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Abstract

As modern microprocessors employ deeper pipelines and is-
sue multiple instructions per cycle, they are becoming increasingly
dependent on accurate branch prediction. Because hardware re-
sources for branch-predictor tables are invariably limited, it is not
possible to hold all relevant branch history for all active branches
at the same time, especially for large workloads consisting of multi-
ple processes and operating-system code. The problem that results,
commonly referred to as aliasing in the branch-predictor tables, is
in many ways similar to the misses that occur in finite-sized hard-
ware caches.

In this paper we propose a new classification for branch alias-
ing based on the three-Cs model for caches, and show that conflict
aliasing is a significant source of mispredictions. Unfortunately,
the obvious method for removing conflicts – adding tags and asso-
ciativity to the predictor tables – is not a cost-effective solution.

To address this problem, we propose the skewed branch predic-
tor, a multi-bank, tag-less branch predictor, designed specifically
to reduce the impact of conflict aliasing. Through both analytical
and simulation models, we show that the skewed branch predictor
removes a substantial portion of conflict aliasing by introducing re-
dundancy to the branch-predictor tables. Although this redundancy
increases capacity aliasing compared to a standard one-bank struc-
ture of comparable size, our simulations show that the reduction in
conflict aliasing overcomes this effect to yield a gain in prediction
accuracy. Alternatively, we show that a skewed organization can
achieve the same prediction accuracy as a standard one-bank or-
ganization but with half the storage requirements.
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1 Introduction and Related Work

In processors that speculatively fetch and issue multiple instruc-
tions per cycle to deep pipelines, dozens of instructions might be in
flight before a branch is resolved. Under these conditions, a mis-
predicted branch can result in substantial amounts of wasted work
and become a bottleneck to exploiting instruction-level parallelism.
Accurate branch prediction has come to play an important role in
removing this bottleneck.

Many dynamic branch prediction schemes have been investi-
gated in the past few years, with each offering certain distinctive
features. Most of them, however, share a common characteristic:
they rely on a collection of 1- or 2-bit counters held in a predictor
table. Each entry in the table records the recent outcomes of a given
branch substream [21], and is used to predict the direction of future
branches in that substream. A branch substream might be defined
by some bits of the branch address, by a bit pattern representing
previous branch directions (known as a branch history), by some
combination of branch address and branch history, or by bits from
target addresses of previous branches [14, 7, 18, 10, 8, 9].

Ideally, we would like to have a predictor table with infinite ca-
pacity so that every unique branch substream defined by an (ad-
dress, history) pair will have a dedicated predictor. Chen et al.
have shown that two-level predictors are close to being optimal,
provided unlimited resources for implementing the predictors [3].
Real-world constraints, of course, do not permit this. Chip die-area
budgets and access-time constraints limit predictor-table size, and
most tables proposed in the literature are further constrained in that
they are direct-mapped and without tags.

Fixed-sized predictor tables lead to a phenomenon known as
aliasing or interference [21, 16], in which multiple (address, his-
tory) pairs share the same entry in the predictor table, causing
the predictions for two or more branch substreams to intermingle.
Aliasing has been classified as either destructive (i.e., a mispredic-
tion occurs due to sharing of a predictor-table entry), harmless (i.e.,
it has no effect on the prediction) or constructive (i.e., aliasing occa-
sionally provides a good prediction, which would have been wrong
otherwise) [21]. Young et al. have shown that constructive aliasing
is much less likely than destructive aliasing [21].

Recent studies have shown that large or multi-process workloads
with a strong OS component exhibit very high degrees of aliasing
[11, 5], and require much larger predictor tables than previously
thought necessary to achieve a level of accuracy close to an ideal,
unaliased predictor table [11]. We therefore expect that new tech-
niques for removing conflict aliasing could provide important gains
towards increased branch-prediction accuracy.

Branch aliasing in fixed-size, direct-mapped predictor tables is
in many ways analogous to instruction-cache or data-cache misses.



This suggests an alternative classification for branch aliasing based
on the three-Cs model of cache performance first proposed by Hill
[6]. As with cache misses, aliasing can be classified as compul-
sory, capacity or conflict aliasing. Similarly, as with caches, larger
predictor tables reduce capacity aliasing, while associativity in a
predictor table could remove conflict aliasing.

Unfortunately, a simple-minded adaptation of cache associativ-
ity would require the addition of costly tags, substantially increas-
ing the cost of a predictor table. In this paper we examine an al-
ternative approach, called skewed branch prediction, which bor-
rows ideas from skewed-associative caches [12]. A skewed branch
predictor is constructed from an odd number (typically 3 or 5) of
predictor-table banks, each of which functions like a standard tag-
less predictor table. When performing a prediction, each bank is
accessed in parallel but with a different indexing function, and a
majority vote between the resulting lookups is used to predict the
direction of the branch.

In the next section we explain in greater detail our aliasing clas-
sification. In section 3, we quantify aliasing and assess the effect of
conflict aliasing on overall branch-prediction accuracy. In section 4,
we introduce the skewed branch predictor, a hardware structure de-
signed specifically to reduce conflict aliasing. In section 5, we show
how and why the skewed branch predictor removes conflict aliasing
effects at the cost of some redundancy. Our analysis includes both
simulation and analytical models of performance, and considers a
range of possible skewed predictor configurations driven by traces
from the instruction-benchmark suite (IBS) [17], which includes
complete user and operating-system activity. Section 6 proposes
the enhanced skewed branch predictor, a slight modification to the
skewed branch predictor, which enables more attractive tradeoffs
between capacity and conflict aliasing. Section 7 concludes this
study and proposes some future research directions.

2 An Aliasing Classification

Throughout this paper, we will focus on global-history predic-
tion schemes for the sake of conciseness. Global-history schemes
use both the branch address and a pattern of global history bits,
as described in [18, 19, 20, 10, 8]. Previously-proposed global-
history predictors are all direct-mapped and tag-less. Given a his-
tory length, the distinguishing feature of these predictors is the
hashing function that is used to map the set of all (address, history)
pairs onto the predictor table.

The gshare and gselect schemes [8] have been the most studied
global schemes (gselect corresponds to GAs in Yeh and Patt’s ter-
minology [18, 19, 20]). In gshare, the low-order address bits and
global history bits are XORed together to form an index value

�

,
whereas in gselect, low-order address bits and global history bits
are concatenated.

Aliasing occurs in direct-mapped tag-less predictors when two
or more (address, history) pairs map to the same entry. To mea-
sure aliasing for a particular global scheme and table, we simulate
a structure having the same number of entries and using the same
indexing function as the predictor table considered. However, in-
stead of storing 1-bit or 2-bit predictors in the structure, we store
the identity of the last (address, history) pair that accessed the en-
try. Aliasing occurs when the indexing (address, history) pair is
different from the stored pair. The aliasing ratio is the ratio be-
tween the number of aliasing occurrences and the number of dy-
namic conditional branches. When measured in this way, we can
see the relationship between branch aliasing and cache misses. Our
simulated tagged table is like a cache with a line size of one datum,
and an aliasing occurrence corresponds to a cache miss.

�

When the number of history bits is less than the number of index bits, the history
bits are XORed with the higher-order end of the section of low-order address bits, as
explained in [8]

benchmark conditional branch count
dynamic static

groff 11568181 5634
gs 14288742 10935

mpeg play 8109029 4752
nroff 21368201 4480

real gcc 13940672 16716
verilog 5692823 3918

Table 1: Conditional branch counts

A widely-accepted classification of cache misses is the three-Cs
model, first introduced by Hill [6] and later refined by Sugumar and
Abraham [15]. The three-Cs model divides cache misses into three
groups, depending on their causes.

� Compulsory misses occur when an address is referenced for
the first time. These unavoidable misses are required to fill an
empty or “cold” cache.

� Capacity misses occur when the cache is not large enough to
retain all the addresses that will be re-referenced in the future.
Capacity misses can be reduced by increasing the total size of
the cache.

� Conflict misses occur when two memory locations contend
for the same cache line in a given window of time. Con-
flict misses can be reduced by increasing the associativity of
a cache, or improving the replacement algorithm.

Aliasing in branch-predictor tables can be classified in a similar
fashion:

� Compulsory aliasing occurs when a branch substream is en-
countered for the first time.

� Capacity aliasing, like capacity cache misses, is due to a pro-
gram’s working set being too large to fit in a predictor table,
and can be reduced by increasing the size of the predictor ta-
ble.

� Conflict aliasing occurs when two concurrently-active branch
substreams map to the same predictor-table entry. Methods
for reducing this component of aliasing have not yet, to our
knowledge, appeared in the published literature.

3 Quantifying Aliasing

3.1 Experimental Setup
We conducted all of our trace-driven simulations using the IBS-

Ultrix benchmarks [17]. These benchmarks were traced using a
hardware monitor connected to a MIPS-based DECstation running
Ultrix 3.1. The resulting traces include activity from all user-level
processes as well as the operating-system kernel, and have been de-
termined by other researchers to be a good test of branch-prediction
performance [5, 11]. Conditional branch counts

�

derived from
these traces are given in Table 1.

Although we simulated the sdet and video play benchmarks,
they exhibited no special behavior compared with the other bench-
marks. We therefore omit sdet and video play results from this pa-
per in the interest of saving space.

�

beq r0,r0 is used as an unconditional relative jump by the MIPS compiler, there-
fore we did not consider it as conditional. This explains the discrepancy with the
branch counts reported in [5, 11]



4-bit history
benchmark substream compulsory misprediction

ratio aliasing 1-bit 2-bit
groff 1.82 0.09 % 5.47 % 3.77 %

gs 1.91 0.15 % 7.03 % 5.28 %
mpeg play 1.83 0.11 % 9.08 % 7.24 %

nroff 1.79 0.04 % 4.99 % 3.72 %
real gcc 2.36 0.28 % 9.38 % 7.16 %
verilog 1.96 0.13 % 6.48 % 4.57 %

12-bit history
benchmark substream compulsory misprediction

ratio aliasing 1-bit 2-bit
groff 7.14 0.35 % 3.63 % 2.56 %

gs 7.95 0.61 % 3.71 % 2.77 %
mpeg play 6.27 0.37 % 5.85 % 4.52 %

nroff 5.71 0.12 % 3.04 % 2.20 %
real gcc 12.90 1.55 % 4.90 % 3.93 %
verilog 9.24 0.64 % 3.74 % 2.66 %

Table 2: Unaliased predictor

We first simulated an ideal unaliased scheme (i.e., a predictor
table of infinite size). The misprediction ratios that we obtained
are shown in Table 2 for history lengths of 4 and 12 bits, and for
both 1-bit and 2-bit predictors (we include unconditional branches
as part of the global-history bits). When an (address, history) pair is
encountered for the first time, we do not count it as a misprediction,
so compulsory miss contribution to mispredictions is not reported
in the last two columns of Table 2.

The 2-bit saturating counter gives better prediction accuracy in
an unaliased predictor table than the 1-bit predictor. Our intuition
is that this difference is due mainly to loop branches. We also mea-
sured the substream ratio, which we define as the average num-
ber of different history values encountered for a given conditional
branch address (see first column of Table 2).

The compulsory-aliasing percentage was computed from the
number of different (address, history) pairs referenced through-
out the trace divided by the total number of dynamic conditional
branches. From Table 2, we observe that compulsory aliasing, with
a 12-bit history length, generally constitutes less than 1% of the
total of all dynamic conditional branches, except in the case of
real gcc, which exhibits a compulsory-aliasing rate of 1.55%.

3.2 Quantifying Conflict and Capacity Aliasing
To quantify conflict and capacity aliasing, we simulated tagged

predictor tables holding (address, history) pairs. Figures 1 and 2
show the miss ratio in direct-mapped (DM) and fully-associative
(FA) tables using 4 bits and 12 bits of global history, respec-
tively. The two direct-mapped tables are indexed with a gshare-
and a gselect-like function. The fully-associative table uses a least-
recently-used (LRU) replacement policy.

The miss ratio for the fully-associative table gives the sum of
compulsory and capacity aliasing. The difference between gshare
or gselect and the fully-associative table gives the amount of con-
flict aliasing in the corresponding gshare and gselect predictors. It
should be noted that LRU is not an optimal replacement policy [15].
However, because it bases its decisions solely on past information,
the LRU policy gives a reasonable base value of the amount of con-
flict aliasing that can be removed by a hardware-only scheme.

It appears that for our benchmarks, gselect has a higher aliasing
rate than gshare. This explains why, for a given table size and his-
tory length, gshare has a lower misprediction rate than gselect, as
claimed in [8]. This difference is very pronounced with 12 bits of
global history, because in this case, gselect uses only a very small
number of address bits (e.g., only 4 address bits for a 64K-entry
table).

Figure 1 shows that when the number of entries is larger than
or equal to 4K, capacity aliasing nearly vanishes, leaving conflicts
as the overwhelming cause of aliasing. The same condition holds
in Figure 2 for table sizes greater than about 16K. This leads us
to conclude that some amount of associativity in branch prediction
tables is needed to limit the impact of aliasing.

3.3 Problems with Associative Predictor Tables

Associativity in caches introduces a degree of freedom for
avoiding conflicts. In a direct-mapped cache, tag bits are used to de-
termine whether a reference hits or misses. In an associative cache,
the tag bits also determine the precise location of the requested data
in the cache.

Because of its speculative nature, a direct-mapped branch pre-
diction table can be tag-less. To implement associativity, however,
we must introduce tags identifying (address, history) pairs. Un-
fortunately, the tag width is disproportionately large compared to
the width of the individual predictors, which are usually 1 or 2 bits
wide.

Another method for achieving the benefits of associativity, with-
out having to pay the cost of tags is needed. The skewed branch
predictor, described in the next section, is one such method.

4 The Skewed Branch Predictor

We have previously noted that the behaviors of gselect and
gshare are different even though these two schemes are based on the
same (address, history) information. This is illustrated on Figure 3
where we represent a gshare and a gselect table with 16 entries. In
this example, there is a conflict both with gshare and gselect, but
the (address, history) pairs that conflict are not the same. We can
conclude that the precise occurrence of conflicts is strongly related
to the mapping function. The skewed branch predictor is based on
this observation.

The basic principle of the skewed branch predictor is to use sev-
eral branch-predictor banks (3 banks in the example illustrated in
Figure 4), but to index them by different and independent hashing
functions computed from the same vector V of information (e.g.,
branch address and global history). A prediction is read from each
of the banks and a majority vote is used to select a final branch
direction.

The rationale for using different hashing functions for each bank
is that two vectors, V and W, that are aliased with each other in one
bank are unlikely to be aliased in the other banks. A destructive
aliasing of V by W may occur in one bank, but the overall prediction
on V is likely to be correct if V does not suffer from destructive
aliasing in the other banks.

4.1 Execution Model

We consider two policies for updating the predictors across mul-
tiple banks:

� A total update policy: each of the three banks is updated as
if it were a sole bank in a traditional prediction scheme.

� A partial update policy: when a bank gives a bad prediction,
it is not updated when the overall prediction is good. This
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Figure 1: Miss percentages in tables tagged with (address, history) pairs (4-bit history)
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wrong predictor is considered to be attached to another (ad-
dress, history) pair. When the overall prediction is wrong, all
banks are updated as dictated by the outcome of the branch.

4.2 Design Space
Chosing the information (branch address, history, etc.) that is

used to divide branches into substreams is an open problem. The
purpose of this section is not to discuss the relevance of using some
combination of information or the other, but to show that most con-
flict aliasing effects can be removed by using a skewed predictor
organization. For the remainder of this paper, the vector of informa-
tion that will be used for recording branch-prediction information
is the concatenation of the branch address and the

�
bits of global

history: �������	��

����� � � 
�����

����� � �
� . Let � be the set of all � ’s.
The functions ��� , � � and � � used for indexing the three ��� -entry

banks in the experiments are the same as those proposed for the
skewed-associative cache in [13]. Consider the decomposition of
the binary representation of vector V in bit substrings ( ��� , � � , � � ),
such that � � and � � are two � -bit strings. Now consider the func-
tion  defined as follows:

 "!$#�%&
'����
(�)�+*-,�. *�/ #0%&
'����
(�)�+*-,�.
��1 � 
21 �&3 � 
4����
51 � �76*�/ ��1 �98 1 � 
:1 � 
:1 �&3 � 
4����
51��)
51 � �

where 8 is the XOR (exclusive or) operation. We can now define
three different mapping functions as follows:

�0�9!;� *�/ #0%&
'����
(� � *<,�.
�=�>�)
�� � 
�� � �76*�/  ?�=� � � 8  @3
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'����
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�=� � 
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'����
(� � *<,�.
�=�>�)
�� � 
�� � �76*�/  3 � �=� � � 8  ?�=� � � 8 � �

Further information about these functions can be found in [13].
The most interesting property of these functions is that if two
distinct vectors �=��A&
(�B��
5�C, � and �=DEA�
�DF�G
�DH, � map to the
same entry in a bank, they will not conflict in the other banks if
�=�B��
��I, �9J�H�=DF�G
�DH, � . Any other function family exhibiting the
same property might be used.

Having defined an implementation of the skewed branch predic-
tor, we are now in a position to evaluate it and check its behavior
against conventional global-history schemes.

For the purposes of comparison, we will use the gshare global
scheme for referencing the standard single-bank organization. The
skewed branch predictor described earlier will also be referred to as
gskewed for the remainder of this paper.

5 Analysis

5.1 Simulation Results
The aim of this section is to evaluate the cost-effectiveness

of the skewed branch predictor via simulation. In the skewed
branch predictor, a prediction associated with a (branch, history)
pair is recorded up to three times. It is intuitive that the impact
of conflict aliasing is lower in a skewed branch predictor than in
a direct-mapped gshare table. However, if the same total number
of predictor storage bits is allocated to each scheme, it is not clear
that gskewed will yield better results – the redundancy that makes
gskewed work also has the effect of increasing the degree of capac-
ity aliasing among a fixed set of predictor entries. Said differently,
it may be better to simply build a one-bank predictor table 3 times
as large, rather than a 3-bank skewed table.
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Figure 5: Misprediction percentage with 4-bit history
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Figure 7: Misprediction percentage of 3x4k-gskewed vs. 16k-gshare

For the direct comparison between gshare and gskewed, we used
2-bit saturating counters and a partial update policy for gskewed.

Varying prediction table size The results for a history size of 4
bits and 12 bits are plotted in Figures 5 and 6, respectively, for a
large spectrum of table sizes.

The interesting region of these graphs is where capacity aliasing
for gshare has vanished. In this region,

a skewed branch predictor with a partial update policy
achieves the same prediction accuracy as a 1-bank pre-
dictor, but requires approximately half the storage re-
sources.

For all benchmarks and for a wide spectrum of predictor sizes,
the skewed branch predictor consistently gives better prediction ac-
curacy than the 1-bank predictor. It should be noted that when using
the skewed branch predictor and a history length of 4 (12), there is
very little benefit in using more than 3x4k (3x16k) entries, while
increasing the number of entries to 64k (256k) on gshare still im-
proves the prediction accuracy.

Notice that the skewed branch predictor is more able to remove
pathological cases. This appears clearly on Figure 6 for nroff.

Varying history length For any given prediction table size, some
history length is better than others. Figure 7 illustrates the miss rates
of a 3x4k-entry gskewed vs. a 16k-entry gshare when varying the
history length. The plots show that despite using 25 % less storage
resources, gskewed outperforms gshare on all benchmarks except
real gcc.

Varying number of predictor banks We also considered skewed
configurations with five predictor banks. Our simulations results
(not reported here) showed that there is very little benefit to increas-
ing the number of banks to five; it appears that a 3-bank skewed

branch predictor removes the most significant part of conflict alias-
ing, and a more cost-effective use of resources would be to increase
the size of the banks rather than to increase their number.

Update policy To verify that gskewed is effective in removing
conflict aliasing, we compare a 3 � N-entry gskewed branch predic-
tor with a fully-associative N-entry LRU table. Figure 8 illustrates
this experiment for a global history length of 4 bits and 2-bit sat-
urating counters. For (address, history) pairs missing in the fully-
associative table, a static prediction always taken was assumed. For
gskewed, both partial-update and total-update policies are shown.

It appears that a 3*N-entry gskewed table with partial update
delivers slightly better behavior than the N-entry fully-associative
table, but when it uses total-update policy, it exhibits slightly worse
behavior. We conclude that a 3xN-entry gskewed predictor with
partial update delivers approximately the same performance as an
N-entry fully-associative LRU predictor.

The reason why partial update is better than total update is in-
tuitive. For partial update, when 2 banks give a good prediction and
the third bank gives a bad prediction, we do not update the third
bank. By not updating the third bank, we enable it to contribute
to the correct prediction of a different substream and effectively in-
crease the capacity of the predictor table as a whole.

5.2 Analytical Model

Although our simulation results show that a skewed predictor
table offers an attractive alternative to the standard one-bank pre-
dictor structure, they do not provide much explanation as to why
a skewed organization works. In this section, we present an ana-
lytical model that helps to better understand why the technique is
effective.

To make our analytical modeling tractable, we make some sim-
plifying assumptions: we assume 1-bit automatons and the total
update policy. We begin by defining the table aliasing probabil-
ity. Consider a hashing function F which maps (address, history)
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Figure 8: Misprediction percentage of 3N-entry gskewed vs. N-entry fully-associative LRU

pairs onto a N-entry table. The aliasing probability for a dynamic
reference V = (address, history) is defined as follows:

Let D be the last-use distance of V, i.e. the number of distinct
(address, history) pairs that have been encountered since the last
occurrence of V. Assuming F distributes these D vectors equally in
the table (i.e., assuming F is a good hashing function), the aliasing
probability for dynamic reference V is

� � �E, * �2, * ,� ��� (1)

When N is much greater than 1, we get a good approximation with

� � �E, *�� 3 ��
(2)

The aliasing probability is a function of the ratio between the
last-use distance and the number of entries.

Let � represent the per-bank aliasing probability, and � be the
probability that an (address, history) pair is biased taken. With 1-
bit predictors, when an entry is aliased, the probability that the pre-
diction given by that entry differs from the unaliased prediction is
�	�)�2,�*
� � . It should be noted that the aliasing is less likely to be
destructive if � is close to 0 or 1 than if � is close to ,���� .

Assuming a total update policy, and because we use different
hashing functions for indexing the three banks, the events in a bank
are not correlated with the events in an other bank. Now consider a
particular dynamic reference V. Four cases can occur:

1. With probability �2, * � � � , V is not aliased in any of the three
banks: the prediction will be the same as the unaliased pre-
diction.

2. With probability A � �2, * � � �

, V is aliased in one bank, but not
in the other two banks: the resulting majority vote will be in
the same direction as the unaliased prediction.

3. With probability A � � �2,�* � � , V is aliased in two banks, but
not in the remaining one.
With probability ���2, *
� � ��� �2, *
� � � �

, predictions for both

aliased banks are different from the unaliased prediction: the
overall prediction is different from the unaliased prediction.

4. With probability � � , V is aliased in all three banks.
With probability ���:�2,>*�� � � � A	���2,>*�� � � � � �2,>*�� � ��� � � A	�2,>*� � � � � , the predictions are different from the unaliased predic-
tion in at least two prediction banks: the skewed prediction is
different from the unaliased prediction.

In summary, the probability that a prediction in our 3-bank skewed
predictor differs from the unaliased prediction is :

��� � � A � � �2, * � � ���2, *�� �� � � ��� A��)�2, *�� � ��� �2, *�� � ���� � � �2, *�� � � A	�2, *�� � � ��� � ��� (3)

In contrast, the formula for a direct-mapped 1-bank predictor table
is: ��� � �!� �)�2, *�� � � �2, *�� � � � � � �	�)�2, *�� � � (4)� � �

and
� � � are plotted in Figure 9 for the worst case �9�#"�% %.

We have �$� � � A% � �

�2, * � � � ,
�
� �

��� � � ,
�
�

The main characteristic of the skewed branch predictor is that
its mispredict probability is a polynomial function of the aliasing
probability. The most relevant region of the curve is where the per-
bank aliasing probability, � , is low (Figure 10 magnifies the curve
for small aliasing probabilities).

At comparable storage resources, a 3-bank scheme has a greater
per-bank aliasing probability than a 1-bank scheme, because each
bank has a smaller number of entries. By taking into account for-
mula (1), we find that for a 3x(N/3)-entry gskewed,

�&� � is lower
than

�����
in a N-entry direct-mapped table when the last-use dis-

tance D is less than approximately �
� � , while for ')( �

� � ,
�$� �

exceeds
�����

.
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This highlights the tradeoff that takes place in the skewed branch
predictor: a gain on short last-use distance references is traded for
a loss on long last-use distance references. Now consider a N-entry
fully-associative LRU table. When the last-use distance D is less
than N, there is a hit, otherwise there is a miss. Hence, in a predic-
tor table, aliasing for short last-use distance references is conflict
aliasing, and aliasing for long last-use distance references is capac-
ity aliasing.

In other words, the skewed branch predictor trades conflict
aliasing for capacity aliasing.

To verify if our mathematical model is meaningful, we extrap-
olated the misprediction rate for gskewed by measuring D for each
dynamic (address, history) pair and applied formulas (1) and (3).
When an (address, history) pair was encountered for the first time,
we applied formula (3) with � � , . The bias probability � was
evaluated for the entire trace by measuring the density of static (ad-
dress, history) pairs with bias taken, and the value found was then
fed back to the simulator when applying formula (3) on the same
trace. Finally, we added the unaliased misprediction rate of table 2
(the contribution of compulsory aliasing to mispredictions appears
only in the mispredict overhead).

The results are shown in Figure 11 for a history length of 4. It
should be noted that our model always slightly overestimates the
misprediction rate. This can be explained by the constructive alias-
ing phenomenon that is reported in [21].

As noted above, we made some simplifying assumptions when
we devised our analytical model. The difficulty with extending the
model to a partial-update policy is that occurrences of aliasing in
a bank depend on what happens in the other banks. Modeling the
effect of using 2-bit automatons is also difficult because a 2-bit au-

tomaton by itself removes some part of aliasing effects on predic-
tion.

Despite the limitations of the model, it effectively explains why
skewed branch prediction works: in a standard one-bank table, the
mispredict overhead increases linearly with the aliasing probability,
but in an M-bank skewed organization, it increases as an M-th de-
gree polynomial. Because we deal with per-bank aliasing probabili-
ties, which range from 0 to 1, a polynomial growth rate is preferable
to a linear one.

6 An Enhanced Skewed Branch Predictor

Using a short history vector limits the number of (address, his-
tory) pairs (see the substream ratio column of Table 2) and there-
fore the amount of capacity aliasing. On the other hand, using a
long history length leads to better intrinsic prediction accuracy on
unaliased predictors, but results in a large number of (address, his-
tory) pairs. Ideally, given a fixed transistor budget, one would like
to benefit from the better intrinsic prediction accuracy associated
with a long history, and from the lower aliasing rate associated with
a short history. Selecting a good history length is essentially a trade-
off between the accuracy of the unaliased predictor and the aliasing
probability.

While the effect of conflict aliasing on the skewed branch pre-
dictor has been shown to be negligible, capacity aliasing remains
a major issue. In this section we propose an enhancement to the
skewed branch predictor that removes a portion of the capacity-
aliasing effects without suffering from increased conflict aliasing.

In the enhanced skewed branch predictor, the complete infor-
mation vector (i.e., branch history and address) is used with the
hashing functions � � and � � for indexing bank 1 and bank 2, as
in the previous gskewed scheme. But for function �)� , which in-
dexes bank 0, we use the usual bit truncation of the branch address
( � ����� ����� mod �)� ).

The rationale for this modification is as follows:
Consider an enhanced gskewed and gskewed using the same history
length � , and (address, history) pair ���B
5 � .
���9
: � has the same last-use distance '
	 on the three banks

of gskewed and on banks 1 and 2 of enhanced gskewed. But for
enhanced gskewed, only the address is used for indexing bank 0, so
the last-use distance '
� of the address � on bank 0 is shorter than' 	 .

Two situations can occur:

1. When ' 	 is small compared with the bank size, the aliasing
probability on a bank in either gskewed or enhanced gskewed
is small, and both gskewed and enhanced gskewed are likely
to deliver the same prediction as the unaliased predictor for
history length � , because these predictions will be present in
at least two banks.

2. When '�	 becomes large compared with the bank size, the
aliasing probability � 	 on a any bank of gskewed or banks 1
and 2 of enhanced gskewed becomes close to 1 (formula (2)
in the previous section).

For both designs, when predictions on banks 1 and 2 differ,
the overall prediction is equal to the prediction on bank 0.
Now, since ' ��
 '�	 , the aliasing probability � � on bank 0
of enhanced gskewed is lower than the aliasing probability� 	 on bank 0 of gskewed. When ' 	 is too high, the better
intrinsic prediction accuracy associated with the long history
on bank 0 in gskewed cannot compensate for the increased
aliasing probability in bank 0.

Our intuition is that when the history length is short, the first
situation will dominate and both predictors will deliver equivalent
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Figure 11: Extrapolated vs. measured misprediction percentage

prediction, but for a longer history length, the second situation will
occur more often and enhanced gskewed will deliver better overall
prediction than gskewed.

Simulation results: Figure 12 plots the results of simulations
that vary the history length for a 3x4K-entry enhanced gskewed,
a 3x4K-entry gskewed and a 32K-entry gshare. A partial-update
policy was used in these experiments.

The curves for gskewed and enhanced gskewed are nearly indis-
tinguishable up to a certain history length. After this point, which
is different for each benchmark, the curves begin to diverge, with
enhanced gskewed exhibiting lower mispredication rates at longer
history lengths.

Based on our simulation results, 8 to 10 seems to be a reasonable
choice for history length for a 3x4K-entry gskewed table, while for
enhanced gskewed, 11 or 12 would be a better choice.

Notice that the 3x4K-entry enhanced gskewed performs as well
as the 32K-entry gshare on all our benchmarks and for all history
lengths, but with less than half of the storage requirements.

7 Conclusions and Future Work

Aliasing effects in branch-predictor tables have been recently
identified as a significant contributor to branch-misprediction rates.
To better understand and minimize this source of prediction error,
we have proposed a new branch-aliasing classification, inspired by
the three-Cs model of cache performance.

Although previous branch-prediction research has shown how
to reduce compulsory and capacity aliasing, little has been done to
reduce conflict aliasing. To that end, we have proposed skewed
branch prediction, a technique that distributes branch predictors
across multiple banks using distinct and independent hashing func-
tions; multiple predictors are read in parallel and a majority vote is
used to arrive at an overall prediction.

Our analytical model explains why skewed branch prediction
works: in a standard one-bank table, the misprediction overhead

increases linearly with the aliasing probability, but in an M-bank
skewed organization, it increases as an M-th degree polynomial.
Because we deal with per-bank aliasing probabilities, which range
from 0 to 1, a polynomial growth rate is preferable to a linear one.

The redundancy in a skewed organization increases the amount
of capacity aliasing, but our simulation results show that this nega-
tive effect is more than compensated for by the reduction in conflict
aliasing when using a partial-update policy.

For tables of 2-bit predictors and equal lengths of global his-
tory, a 3-bank skewed organization consistently outperforms a stan-
dard 1-bank organization for all configurations with comparable to-
tal storage requirements. We found the update policy to be an im-
portant factor, with partial update consistently outperforming total
update. Although 5-bank (or greater) configurations are possible,
our simulations showed that the improvement over a 3-bank config-
uration is negligible. We also found skewed branch prediction to be
less sensitive to pathological cases (e.g., nroff in Figure 6).

To reduce capacity aliasing further, we proposed the enhanced
skewed branch predictor, which was shown to consistently reach
the performance level of a conventional gshare predictor of more
than twice the same size.

In addition to these performance advantages, skewed organiza-
tions offer a chip designer an additional degree of flexibility when
allocating die area. Die-area constraints, for example, may not per-
mit increasing a 1-bank predictor table from 16K to 32K, but a
skewed organization offers a middle point: 3 banks of 8K entries
apiece for a total of 24K entries.

In this paper, we have only addressed aliasing on prediction
schemes using a global history vector. The same technique could
be applied to remove aliasing in other prediction methods, includ-
ing per-address history schemes [18, 19, 20], or hybrid schemes
[8, 2, 1, 4].

Skewed branch prediction raises some new questions:

� Update Policies: Are there policies other than partial-update
and total-update that offer better performance in skewed or
enhanced skewed branch predictors?
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Figure 12: Misprediction percentage of enhanced gskewed

� Distributed Predictor Encodings: In our simulations we
adopted the standard 2-bit predictor encodings and simply
replicated them across 3 banks. Do there exist alternative “dis-
tributed” predictor encodings that are more space efficient,
and more robust against aliasing?

� Minimizing Capacity Aliasing: Skewed branch predictors
are very effective in reducing conflict-aliasing effects, but they
do so at the expense of increased capacity aliasing. Do there
exist other techniques, like those used in the enhanced skewed
predictor, that could minimize these effects?
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