
Computer Architecture
Lecture 10:

Branch Prediction

Prof. Onur Mutlu

ETH Zürich

Fall 2017

25 October 2017

Mid-Semester Exam

Â November 30

Â In class

Â Questions similar to homework questions

2

High-Level Summary of Last Week

Â SIMD Processing

Ç Array Processors

Ç Vector Processors

Ç SIMD Extensions

Â Graphics Processing Units

Ç GPU Architecture

Ç GPU Programming

3

Agenda for Today & Tomorrow

Â Control Dependence Handling

Ç Problem

Ç Six solutions

Â Branch Prediction

Â Other Methods of Control Dependence Handling

4

Required Readings

Â McFarling, ñCombining Branch Predictors,òDEC WRL
Technical Report, 1993. Required

Â T. Yeh and Y. Patt, ñTwo-Level Adaptive Training Branch
Prediction,ò Intl. Symposium on Microarchitecture,
November 1991.

Ç MICRO Test of Time Award Winner (after 24 years)

Ç Required

5

Recommended Readings

Â Smith and Sohi, ñThe Microarchitecture of Superscalar
Processors,òProceedings of the IEEE, 1995

Ç More advanced pipelining

Ç Interrupt and exception handling

Ç Out-of-order and superscalar execution concepts

Ç Recommended

Â Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro
1999.

Ç Recommended

6

Control Dependence Handling

7

Control Dependence

Â Question: What should the fetch PC be in the next cycle?

Â Answer: The address of the next instruction

Ç All instructions are control dependent on previous ones. Why?

Â If the fetched instruction is a non -control-flow instruction:

Ç Next Fetch PC is the address of the next-sequential instruction

Ç Easy to determine if we know the size of the fetched instruction

Â If the instruction that is fetched is a control -flow instruction:

Ç How do we determine the next Fetch PC?

Â In fact, how do we even know whether or not the fetched
instruction is a control -flow instruction?

8

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

9

Different branch types can be handled differently

How to Handle Control Dependences

Â Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Â Potential solutions if the instruction is a control -flow
instruction:

Â Stall the pipeline until we know the next fetch address

Â Guess the next fetch address (branch prediction)

Â Employ delayed branching (branch delay slot)

Â Do something else (fine-grained multithreading)

Â Eliminate control-flow instructions (predicated execution)

Â Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

10

Stall Fetch Until Next PC is Known: Good Idea?

11

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth

This is the case with non-control-flow and unconditional br instructions!

The Branch Problem

Â Control flow instructions (branches) are frequent

Ç 15-25% of all instructions

Â Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

Ç N cycles: (minimum) branch resolution latency

Â If we are fetching W instructions per cycle (i.e., if the
pipeline is W wide)

Ç A branch misprediction leads to N x W wasted instruction slots

12

Importance of The Branch Problem
Â Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

Â Assume: 1 out of 5 instructions is a branch

Â Assume: Each 5 instruction-block ends with a branch

Â How long does it take to fetch 500 instructions?

Ç 100% accuracy
Â 100 cycles (all instructions fetched on the correct path)

Â No wasted work

Ç 99% accuracy
Â 100 (correct path) + 20 (wrong path) = 120 cycles

Â 20% extra instructions fetched

Ç 98% accuracy
Â 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

Â 40% extra instructions fetched

Ç 95% accuracy
Â 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

Â 100% extra instructions fetched

13

Branch Prediction

14

0x00040x00050x00060x00070x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to Fetch

Stall fetch

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

0x0007

0x00030x00040x00050x00060x0007

D-$

PC

DEC WB

Simplest: Always Guess NextPC = PC + 4

Â Always predict the next sequential instruction is the next
instruction to be executed

Â This is a form of next fetch address prediction (and branch
prediction)

Â How can you make this more effective?

Â Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

Ç Software: Lay out the control flow graph such that the ñlikely
next instructionò is on the not-taken path of a branch

Â Profile guided code positioning Ą Pettis & Hansen, PLDI 1990.

Ç Hardware: ??? (how can you do this in hardwareé)

Â Cache traces of executed instructions Ą Trace cache
17

Guessing NextPC = PC + 4

Â How else can you make this more effective?

Â Idea: Get rid of control flow instructions (or minimize their
occurrence)

Â How?

1. Get rid of unnecessary control flow instructions Ą

combine predicates (predicate combining)

2. Convert control dependences into data dependences Ą

predicated execution

18

Branch Prediction: Always PC+4

19

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth
IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

ID

IFPC+8

Insth branch condition and target
evaluatedin ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

ID

IFPC+8

ALU

ID

IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
insth (so called wrong-path
instructions) must be flushedInsth is a branch

Pipeline Flush on a Misprediction

20

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti
Instj
Instk
Instl

Insth ID ALU

ID

IFPC+8

IFtarget

MEM

ID

IF

WB

killed

killed

ALU

ID

IF

ALU

ID

IF

WB

Insth is a branch

Performance Analysis

Â correct guess Ý no penalty ~86% of the time

Â incorrect guess Ý 2 bubbles

Â Assume

Ç no data dependency related stalls

Ç 20% control flow instructions

Ç 70% of control flow instructions are taken

Ç CPI = [1 + (0.20* 0.7) * 2] =

= [1 + 0.14 * 2] = 1.28

21

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

Reducing Branch Misprediction Penalty

Â Resolve branch condition and target address early

22

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Branch Prediction (A Bit More Enhanced)

Â Idea: Predict the next fetch address (to be used in the next
cycle)

Â Requires three things to be predicted at fetch stage:

Ç Whether the fetched instruction is a branch

Ç (Conditional) branch direction

Ç Branch target address (if taken)

Â Observation: Target address remains the same for a
conditional direct branch across dynamic instances

Ç Idea: Store the target address from previous instance and access
it with the PC

Ç Called Branch Target Buffer (BTB) or Branch Target Address
Cache

23

24

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

25

target address

More Sophisticated Branch Direction Prediction

Direction predictor (taken?)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Three Things to Be Predicted

Â Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

Â Third (3.) can be accomplished using a BTB

Ç Remember target address computed last time branch was
executed

Â First (1.) can be accomplished using a BTB

Ç If BTB provides a target address for the program counter, then it
must be a branch

Ç Or, we can store ñbranch metadataò bits in instruction
cache/memory Ą partially decoded instruction stored in I -cache

Â Second (2.): How do we predict the direction?
26

Simple Branch Direction Prediction Schemes

Â Compile time (static)

Ç Always not taken

Ç Always taken

Ç BTFN (Backward taken, forward not taken)

Ç Profile based (likely direction)

Â Run time (dynamic)

Ç Last time prediction (single-bit)

27

More Sophisticated Direction Prediction

Â Compile time (static)

Ç Always not taken

Ç Always taken

Ç BTFN (Backward taken, forward not taken)

Ç Profile based (likely direction)

Ç Program analysis based (likely direction)

Â Run time (dynamic)

Ç Last time prediction (single-bit)

Ç Two-bit counter based prediction

Ç Two-level prediction (global vs. local)

Ç Hybrid

Ç Advanced algorithms (e.g., using perceptrons)

28

Static Branch Prediction (I)

Â Always not-taken

Ç Simple to implement: no need for BTB, no direction prediction

Ç Low accuracy: ~30-40% (for conditional branches)

Ç Remember: Compiler can layout code such that the likely path
is the not-taken path Ą more effective prediction

Â Always taken

Ç No direction prediction

Ç Better accuracy: ~60-70% (for conditional branches)

Â Backward branches (i.e. loop branches) are usually taken

Â Backward branch: target address lower than branch PC

Â Backward taken, forward not taken (BTFN)

Ç Predict backward (loop) branches as taken, others not-taken
29

Static Branch Prediction (II)

Â Profile-based

Ç Idea: Compiler determines likely direction for each branch
using a profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) Ą accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN Ą 50% accuracy
TNTNTNTNTNTNTNTNTNTN Ą 50% accuracy

-- Accuracy depends on the representativeness of profile input
set

30

Static Branch Prediction (III)

Â Program-based (or, program analysis based)

Ç Idea: Use heuristics based on program analysis to determine statically-
predicted direction

Ç Example opcode heuristic: Predict BLEZ as NT (negative integers used
as error values in many programs)

Ç Example loop heuristic: Predict a branch guarding a loop execution as
taken (i.e., execute the loop)

Ç Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support (ditto for other static methods)

Â Ball and Larus, Branch prediction for free, PLDI 1993.

