code to demonstrate
this case as well.

8/14

7 BossMem [50 points]

A researcher has developed a new type of nonvolatile memory, BossMem. He is considering BossMem as a
replacement for DRAM. BossMem is 10x faster (all memory timings are 10x faster) than DRAM, but since
BossMem is so fast, it has to frequently power-off to cool down. Overheating is only a function of time,
not a function of activity. An idle stick of BossMem has to power-off just as frequently as an active stick.
When powered-off, BossMem retains its data, but cannot service requests. Both DRAM and BossMem are
banked and otherwise architecturally similar. To the researcher’s dismay, he finds that a system with 1GB
of DRAM performs considerably better than the same system with 1GB of BossMem.

(i) What can the researcher change or improve in the core (he can’t change BossMem or anything beyond
the memory controller) that will make his BossMem perform more favorably compared to DRAM,
realizing that he will have to be fair and evaluate DRAM with his enhanced core as well? (15 words or
less)

(ii) A colleague proposes he builds a hybrid memory system, with both DRAM and BossMem. He decides
to place data that exhibits low row buffer locality in DRAM and data that exhibits high row buffer
locality in BossMem. Assume 50% of requests are row buffer hits. Is this a good or bad idea? Show
your work.

(iii) Now a colleague suggests trying to improve the last-level cache replacement policy in the system with
the hybrid memory system. Like before, he wants to improve the performance of this system relative
to one that uses just DRAM and he will have to be fair in his evaluation. Can he design a cache
replacement policy that makes the hybrid memory system look more favorable? In 15 words or less,
justify NO or describe a cache replacement policy that would improve the performance of the hybrid
memory system more than it would DRAM.

(iv) In class we talked about another nonvolatile memory technology, phase-change memory (PCM). Which
technology, PCM, BossMem, or DRAM requires the greatest attention to security? What is the vul-
nerability?

(v) Which is likely of least concern to a security researcher?

9/14

8 In-DRAM Bitmap Indices [100 points]

Recall that in class we discussed Ambit, which is a DRAM design that can greatly accelerate Bulk Bitwise
Operations by providing the ability to perform bitwise AND/OR of two rows in a subarray.

One real-world application that can benefit from Ambit’s in-DRAM bulk bitwise operations is the database
bitmap index, as we also discussed in the lecture. By using bitmap indices, we want to run the following
query on a database that keeps track of user actions: “How many unique users were active every week for
the past w weeks?” Every week, each user is represented by a single bit. If the user was active a given week,
the corresponding bit is set to 1. The total number of users is u.

We assume the bits corresponding to one week are all in the same row. If u is greater than the total number
of bits in one row (the row size is 8 kilobytes), more rows in different subarrays are used for the same week.
We assume that all weeks corresponding to the users in one subarray fit in that subarray.

We would like to compare two possible implementations of the database query:

• CPU-based implementation: This implementation reads the bits of all u users for the w weeks. For
each user, it ands the bits corresponding to the past w weeks. Then, it performs a bit-count operation
to compute the final result.
Since this operation is very memory-bound, we simplify the estimation of the execution time as the
time needed to read all bits for the u users in the last w weeks. The memory bandwidth that the CPU
can exploit is X bytes/s.

• Ambit-based implementation: This implementation takes advantage of bulk and operations of Ambit.
In each subarray, we reserve one Accumulation row and one Operand row (besides the control rows
that are needed for the regular operation of Ambit). Initially, all bits in the Accumulation row are
set to 1. Any row can be moved to the Operand row by using RowClone (recall that RowClone is a
mechanism that enables very fast copying of a row to another row in the same subarray). trc and tand
are the latencies (in seconds) of RowClone’s copy and Ambit’s and respectively.
Since Ambit does not support bit-count operations inside DRAM, the final bit-count is still executed
on the CPU. We consider that the execution time of the bit-count operation is negligible compared to
the time needed to read all bits from the Accumulation rows by the CPU.

(a) What is the total number of DRAM rows that are occupied by u users and w weeks?

(b) What is the throughput in users/second of the Ambit-based implementation?

10/14

(c) What is the throughput in users/second of the CPU implementation?

(d) What is the maximum w for the CPU implementation to be faster than the Ambit-based implementation?
Assume u is a multiple of the row size.

11/14

9 Caching vs. Processing-in-Memory [100 points]

We are given the following piece of code that makes accesses to integer arrays A and B. The size of each
element in both A and B is 4 bytes. The base address of array A is 0x00001000, and the base address of B
is 0x00008000.

movi R1, #0x1000 // Store the base address of A in R1

movi R2, #0x8000 // Store the base address of B in R2

movi R3, #0

Outer_Loop:

movi R4, #0

movi R7, #0

Inner_Loop:

add R5, R3, R4 // R5 = R3 + R4

// load 4 bytes from memory address R1+R5

ld R5, [R1, R5] // R5 = Memory[R1 + R5],

ld R6, [R2, R4] // R6 = Memory[R2 + R4]

mul R5, R5, R6 // R5 = R5 * R6

add R7, R7, R5 // R7 += R5

inc R4 // R4++

bne R4, #2, Inner_Loop // If R4 != 2, jump to Inner_Loop

//store the data of R7 in memory address R1+R3

st [R1, R3], R7 // Memory[R1 + R3] = R7,

inc R3 // R3++

bne R3, #16, Outer_Loop // If R3 != 16, jump to Outer_Loop

You are running the above code on a single-core processor. For now, assume that the processor does not have
caches. Therefore, all load/store instructions access the main memory, which has a fixed 50-cycle latency,
for both read and write operations. Assume that all load/store operations are serialized, i.e., the latency of
multiple memory requests cannot be overlapped. Also assume that the execution time of a non-memory-
access instruction is zero (i.e., we ignore its execution time).

(a) What is the execution time of the above piece of code in cycles?

(b) Assume that a 128-byte private cache is added to the processor core in the next-generation processor.
The cache block size is 8-byte. The cache is direct-mapped. On a hit, the cache services both read and
write requests in 5 cycles. On a miss, the main memory is accessed and the access fills an 8-byte cache
line in 50 cycles. Assuming that the cache is initially empty, what is the new execution time on this
processor with the described cache? Show your work.

12/14

13/14

(c) You are not satisfied with the performance after implementing the described cache. To do better, you
consider utilizing a processing unit that is available close to the main memory. This processing unit can
directly interface to the main memory with a 10-cycle latency, for both read and write operations. How
many cycles does it take to execute the same program using the in-memory processing units? (Assume
that the in-memory processing unit does not have a cache, and the memory accesses are serialized like
in the processor core. The latency of the non-memory-access operations is ignored.)

(d) You friend now suggests that, by changing the cache capacity of the single-core processor (in part (b)),
she could provide as good performance as the system that utilizes the memory processing unit (in part
(c)).

Is she correct? What is the minimum capacity required for the cache of the single-core processor to
match the performance of the program running on the memory processing unit?

(e) What other changes could be made to the cache design to improve the performance of the single-core
processor on this program?

14/14

	Critical Paper Reviews [150 points]
	Vector Processing I [200 points]
	Vector Processing II [100 points]
	Branch Prediction I [100 points]
	Branch Prediction II [100 points]
	Interference in Two-Level Branch Predictors [50 points]
	BossMem [50 points]
	In-DRAM Bitmap Indices [100 points]
	Caching vs. Processing-in-Memory [100 points]

