
Computer Architecture

Lecture 6a: ChargeCache

Hasan Ibrahim Hasan

ETH Zürich

Fall 2018

4 October 2018

ChargeCache
Reducing DRAM Latency by

Exploiting Row Access Locality

Hasan Hassan,

Gennady Pekhimenko,

Nandita Vijaykumar,

Vivek Seshadri, Donghyuk Lee,
Oguz Ergin, Onur Mutlu

3

Executive Summary
• Goal: Reduce average DRAM access latency with no

modification to the existing DRAM chips

• Observations:

1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again:

Row Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

• ChargeCache:

– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)

4

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline

5

DRAM Stores Data as Charge

1. Sensing

2. Restore

3. Precharge

DRAM
Cell

Sense-Amplifier

Three steps of charge
movement

MemCtrl

CPU

6

Data 0

Data 1

Cell

time

ch
a

rg
e

Sense-Amplifier

DRAM Charge over Time

Sensing Restore

Cell

Sense
Amplifier

Precharge

R/WACT PRE

Ready to Access
Charge Level

tRCD

tRAS

Ready to Access
Ready to

Precharge

7

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline

8

Accessing Highly-charged Rows

Data 0

Data 1

Cell

time

ch
a

rg
e

Sense-Amplifier

Sensing Restore Precharge

R/WACT PRE
tRCD

tRAS

R/W PRE

Ready to Access Ready to Precharge

9

Observation 1

A highly-charged DRAM row can be
accessed with low latency
• tRCD: 44%

• tRAS: 37%

How does a row become
highly-charged?

10

How Does a Row Become Highly-Charged?

DRAM cells lose charge over time

Two ways of restoring a row’s charge:

• Refresh Operation

• Access

timeRefresh

ch
a

rg
e

RefreshAccess

11

Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?

12

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline

13

0%

20%

40%

60%

80%

100%

F
ra

ct
io

n
 o

f
A

cc
e

ss
e

s

Row Level Temporal Locality (RLTL)

86%

0%
20%
40%
60%
80%

100%

F
ra

ct
io

n
 o

f
A

cc
e

ss
e

s

97%

A recently-accessed DRAM row is likely to be
accessed again.

• t-RLTL: Fraction of rows that are accessed
within time t after their previous access

8ms – RLTL for single-core workloads8ms – RLTL for eight-core workloads

14

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline

15

Summary of the Observations

1. A highly-charged DRAM row can be
accessed with low latency

2. A row’s charge is restored when the
row is accessed

3. A recently-accessed DRAM row is
likely to be accessed again:

Row Level Temporal Locality (RLTL)

16

Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if

such rows are accessed again

17

ChargeCache Overview

Memory Controller

ChargeCache

A

:B

:D

:C

:E

:F

Requests:

:A

D A

DRAM

A
D

ChargeCache Miss: Use Default TimingsChargeCache Hit: Use Lower Timings

18

Area and Power Overhead

• Modeled with CACTI

• Area
– ~5KB for 128-entry ChargeCache
– 0.24% of a 4MB Last Level Cache (LLC)

area

• Power Consumption
– 0.15 mW on average (static + dynamic)
– 0.23% of the 4MB LLC power consumption

19

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline

20

Methodology
• Simulator

– Ramulator [Kim+, CAL’15]
https://github.com/CMU-SAFARI/ramulator

• Workloads
– 22 single-core workloads

• SPEC CPU2006, TPC, STREAM

– 20 multi-programmed 8-core workloads
• By randomly choosing from single-core workloads

– Execute at least 1 billion representative instructions per
core (Pinpoints)

• System Parameters
– 1/8 core system with 4MB LLC

– Default tRCD/tRAS of 11/28 cycles

21

Mechanisms Evaluated
Non-Uniform Access Time Memory Controller (NUAT)
[Shin+, HPCA’14]

– Key idea: Access only recently-refreshed rows with
lower timing parameters

➢ Recently-refreshed rows can be accessed faster

➢ Only a small fraction (10-12%) of accesses go to
recently-refreshed rows

ChargeCache

➢ Recently-accessed rows can be accessed faster

➢ A large fraction (86-97%) of accesses go to recently-
accessed rows (RLTL)

– 128 entries per core, On hit: tRCD-7, tRAS-20 cycles

Upper Bound: Low Latency DRAM

– Works as ChargeCache with 100% Hit Ratio

– On all DRAM accesses: tRCD-7, tRAS-20 cycles

22

0%

4%

8%

12%

16%

S
p

e
e

d
u

p
Single-core Performance

NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upper bound)

ChargeCache improves
single-core performance

23

Eight-core Performance
NUAT ChargeCache

ChargeCache + NUAT LL-DRAM (Upperbound)

2.5% 9%

0%

4%

8%

12%

16%

S
p

e
e

d
u

p

13%

ChargeCache significantly improves
multi-core performance

24

DRAM Energy Savings

0%

5%

10%

15%

Single-core Eight-core

D
R

A
M

 E
n

er
gy

R

ed
u

ct
io

n
Average Maximum

ChargeCache reduces DRAM energy

25

Other Results In The Paper

• Detailed analysis of the Row Level
Temporal Locality phenomenon

• ChargeCache hit-rate analysis

• Sensitivity studies
oSensitivity to t in t-RLTL
oChargeCache capacity

26

1. DRAM Operation Basics

2. Accessing Highly-charged Rows

4. ChargeCache

5. Evaluation

6. Conclusion

3. Row Level Temporal Locality (RLTL)

Outline

27

Conclusion
• ChargeCache reduces average DRAM access latency at low cost

• Observations:
1) A highly-charged DRAM row can be accessed with low latency

2) A row’s charge is restored when the row is accessed

3) A recently-accessed row is likely to be accessed again: Row
Level Temporal Locality (RLTL)

• Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

• ChargeCache:
– Low cost & no modifications to the DRAM

– Higher performance (8.6-10.6% on average for 8-core)

– Lower DRAM energy (7.9% on average)

ChargeCache
Reducing DRAM Latency by

Exploiting Row Access Locality

Hasan Hassan,

Gennady Pekhimenko,

Nandita Vijaykumar,

Vivek Seshadri, Donghyuk Lee,
Oguz Ergin, Onur Mutlu

29

Backup Slides

30

Detailed Design

Highly-charged
Row Address

Cache (HCRAC)

PRE
Insert Row
Address

ACT
Lookup the
Address

Invalidation
Mechanism

1

2

3

31

RLTL Distribution

0
20
40
60
80
100

tp
ch
6

ap
ac
h
e2
0

G
em

sF
D
TD m
cf

sp
h
in
x3

tp
ch
2

as
ta
r

h
m
m
er

m
ilc

b
w
av
es

lb
m

o
m
n
et
p
p

to
n
to

b
zi
p
2

lis
lie
3
d

sj
en

g

tp
cc
6
4

ca
ct
u
sA
D
M

lib
q
u
an
tu
m

sp
o
le
x

tp
ch
1
7

ST
R
EA

M
co
p
y

A
V
ER

A
G
E

Fr
ac

ti
o

n
 o

f
A

cc
e

ss
e

s

0.125ms - RLTL 0.25ms - RLTL 0.5ms - RLTL 1ms - RLTL 32ms - RLTL

32

Sensitivity on Capacity

33

Hit-rate Analysis

34

Sensitivity on t-RLTL