Ç 20% misprediction rate
31

Static Branch Prediction (IV)

Â Programmer-based

Ç Idea: Programmer provides the statically-predicted direction

Ç Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

32

Pragmas

Â Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

Â if (likely(x)) { ... }

Â if (unlikely(error)) { é }

Â Many other hints and optimizations can be enabled with
pragmas

Ç E.g., whether a loop can be parallelized

Ç #pragma omp parallel

Ç Description

Â The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

33

Static Branch Prediction

Â All previous techniques can be combined

Ç Profile based

Ç Program based

Ç Programmer based

Â How would you do that?

Â What is the common disadvantage of all three techniques?

Ç Cannot adapt to dynamic changes in branch behavior

Â This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheadsé)

Â What is a Dynamic Compiler?

Ç A compiler that generates code at runtime: Remember Transmeta?

Ç Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)

34

More Sophisticated Direction Prediction

Â Compile time (static)

Ç Always not taken

Ç Always taken

Ç BTFN (Backward taken, forward not taken)

Ç Profile based (likely direction)

Ç Program analysis based (likely direction)

Â Run time (dynamic)

Ç Last time prediction (single-bit)

Ç Two-bit counter based prediction

Ç Two-level prediction (global vs. local)

Ç Hybrid

Ç Advanced algorithms (e.g., using perceptrons)

35

Dynamic Branch Prediction

Â Idea: Predict branches based on dynamic information
(collected at run-time)

Â Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

Â Disadvantages

-- More complex (requires additional hardware)

36

Last Time Predictor

Â Last time predictor

Ç Single bit per branch (stored in BTB)

Ç Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN Ą 90% accuracy

Â Always mispredicts the last iteration and the first iteration
of a loop branch

Ç Accuracy for a loop with N iterations = (N -2)/N

+ Loop branches for loops with large N (number of iterations)

-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN Ą 0% accuracy

37

Implementing the Last-Time Predictor

38

BTB: one target
address per entry

BTB index

N-bit
tag
table

1 0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with
the correct outcome after each execution of a branch

tag

BHT:
One
Bit
per
entry

taken?

State Machine for Last-Time Prediction

39

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Improving the Last Time Predictor

Â Problem: A last-time predictor changes its prediction from
TĄNT or NTĄT too quickly

Ç even though the branch may be mostly taken or mostly not
taken

Â Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

Ç Use two bits to track the history of predictions for a branch
instead of a single bit

Ç Can have 2 states for T or NT instead of 1 state for each

Â Smith, ñA Study of Branch Prediction Strategies,òISCA
1981.

40

Two-Bit Counter Based Prediction

Â Each branch associated with a two-bit counter

Â One more bit provides hysteresis

Â A strong prediction does not change with one single
different outcome

Â Accuracy for a loop with N iterations = (N -1)/N

TNTNTNTNTNTNTNTNTNTN Ą 50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

41

State Machine for 2-bit Saturating Counter
Â Counter using saturating arithmetic

Ç Arithmetic with maximum and minimum values

42

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Hysteresis Using a 2-bit Counter

43

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

weakly
taken

strongly
taken

weakly
!taken

strongly
!taken

Is This Good Enough?

Â ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

Â Is this good enough?

Â How big is the branch problem?

44

Letõs Do the Exercise Again
Â Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

Â Assume: 1 out of 5 instructions is a branch

Â Assume: Each 5 instruction-block ends with a branch

Â How long does it take to fetch 500 instructions?

