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Mid-Semester Exam

Â November 30

Â In class

Â Questions similar to homework questions
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High-Level Summary of Last Week

Â SIMD Processing

Ç Array Processors

Ç Vector Processors

Ç SIMD Extensions

Â Graphics Processing Units

Ç GPU Architecture

Ç GPU Programming
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Agenda for Today & Tomorrow

Â Control Dependence Handling

Ç Problem

Ç Six solutions

Â Branch Prediction

Â Other Methods of Control Dependence Handling
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Required Readings

Â McFarling, ñCombining Branch Predictors,òDEC WRL 
Technical Report, 1993.      Required

Â T. Yeh and Y. Patt,  ñTwo-Level Adaptive Training Branch 
Prediction,ò  Intl. Symposium on Microarchitecture, 
November 1991.

Ç MICRO Test of Time Award Winner (after 24 years)

Ç Required
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Recommended Readings

Â Smith and Sohi, ñThe Microarchitecture of Superscalar 
Processors,òProceedings of the IEEE, 1995

Ç More advanced pipelining

Ç Interrupt and exception handling

Ç Out-of-order and superscalar execution concepts

Ç Recommended

Â Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro 
1999. 

Ç Recommended
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Control Dependence Handling
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Control Dependence

Â Question: What should the fetch PC be in the next cycle?

Â Answer: The address of the next instruction

Ç All instructions are control dependent on previous ones. Why?

Â If the fetched instruction is a non -control-flow instruction:

Ç Next Fetch PC is the address of the next-sequential instruction

Ç Easy to determine if we know the size of the fetched instruction

Â If the instruction that is fetched is a control -flow instruction:

Ç How do we determine the next Fetch PC?

Â In fact, how do we even know whether or not the fetched 
instruction is a control -flow instruction?
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Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



How to Handle Control Dependences

Â Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

Â Potential solutions if the instruction is a control -flow 
instruction:

Â Stall the pipeline until we know the next fetch address

Â Guess the next fetch address (branch prediction)

Â Employ delayed branching (branch delay slot)

Â Do something else (fine-grained multithreading)

Â Eliminate control-flow instructions ( predicated execution)

Â Fetch from both possible paths (if you know the addresses 
of both possible paths) ( multipath execution)
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Stall Fetch Until Next PC is Known: Good Idea?
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The Branch Problem

Â Control flow instructions (branches) are frequent

Ç 15-25% of all instructions

Â Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor

Ç N cycles: (minimum) branch resolution latency

Â If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide)

Ç A branch misprediction leads to N x W wasted instruction slots 
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Importance of The Branch Problem
Â Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

Â Assume: 1 out of 5 instructions is a branch 

Â Assume: Each 5 instruction-block ends with a branch

Â How long does it take to fetch 500 instructions? 

Ç 100% accuracy 
Â 100 cycles (all instructions fetched on the correct path)

Â No wasted work

Ç 99% accuracy
Â 100 (correct path) + 20 (wrong path) = 120 cycles

Â 20% extra instructions fetched

Ç 98% accuracy
Â 100 (correct path) + 20 * 2 (wrong path) = 140 cycles 

Â 40% extra instructions fetched 

Ç 95% accuracy
Â 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

Â 100% extra instructions fetched
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Branch Prediction
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Simplest: Always Guess NextPC = PC + 4 

Â Always predict the next sequential instruction is the next 
instruction to be executed

Â This is a form of next fetch address prediction (and branch 
prediction)

Â How can you make this more effective?

Â Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed

Ç Software: Lay out the control flow graph such that the ñlikely 
next instructionò is on the not-taken path of a branch

Â Profile guided code positioning Ą Pettis & Hansen, PLDI 1990.

Ç Hardware: ??? (how can you do this in hardwareé) 

Â Cache traces of executed instructions Ą Trace cache
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Guessing NextPC = PC + 4

Â How else can you make this more effective?

Â Idea: Get rid of control flow instructions (or minimize their 
occurrence)

Â How?

1. Get rid of unnecessary control flow instructions Ą

combine predicates (predicate combining)

2. Convert control dependences into data dependences Ą

predicated execution
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Branch Prediction: Always PC+4
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Pipeline Flush on a Misprediction
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Performance Analysis

Â correct guess Ý no penalty ~86% of the time

Â incorrect guess Ý 2 bubbles

Â Assume

Ç no data dependency related stalls

Ç 20% control flow instructions

Ç 70% of control flow instructions are taken

Ç CPI = [ 1 + (0.20* 0.7) * 2 ] = 

= [ 1 + 0.14 * 2 ] = 1.28 
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penalty for
a wrong guess

probability of 
a wrong guess

Can we reduce either of the two penalty terms?



Reducing Branch Misprediction Penalty

Â Resolve branch condition and target address early 

22

PC
Instruction 

memory

4

Registers

M 
u 
x

M 
u 
x

M 
u 
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data 
memory

M 
u 
x

Hazard 
detection 

unit

Forwarding 
unit

IF.Flush

IF/ID

Sign 
extend

Control

M 
u 
x

=

Shift 
left 2

M 
u 
x

CPI = [ 1 + (0.2*0.7) * 1 ] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?



Branch Prediction (A Bit More Enhanced)

Â Idea: Predict the next fetch address (to be used in the next 
cycle)

Â Requires three things to be predicted at fetch stage:

Ç Whether the fetched instruction is a branch

Ç (Conditional) branch direction

Ç Branch target address (if taken)

Â Observation: Target address remains the same for a 
conditional direct branch across dynamic instances

Ç Idea: Store the target address from previous instance and access 
it with the PC

Ç Called Branch Target Buffer (BTB) or Branch Target Address 
Cache

23



24

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the 

current branch



25

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

Global branch 
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the 

current branch



Three Things to Be Predicted

Â Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

Â Third (3.) can be accomplished using a BTB

Ç Remember target address computed last time branch was 
executed

Â First (1.) can be accomplished using a BTB

Ç If BTB provides a target address for the program counter, then it 
must be a branch

Ç Or, we can store ñbranch metadataò bits in instruction 
cache/memory Ą partially decoded instruction stored in I -cache

Â Second (2.): How do we predict the direction?
26



Simple Branch Direction Prediction Schemes

Â Compile time (static)

Ç Always not taken

Ç Always taken

Ç BTFN (Backward taken, forward not taken)

Ç Profile based (likely direction)

Â Run time (dynamic)

Ç Last time prediction (single-bit)
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More Sophisticated Direction Prediction

Â Compile time (static)

Ç Always not taken

Ç Always taken

Ç BTFN (Backward taken, forward not taken)

Ç Profile based (likely direction)

Ç Program analysis based  (likely direction)

Â Run time (dynamic)

Ç Last time prediction (single-bit)

Ç Two-bit counter based prediction

Ç Two-level prediction (global vs. local)

Ç Hybrid

Ç Advanced algorithms (e.g., using perceptrons)
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Static Branch Prediction (I)

Â Always not-taken

Ç Simple to implement: no need for BTB, no direction prediction

Ç Low accuracy: ~30-40% (for conditional branches)

Ç Remember: Compiler can layout code such that the likely path 
is the not-taken path Ą more effective prediction

Â Always taken

Ç No direction prediction

Ç Better accuracy: ~60-70% (for conditional branches)

Â Backward branches (i.e. loop branches) are usually taken

Â Backward branch: target address lower than branch PC

Â Backward taken, forward not taken (BTFN)

Ç Predict backward (loop) branches as taken, others not-taken
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Static Branch Prediction (II)

Â Profile-based

Ç Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide) Ą accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN Ą 50% accuracy 
TNTNTNTNTNTNTNTNTNTN Ą 50% accuracy

-- Accuracy depends on the representativeness of profile input 
set
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Static Branch Prediction (III)

Â Program-based (or, program analysis based)

Ç Idea: Use heuristics based on program analysis to determine statically-
predicted direction

Ç Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs)

Ç Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop)

Ç Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support (ditto for other static methods)

Â Ball and Larus, Branch prediction for free, PLDI 1993.

Ç 20% misprediction rate
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Static Branch Prediction (IV)

Â Programmer-based

Ç Idea: Programmer provides the statically-predicted direction

Ç Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than 
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer? 
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Pragmas

Â Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy

Â if (likely(x)) { ... }

Â if (unlikely(error)) { é }

Â Many other hints and optimizations can be enabled with 
pragmas

Ç E.g., whether a loop can be parallelized

Ç #pragma omp parallel

Ç Description

Â The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code.
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Static Branch Prediction

Â All previous techniques can be combined

Ç Profile based

Ç Program based

Ç Programmer based

Â How would you do that?

Â What is the common disadvantage of all three techniques?

Ç Cannot adapt to dynamic changes in branch behavior 

Â This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheadsé)

Â What is a Dynamic Compiler? 

Ç A compiler that generates code at runtime: Remember Transmeta?

Ç Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)
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More Sophisticated Direction Prediction

Â Compile time (static)

Ç Always not taken

Ç Always taken

Ç BTFN (Backward taken, forward not taken)

Ç Profile based (likely direction)

Ç Program analysis based  (likely direction)

Â Run time (dynamic)

Ç Last time prediction (single-bit)

Ç Two-bit counter based prediction

Ç Two-level prediction (global vs. local)

Ç Hybrid

Ç Advanced algorithms (e.g., using perceptrons)
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Dynamic Branch Prediction

Â Idea: Predict branches based on dynamic information 
(collected at run-time)

Â Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness 
problem goes away

Â Disadvantages

-- More complex (requires additional hardware)
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Last Time Predictor

Â Last time predictor

Ç Single bit per branch (stored in BTB)

Ç Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN Ą 90% accuracy

Â Always mispredicts the last iteration and the first iteration 
of a loop branch

Ç Accuracy for a loop with N iterations = (N -2)/N

+ Loop branches for loops with large N (number of iterations)

-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN Ą 0% accuracy
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Implementing the Last-Time Predictor
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State Machine for Last-Time Prediction
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Improving the Last Time Predictor

Â Problem: A last-time predictor changes its prediction from 
TĄNT or NTĄT too quickly 

Ç even though the branch may be mostly taken or mostly not 
taken

Â Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome

Ç Use two bits to track the history of predictions for a branch 
instead of a single bit 

Ç Can have 2 states for T or NT instead of 1 state for each

Â Smith, ñA Study of Branch Prediction Strategies,òISCA 
1981.
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Two-Bit Counter Based Prediction

Â Each branch associated with a two-bit counter

Â One more bit provides hysteresis

Â A strong prediction does not change with one single 
different outcome

Â Accuracy for a loop with N iterations = (N -1)/N

TNTNTNTNTNTNTNTNTNTN Ą 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)
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State Machine for 2-bit Saturating Counter
Â Counter using saturating arithmetic

Ç Arithmetic with maximum and minimum values
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Hysteresis Using a 2-bit Counter
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Is This Good Enough?

Â ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction)

Â Is this good enough?

Â How big is the branch problem?
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Letõs Do the Exercise Again
Â Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

Â Assume: 1 out of 5 instructions is a branch 

Â Assume: Each 5 instruction-block ends with a branch

Â How long does it take to fetch 500 instructions? 

Ç 100% accuracy 
Â 100 cycles (all instructions fetched on the correct path)

Â No wasted work

Ç 95% accuracy
Â 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

Â 100% extra instructions fetched

Ç 90% accuracy
Â 100 (correct path) + 20 * 10 (wrong path) = 300 cycles 

Â 200% extra instructions fetched 

Ç 85% accuracy
Â 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

Â 300% extra instructions fetched
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Can We Do Better: Two-Level Prediction

Â Last-time and 2BC predictors exploit ñlast-timeò 
predictability

Â Realization 1: A branchôs outcome can be correlated with 
other branchesô outcomes

Ç Global branch correlation 

Â Realization 2: A branchôs outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch ñlast-timeò it was executed)

Ç Local branch correlation

46Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.



Global Branch Correlation (I)

Â Recently executed branch outcomes in the execution path 
are correlated with the outcome of the next branch

Â If first branch not taken, second also not taken

Â If first branch taken, second definitely not taken
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Global Branch Correlation (II)

Â If Y and Z both taken, then X also taken

Â If Y or Z not taken, then X also not taken
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Global Branch Correlation (III)

Â Eqntott, SPECô92: Generates truth table from Boolean expr.

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

é.

}

If B1 is not taken (i.e., aa==0@ B3) and B2 is not taken (i.e. 
bb=0@B3) then B3 is certainly taken
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Capturing Global Branch Correlation

Â Idea: Associate branch outcomes with ñglobal T/NT historyò 
of all branches

Â Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered

Â Implementation:

Ç Keep track of the ñglobal T/NT historyò of all branches in a 
register Ą Global History Register (GHR)

Ç Use GHR to index into a table that recorded the outcome that 
was seen for each GHR value in the recent past Ą Pattern 

History Table (table of 2-bit counters)

Â Global history/branch predictor

Â Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.



Two Level Global Branch Prediction

Â First level: Global branch history register (N bits)

Ç The direction of last N branches

Â Second level: Table of saturating counters for each history entry

Ç The direction the branch took the last time the same history was 
seen
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How Does the Global Predictor Work?

Â McFarling, Combining Branch Predictors, DEC WRL TR 1993.

52

This branch tests i
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Next history: TTNT

(shift in last outcome) 



Intel Pentium Pro Branch Predictor

Â Two level global branch predictor

Â 4-bit global history register

Â Multiple pattern history tables (of 2 bit counters)

Ç Which pattern history table to use is determined by lower 
order bits of the branch address
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Global Branch Correlation Analysis

Â If Y and Z both taken, then X also taken

Â If Y or Z not taken, then X also not taken

Â Only 3 past branches directions 
*really* matter 

Â Evers et al., An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work, ISCA 1998.
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Improving Global Predictor Accuracy

Â Idea: Add more context information to the global predictor to take into 
account which branch is being predicted

Ç Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT   

-- Increases access latency

Â McFarling, Combining Branch Predictors, DEC WRL Tech Report, 1993.
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An Issue: Interference in the PHTs

Â Sharing the PHTs between histories/branches leads to interference

Ç Different branches map to the same PHT entry and modify it

Ç Interference can be positive, negative, or neutral

Â Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

Â How else can you eliminate or reduce interference?
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Reducing Interference in PHTs (I)

Â Increase size of PHT

Â Branch filtering

Ç Predict highly-biased branches separately so that they do not 
consume PHT entries

Ç E.g., static prediction or BTB based prediction

Â Hashing/index-randomization

Ç Gshare

Ç Gskew

Â Agree prediction
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Biased Branches and Branch Filtering

Â Observation: Many branches are biased in one direction 
(e.g., 99% taken)

Â Problem: These branches pollute the branch prediction 
structures Ą make the prediction of other branches difficult 

by causing ñinterferenceò in branch prediction tables and 
history registers

Â Solution: Detect such biased branches, and predict them 
with a simpler predictor (e.g., last time, static, é)

Â Chang et al., ñBranch classification: a new mechanism for improving 
branch predictor performance,òMICRO 1994.
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Reducing Interference: Gshare

Â Idea 1: Randomize the indexing function into the PHT such that 
probability of two branches mapping to the same entry reduces

Ç Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT  + More context information

- Increases access latency

Ç McFarling, Combining Branch Predictors, DEC WRL Tech Report, 1993.
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Reducing Interference: Agree Predictor

Â Idea 2: Agree prediction

Ç Each branch has a bias bit associated with it in BTB

Â Ideally, most likely outcome for the branch

Ç High bit of the PHT counter indicates whether or not the prediction 
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

63

Sprangle et al., The Agree Predictor:

A Mechanism for Reducing Negative 

Branch History Interference, ISCA 

1997.



Why Does Agree Prediction Make Sense?

Â Assume two branches have taken rates of 85% and 15%.

Â Assume they conflict in the PHT

Â Letôs compute the probability they have opposite outcomes

Ç Baseline predictor:

Â P (b1 T, b2 NT) + P (b1 NT, b2 T) 

= (85%*85%) + (15%*15%) = 74.5%

Ç Agree predictor:

Â Assume bias bits are set to T (b1) and NT (b2)

Â P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree) 

= (85%*15%) + (15%*85%) = 25.5%

Â Works because most branches are biased (not 50% taken)
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Reducing Interference: Gskew

Â Idea 3: Gskew predictor

Ç Multiple PHTs

Ç Each indexed with a different type of hash function

Ç Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way 
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

65
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More Techniques to Reduce PHT Interference

Â The bi-mode predictor

Ç Separate PHTs for mostly-taken and mostly-not-taken branches

Ç Reduces negative aliasing between them

Ç Lee et al., ñThe bi-mode branch predictor,òMICRO 1997.

Â The YAGS predictor

Ç Use a small tagged ñcacheò to predict branches that have experienced 
interference 

Ç Aims to not mispredict them again

Ç Eden and Mudge, ñThe YAGS branch prediction scheme,òMICRO 1998.

Â Alpha EV8 (21464) branch predictor

Ç Seznecet al., ñDesign tradeoffs for the Alpha EV8 conditional 
branch predictor,òISCA 2002.
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Can We Do Better: Two-Level Prediction

Â Last-time and 2BC predictors exploit only ñlast-timeò
predictability for a given branch

Â Realization 1: A branchôs outcome can be correlated with 
other branchesô outcomes

Ç Global branch correlation 

Â Realization 2: A branchôs outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch ñlast-timeò it was executed)

Ç Local branch correlation

67Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.



Local Branch Correlation

Â McFarling, Combining Branch Predictors, DEC WRL TR 1993.
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More Motivation for Local History

Â To predict a loop 
branch ñperfectlyò, we 
want to identify the 
last iteration of the 
loop

Â By having a separate 
PHT entry for each 
local history, we can 
distinguish different 
iterations of a loop

Â Works for ñshortò 
loops
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Capturing Local Branch Correlation

Â Idea: Have a per-branch history register

Ç Associate the predicted outcome of a branch with ñT/NT historyò 
of the same branch

Â Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered

Â Called the local history/branch predictor

Â Uses two levels of history (Per-branch history register + 
history at that history register value)
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Two Level Local Branch Prediction

Â First level: A set of local history registers (N bits each)

Ç Select the history register based on the PC of the branch

Â Second level: Table of saturating counters for each history entry

Ç The direction the branch took the last time the same history was 
seen
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Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.
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target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)
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Â BHR can be global (G), per set of branches (S), or per branch (P)

Â PHT counters can be adaptive (A) or static (S)

Â PHT can be global (g), per set of branches (s), or per branch (p)

Â Yeh and Patt, Alternative Implementations of Two -Level 
Adaptive Branch Prediction, ISCA 1992.

Two-Level Predictor Taxonomy
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Can We Do Even Better?

Â Predictability of branches varies

Â Some branches are more predictable using local history

Â Some using global

Â For others, a simple two-bit counter is enough

Â Yet for others, a bit is enough 

Â Observation: There is heterogeneity in predictability 
behavior of branches

Ç No one-size fits all branch prediction algorithm for all branches

Â Idea: Exploit that heterogeneity by designing 
heterogeneous branch predictors
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Hybrid Branch Predictors

Â Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the best prediction

Ç E.g., hybrid of 2 -bit counters and global predictor

Â Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster -warmup predictor used until the 
slower-warmup predictor warms up)

Â Disadvantages:

-- Need meta-predictor or selector

-- Longer access latency

Ç McFarling, Combining Branch Predictors, DEC WRL Tech Report, 1993.
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Alpha 21264 Tournament Predictor

Â Minimum branch penalty: 7 cycles

Â Typical branch penalty: 11+ cycles

Â 48K bits of target addresses stored in I -cache

Â Predictor tables are reset on a context switch

Â Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro 1999.
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Are We Done w/ Branch Prediction?

Â Hybrid branch predictors work well

Ç E.g., 90-97% prediction accuracy on average

Â Some ñdifficultò workloads still suffer, though!

Ç E.g., gcc

Ç Max IPC with tournament prediction: 9

Ç Max IPC with perfect prediction: 35
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Are We Done w/ Branch Prediction?
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Chappell et al., ñSimultaneous Subordinate Microthreading (SSMT),òISCA 1999.



Some Other Branch Predictor Types

Â Loop branch detector and predictor

Ç Loop iteration count detector/predictor

Ç Works well for loops with small number of iterations, where 
iteration count is predictable

Ç Used in Intel Pentium M

Â Perceptron branch predictor

Ç Learns the direction correlations between individual branches

Ç Assigns weights to correlations

Ç Jimenez and Lin, ñDynamic Branch Prediction with 
Perceptrons,òHPCA 2001.

Â Hybrid history length based predictor

Ç Uses different tables with different history lengths

Ç Seznec, ñAnalysis of the O-Geometric History Length branch 
predictor,òISCA 2005.
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Intel Pentium M Predictors

80

Gochman et al., 

ñThe Intel Pentium M Processor: Microarchitecture and Performance,ò

Intel Technology Journal, May 2003.



Perceptron Branch Predictor (I)

Â Idea: Use a perceptron to learn the correlations between branch history 
register bits and branch outcome

Â A perceptron learns a target Boolean function of N inputs

Â Jimenez and Lin, Dynamic Branch Prediction with Perceptrons, HPCA 2001.

Â Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, 1962
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Each branch associated with a perceptron

A perceptron contains a set of weights wi

Ą Each weight corresponds to a bit in 

the GHR 

ĄHow much the bit is correlated with the 

direction of the branch

Ą Positive correlation: large + weight

Ą Negative correlation: large - weight

Prediction:

Ą Express GHR bits as 1 (T) and -1 (NT)

Ą Take dot product of GHR and weights

Ą If output > 0, predict taken



Perceptron Branch Predictor (II)
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Bias weight

(bias of branch independent of 

the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)

Â Advantages

+ More sophisticated learning mechanism Ą better accuracy

Â Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome
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Prediction Using Multiple History Lengths

Â Observation: Different 
branches require 
different history lengths 
for better prediction 
accuracy

Â Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches
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Seznec and Michaud, ñA case for (partially) tagged Geometric History Length 

Branch Prediction,ò JILP 2006.



TAGE: Tagged & prediction by the longest history matching entry

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction 

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base 

predictor

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.



=

?

=

?

=

?1
1 1 1 1 1 1

1

1

Hit

Hit

Altpred: Alternative 

prediction

Pred

Miss

TAGE: Multiple Tables 

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.



TAGE: Which Table to Use? 

Â General case:

Ç Longest history-matching component provides the prediction

Â Special case: 

Ç Many mispredictions on newly allocated entries: weak Ctr

On many applications, Altpred more accurate than Pred

Ç Property dynamically monitored through 4-bit counters

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.



A Tagged Table Entry

Â Ctr: 3-bit prediction counter

Â U: 1 or  2-bit counters 

Ç Was the entry recently useful?

Â Tag: partial tag

Tag CtrU

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.



State of the Art in Branch Prediction

Â See the Branch Prediction Championship

Ç https://www.jilp.org/cbp2016/program.html
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Andre Seznec, 

ñTAGE-SC-L branch predictors,ò

CBP 2014.

Andre Seznec,

ñTAGE-SC-L branch predictors 

again,òCBP 2016.
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Another Direction: Helper Threading

Â Idea: Pre-compute the outcome of the branch with a 
separate, customized thread (i.e., a helper thread)

Â Chappell et al., Difficult-Path Branch Prediction Using Subordinate 
Microthreads, ISCA 2002.

Â Chappell et al., ñSimultaneous Subordinate Microthreading,òISCA 1999.
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Branch Confidence Estimation

Â Idea: Estimate if the prediction is likely to be correct 

Ç i.e., estimate how ñconfidentò you are in the prediction 

Â Why?

Ç Could be very useful in deciding how to speculate:

Â What predictor/PHT to choose/use

Â Whether to keep fetching on this path

Â Whether to switch to some other way of handling the branch, 
e.g. dual-path execution (eager execution) or dynamic 
predication 

Â é

Â Jacobsen et al., ñAssigning Confidence to Conditional Branch 
Predictions,òMICRO 1996.
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How to Estimate Confidence

Â An example estimator:

Ç Keep a record of correct/incorrect outcomes for the past N 
instances of the ñbranchò

Ç Based on the correct/incorrect patterns, guess if the curent 
prediction will likely be correct/incorrect

92Jacobsen et al., ñAssigning Confidence to Conditional Branch Predictions,òMICRO 1996.



What to Do With Confidence Estimation?

Â An example application: Pipeline Gating 
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Manne et al., ñPipeline Gating: Speculation Control for Energy Reduction,òISCA 1998.



What to Do With Confidence Estimation?

Â Another application: Statistical Correction of Prediction
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Issues in Fast & Wide Fetch 

Engines
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I-Cache Line and Way Prediction

Â Problem: Complex branch prediction can take too long (many 
cycles)

Â Goal

Ç Quickly generate (a reasonably accurate) next fetch address 

Ç Enable the fetch engine to run at high frequencies

Ç Override the quick prediction with more sophisticated prediction

Â Idea: Predicted the next cache line and way at the time you 
fetch the current cache line 

Â Example Mechanism (e.g., Alpha 21264)

Ç Each cache line tells which line/way to fetch next (prediction)

Ç On a fill, line/way predictor points to next sequential line

Ç On branch resolution, line/way predictor is updated

Ç If line/way prediction is incorrect, one cycle is wasted
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Alpha 21264 Line & Way Prediction

97Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro, March-April 1999.



Alpha 21264 Line & Way Prediction

98Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro, March-April 1999.



Issues in Wide Fetch Engines

Â Wide Fetch: Fetch multiple instructions per cycle

Â Superscalar

Â VLIW

Â SIMT (GPUsô single-instruction multiple thread model)

Â Wide fetch engines suffer from the branch problem:

Ç How do you feed the wide pipeline with useful instructions in a 
single cycle?

Ç What if there is a taken branch in the ñfetch packetò?

Ç What is there are ñmultiple (taken) branchesò in the ñfetch 
packetò?
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Fetching Multiple Instructions Per Cycle

Â Two problems

1. Alignment of instructions in I -cache

Ç What if there are not enough (N) instructions in the cache line 
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

Ç Fetching sequential instructions in a single cycle is easy

Ç What if there is a control flow instruction in the N instructions?

Ç Problem: The direction of the branch is not known but we 
need to fetch more instructions

Â These can cause effective fetch width < peak fetch width
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Wide Fetch Solutions: Alignment

Â Large cache blocks: Hope N instructions are contained in 
the block

Â Split-line fetch: If address falls into second half of the 
cache block, fetch the first half of next cache block as well

Ç Enabled by banking of the cache

Ç Allows sequential fetch across cache blocks in one cycle

Ç Intel Pentium and AMD K5
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Split Line Fetch

102

Need alignment logic:


