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Executive Summary
• Goal: Reduce average DRAM access latency with no 

modification to the existing DRAM chips

• Observations: 

1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: 

Row Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again

• ChargeCache:

– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)
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1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline
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DRAM Stores Data as Charge

1. Sensing

2. Restore

3. Precharge
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Accessing Highly-charged Rows
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Observation 1

A highly-charged DRAM row can be 
accessed with low latency
• tRCD: 44%

• tRAS: 37%

How does a row become 
highly-charged?
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How Does a Row Become Highly-Charged?

DRAM cells lose charge over time

Two ways of restoring a row’s charge:

• Refresh Operation

• Access

timeRefresh
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a

rg
e

RefreshAccess
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Observation 2

A row’s charge is restored when the row 
is accessed

How likely is a recently-accessed
row to be accessed again?



12

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline



13

0%

20%

40%

60%

80%

100%

F
ra

ct
io

n
 o

f 
A

cc
e

ss
e

s

Row Level Temporal Locality (RLTL)
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A recently-accessed DRAM row is likely to be 
accessed again.

• t-RLTL: Fraction of rows that are accessed 
within time t after their previous access

8ms – RLTL for single-core workloads8ms – RLTL for eight-core workloads
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Summary of the Observations

1. A highly-charged DRAM row can be 
accessed with low latency

2. A row’s charge is restored when the 
row is accessed

3. A recently-accessed DRAM row is
likely to be accessed again:

Row Level Temporal Locality (RLTL)
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Key Idea

Track recently-accessed DRAM rows 
and use lower timing parameters if 

such rows are accessed again
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ChargeCache Overview

Memory Controller

ChargeCache

A

:B

:D

:C

:E

:F

Requests: 

:A

D A

DRAM

A
D

ChargeCache Miss: Use Default TimingsChargeCache Hit: Use Lower Timings
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Area and Power Overhead

• Modeled with CACTI

• Area
– ~5KB for 128-entry ChargeCache
– 0.24% of a 4MB Last Level Cache (LLC) 

area

• Power Consumption
– 0.15 mW on average (static + dynamic)
– 0.23% of the 4MB LLC power consumption
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Methodology
• Simulator

– Ramulator [Kim+, CAL’15]
https://github.com/CMU-SAFARI/ramulator

• Workloads
– 22 single-core workloads

• SPEC CPU2006, TPC, STREAM

– 20 multi-programmed 8-core workloads
• By randomly choosing from single-core workloads

– Execute at least 1 billion representative instructions per 
core (Pinpoints)

• System Parameters
– 1/8 core system with 4MB LLC

– Default tRCD/tRAS of 11/28 cycles
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Mechanisms Evaluated
Non-Uniform Access Time Memory Controller (NUAT) 
[Shin+, HPCA’14]

– Key idea:  Access only recently-refreshed rows with 
lower timing parameters

➢ Recently-refreshed rows can be accessed faster

➢ Only a small fraction (10-12%) of accesses go to 
recently-refreshed rows

ChargeCache

➢ Recently-accessed rows can be accessed faster

➢ A large fraction (86-97%) of accesses go to recently-
accessed rows (RLTL)

– 128 entries per core, On hit: tRCD-7, tRAS-20 cycles

Upper Bound: Low Latency DRAM

– Works as ChargeCache with 100% Hit Ratio

– On all DRAM accesses: tRCD-7, tRAS-20 cycles
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Eight-core Performance
NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upperbound)
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ChargeCache significantly improves 
multi-core performance
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DRAM Energy Savings
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Other Results In The Paper

• Detailed analysis of the Row Level 
Temporal Locality phenomenon

• ChargeCache hit-rate analysis

• Sensitivity studies
oSensitivity to t in t-RLTL
oChargeCache capacity
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1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline
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Conclusion
• ChargeCache reduces average DRAM access latency at low cost

• Observations: 
1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: Row 
Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower 
timing parameters if such rows are accessed again

• ChargeCache:
– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)
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Detailed Design

Highly-charged 
Row Address 
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RLTL Distribution
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Sensitivity on Capacity
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Hit-rate Analysis
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Sensitivity on t-RLTL