Ç 100% accuracy
Â 100 cycles (all instructions fetched on the correct path)

Â No wasted work

Ç 95% accuracy
Â 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

Â 100% extra instructions fetched

Ç 90% accuracy
Â 100 (correct path) + 20 * 10 (wrong path) = 300 cycles

Â 200% extra instructions fetched

Ç 85% accuracy
Â 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

Â 300% extra instructions fetched

45

Can We Do Better: Two-Level Prediction

Â Last-time and 2BC predictors exploit ñlast-timeò
predictability

Â Realization 1: A branchôs outcome can be correlated with
other branchesô outcomes

Ç Global branch correlation

Â Realization 2: A branchôs outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch ñlast-timeò it was executed)

Ç Local branch correlation

46Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

Global Branch Correlation (I)

Â Recently executed branch outcomes in the execution path
are correlated with the outcome of the next branch

Â If first branch not taken, second also not taken

Â If first branch taken, second definitely not taken

47

Global Branch Correlation (II)

Â If Y and Z both taken, then X also taken

Â If Y or Z not taken, then X also not taken

48

Global Branch Correlation (III)

Â Eqntott, SPECô92: Generates truth table from Boolean expr.

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

é.

}

If B1 is not taken (i.e., aa==0@ B3) and B2 is not taken (i.e.
bb=0@B3) then B3 is certainly taken

49

Capturing Global Branch Correlation

Â Idea: Associate branch outcomes with ñglobal T/NT historyò
of all branches

Â Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

Â Implementation:

Ç Keep track of the ñglobal T/NT historyò of all branches in a
register Ą Global History Register (GHR)

Ç Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past Ą Pattern

History Table (table of 2-bit counters)

Â Global history/branch predictor

Â Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

Two Level Global Branch Prediction

Â First level: Global branch history register (N bits)

Ç The direction of last N branches

Â Second level: Table of saturating counters for each history entry

Ç The direction the branch took the last time the same history was
seen

51

1 1 é.. 1 0

GHR

(global

history

register)

00 é. 00

00 é. 01

00 é. 10

11 é. 11

0 1

2 3

index

Pattern History Table (PHT)

previous

branchôs

direction

Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

How Does the Global Predictor Work?

Â McFarling, Combining Branch Predictors, DEC WRL TR 1993.

52

This branch tests i

Last 4 branches test j

History: TTTN

Predict taken for i

Next history: TTNT

(shift in last outcome)

Intel Pentium Pro Branch Predictor

Â Two level global branch predictor

Â 4-bit global history register

Â Multiple pattern history tables (of 2 bit counters)

Ç Which pattern history table to use is determined by lower
order bits of the branch address

53

Global Branch Correlation Analysis

Â If Y and Z both taken, then X also taken

Â If Y or Z not taken, then X also not taken

Â Only 3 past branches directions
really matter

Â Evers et al., An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work, ISCA 1998.

54

Improving Global Predictor Accuracy

Â Idea: Add more context information to the global predictor to take into
account which branch is being predicted

Ç Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

Â McFarling, Combining Branch Predictors, DEC WRL Tech Report, 1993.

55

56

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

57

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

58

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

An Issue: Interference in the PHTs

Â Sharing the PHTs between histories/branches leads to interference

Ç Different branches map to the same PHT entry and modify it

Ç Interference can be positive, negative, or neutral

Â Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

Â How else can you eliminate or reduce interference?

59

Reducing Interference in PHTs (I)

Â Increase size of PHT

Â Branch filtering

Ç Predict highly-biased branches separately so that they do not
consume PHT entries

Ç E.g., static prediction or BTB based prediction

Â Hashing/index-randomization

Ç Gshare

Ç Gskew

Â Agree prediction

60

Biased Branches and Branch Filtering

Â Observation: Many branches are biased in one direction
(e.g., 99% taken)

Â Problem: These branches pollute the branch prediction
structures Ą make the prediction of other branches difficult

by causing ñinterferenceò in branch prediction tables and
history registers

Â Solution: Detect such biased branches, and predict them
with a simpler predictor (e.g., last time, static, é)

Â Chang et al., ñBranch classification: a new mechanism for improving
branch predictor performance,òMICRO 1994.

61

Reducing Interference: Gshare

Â Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

Ç Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT + More context information

- Increases access latency

Ç McFarling, Combining Branch Predictors, DEC WRL Tech Report, 1993.

62

Reducing Interference: Agree Predictor

Â Idea 2: Agree prediction

Ç Each branch has a bias bit associated with it in BTB

Â Ideally, most likely outcome for the branch

Ç High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

63

Sprangle et al., The Agree Predictor:

A Mechanism for Reducing Negative

Branch History Interference, ISCA

1997.

Why Does Agree Prediction Make Sense?

Â Assume two branches have taken rates of 85% and 15%.

Â Assume they conflict in the PHT

Â Letôs compute the probability they have opposite outcomes

Ç Baseline predictor:

Â P (b1 T, b2 NT) + P (b1 NT, b2 T)

= (85%*85%) + (15%*15%) = 74.5%

Ç Agree predictor:

Â Assume bias bits are set to T (b1) and NT (b2)

Â P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)

= (85%*15%) + (15%*85%) = 25.5%

Â Works because most branches are biased (not 50% taken)

64

Reducing Interference: Gskew

Â Idea 3: Gskew predictor

Ç Multiple PHTs

Ç Each indexed with a different type of hash function

Ç Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

65

Seznec, An optimized

2bcgskew branch

predictor, IRISA Tech

Report 1993.

Michaud, ñTrading conflict

and capacity aliasing in

conditional branch

predictors,òISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2

More Techniques to Reduce PHT Interference

Â The bi-mode predictor

Ç Separate PHTs for mostly-taken and mostly-not-taken branches

Ç Reduces negative aliasing between them

Ç Lee et al., ñThe bi-mode branch predictor,òMICRO 1997.

Â The YAGS predictor

Ç Use a small tagged ñcacheò to predict branches that have experienced
interference

Ç Aims to not mispredict them again

Ç Eden and Mudge, ñThe YAGS branch prediction scheme,òMICRO 1998.

Â Alpha EV8 (21464) branch predictor

Ç Seznecet al., ñDesign tradeoffs for the Alpha EV8 conditional
branch predictor,òISCA 2002.

66

Can We Do Better: Two-Level Prediction

Â Last-time and 2BC predictors exploit only ñlast-timeò
predictability for a given branch

Â Realization 1: A branchôs outcome can be correlated with
other branchesô outcomes

Ç Global branch correlation

Â Realization 2: A branchôs outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch ñlast-timeò it was executed)

Ç Local branch correlation

67Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

Local Branch Correlation

Â McFarling, Combining Branch Predictors, DEC WRL TR 1993.

68

More Motivation for Local History

Â To predict a loop
branch ñperfectlyò, we
want to identify the
last iteration of the
loop

Â By having a separate
PHT entry for each
local history, we can
distinguish different
iterations of a loop

Â Works for ñshortò
loops

69

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11

11

11

00

11101110111011101110
PHT

Loop closing branchôs history

Capturing Local Branch Correlation

Â Idea: Have a per-branch history register

Ç Associate the predicted outcome of a branch with ñT/NT historyò
of the same branch

Â Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

Â Called the local history/branch predictor

Â Uses two levels of history (Per-branch history register +
history at that history register value)

70

Two Level Local Branch Prediction

Â First level: A set of local history registers (N bits each)

Ç Select the history register based on the PC of the branch

Â Second level: Table of saturating counters for each history entry

Ç The direction the branch took the last time the same history was
seen

71

1 1 é.. 1 0

Local history

registers

00 é. 00

00 é. 01

00 é. 10

11 é. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, Two-Level Adaptive Training Branch Prediction, MICRO 1991.

72

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

Â BHR can be global (G), per set of branches (S), or per branch (P)

Â PHT counters can be adaptive (A) or static (S)

Â PHT can be global (g), per set of branches (s), or per branch (p)

Â Yeh and Patt, Alternative Implementations of Two -Level
Adaptive Branch Prediction, ISCA 1992.

Two-Level Predictor Taxonomy

73

Can We Do Even Better?

Â Predictability of branches varies

Â Some branches are more predictable using local history

Â Some using global

Â For others, a simple two-bit counter is enough

Â Yet for others, a bit is enough

Â Observation: There is heterogeneity in predictability
behavior of branches

Ç No one-size fits all branch prediction algorithm for all branches

Â Idea: Exploit that heterogeneity by designing
heterogeneous branch predictors

74

Hybrid Branch Predictors

Â Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the best prediction

Ç E.g., hybrid of 2 -bit counters and global predictor

Â Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster -warmup predictor used until the
slower-warmup predictor warms up)

Â Disadvantages:

-- Need meta-predictor or selector

-- Longer access latency

Ç McFarling, Combining Branch Predictors, DEC WRL Tech Report, 1993.

75

Alpha 21264 Tournament Predictor

Â Minimum branch penalty: 7 cycles

Â Typical branch penalty: 11+ cycles

Â 48K bits of target addresses stored in I -cache

Â Predictor tables are reset on a context switch

Â Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro 1999.
76

Are We Done w/ Branch Prediction?

Â Hybrid branch predictors work well

Ç E.g., 90-97% prediction accuracy on average

Â Some ñdifficultò workloads still suffer, though!

Ç E.g., gcc

Ç Max IPC with tournament prediction: 9

Ç Max IPC with perfect prediction: 35

77

Are We Done w/ Branch Prediction?

78

Chappell et al., ñSimultaneous Subordinate Microthreading (SSMT),òISCA 1999.

Some Other Branch Predictor Types

Â Loop branch detector and predictor

Ç Loop iteration count detector/predictor

Ç Works well for loops with small number of iterations, where
iteration count is predictable

Ç Used in Intel Pentium M

Â Perceptron branch predictor

Ç Learns the direction correlations between individual branches

Ç Assigns weights to correlations

Ç Jimenez and Lin, ñDynamic Branch Prediction with
Perceptrons,òHPCA 2001.

Â Hybrid history length based predictor

Ç Uses different tables with different history lengths

Ç Seznec, ñAnalysis of the O-Geometric History Length branch
predictor,òISCA 2005.

79

Intel Pentium M Predictors

80

Gochman et al.,

ñThe Intel Pentium M Processor: Microarchitecture and Performance,ò

Intel Technology Journal, May 2003.

Perceptron Branch Predictor (I)

Â Idea: Use a perceptron to learn the correlations between branch history
register bits and branch outcome

Â A perceptron learns a target Boolean function of N inputs

Â Jimenez and Lin, Dynamic Branch Prediction with Perceptrons, HPCA 2001.

Â Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, 1962

81

Each branch associated with a perceptron

A perceptron contains a set of weights wi

Ą Each weight corresponds to a bit in

the GHR

ĄHow much the bit is correlated with the

direction of the branch

Ą Positive correlation: large + weight

Ą Negative correlation: large - weight

Prediction:

Ą Express GHR bits as 1 (T) and -1 (NT)

Ą Take dot product of GHR and weights

Ą If output > 0, predict taken

Perceptron Branch Predictor (II)

82

Bias weight

(bias of branch independent of

the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)

Â Advantages

+ More sophisticated learning mechanism Ą better accuracy

Â Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

83

Prediction Using Multiple History Lengths

Â Observation: Different
branches require
different history lengths
for better prediction
accuracy

Â Idea: Have multiple
PHTs indexed with
GHRs with different
history lengths and
intelligently allocate
PHT entries to different
branches

84

Seznec and Michaud, ñA case for (partially) tagged Geometric History Length

Branch Prediction,ò JILP 2006.

TAGE: Tagged & prediction by the longest history matching entry

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base

predictor

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.

=

?

=

?

=

?1
1 1 1 1 1 1

1

1

Hit

Hit

Altpred: Alternative

prediction

Pred

Miss

TAGE: Multiple Tables

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.

TAGE: Which Table to Use?

Â General case:

Ç Longest history-matching component provides the prediction

Â Special case:

Ç Many mispredictions on newly allocated entries: weak Ctr

On many applications, Altpred more accurate than Pred

Ç Property dynamically monitored through 4-bit counters

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.

A Tagged Table Entry

Â Ctr: 3-bit prediction counter

Â U: 1 or 2-bit counters

Ç Was the entry recently useful?

Â Tag: partial tag

Tag CtrU

Andre Seznec, ñTAGE-SC-L branch predictors again,òCBP 2016.

State of the Art in Branch Prediction

Â See the Branch Prediction Championship

Ç https://www.jilp.org/cbp2016/program.html

89

Andre Seznec,

ñTAGE-SC-L branch predictors,ò

CBP 2014.

