
Computer Architecture
Lecture 10:

Branch Prediction

Prof. Onur Mutlu

ETH Zürich

Fall 2017

25 October 2017

Mid-Semester Exam

 November 30

 In class

 Questions similar to homework questions

2

High-Level Summary of Last Week

 SIMD Processing

 Array Processors

 Vector Processors

 SIMD Extensions

 Graphics Processing Units

 GPU Architecture

 GPU Programming

3

Agenda for Today & Tomorrow

 Control Dependence Handling

 Problem

 Six solutions

 Branch Prediction

 Other Methods of Control Dependence Handling

4

Required Readings

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993. Required

 T. Yeh and Y. Patt, “Two-Level Adaptive Training Branch
Prediction,” Intl. Symposium on Microarchitecture,
November 1991.

 MICRO Test of Time Award Winner (after 24 years)

 Required

5

Recommended Readings

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Recommended

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 Recommended

6

Control Dependence Handling

7

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

8

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

9

Different branch types can be handled differently

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

10

Stall Fetch Until Next PC is Known: Good Idea?

11

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

This is the case with non-control-flow and unconditional br instructions!

The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)

 A branch misprediction leads to N x W wasted instruction slots

12

Importance of The Branch Problem
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

13

Branch Prediction

14

0x00040x00050x00060x00070x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to Fetch

Stall fetch

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

0x0007

0x00030x00040x00050x00060x0007

D-$

PC

DEC WB

Simplest: Always Guess NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction (and branch
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Profile guided code positioning  Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…)

 Cache traces of executed instructions  Trace cache
17

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution

18

Branch Prediction: Always PC+4

19

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

ALU

ID

IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
insth (so called “wrong-path”
instructions) must be flushedInsth is a branch

Pipeline Flush on a Misprediction

20

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

IFtarget

MEM

ID

IF

WB

killed

killed

ALU

ID

IF

ALU

ID

IF

WB

Insth is a branch

Performance Analysis

 correct guess  no penalty ~86% of the time

 incorrect guess  2 bubbles

 Assume

 no data dependency related stalls

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [1 + (0.20*0.7) * 2] =

= [1 + 0.14 * 2] = 1.28

21

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early

22

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Branch Prediction (A Bit More Enhanced)

 Idea: Predict the next fetch address (to be used in the next
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address
Cache

23

24

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

25

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Three Things to Be Predicted

 Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

 Third (3.) can be accomplished using a BTB

 Remember target address computed last time branch was
executed

 First (1.) can be accomplished using a BTB

 If BTB provides a target address for the program counter, then it
must be a branch

 Or, we can store “branch metadata” bits in instruction
cache/memory  partially decoded instruction stored in I-cache

 Second (2.): How do we predict the direction?
26

Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

27

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)

28

Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40% (for conditional branches)

 Remember: Compiler can layout code such that the likely path
is the “not-taken” path  more effective prediction

 Always taken

 No direction prediction

 Better accuracy: ~60-70% (for conditional branches)

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken
29

Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch
using a profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide)  accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN  50% accuracy
TNTNTNTNTNTNTNTNTNTN  50% accuracy

-- Accuracy depends on the representativeness of profile input
set

30

Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine statically-
predicted direction

 Example opcode heuristic: Predict BLEZ as NT (negative integers used
as error values in many programs)

 Example loop heuristic: Predict a branch guarding a loop execution as
taken (i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support (ditto for other static methods)

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate
31

Static Branch Prediction (IV)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

32

Pragmas

 Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

33

Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What is the common disadvantage of all three techniques?

 Cannot adapt to dynamic changes in branch behavior

 This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads…)

 What is a Dynamic Compiler?

 A compiler that generates code at runtime: Remember Transmeta?

 Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)

34

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)

35

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

 Disadvantages

-- More complex (requires additional hardware)

36

Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN  90% accuracy

 Always mispredicts the last iteration and the first iteration
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)

-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN  0% accuracy

37

Implementing the Last-Time Predictor

38

BTB: one target
address per entry

BTB index

N-bit
tag
table

1 0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with
the correct outcome after each execution of a branch

tag

BHT:
One
Bit
per
entry

taken?

State Machine for Last-Time Prediction

39

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from
TNT or NTT too quickly

 even though the branch may be mostly taken or mostly not
taken

 Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch
instead of a single bit

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

40

Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN  50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

41

State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 Arithmetic with maximum and minimum values

42

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Hysteresis Using a 2-bit Counter

43

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Good Enough?

 ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?

44

Let’s Do the Exercise Again
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions?

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 90% accuracy
 100 (correct path) + 20 * 10 (wrong path) = 300 cycles

 200% extra instructions fetched

 85% accuracy
 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

 300% extra instructions fetched

45

Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

46Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

47

Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

48

Global Branch Correlation (III)

 Eqntott, SPEC’92: Generates truth table from Boolean expr.

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

….

}

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

49

Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a
register  Global History Register (GHR)

 Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past  Pattern

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

51

1 1 ….. 1 0

GHR

(global

history

register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous

branch’s

direction

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

52

This branch tests i

Last 4 branches test j

History: TTTN

Predict taken for i

Next history: TTNT

(shift in last outcome)

Intel Pentium Pro Branch Predictor

 Two level global branch predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower
order bits of the branch address

53

Global Branch Correlation Analysis

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

 Only 3 past branches’ directions
really matter

 Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

54

Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

55

56

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

57

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

58

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

An Issue: Interference in the PHTs

 Sharing the PHTs between histories/branches leads to interference

 Different branches map to the same PHT entry and modify it

 Interference can be positive, negative, or neutral

 Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

 How else can you eliminate or reduce interference?

59

Reducing Interference in PHTs (I)

 Increase size of PHT

 Branch filtering

 Predict highly-biased branches separately so that they do not
consume PHT entries

 E.g., static prediction or BTB based prediction

 Hashing/index-randomization

 Gshare

 Gskew

 Agree prediction

60

Biased Branches and Branch Filtering

 Observation: Many branches are biased in one direction
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction
structures  make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

 Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, …)

 Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

61

Reducing Interference: Gshare

 Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

 Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT + More context information

- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

62

Reducing Interference: Agree Predictor

 Idea 2: Agree prediction

 Each branch has a “bias” bit associated with it in BTB

 Ideally, most likely outcome for the branch

 High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

63

Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative

Branch History Interference,” ISCA

1997.

Why Does Agree Prediction Make Sense?

 Assume two branches have taken rates of 85% and 15%.

 Assume they conflict in the PHT

 Let’s compute the probability they have opposite outcomes

 Baseline predictor:

 P (b1 T, b2 NT) + P (b1 NT, b2 T)

= (85%*85%) + (15%*15%) = 74.5%

 Agree predictor:

 Assume bias bits are set to T (b1) and NT (b2)

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

 Works because most branches are biased (not 50% taken)

64

Reducing Interference: Gskew

 Idea 3: Gskew predictor

 Multiple PHTs

 Each indexed with a different type of hash function

 Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

65

Seznec, “An optimized

2bcgskew branch

predictor,” IRISA Tech

Report 1993.

Michaud, “Trading conflict

and capacity aliasing in

conditional branch

predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2

More Techniques to Reduce PHT Interference

 The bi-mode predictor

 Separate PHTs for mostly-taken and mostly-not-taken branches

 Reduces negative aliasing between them

 Lee et al., “The bi-mode branch predictor,” MICRO 1997.

 The YAGS predictor

 Use a small tagged “cache” to predict branches that have experienced
interference

 Aims to not mispredict them again

 Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

 Alpha EV8 (21464) branch predictor

 Seznec et al., “Design tradeoffs for the Alpha EV8 conditional
branch predictor,” ISCA 2002.

66

Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

 Local branch correlation

67Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.

68

More Motivation for Local History

 To predict a loop
branch “perfectly”, we
want to identify the
last iteration of the
loop

 By having a separate
PHT entry for each
local history, we can
distinguish different
iterations of a loop

 Works for “short”
loops

69

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHT

Loop closing branch’s history

Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register +
history at that history register value)

70

Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

71

1 1 ….. 1 0

Local history

registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

72

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

 BHR can be global (G), per set of branches (S), or per branch (P)

 PHT counters can be adaptive (A) or static (S)

 PHT can be global (g), per set of branches (s), or per branch (p)

 Yeh and Patt, “Alternative Implementations of Two-Level
Adaptive Branch Prediction,” ISCA 1992.

Two-Level Predictor Taxonomy

73

Can We Do Even Better?

 Predictability of branches varies

 Some branches are more predictable using local history

 Some using global

 For others, a simple two-bit counter is enough

 Yet for others, a bit is enough

 Observation: There is heterogeneity in predictability
behavior of branches

 No one-size fits all branch prediction algorithm for all branches

 Idea: Exploit that heterogeneity by designing
heterogeneous branch predictors

74

Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

 Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

75

Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
76

Are We Done w/ Branch Prediction?

 Hybrid branch predictors work well

 E.g., 90-97% prediction accuracy on average

 Some “difficult” workloads still suffer, though!

 E.g., gcc

 Max IPC with tournament prediction: 9

 Max IPC with perfect prediction: 35

77

Are We Done w/ Branch Prediction?

78

Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999.

Some Other Branch Predictor Types

 Loop branch detector and predictor

 Loop iteration count detector/predictor

 Works well for loops with small number of iterations, where
iteration count is predictable

 Used in Intel Pentium M

 Perceptron branch predictor

 Learns the direction correlations between individual branches

 Assigns weights to correlations

 Jimenez and Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

 Hybrid history length based predictor

 Uses different tables with different history lengths

 Seznec, “Analysis of the O-Geometric History Length branch
predictor,” ISCA 2005.

79

Intel Pentium M Predictors

80

Gochman et al.,

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.

Perceptron Branch Predictor (I)

 Idea: Use a perceptron to learn the correlations between branch history
register bits and branch outcome

 A perceptron learns a target Boolean function of N inputs

 Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

 Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

81

Each branch associated with a perceptron

A perceptron contains a set of weights wi

 Each weight corresponds to a bit in

the GHR

How much the bit is correlated with the

direction of the branch

 Positive correlation: large + weight

 Negative correlation: large - weight

Prediction:

 Express GHR bits as 1 (T) and -1 (NT)

 Take dot product of GHR and weights

 If output > 0, predict taken

Perceptron Branch Predictor (II)

82

Bias weight

(bias of branch independent of

the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)

 Advantages

+ More sophisticated learning mechanism  better accuracy

 Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

83

Prediction Using Multiple History Lengths

 Observation: Different
branches require
different history lengths
for better prediction
accuracy

 Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

84

Seznec and Michaud, “A case for (partially) tagged Geometric History Length

Branch Prediction,” JILP 2006.

TAGE: Tagged & prediction by the longest history matching entry

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base

predictor

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.

=

?

=

?

=

?1
1 1 1 1 1 1

1

1

Hit

Hit

Altpred: Alternative

prediction

Pred

Miss

TAGE: Multiple Tables

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.

TAGE: Which Table to Use?

 General case:

 Longest history-matching component provides the prediction

 Special case:

 Many mispredictions on newly allocated entries: weak Ctr

On many applications, Altpred more accurate than Pred

 Property dynamically monitored through 4-bit counters

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.

A Tagged Table Entry

 Ctr: 3-bit prediction counter

 U: 1 or 2-bit counters

 Was the entry recently useful?

 Tag: partial tag

Tag CtrU

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.

State of the Art in Branch Prediction

 See the Branch Prediction Championship

 https://www.jilp.org/cbp2016/program.html

89

Andre Seznec,

“TAGE-SC-L branch predictors,”

CBP 2014.

Andre Seznec,

“TAGE-SC-L branch predictors

again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html

Another Direction: Helper Threading

 Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

 Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

 Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.

90

Branch Confidence Estimation

 Idea: Estimate if the prediction is likely to be correct

 i.e., estimate how “confident” you are in the prediction

 Why?

 Could be very useful in deciding how to speculate:

 What predictor/PHT to choose/use

 Whether to keep fetching on this path

 Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

 …

 Jacobsen et al., “Assigning Confidence to Conditional Branch
Predictions,” MICRO 1996.

91

How to Estimate Confidence

 An example estimator:

 Keep a record of correct/incorrect outcomes for the past N
instances of the “branch”

 Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

92Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996.

What to Do With Confidence Estimation?

 An example application: Pipeline Gating

93

Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.

What to Do With Confidence Estimation?

 Another application: Statistical Correction of Prediction

94

Andre Seznec,

“TAGE-SC-L branch predictors,”

CBP 2014.

Andre Seznec,

“TAGE-SC-L branch predictors

again,” CBP 2016.

Issues in Fast & Wide Fetch

Engines

95

I-Cache Line and Way Prediction

 Problem: Complex branch prediction can take too long (many
cycles)

 Goal

 Quickly generate (a reasonably accurate) next fetch address

 Enable the fetch engine to run at high frequencies

 Override the quick prediction with more sophisticated prediction

 Idea: Predicted the next cache line and way at the time you
fetch the current cache line

 Example Mechanism (e.g., Alpha 21264)

 Each cache line tells which line/way to fetch next (prediction)

 On a fill, line/way predictor points to next sequential line

 On branch resolution, line/way predictor is updated

 If line/way prediction is incorrect, one cycle is wasted
96

Alpha 21264 Line & Way Prediction

97Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

98Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

Issues in Wide Fetch Engines

 Wide Fetch: Fetch multiple instructions per cycle

 Superscalar

 VLIW

 SIMT (GPUs’ single-instruction multiple thread model)

 Wide fetch engines suffer from the branch problem:

 How do you feed the wide pipeline with useful instructions in a
single cycle?

 What if there is a taken branch in the “fetch packet”?

 What is there are “multiple (taken) branches” in the “fetch
packet”?

99

Fetching Multiple Instructions Per Cycle

 Two problems

1. Alignment of instructions in I-cache

 What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

 Fetching sequential instructions in a single cycle is easy

 What if there is a control flow instruction in the N instructions?

 Problem: The direction of the branch is not known but we
need to fetch more instructions

 These can cause effective fetch width < peak fetch width

100

Wide Fetch Solutions: Alignment

 Large cache blocks: Hope N instructions are contained in
the block

 Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

 Enabled by banking of the cache

 Allows sequential fetch across cache blocks in one cycle

 Intel Pentium and AMD K5

101

Split Line Fetch

102

Need alignment logic:

Short Distance Predicted-Taken Branches

103

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

104

Basic Block Reordering

 Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

 Idea: Convert taken branches to not-taken ones

 i.e., reorder basic blocks (after profiling)

 Basic block: code with a single entry and single exit point

 Code Layout 1 leads to the fewest fetch breaks

105

A

B C

D

T NT

A
99% 1%

B

D

Control Flow Graph Code Layout 1 Code Layout 2

A

C

D

Code Layout 3

A

B

C

D

C B

Basic Block Reordering

 Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

 Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

 Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

106

Superblock
 Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple-exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch

+ Enables aggressive

compiler optimizations

and code reordering

within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

 Hwu et al. “The Superblock: An effective technique for VLIW

and superscalar compilation,” Journal of Supercomputing, 1993.
107

Superblock Formation (I)

108

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90 10

900

0
90

10
99

1

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90
10

900

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

109

Y

A

100

C

10

B

90

E

90

D

0

F

90

Z

1

90 10

900

0

90

10

89.1

0.9

Tail duplication:

duplication of basic blocks

after a side entrance to

eliminate side entrances

 transforms

a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

110

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common

Subexpression Elimination

opC’: mul r3<-r2,3

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Computer Architecture
Lecture 10:

Branch Prediction

Prof. Onur Mutlu

ETH Zürich

Fall 2017

25 October 2017

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

113

Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the outcomes of control
transfer instructions within the trace.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store a dynamic instruction sequence in the
same physical location so that it can be fetched in unison.

114

Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996. Received the MICRO Test of Time Award 20 years later

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

115

Trace Cache: Example

116

An Example Trace Cache Based Processor

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

117

Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD
Thesis, University of Michigan, 1999.

118

What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

119

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity)  called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?

120

Trace Cache Design Issues: Example

 Branch promotion: promote highly-biased branches to branches
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches

121

How to Determine Biased Branches

122

Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized
Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

123

Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries

Other Ways of Handling

Branches

124

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

125

Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

 Problem: How do you find instructions to fill the delay
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on
instructions in delay slots  difficult to fill the delay slot

126

Delayed Branching (II)

127

A

B

C

BC X

D

E

F

if ex

A

AB

BC

CBC

BC

GX:

--

A

B

C

BC X

D

E

F

GX:

if ex

A

AC

CBC

BCB

BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 Semantics: If the branch falls through (i.e., it is not taken),
the delay slot instruction is not executed

 Why could this help?

128

A

B

C

BC X

D

E

X:

Normal code: Delayed branch code:

A

B

C

BC X

D

E

X:

NOP

Delayed branch w/ squashing:

A

B

C

BC X

D

E

X:

A

Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
129

An Aside: Filling the Delay Slot

130

a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

For correctness:
add a new instruction
to the not-taken path?

For correctness:
add a new instruction
to the taken path?

Safe?

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

131

Fine-Grained Multithreading

132

Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

133

Fine-Grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

134

Fine-Grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 available queue vs. unavailable (waiting) queue for threads

 each thread can have only 1 instruction in the processor pipeline; each thread
independent

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff

135

Fine-Grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to

complete an
instruction

 assuming no memory
access

 No control and data
dependency checking

136

Multithreaded Pipeline Example

137Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

138

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
139

Modern GPUs Are FGMT Machines

140

NVIDIA GeForce GTX 285 “core”

141

…

= instruction stream decode= data-parallel (SIMD) func. unit,

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

142

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

 Up to 32 warps are interleaved in an FGMT manner

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

143

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

End of

Fine-Grained Multithreading

144

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

145

Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

146

Predication (Predicated Execution)

 Idea: Convert control dependence to data dependence

 Simple example: Suppose we had a Conditional Move
instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
147

D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)

148

(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add x, b, 1add x, b, 1

Predicated Execution References

 Allen et al., “Conversion of control dependence to data
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated
Execution,” MICRO 2005.

149

Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

150

Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient

151

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

Fetch Decode Rename Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE

Predicated Execution
 Eliminates branches  enables straight line code (i.e.,

larger basic blocks in code)

 Advantages

 Eliminates hard-to-predict branches

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
152

Predicated Execution (III)
 Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency

+ Can move instructions more freely within predicated code

 Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch
behavior changes based on input set, program phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches

-- Loop branches

153

Predicated Execution in Intel Itanium

 Each instruction can be separately predicated

 64 one-bit predicate registers

each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false

154

cmp

br

else1

else2

br

then1

then2

join1

join2

p1 p2 cmp

join1

join2

else1p2

then2p1

else2p2

then1p1

Conditional Execution in the ARM ISA

 Almost all ARM instructions can include an optional
condition code.

 Prior to ARM v8

 An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

155

Conditional Execution in ARM ISA

156

Conditional Execution in ARM ISA

157

Conditional Execution in ARM ISA

158

Conditional Execution in ARM ISA

159

Conditional Execution in ARM ISA

160

Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) only when it would
actually be mispredicted

 If the branch were predicted when it would actually be
correctly predicted

 Wouldn’t it be nice

 If predication did not require ISA support

161

Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3

162

A

Wish Branches

 The compiler generates code (with wish branches) that

can be executed either as predicated code or non-

predicated code (normal branch code)

 The hardware decides to execute predicated code or

normal branch code at run-time based on the confidence of

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.

163

164

TARGET:

(p1) mov b,0

TARGET:

(1) mov b,0

(!p1) mov b,1

wish.join !p1 JOIN

(1) mov b,1

wish.join (1) JOIN

Low Confidence
Wish Jump/Join

p1 = (cond)

branch p1, TARGET

C B

D

A
T N

mov b, 1

jmp JOIN

TARGET:

mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)

wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence

Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g.

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table
entries

 Constrains the compiler’s scope for code optimizations

165

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

166

Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge

167

Dual-Path Execution versus Predication

168

Hard to predict

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

C

D

E

F

B

path 1 path 2

Dual-path Predicated Execution

CFMCFM

Handling Other Types of

Branches

169

Remember: Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

170

How can we predict an indirect branch with many target addresses?

Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted
target

 Accurate most of the time: 8-entry stack  > 95% accuracy

171

Call X

…

Call X

…

Call X

…

Return

Return

Return

Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls

172

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1

Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

 Idea 2: Use history based target prediction

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses

173

More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.

174

Indirect Branch Prediction (III)

 Idea 3: Treat an indirect branch as “multiple virtual
conditional branches” in hardware

 Only for prediction purposes

 Predict each “virtual conditional branch” iteratively

 Kim et al., “VPC prediction,” ISCA 2007.

175

0xabcd

0x018a

0x7a9c

0x…

iteration
counter value

PC

Virtual PC

Hash value table

VPC Prediction (I)

176

1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

Next iteration

VPC Prediction (II)

177

1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L

cond. jump TARG2 // VPC: VL2

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration

VPC Prediction (III)

178

cond. jump TARG1 // VPC: L

cond. jump TARG2 // VPC: VL2

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3

VPC Prediction (IV)

 Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number
of target addresses seen

 Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target
address

-- More interference in direction predictor and BTB

179

Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 Pre-decoded “branch type” information stored in the
instruction cache identifies type of branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4

180

Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower

181

PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???

Complications in Superscalar Processors

 Superscalar processors

 attempt to execute more than 1 instruction-per-cycle

 must fetch multiple instructions per cycle

 What if there is a branch in the middle of fetched instructions?

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on
the first one predicted taken

 If the 1st instruction is the predicted taken branch

 nullify 2nd instruction fetched
182

Multiple Instruction Fetch: Concepts

183

Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve,
just guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what
about the remaining 14%?

184

Conditional Execution in ARM (Prior to v8)

 Same as predicated execution

 Every instruction is conditionally executed

 in ARM ISAs prior to v8

185

Trace Cache Design Issues (I)

 Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle

-- Trace based can be less accurate

-- Trace based: How do you distinguish traces with the same start
address?

 When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed

-- Very tight loops with short trip count might not benefit

 When to terminate the formation of a trace

 After N instructions, after B branches, at an indirect jump or
return

186

Trace Cache Design Issues (II)

 Should entire “path” match for a trace cache hit?

 Partial matching: A piece of a trace is supplied based on branch prediction

+ Increases hit rate when there is not a full path match

-- Lengthens critical path (next fetch address dependent on the match)

187

Trace Cache Design Issues (III)

 Path associativity: Multiple traces starting at the same address can be present
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)

-- Need to determine longest matching path

-- Increased cache pressure

188

 Inactive issue: All blocks within a trace
cache line are issued even if they do not
match the predicted path

+ Reduces impact of branch mispredictions

+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch
resolution

-- Some instructions not dispatched/flushed

Trace Cache Design Issues (IV)

189

Z

Z

Z

Trace Cache Design Issues (V)

 Branch promotion: promote highly-biased branches to branches
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches

190

How to Determine Biased Branches

191

Effect on Fetch Rate

192

Effect on IPC (16-wide superscalar)

 ~15% IPC increase over “sequential I-cache” that breaks fetch on a
predicted-taken branch

193

Enhanced I-Cache vs. Trace Cache (I)

194

1. Next trace prediction

2. Trace cache fetch

Trace Cache

Enhanced

Instruction Cache

Fetch

Completion

1. Multiple-branch prediction

2. Instruction cache fetch from

multiple blocks (N ports)

3. Instruction alignment &

collapsing

1. Multiple-branch predictor

update

1. Trace construction and fill

2. Trace predictor update

Enhanced I-Cache vs. Trace Cache (II)

195

Frontend vs. Backend Complexity

 Backend is not on the critical path of instruction execution

 Easier to increase its latency without affecting performance

 Frontend is on the critical path

 Increased latency fetch directly increases

 Branch misprediction penalty

 Increased complexity can affect cycle time

196

Fill Unit Optimizations

 Fill unit constructs traces out of decoded instructions

 Can perform optimizations across basic blocks

 Branch promotion: promote highly-biased branches to
branches with static prediction

 Can treat the whole trace as an atomic execution unit

 All or none of the trace is retired (based on branch directions in trace)

 Enables many optimizations across blocks

 Dead code elimination

 Instruction reordering

 Reassociation

 Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors,” MICRO 1998.

197

Remember This Optimization?

198

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Part of Trace in Fill Unit

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Optimized Trace

opC’: mul r3<-r2,3

Redundancy in the Trace Cache

 ABC, BCA, CAB can all be in

the trace cache

 Leads to contention and reduced

hit rate

 One possible solution: Block based trace cache (Black et al., ISCA 1999)

 Idea: Decouple storage of basic blocks from their “names”

 Store traces of pointers to basic blocks rather than traces of basic
blocks themselves

 Basic blocks stored in a separate “block table”

+ Reduces redundancy of basic blocks

-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
199

Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA

200

Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block

is discarded and the target of fault is fetched

201

Block Structured ISA (II)

 Advantages:

+ Larger blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled
within atomic blocks

+ Can explicitly represent dependencies among operations within an
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that
cannot normally be performed across basic blocks

202

Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.

203

Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic

204

Superblock vs. BS-ISA

 Superblock

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection.

+ Dynamic prediction to choose the next enlarged block. Can
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
205

