Computer Architecture
LecturelO:
Branch Prediction

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
25 October 2017

Mid-Semester Exam

A November 30
A In class
A Questions similar to homework questions

High-Level Summary of Last Week

SIMD Processing

¢ Array Processors
¢ Vector Processors
¢ SIMD Extensions

Graphics Processing Units
¢ GPU Architecture
¢ GPU Programming

Agenda foifoday & Tomorrow

Control DependenceHandling
¢ Problem
¢ Six solutions

Branch Prediction

Other Methods of Control Dependence Handling

Required Readings

A McFarling Cambining Branch Predictorso DEC WRL
Technical Report, 1993. Required

A T.Yehand Y. Patt, TwalLevel Adaptive Training Branch
Prediction, 0 Il ntl . Symposium on N
November 1991.

¢ MICRO Test of Time Award Winner (after 24 years)
¢ Required

Recommended Readings

Smith and Sohi, Th& Microarchitecture of Superscalar
Processorso Proceedings of the IEEE, 1995

¢ More advanced pipelining

¢ Interrupt and exception handling

¢ Out-of-order and superscalar execution concepts
¢ Recommended

Ke s s [TheeAlpha #1264 Microprocessoro IEEE Micro
19909.

c Recommended

Control Dependence Handling

ControlDependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
¢ All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non -control-flow instruction:
¢ Next Fetch PC is the address of the nextsequential instruction
¢ Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control -flow instruction:
¢ How do we determine the next Fetch PC?

In fact, how do we even know whether or not the fetched
Instruction is a control -flow instruction?

Branch Types

Type

Conditional

Unconditional

Call

Return

Indirect

Direction at
fetch time

Unknown

Always taken
Always taken
Always taken

Always taken

Number of
possible next
fetch addresses?

Many

Many

When is next
fetch address
resolved?

Execution (register
dependent)

Decode (PC +
offset)

Decode (PC +
offset)

Execution (register
dependent)

Execution (register
dependent)

Different branch types can be handled differently

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control -flow
Instruction:

Stall the pipeline until we know the next fetch address ‘

Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses

of both possible paths) (multipath execution)
10

Stall Fetch Until Next PCKsiown: Good Idea?

Inst, I ID|[ALU|MEM]|| WB

Inst [_IF]

MEM|[WB

Inst ID|[ALU
Inst, IRl IF
Inst

This Is the case with non-control-flow and unconditional br instructions!

The Branch Problem

Control flow instructions (branches) are frequent
¢ 15-25% of all instructions

Problem: Next fetch address after a control-flow instruction
IS not determined after N cycles in a pipelined processor

¢ N cycles: (minimum) branch resolution latency

If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)
¢ A branch misprediction leads to N x W wasted instruction slots

12

Importance of The Branch Problem

AssumeN = 20 (20 pipe stages), W =5 (5 wide fetch)
Assume: 1 out of 5 instructions is a branch
Assume: Each 5 instruction-block ends with a branch

How long does it take to fetch 500 instructions?

¢ 100% accuracy
100 cycles (all instructions fetched on the correct path)
No wasted work

¢ 99% accuracy
100 (correct path) + 20 (wrong path) = 120 cycles
20% extra instructions fetched

¢ 98% accuracy
100 (correct path) + 20 * 2 (wrong path) = 140 cycles
40% extra instructions fetched

¢ 95% accuracy

100 (correct path) + 20 * 5 (wrong path) = 200 cycles
100% extra instructions fetched

13

Branch Prediction

Branch Prediction: Guess the Next Instruction to F

A\ 4

PC | 0xPQ08

RF

A 4

WB

v
e
Y

I-$ DEC

0x0001

LD R1, MEM[ROQ]

0x0002

A 4

D-$—

Stall fetch

0x0003

BRzero 0x0001

0x0004

ADD R3, R2, #1

12 cycles

0x0005

MUL R1, R2, R3

A 4

0x0006 .
Branch prediction

X971 b RO, MEM[R2]

8 cycles

A 4

Misprediction Penalty

A\ 4

PC F\us\“\-\'

A 4

RF

v

I-$

0x0001 0x0007 0x0006 0x0005
0x0002
0x0003
BRzero 0x0001
0x0004
0x0005
MUL R1, R2, R3
0x0006

0x0007

LD RO, MEM[R2]

Simplest: Always Guess NextPC = PC -

Always predict the next sequential instruction is the next
Instruction to be executed

This is a form of next fetch address prediction (and branch
prediction)

How can you make this more effective?

ldea: Maximize the chances that the next sequential
Instruction is the next instruction to be executed

¢ Software:Lay out the control fl ow
next 1T nstruct rtakenpathofabmmch t he n
Profile guided code positioning A Pettis & Hansen, PLDI 1990.
¢ Hardware: ???(how can you do this 1In

Cache traces of executed instructionsA Trace cache
17

Guessing NextPC =PC +4

A How else can you make this more effective?

A ldea: Get rid of control flow instructions (or minimize their
occurrence)

A How?
1. Get rid of unnecessary control flow instructions A
combine predicates (predicate combining)

2. Convert control dependences into data dependences A
predicated execution

18

Branch Prediction: Always PC+4

nst,
nst
nst
nst,
nst

tO tl t2 1:3
IE. |[ID_|[ALU|[MEM
HErHB—JALT |

Inst, Is a branch

When a branch resolves

- branch target (Ing) is fetched

- all instructions fetched since
Inst, (so called wrong-path
Instructions) must be flushed

Pipeline Flush on a Misprediction

nst,
nst
nst
nst,
nst

——

tO tl t2 1:3 t4 t5
IE. [|ID ALU || MEM(|WB
IF.. |[ID_J=killee-
... PKilled-
IE.... ||ID ALU [[WB
|- 1D ALU
- D

Inst, Is a branch

Performance Analysis

correct guess Y no penalty ~86% of the time
incorrect guess Y 2 bubbles

Assume
¢ no data dependency related stalls
¢ 20% control flow instructions
¢ 70% of control flow instructions are taken
¢ CPI=[1+ *2]=
=[1+ *21=1.28

7N

probability of penalty for
a wrong guess a wrong guess

T A

Can we reduce either of the two penalty terms?

21

Reducing Branch Misprediction Penalty

Resolve branch condition and target address early

lel=15]
I g
=151z
z
I =
15

|
| =]2
w

\ ID/EX
B
—\ W i o
N
0 X
EX
+
4
N\
N
—>| U
_) X \
Registers - S
—| Instruction t > ALU Data N
PC i L O O O A Y) O D B e 2 N e D M Gy M
mmmmm) oy v
_/ M r X

p—>| U

|
J
v

Is this a good idea?

T
CHH ()

u
L L] X
Forwardin
ni

al

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] CPI — [1 _éo 2*0 7) * 1] — 1 14 22

Branch Prediction (A Bit More Enhance

A ldea: Predict the next fetch address (to be used in the next
cycle)

A Regquires three things to be predicted at fetch stage:
‘ ¢ Whether the fetched instruction is a branch
¢ (Conditional) branch direction
‘ ¢ Branch target address (if taken) ‘

A Observation: Target address remains the same for a
conditional direct branch across dynamic instances
¢ ldea: Store the target address from previous instance and access
it with the PC

¢ CalledBranch Target Buffer (BTB) or Branch Target Address
Cache

23

Fetch Stage with BTB and Direction Predict

Direction predictor (taken?)

taken? TN
R ', l
PC + inst size ——— Next Fetch
, Address
o
. Counter i’ ' :
Address of the
current branch
Y
target address

Cache of Target Addresses (BTB: Branch Target Buffer)

4

More Sophisticated Branch Direction Predic

Which direction earlier Direction predictor (taken?)

branches went taken?
A SN
Global branch l
history PC + inst size ——» Next Fetch
D roararm X0 Address
. Counter > >

Address of the
current branch

\
\
\

%%

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

29

Three Things to Be Predicted
Requires three things to be predicted at fetch stage:
1. Whether the fetched instruction is a branch \

2. (Conditional) branch direction
3. Branch target address (if taken)

Third (3.) can be accomplished using a BTB

¢ Remembertarget address computed last time branch was
executed

First (1.) can be accomplished using a BTB

¢ If BTB provides a target address for the program counter, then it
must be a branch

¢cOr, we can store Abranch met ada
cache/memory A partially decoded instruction stored in | -cache

Second (2.): How do we predict the direction?

26

Simple Branch Direction Prediction Scheme

A Compile time (static)
¢ Always not taken
¢ Always taken
¢ BTFN (Backward taken, forward not taken)
¢ Profile based (likely direction)

A Run time (dynamic)
¢ Last time prediction (single-bit)

27

More Sophisticated Direction Prediction

Compile time (static)

¢ Always not taken

Always taken

BTFN (Backward taken, forward not taken)
Profile based (likely direction)

Program analysis based (likely direction)

O O 0 0

Run time (dynamic)

¢ Last time prediction (single-bit)

Two-Dbit counter based prediction

Two-level prediction (global vs. local)

Hybrid

Advanced algorithms (e.g., using perceptrons)

O 0O 0O 0

28

Static Branch Prediction (1)

Always not-taken
¢ Simple to implement: no need for BTB, no direction prediction
¢ Low accuracy: ~30-40% (for conditional branches)

¢ Remember: Compiler can layout code such that the likely path
Is the not-taken path A more effective prediction

Always taken
¢ No direction prediction

¢ Better accuracy: ~60-70% (for conditional branches)
Backward branches (i.e. loop branches) are usually taken
Backward branch: target address lower than branch PC

Backward taken, forward not taken (BTFN)

¢ Predict backward (loop) branches as taken, others not-taken
29

Static Branch Prediction (I

Profile-based

¢ Idea: Compiler determines likely direction for each branch
using a profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) A accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNDN, 50% accuracy
TNTNTNTNTNTNTNTNTNTNM, 50% accuracy

-- Accuracy depends on the representativeness of profile input
set

30

Static Branch Prediction (I1)

Program-based (or, program analysis based)

¢ ldea: Use heuristics based on program analysis to determine statically
predicted direction

¢ Example opcode heuristic: Predict BLEZ as NT (negative integers used
as error values in many programs)

¢ Example loop heuristic: Predict a branch guarding a loop execution as
taken (i.e., execute the loop)

¢ Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support (ditto for other static methods)

Ball and Larus, Branch prediction for free, PLDI 1993.

¢ 20% misprediction rate
31

Static Branch Prediction (1V)

Programmer-based
¢ ldea: Programmer provides the statically-predicted direction

¢ Via pragmasin the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support
-- Burdens the programmer?

32

Pragmas

ldea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

iIf (likely(x)) { ... }
I f (unli kely(error)) { e }

Many other hints and optimizations can be enabled with
pragmas

¢ E.g., whether a loop can be parallelized

¢ #pragma omp parallel

¢ Description

The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

33

Static Branch Prediction

All previous techniques can be combined
¢ Profile based

¢ Program based

¢ Programmer based

How would you do that?

What is the common disadvantage of all three techniques?

¢ Cannot adapt to dynamic changes in branch behavior
This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic comp
What is a Dynamic Compiler?
¢ A compiler that generates code at runtime: Remember Transmeta?

¢ Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)
34

More Sophisticated Direction Prediction

Compile time (static)

¢ Always not taken

Always taken

BTFN (Backward taken, forward not taken)
Profile based (likely direction)

Program analysis based (likely direction)

O O 0 0

Run time (dynamic)

¢ Last time prediction (single-bit)

Two-Dbit counter based prediction

Two-level prediction (global vs. local)

Hybrid

Advanced algorithms (e.g., using perceptrons)

O 0O 0O 0

35

Dynamic Branch Prediction

ldea: Predict branches based on dynamic information
(collected at run-time)

Advantages
+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

Disadvantages
-- More complex (requires additional hardware)

36

Last Time Predictor

Last time predictor

¢ Single bit per branch (stored in BTB)

¢ Indicates which direction branch went last time it executed
TTTTTTTTTTNNNNNNNNNM, 90% accuracy

Always mispredicts the last iteration and the first iteration
of a loop branch
¢ Accuracy for a loop with N iterations = (N -2)/N

+ Loop branches for loops with large N (number of iterations)
-- Loop branches for loops will small N (number of iterations)
TNTNTNTNTNTNTNTNTNTM, 0% accuracy

37

Implementing the La3time Predictor

tag BTB index
|\ N J
' Y~
N-bit | BHT:
ol One _
tag : BTB: one target
> Bit
table address per entry
per
entry
)\ taken? — PC+4

nextPC
The Xbit BHT (Branch History Table) entry is updated with

the correct outcome after each execution of a branch

38

State Machine for LaBime Prediction

actually
taken
actually predict predict actually
not taken not taken taken
taken
actually

not taken

39

Improving the Last Time Predictor

Problem: A last-time predictor changes its prediction from
TA NT or NTA T too quickly

¢ even though the branch may be mostly taken or mostly not
taken

Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

¢ Use two bits to track the history of predictions for a branch
Instead of a single bit

¢ Can have 2 states for T or NT instead of 1 state for each

S mi t AhStudyrof Branch Prediction Strategieso ISCA
1981.

40

Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter
One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

Accuracy for a loop with N iterations = (N -1)/N
TNTNTNTNTNTNTNTNTNTM, 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

41

State Machine forldt Saturating Counte

A Counter using saturating arithmetic
¢ Arithmetic with maximum and minimum values

actually actua
taken Itaken
actually
taken

actually actually
taken

actually actually

Al
taken rlakern 42

Hysteresis Using aoit Counter

actually actually weakly
taken (ltaken taken
strongly - A pred pred \
taken taken taken
actually
actually taken actually
taken ltaken
actuall strongly
Itaken ltaken
weakly actually
Itaken actually ltaken

taken

Change prediction after 2 consecutive mistakes 43

Is This Good Enough?

~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

Is this good enough?

How big is the branch problem?

44

Let 0s Do t he Exerc

AssumeN = 20 (20 pipe stages), W =5 (5 wide fetch)
Assume: 1 out of 5 instructions is a branch
Assume: Each 5 instruction-block ends with a branch

How long does it take to fetch 500 instructions?

¢ 100% accuracy
100 cycles (all instructions fetched on the correct path)
No wasted work

¢ 95% accuracy
100 (correct path) + 20 *5 (wrong path) = 200 cycles
100% extra instructions fetched

¢ 90% accuracy
100 (correct path) + 20 * 10 (wrong path) = 300 cycles
200% extra instructions fetched

¢ 83% accuracy
100 (correct path) + 20 * 15 (wrong path) = 400 cycles
300% extra instructions fetched

45

Can We Do Better: Twloevel Prediction

Last-t i me and 2BC pr ediicneoor s e x
predictability

Realil zati on 1: A branch©os D U
ot her branchesd® outcomes

¢ Global branch correlation

Reali zation 2: A branchos ou
past outcomes of the same branch (other than the outcome
of the Dbrtanmmeho fAiltaswias execut e

¢ Local branch correlation

Yeh and Patt, Two-Level Adaptive Training Branch Prediction MICRO 1991. 46

Global Branch Correlation (1)

Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

if (condl)
ié'(condl AND cond2)
If first branch not taken, second also not taken
branch Y: if (condl)a = 2;

branch X: if (a ==0)

If first branch taken, second definitely not taken

47

Global Branch Correlation (1)

branch Y: if (cond]1)
branch Z: if (cond2)

branch X: if (condl AND cond2)

A If Y and Z both taken, then X also taken
A If Y or Z not taken, then X also not taken

48

Global Branch Correlation (l1)

AEgntott, SPEC092: Generates

If (aa==2) ., Bl
aa=0;
If (bb==2) - B2
bb=0;
If (aa!=bb) { ;. B3
e .
}

If B1is not taken (i.e., aa==0@ B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

49

Capturing Global Branch Correlation

| de a: Assocl ate branch outco
of all branches

Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

Implementation:

c Keep track of the nglobal T/ N°
register A Global History Register (GHR)

¢ Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent pastA Pattern
History Table (table of 2-bit counters)

Global history/branch predictor
Uses two levels of history (GHR + history at that GHR)

Yeh and Patt, Two-Level Adaptive Training Branch Prediction MICRO 1991. 50

Two Level Global Branch Prediction

A First level: Global branch history register (N bits)
¢ The direction of last N branches
A Second level: Table of saturating counters for each history entry
¢ The direction the branch took the last time the same history was

seen
Pattern History Table (PHT)
OO0 é. 00
1 1 .l Op0 ¢. 01 o o
?II_cl)Rbal previous 00 é. |10
9 brancho
history L
register) direction
index 9 o
11 é. 11

Yeh and Patt, Two-Level Adaptive Training Branch Prediction MICRO 1991. 51

How Does the Global Predictor Work?

for (i=0; i<100; i++)
for (j=0; j<3; j++)
After the initial starmup tme, the condiional branches have the following behavior,
assuming K is shifted to the Jeft:

test | value | (GR el

j<3 =1 | 1101 taken

<3 | j=2 | 1011 faken

<3 | j=3 [0l11 | mnotiaken This branch tests i
1<100 1110 | nsually taken | [| ast 4 branches test j

History: TTTN

Predict taken for i

Next history: TTNT
(shift in last outcome)

A McFarling, Combining Branch Predictors DEC WRL TR 1993.

52

Intel Pentium Pro Branch Predictor

Two level global branch predictor
4-bit global history register
Multiple pattern history tables (of 2 bit counters)

¢ Which pattern history table to use is determined by lower
order bits of the branch address

53

Global Branch Correlation Analysis

branch Y: if (cond]1)
branch Z: if (cond2)
branch X: if (condl AND cond2)

A If Y and Z both taken, then X also taken
A If Y or Z not taken, then X also not taken

)

Only 3 past branches directions
really matter

Evers et al., An Analysis of
Correlation and Predictabillity:
What Makes Two-Level Branch
Predictors Work, ISCA 1998.

)

Prediction Accuracy

100

95 —

90—+

85

80

[IF 1-Branch Selective History
[l IF 2-Branch Selective History
B IF 3-Branch Selective History
[]IF Gshare

| Gshare

com gcec go ip m88 per vor xli
Benchmarks

54

Improving Global Predictor Accuracy

Idea: Add more context information to the global predictor to take into
account which branch is being predicted

¢ Gshare predictor. GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency Pattern History Table

Branch Address /
XOR

Branch History Register

vy

McFarling, Combining Branch Predictors DEC WRL Tech Report, 1993.
55

Review: Ond.evel Branch Predictor

Direction predictor (2-bit counters)

taken? —
—m =J l
PC + inst size ——— Next Fetch
; Address
Program .
. Counter > >
Address of the
current instruction
Y
target address

Cache of Target Addresses (BTB: Branch Target Buffer)

o0

Two-Level Global History Branch Predictor

Which direction earlier
branches went

taken?
—— 7

Direction predictor (2-bit counters)

vV Vv

Global branch
history

Q

Address of the

current instruction

—
|

PC + inst size ———»

A 4

&
. Counter >

\
\
\

target address

Next Fetch
Address

Cache of Target Addresses (BTB: Branch Target Buffer)

o2/

Two-Level Gshare Branch Predictor

Which direction earlier Pirection predictor (2-bit counters)

branches went

taken?

— %,

vV Vv

.
Global branch l

history PC + inst size ——» Next Fetch
X0 Address
b

" Program .
2
> e

A 4

>

Address of the
current instruction

\
\
\

%%

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

20

An Issue: Interference Iin the PHTSs

A Sharing the PHTs between histories/branches leads to interference
¢ Different branches map to the same PHT entry and modify it
¢ Interference can be positive, negative, or neutral

Instruction Stream

[]
[]
[] Pattern History Table (PHT)
Branch A's Index o come .
L4] 00000011 2-bit counter L
- e 2-bit counter .
Branch A o 2-bit counter
Prediction of Branch B
° may be altered due to
the outcome of Branch A
[]
Branch B’s Index
| oooooo11
Branch B -

Figure 2: Interference in a two-level predictor.

A Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost
How else can you eliminate or reduce interference?

)

>

59

Reducing Interference in PHTSs (1)

A Increase size of PHT

A Branch filtering

¢ Predict highly-biased branches separately so that they do not
consume PHT entries

¢ E.qg., static prediction or BTB based prediction

A Hashing/index-randomization
¢ Gshare
c Gskew

A Agree prediction

60

Biased Branches and Branch Filtering

Observation: Many branches are biased in one direction
(e.g., 99% taken)

Problem: These branches po//ute the branch prediction
structures A make the prediction of other branches difficult
by causing Ainterferenceo 1In
history registers

Solution: Detect such biased branches, and predict them
with a simpler predictor (e.

Chang eBtanch dlassification: a new mechanism for improving
branch predictor performance,0 MICRO 1994.

61

Reducing Interference: Gshare

Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

¢ Gshare predictor. GHR hashed with the Branch PC
+ Better utilization of PHT + More context information
- Increases access latency

Pattern History Table

Branch Address /
XOR

Branch History Register

vy

¢ McFarling, Combining Branch Predictors DEC WRL Tech Report, 1993.

62

Reducing Interference: Agree Predictor

A ldea 2: Agree prediction

¢ Each branch has a bias bit associated with it in BTB
A Ideally, most likely outcome for the branch

¢ High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)
-- Requires determining bias bits (compiler vs. hardware)

Pattern History Table (PHT)

I

Branch History Register (BHR)

e e e \
Nnacxin;

[]
®
unction o)
Biasing Bit Storage (part of BTB)
Branch Address Tag Bit
Tag Bit
Tag Bit
Tag Bit |—

Predict taken
taken

Sprangle et al., The Agree Predictor:
A Mechanism for Reducing Negative
Branch History Interference, ISCA
1997.

63

Why Does Agree Prediction Make Sens

Assume two branches have taken rates of 85% and 15%.
Assume they conflict in the PHT

Let 0s c o mphakilig théyhase opposite outcomes

¢ Baseline predictor:
P((M1T,b2NT)+ P (blNT,b2T)
= (85%*85%) + (15%*15%) = 74.5%
¢ Agree predictor:
Assume bias bits are setto T (b1l) and NT (b2)
P (bl agree, b2 disagree) + P (b1 disagree, b2 agree)
= (85%*15%) + (15%*85%) = 25.5%

Works because most branches are biased (not 50% taken)

64

Reducing Interference: Gskew

A ldea 3. Gskew predictor
¢ Multiple PHTSs
¢ Each indexed with a different type of hash function
¢ Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

PHT, PHT, PHT,

| Mo Seznec, An optimized
Global BHR ° EEN 2bcgskew branch
| | T predictor, IRISA Tech

Report 1993.

|
A 4
—h
N

] Mi ¢ h aTuadling canflict
ay and capacity aliasing in
D, conditional branch
predictors,01SCA 1997

L Final Predictiol

65

More Technigues to Reduce PHT Interfere

The bi-mode predictor

¢ Separate PHTs for mostlytaken and mostly-not-taken branches
¢ Reduces negative aliasing between them

¢ Lee e frheaidmode bréinch predictor,0 MICRO 1997.

The YAGS predictor

c Use a small tagged ficacheo to pr.
Interference

¢ Aims to not mispredict them again
¢ Eden andMudge, The YAGS branch prediction schemeo MICRO 1998.

Alpha EV8 (21464) branch predictor

¢ Seznecet design tradeoffs for the Alpha EV8 conditional
branch predictor,0 ISCA 2002.

66

Can We Do Better: Twloevel Prediction

Lastt i me and 2BC pr edlasttimeor s e x
predictability for a given branch

Realil zati on 1: A branchos ou
ot her branchesd® outcomes

¢ Global branch correlation

Reali zation 2: A branchos ojfu
past outcomes of the same branch (in addition to the
out come of t htei Mmaa nicth wid sa sd X ¢

¢ Local branch correlation

Yeh and Patt, Two-Level Adaptive Training Branch Prediction MICRO 1991. 67

Local Branch Correlation

for (i=1: i<=4: i++) | |

number oEnes the]EE!IEIE]l'[Eﬂ_ Clearly, ﬁwehﬁwmeﬂrmﬂnnﬂmhrmhhad
gmeunthepremmsthree-m then we could alwayvs be able to predict the next
branch direction.

A McFarling, Combining Branch Predictors DEC WRL TR 1993.

68

More Motivation for Local History

Loop cl osing branch@ PHI?

To predict a loop 0000
~ 11101110 711011104110
branch nperfgec yQg, we 0001
want to identify the 0010
last iteration of the 0011
|oop 0100
0101
0110
By having a separate > 0111 | 00
PHT entry for each 1000
local history, we can 1001
distinguish different 1010
i : > 1011 |11
iterations of a loop
1100
> 1101 |11
Wor ks for fAshmorto > 1110 | 11
loops 1111

69

Capturing Local Branch Correlation

ldea: Have a per-branch history register

c Associ ate the predicted outcor
of the same branch

Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

Called the local history/branch predictor

Uses two levels of history (Per-branch history register +
history at that history register value)

70

Two Level Local Branch Prediction

A First level: A set of local history registers (N bits each)
¢ Select the history register based on the PC of the branch
A Second level: Table of saturating counters for each history entry
¢ The direction the branch took the last time the same history was

seen
Pattern History Table (PHT)
00
1 1 e 01
10
Logal history 11 6. 11
registers

Yeh and Patt, Two-Level Adaptive Training Branch Prediction MICRO 1991.

Two-Level Local History Branch Predictor

Which directions earlier instances of *this branch* went
/ Direction predictor (2-bit counters)

/ taken?

/ — %,

T
vy)

vV Vv

A 4

\; PC + inst size ———
b
. Counter >

hit?
Address of the
current instruction

\
\
\

%%

target address

Next Fetch
Address

Cache of Target Addresses (BTB: Branch Target Buffer)

(Z

Two-Level Predictor Taxonomy

BHR can be global (G), per set of branches (S), or per branch (P)
PHT counters can be adaptive (A) or static (S)
PHT can be global (g), per set of branches (s), or per branch (p)

GAg PAg PAp
Per-address
Global Pa n
Global Per-address Pattern History
Pattern B‘_' nch History Tables
History History Table (PPHT)
Table Table GPHT) Per-address
(GPHT) (PBHT) Branch
Global History
Branch Table ’
:'{Iist'o:y (PBHT /
egister g m
(GBHR) Index Tndex
Index
1
[l —
f ||
' -
1
f | |
Ll —
1
1
1
| —T

Yeh and Patt, Alternative Implementations of Two -Level

Adaptive Branch Prediction, ISCA 1992.
73

Can We Do Even Better?

Predictablility of branches varies

Some branches are more predictable using local history
Some using global

For others, a simple two-bit counter is enough

Yet for others, a bit is enough

Observation: There is heterogeneity in predictability
behavior of branches

¢ No one-size fits all branch prediction algorithm for all branches

ldea: Exploit that heterogeneity by designing

heterogeneous branch predictors
74

Hybrid Branch Predictors

ldea: Use more than one type of predictor (i.e., multiple
algorithms) and select the best prediction

¢ E.qg., hybrid of 2-bit counters and global predictor

Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

Disadvantages:

-- Need meta-predictor or selector
-- Longer access latency

McFarling, Combining Branch Predictors DEC WRL Tech Report, 1993.
75

Alpha 21264 Tournament Predictor

Program Clobal History
Counter |:
. ;:‘. HASS "::;i : Global 12
Predict]]
4,096 [*
X
2 bits

[Global

Prediction Prediction

Final Prediction

A Minimum branch penalty: 7 cycles
A Typical branch penalty: 11+ cycles
A 48K bits of target addresses stored in |-cache
A Predictor tables are reset on a context switch

A Ke s s [TheAlpha 81264 Microprocessoro IEEE Micro 1999.

76

Are We Done w/ Branch Prediction?

Hybrid branch predictors work well
¢ E.g., 90-97% prediction accuracy on average

Some ndi fficulto workl oads s

¢ E.g., gcc
¢ Max IPC with tournament prediction: 9
¢ Max IPC with perfect prediction: 35

77

Are We Done w/ Branch Prediction?

mm F=al BP, Real Caches

mm Real BP, Perfect Caches

m Perfect BP. Real Caches
10 - wn Perfect BP, Perfect Caches

Instructions Per Cycle
=]
|

cmp gee 20 1jpeg 1 perl
Benchmark

Ch ap p el ISimaltaneas$ Subordiiate Microthreading (SSMT),0ISCA 1999.

/8

Some Other Branch Predictor Types

Loop branch detector and predictor
¢ Loop iteration count detector/predictor

¢ Works well for loops with small number of iterations, where
iteration count is predictable

¢ Used In Intel Pentium M

Perceptron branch predictor
¢ Learns the direction correlations between individual branches
¢ Assigns weights to correlations

¢c J1 menez ®ynamiclBramch Pradiction with
Perceptrons o HPCA 2001.

Hybrid history length based predictor
¢ Uses different tables with different history lengths

¢ S e z n Amalysis of the O-Geometric History Length branch

predictor,0 ISCA 2005.
79

Intel Pentium M Predictors

The advanced branch prediction in the Pentium M
processor 1s based on the Intel Pentium” 4 processor’s
On top of that. two additional

[6] branch predictor.

predictors to capture special program flows. were added:
a Loop Detector and an Indirect Branch Predictor.

J
Count | Limit | Prediction
+
\LI b \l/ b
\V4 =

s

/

Figure 2: The Loop Detector logic

Gochman

et al.,

Instruction
Pointer

2

Global
History

)

Target : type : hit

target : hit

hit

»,

~

target

Figure 3: The Indirect Branch Predictor logic

Arhe Intel Pentium M Processor: Microarchitecture and Performance,0
Intel Technology Journal, May 2003.

80

Perceptron Branch Predictor (1)

ldea: Use a perceptron to learn the correlations between branch history

register bits and branch outcome

A perceptron learns a target Boolean function of N inputs

T
Yy = wo + E Ti Wi,
i=1

Jimenez and Lin, Dynamic Branch Prediction with Perceptrong HPCA 2001.
Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms 1962

81

Each branch associated with a perceptron

A perceptron contains a set of weights wi

A Each weight corresponds to a bit in
the GHR

A How much the bit is correlated with the
direction of the branch

A Positive correlation: large + weight

A Negative correlation: large - weight

Prediction:

A Express GHR bitsas 1 (T) and -1 (NT)
A Take dot product of GHR and weights
A If output > 0, predict taken

Perceptron Branch Predictor (1)

Branch Address

Hlstmy Register

Branch Outcome

Pr edlctlon

Compute

= Training

| Selected Pelceptlon |

Table

of

‘r
Se l%
Entry Perceptrons

Prediction function;

Dot product of GHR
and perceptron weights

Output _ _
compared Bias weight |
to O (bias of branch independent of

the history)

Training function:

if sign(yout) # €O Yout < 6 then
fori:=0 t:::n do
w; — w; + ta;
end for
end 1t

82

Perceptron Branch Predictor (l1)

Advantages
+ More sophisticated learning mechanism A better accuracy

Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

83

Prediction Using Multiple History Lengtl

pe

h[0:L(1)]

Pc

h[0:L(2)]

pPc

h[0:L(3)]

pPc

h[0:L(4)]

A Observation: Different = = = pE—
br an Ch es re qUir e pe (hash) (hash) [nasm [nasm [has%
. . TO T1 T2 T3 T4
different history lengths e e e e
for better prediction g - . o o
accuracy -% predi tag iu predi tag iu predi tag iu predi tag iu
ED— ED— ED— ED—

A ldea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
Intelligently allocate
PHT entries to different
branches

:

prediction |

Figure 1: A S-component TAGE predictor synopsis: a base predictor is backed with several
tagged predictor components indexed with increasing history lengths

Seznecand Mi c/icase tr, (parfially) tagged Geometric History Length
Branch Prediction, 6 JI LP 2006.

84

TAG E: Tagged & predictidny the longestistory matchingntry

i

=

pc h[O:L2] pc h[O:L3]

R T

//
1

ctri tag iu

pG h[O:L1]
t

Ctl‘;

9
=

R

ctri tag

U

1

"1

1 %\/

-

A1

agless base
redictor

Andre Seznec, TAGE-SC-L branch predictors again,0CBP 2016.

1

&

i |
:;1 T,
|

prediction

1

-

TAGE: Multiple Tables

d

G

1

Z.
N

AN
\)\\ :q@r
= L

//l

Altpred: Alternative
prediction

&\/

/
C<-_’\

-~ Pred

;;1

Andre Seznec, TAGE-SC-L branch predictors again,0CBP 2016.

TAGE: Which Table to Use?

A General case:
¢ Longest history-matching component provides the prediction

A Special case:
¢ Many mispredictions on newly allocated entries: weak Citr

On many applications, Altpred more accurate than Pred
¢ Property dynamically monitored through 4 -bit counters

Andre Seznec, TAGE-SC-L branch predictors again,0CBP 2016.

A Tagged Table Entry

A Ctr: 3-bit prediction counter
A U: 1or 2-bit counters

¢ Was the entry recently useful?
A Tag: partial tag

Andre Seznec, TAGE-SC-L branch predictors again,0CBP 2016.

State of the Art In Branch Prediction

A See the Branch Prediction Championship
¢ https://www.jilp.org/cbp2016/program.html

Global, local,
skeleton histories

Prediction +
Confidence

Andre Seznec,
ATAGE-SC-L branch predictors,0
CBP 2014.

Andre Seznec,
ATAGE-SC-L branch predictors
.............. again,0CBP 2016.

Figure 1. The TAGE-SC-L predictor: a TAGE
predictor backed with a Statistical Corrector
predictor and a loop predictor 89

https://www.jilp.org/cbp2016/program.html

Another Direction: Helper Threading

ldea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

From Retired
Instr. Stream
VOuUngest B*I{
_-...
e
_h..
Post— >
Retrement
Buffer -
_-..-
.
.
_h.
oldest -

—————

Promotion
Logie

R

Microthread
Construction
Buffer

51_PCache
Optimized routine

sent to MicroRAM

Scanner

NS

o

Figure 3. The Microthread Builder

Chappell et al., Difficult-Path Branch Prediction Using Subordinate

Microthreads, ISCA 2002.

Chappel |ISimeltane@s$ Subordinate Microthreadingo ISCA 1999.

90

Branch Confidence Estimation

ldea: Estimate if the prediction is likely to be correct
ci .e., estimate how Aconfident ¢

Why?

¢ Could be very useful in deciding how to speculate:
What predictor/PHT to choose/use
Whether to keep fetching on this path

Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

é

J ac obs e nAssmghinga&dbnfidencdito Conditional Branch
Predictions,0 MICRO 1996.

91

How to Estimate Confidence

A An example estimator:

¢ Keep a record of correct/incorrect outcomes for the past N
l nstances of the fbrancho

¢ Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

Table of CIRs

| Branch address I
Global BHR
YYVYY Y

) =) nfidence
Reduction function Co A
prediction

J a c 0b s e nAssgnhingabnfidencdito Conditional Branch Predictions,0MICRO 1996. 92

What to Do With Confidence Estimatior

A An example application: Pipeline Gating

Current Value of

If _ Counter (M) Low Confidence [~+—
- Branch Counter |-
M=N
If Low Conf Branch, If Low Confidence Branch
Gate Fetch Increment Counter Resolved, Decrement Counter

Y

| |
Instructions ' ' .
- Fetch Decpde Issue Writeback| Commit
| |
e i B aa— e e e pay e
1 2 3 4 5 i 7
2 Cycle Backward Edge Latency for Branch Misprediction
ICache [

Ma nne ePipelielGating: $peculation Control for Energy Reduction,0ISCA 1998.

93

What to Do With Confidence Estimatior

~

A Another application: Statistical Correction of Prediction

Global, local,
skeleton histories

Prediction +
Confidence

Andre Seznec,
ATAGE-SC-L branch predictors,0
CBP 2014.

Andre Seznec,
ATAGE-SC-L branch predictors
.............. again,0CBP 2016.

Figure 1. The TAGE-SC-L predictor: a TAGE
predictor backed with a Statistical Corrector
predictor and a loop predictor 94

Issues In Fast & Wide Fetch
Engines

|-Cache Line and Way Prediction

Problem: Complex branch prediction can take too long (many
cycles)

Goal

¢ Quickly generate (a reasonably accurate) next fetch address

¢ Enable the fetch engine to run at high frequencies

¢ Override the quick prediction with more sophisticated prediction

ldea: Predicted the next cache line and way at the time you
fetch the current cache line

Example Mechanism (e.g., Alpha 21264)

¢ Each cache line tells which line/way to fetch next (prediction)
¢ On afill, line/way predictor points to next sequential line

¢ On branch resolution, line/way predictor is updated

C

If line/way prediction is incorrect, one cycle is wasted
96

Alpha 21264 Line & Way Prediction

Program
counter (PC) Learn dynamic |umps
R eneration
: Fns.tl'um'nn No branch p@nally
L =\ Mux/ /
pmdiﬂmn PC
Wﬂﬂlhr check

Y Y ¢ K’

] |
Hit/miss/way miss

L] Tag Tag

S 0 1 Cached Line Way |
| instructions prediction | prediction |

ik [1

] Compare | Compare

\

Figure 3. Alpha 21264 instruction fetch The |
around path on the right side) p :"'f"':"_:ﬂ';ﬁin&mstmutmn fetch path that
avoids common fetch stalls whan ﬁﬁe ans are correct.

Ke s s ITlerAlpha A1264 Microprocessor,(‘)IEEE Micro, March-April 1999.

97

Alpha 21264 Line & Way Prediction

Ke s s ITleerAlpha 81264 Microprocessor,0lEEE Micro, March-April 1999.

' Fetch Rename lssue " Register read Execute Memory
g 2 3 | 4 5 6
intoger integer | g,ocion |
‘| Branch Integer | : issue E re?illster * Addr
| predictor register |~ queue [T e : Integer | -~
h rename | : (20 (80) [*™] execution | -
(Erea entries)
RS 7, SR Level-
et : Data
| . Integer cache | hﬂ-;
|| integer <% execution | | (64 Koytos,[* | cache |
.-‘ file . : Addr| two-way) anc system
: — |ntager interface
ik SE § (80) -~ | execution | :
| Line/set i '}
| prediction 5 y : =
Instruction Floating- me.'r;g' : Floating- Floating-point
cache point | poin : it [multiply execution
(64 Kbytes, rogistor - issue | rel?gt;la':er - Py
two-way) rename | | q;'!ﬁi";e file |aam Floating-point
Q — (72) : add exscution
98

Issues In Wide Fetch Engines

Wide Fetch: Fetch multiple instructions per cycle

Superscalar
VLIW
SI MT (GP Uisstruct®n nmuliidleghread model)

Wide fetch engines suffer from the branch problem:

¢ How do you feed the wide pipeline with useful instructions in a
single cycle?
c What 1 f there I s a taken br anc

c What 1 s there are Aamultiple (1t
packet o?

99

Fetching Multiple Instructions Per Cycle

Two problems

1. Alignment of instructions in | -cache

¢ What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break Branches present in the fetch block
¢ Fetching sequential instructions in a single cycle is easy
¢ What if there is a control flow instruction in the N instructions?

¢ Problem: The direction of the branch is not known but we
need to fetch more instructions

These can cause effective fetch width < peak fetch width

100

Wide Fetch Solutions: Alignment

Large cache blocks Hope N instructions are contained in
the block

Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

¢ Enabled by banking of the cache
¢ Allows sequential fetch across cache blocks in one cycle

¢ Intel Pentium and AMD K5

101

Split Line Fetch

S

Need alignment logic:

102