Andre Seznec,

ñTAGE-SC-L branch predictors

again,òCBP 2016.

https://www.jilp.org/cbp2016/program.html

Another Direction: Helper Threading

Â Idea: Pre-compute the outcome of the branch with a
separate, customized thread (i.e., a helper thread)

Â Chappell et al., Difficult-Path Branch Prediction Using Subordinate
Microthreads, ISCA 2002.

Â Chappell et al., ñSimultaneous Subordinate Microthreading,òISCA 1999.

90

Branch Confidence Estimation

Â Idea: Estimate if the prediction is likely to be correct

Ç i.e., estimate how ñconfidentò you are in the prediction

Â Why?

Ç Could be very useful in deciding how to speculate:

Â What predictor/PHT to choose/use

Â Whether to keep fetching on this path

Â Whether to switch to some other way of handling the branch,
e.g. dual-path execution (eager execution) or dynamic
predication

Â é

Â Jacobsen et al., ñAssigning Confidence to Conditional Branch
Predictions,òMICRO 1996.

91

How to Estimate Confidence

Â An example estimator:

Ç Keep a record of correct/incorrect outcomes for the past N
instances of the ñbranchò

Ç Based on the correct/incorrect patterns, guess if the curent
prediction will likely be correct/incorrect

92Jacobsen et al., ñAssigning Confidence to Conditional Branch Predictions,òMICRO 1996.

What to Do With Confidence Estimation?

Â An example application: Pipeline Gating

93

Manne et al., ñPipeline Gating: Speculation Control for Energy Reduction,òISCA 1998.

What to Do With Confidence Estimation?

Â Another application: Statistical Correction of Prediction

94

Andre Seznec,

ñTAGE-SC-L branch predictors,ò

CBP 2014.

Andre Seznec,

ñTAGE-SC-L branch predictors

again,òCBP 2016.

Issues in Fast & Wide Fetch

Engines

95

I-Cache Line and Way Prediction

Â Problem: Complex branch prediction can take too long (many
cycles)

Â Goal

Ç Quickly generate (a reasonably accurate) next fetch address

Ç Enable the fetch engine to run at high frequencies

Ç Override the quick prediction with more sophisticated prediction

Â Idea: Predicted the next cache line and way at the time you
fetch the current cache line

Â Example Mechanism (e.g., Alpha 21264)

Ç Each cache line tells which line/way to fetch next (prediction)

Ç On a fill, line/way predictor points to next sequential line

Ç On branch resolution, line/way predictor is updated

Ç If line/way prediction is incorrect, one cycle is wasted
96

Alpha 21264 Line & Way Prediction

97Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro, March-April 1999.

Alpha 21264 Line & Way Prediction

98Kessler, ñThe Alpha 21264 Microprocessor,òIEEE Micro, March-April 1999.

Issues in Wide Fetch Engines

Â Wide Fetch: Fetch multiple instructions per cycle

Â Superscalar

Â VLIW

Â SIMT (GPUsô single-instruction multiple thread model)

Â Wide fetch engines suffer from the branch problem:

Ç How do you feed the wide pipeline with useful instructions in a
single cycle?

Ç What if there is a taken branch in the ñfetch packetò?

Ç What is there are ñmultiple (taken) branchesò in the ñfetch
packetò?

99

Fetching Multiple Instructions Per Cycle

Â Two problems

1. Alignment of instructions in I -cache

Ç What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

Ç Fetching sequential instructions in a single cycle is easy

Ç What if there is a control flow instruction in the N instructions?

Ç Problem: The direction of the branch is not known but we
need to fetch more instructions

Â These can cause effective fetch width < peak fetch width

100

Wide Fetch Solutions: Alignment

Â Large cache blocks: Hope N instructions are contained in
the block

Â Split-line fetch: If address falls into second half of the
cache block, fetch the first half of next cache block as well

Ç Enabled by banking of the cache

Ç Allows sequential fetch across cache blocks in one cycle

Ç Intel Pentium and AMD K5

101

Split Line Fetch

102

Need alignment logic:

