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Mid-Semester Exam

 November 30

 In class

 Questions similar to homework questions
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High-Level Summary of Last Week

 SIMD Processing

 Array Processors

 Vector Processors

 SIMD Extensions

 Graphics Processing Units

 GPU Architecture

 GPU Programming
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Agenda for Today & Tomorrow

 Control Dependence Handling

 Problem

 Six solutions

 Branch Prediction

 Other Methods of Control Dependence Handling
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Required Readings

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      Required

 T. Yeh and Y. Patt,  “Two-Level Adaptive Training Branch 
Prediction,”  Intl. Symposium on Microarchitecture, 
November 1991.

 MICRO Test of Time Award Winner (after 24 years)

 Required
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Recommended Readings

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Recommended

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 

 Recommended
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Control Dependence Handling

7



Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction?
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Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Stall Fetch Until Next PC is Known: Good Idea?
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The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide)

 A branch misprediction leads to N x W wasted instruction slots 
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Importance of The Branch Problem
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch 

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions? 

 100% accuracy 
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles 

 40% extra instructions fetched 

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched
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Branch Prediction
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Simplest: Always Guess NextPC = PC + 4 

 Always predict the next sequential instruction is the next 
instruction to be executed

 This is a form of next fetch address prediction (and branch 
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch

 Profile guided code positioning  Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…) 

 Cache traces of executed instructions  Trace cache
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Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their 
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution
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Branch Prediction: Always PC+4
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Pipeline Flush on a Misprediction
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Performance Analysis

 correct guess  no penalty ~86% of the time

 incorrect guess  2 bubbles

 Assume

 no data dependency related stalls

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [ 1 + (0.20*0.7) * 2 ] = 

= [ 1 + 0.14 * 2 ] = 1.28 
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penalty for
a wrong guess

probability of 
a wrong guess

Can we reduce either of the two penalty terms?



Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early 
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Is this a good idea?



Branch Prediction (A Bit More Enhanced)

 Idea: Predict the next fetch address (to be used in the next 
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access 
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache
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Three Things to Be Predicted

 Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

 Third (3.) can be accomplished using a BTB

 Remember target address computed last time branch was 
executed

 First (1.) can be accomplished using a BTB

 If BTB provides a target address for the program counter, then it 
must be a branch

 Or, we can store “branch metadata” bits in instruction 
cache/memory  partially decoded instruction stored in I-cache

 Second (2.): How do we predict the direction?
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Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)
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More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based  (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)
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Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40% (for conditional branches)

 Remember: Compiler can layout code such that the likely path 
is the “not-taken” path  more effective prediction

 Always taken

 No direction prediction

 Better accuracy: ~60-70% (for conditional branches)

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken
29



Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy

-- Accuracy depends on the representativeness of profile input 
set
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Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine statically-
predicted direction

 Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs)

 Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support (ditto for other static methods)

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate
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Static Branch Prediction (IV)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than 
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer? 
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Pragmas

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with 
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code.
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Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What is the common disadvantage of all three techniques?

 Cannot adapt to dynamic changes in branch behavior 

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…)

 What is a Dynamic Compiler? 

 A compiler that generates code at runtime: Remember Transmeta?

 Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)
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More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based  (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)
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Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information 
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness 
problem goes away

 Disadvantages

-- More complex (requires additional hardware)
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Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN  90% accuracy

 Always mispredicts the last iteration and the first iteration 
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)

-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN  0% accuracy

37



Implementing the Last-Time Predictor
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State Machine for Last-Time Prediction
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Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly 

 even though the branch may be mostly taken or mostly not 
taken

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch 
instead of a single bit 

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981.
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Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single 
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN  50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)
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State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 Arithmetic with maximum and minimum values
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Hysteresis Using a 2-bit Counter
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Is This Good Enough?

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?
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Let’s Do the Exercise Again
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch 

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions? 

 100% accuracy 
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 90% accuracy
 100 (correct path) + 20 * 10 (wrong path) = 300 cycles 

 200% extra instructions fetched 

 85% accuracy
 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

 300% extra instructions fetched
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Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit “last-time” 
predictability

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes

 Global branch correlation 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed)

 Local branch correlation

46Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path 
are correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken
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Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken
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Global Branch Correlation (III)

 Eqntott, SPEC’92: Generates truth table from Boolean expr.

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

….

}

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. 
bb=0@B3) then B3 is certainly taken
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Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history” 
of all branches

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR)

 Use GHR to index into a table that recorded the outcome that 
was seen for each GHR value in the recent past  Pattern 

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was 
seen
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How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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This branch tests i

Last 4 branches test j

History: TTTN

Predict taken for i

Next history: TTNT

(shift in last outcome) 



Intel Pentium Pro Branch Predictor

 Two level global branch predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower 
order bits of the branch address
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Global Branch Correlation Analysis

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

 Only 3 past branches’ directions 
*really* matter 

 Evers et al., “An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work,” ISCA 1998.
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Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT   

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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An Issue: Interference in the PHTs

 Sharing the PHTs between histories/branches leads to interference

 Different branches map to the same PHT entry and modify it

 Interference can be positive, negative, or neutral

 Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

 How else can you eliminate or reduce interference?
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Reducing Interference in PHTs (I)

 Increase size of PHT

 Branch filtering

 Predict highly-biased branches separately so that they do not 
consume PHT entries

 E.g., static prediction or BTB based prediction

 Hashing/index-randomization

 Gshare

 Gskew

 Agree prediction

60



Biased Branches and Branch Filtering

 Observation: Many branches are biased in one direction 
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers

 Solution: Detect such biased branches, and predict them 
with a simpler predictor (e.g., last time, static, …)

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994.
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Reducing Interference: Gshare

 Idea 1: Randomize the indexing function into the PHT such that 
probability of two branches mapping to the same entry reduces

 Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT  + More context information

- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Reducing Interference: Agree Predictor

 Idea 2: Agree prediction

 Each branch has a “bias” bit associated with it in BTB

 Ideally, most likely outcome for the branch

 High bit of the PHT counter indicates whether or not the prediction 
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)

63
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Branch History Interference,” ISCA 

1997.



Why Does Agree Prediction Make Sense?

 Assume two branches have taken rates of 85% and 15%.

 Assume they conflict in the PHT

 Let’s compute the probability they have opposite outcomes

 Baseline predictor:

 P (b1 T, b2 NT) + P (b1 NT, b2 T) 

= (85%*85%) + (15%*15%) = 74.5%

 Agree predictor:

 Assume bias bits are set to T (b1) and NT (b2)

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree) 

= (85%*15%) + (15%*85%) = 25.5%

 Works because most branches are biased (not 50% taken)
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Reducing Interference: Gskew

 Idea 3: Gskew predictor

 Multiple PHTs

 Each indexed with a different type of hash function

 Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way 
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)

65

Seznec, “An optimized 

2bcgskew branch 

predictor,” IRISA Tech 

Report 1993.

Michaud, “Trading conflict 

and capacity aliasing in 

conditional branch 

predictors,” ISCA 1997

Branch Address

Global BHR

f0

f1

f2

Majority

Final Prediction

PHT0 PHT1 PHT2



More Techniques to Reduce PHT Interference

 The bi-mode predictor

 Separate PHTs for mostly-taken and mostly-not-taken branches

 Reduces negative aliasing between them

 Lee et al., “The bi-mode branch predictor,” MICRO 1997.

 The YAGS predictor

 Use a small tagged “cache” to predict branches that have experienced 
interference 

 Aims to not mispredict them again

 Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

 Alpha EV8 (21464) branch predictor

 Seznec et al., “Design tradeoffs for the Alpha EV8 conditional 
branch predictor,” ISCA 2002.
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Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes

 Global branch correlation 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed)

 Local branch correlation

67Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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More Motivation for Local History

 To predict a loop 
branch “perfectly”, we 
want to identify the 
last iteration of the 
loop

 By having a separate 
PHT entry for each 
local history, we can 
distinguish different 
iterations of a loop

 Works for “short” 
loops
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Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history” 
of the same branch

 Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register + 
history at that history register value)
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Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was 
seen
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1 1 ….. 1 0

Local history 

registers

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table (PHT) 

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.
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target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the 

current instruction

Which directions earlier instances of *this branch* went



 BHR can be global (G), per set of branches (S), or per branch (P)

 PHT counters can be adaptive (A) or static (S)

 PHT can be global (g), per set of branches (s), or per branch (p)

 Yeh and Patt, “Alternative Implementations of Two-Level 
Adaptive Branch Prediction,” ISCA 1992.

Two-Level Predictor Taxonomy
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Can We Do Even Better?

 Predictability of branches varies

 Some branches are more predictable using local history

 Some using global

 For others, a simple two-bit counter is enough

 Yet for others, a bit is enough 

 Observation: There is heterogeneity in predictability 
behavior of branches

 No one-size fits all branch prediction algorithm for all branches

 Idea: Exploit that heterogeneity by designing 
heterogeneous branch predictors
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Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up)

 Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
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Are We Done w/ Branch Prediction?

 Hybrid branch predictors work well

 E.g., 90-97% prediction accuracy on average

 Some “difficult” workloads still suffer, though!

 E.g., gcc

 Max IPC with tournament prediction: 9

 Max IPC with perfect prediction: 35
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Are We Done w/ Branch Prediction?
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Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999.



Some Other Branch Predictor Types

 Loop branch detector and predictor

 Loop iteration count detector/predictor

 Works well for loops with small number of iterations, where 
iteration count is predictable

 Used in Intel Pentium M

 Perceptron branch predictor

 Learns the direction correlations between individual branches

 Assigns weights to correlations

 Jimenez and Lin, “Dynamic Branch Prediction with 
Perceptrons,” HPCA 2001.

 Hybrid history length based predictor

 Uses different tables with different history lengths

 Seznec, “Analysis of the O-Geometric History Length branch 
predictor,” ISCA 2005.
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Intel Pentium M Predictors

80

Gochman et al., 

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.



Perceptron Branch Predictor (I)

 Idea: Use a perceptron to learn the correlations between branch history 
register bits and branch outcome

 A perceptron learns a target Boolean function of N inputs

 Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

 Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962
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Each branch associated with a perceptron

A perceptron contains a set of weights wi

 Each weight corresponds to a bit in 

the GHR 

How much the bit is correlated with the 

direction of the branch

 Positive correlation: large + weight

 Negative correlation: large - weight

Prediction:

 Express GHR bits as 1 (T) and -1 (NT)

 Take dot product of GHR and weights

 If output > 0, predict taken



Perceptron Branch Predictor (II)
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Bias weight

(bias of branch independent of 

the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)

 Advantages

+ More sophisticated learning mechanism  better accuracy

 Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome
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Prediction Using Multiple History Lengths

 Observation: Different 
branches require 
different history lengths 
for better prediction 
accuracy

 Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches
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Seznec and Michaud, “A case for (partially) tagged Geometric History Length 

Branch Prediction,” JILP 2006.



TAGE: Tagged & prediction by the longest history matching entry

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction 

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base 

predictor

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



=

?

=

?

=

?1
1 1 1 1 1 1

1

1

Hit

Hit

Altpred: Alternative 

prediction

Pred

Miss

TAGE: Multiple Tables 

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



TAGE: Which Table to Use? 

 General case:

 Longest history-matching component provides the prediction

 Special case: 

 Many mispredictions on newly allocated entries: weak Ctr

On many applications, Altpred more accurate than Pred

 Property dynamically monitored through 4-bit counters

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



A Tagged Table Entry

 Ctr: 3-bit prediction counter

 U: 1 or  2-bit counters 

 Was the entry recently useful?

 Tag: partial tag

Tag CtrU

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



State of the Art in Branch Prediction

 See the Branch Prediction Championship

 https://www.jilp.org/cbp2016/program.html
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Andre Seznec, 

“TAGE-SC-L branch predictors,”

CBP 2014.

Andre Seznec,

“TAGE-SC-L branch predictors 

again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html


Another Direction: Helper Threading

 Idea: Pre-compute the outcome of the branch with a 
separate, customized thread (i.e., a helper thread)

 Chappell et al., “Difficult-Path Branch Prediction Using Subordinate 
Microthreads,” ISCA 2002.

 Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.
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Branch Confidence Estimation

 Idea: Estimate if the prediction is likely to be correct 

 i.e., estimate how “confident” you are in the prediction 

 Why?

 Could be very useful in deciding how to speculate:

 What predictor/PHT to choose/use

 Whether to keep fetching on this path

 Whether to switch to some other way of handling the branch, 
e.g. dual-path execution (eager execution) or dynamic 
predication 

 …

 Jacobsen et al., “Assigning Confidence to Conditional Branch 
Predictions,” MICRO 1996.
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How to Estimate Confidence

 An example estimator:

 Keep a record of correct/incorrect outcomes for the past N 
instances of the “branch”

 Based on the correct/incorrect patterns, guess if the curent 
prediction will likely be correct/incorrect

92Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996.



What to Do With Confidence Estimation?

 An example application: Pipeline Gating 
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Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.



What to Do With Confidence Estimation?

 Another application: Statistical Correction of Prediction

94

Andre Seznec, 

“TAGE-SC-L branch predictors,”

CBP 2014.

Andre Seznec,

“TAGE-SC-L branch predictors 

again,” CBP 2016.



Issues in Fast & Wide Fetch 

Engines
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I-Cache Line and Way Prediction

 Problem: Complex branch prediction can take too long (many 
cycles)

 Goal

 Quickly generate (a reasonably accurate) next fetch address 

 Enable the fetch engine to run at high frequencies

 Override the quick prediction with more sophisticated prediction

 Idea: Predicted the next cache line and way at the time you 
fetch the current cache line 

 Example Mechanism (e.g., Alpha 21264)

 Each cache line tells which line/way to fetch next (prediction)

 On a fill, line/way predictor points to next sequential line

 On branch resolution, line/way predictor is updated

 If line/way prediction is incorrect, one cycle is wasted
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Alpha 21264 Line & Way Prediction

97Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



Alpha 21264 Line & Way Prediction

98Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



Issues in Wide Fetch Engines

 Wide Fetch: Fetch multiple instructions per cycle

 Superscalar

 VLIW

 SIMT (GPUs’ single-instruction multiple thread model)

 Wide fetch engines suffer from the branch problem:

 How do you feed the wide pipeline with useful instructions in a 
single cycle?

 What if there is a taken branch in the “fetch packet”?

 What is there are “multiple (taken) branches” in the “fetch 
packet”?
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Fetching Multiple Instructions Per Cycle

 Two problems

1. Alignment of instructions in I-cache

 What if there are not enough (N) instructions in the cache line 
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

 Fetching sequential instructions in a single cycle is easy

 What if there is a control flow instruction in the N instructions?

 Problem: The direction of the branch is not known but we 
need to fetch more instructions

 These can cause effective fetch width < peak fetch width
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Wide Fetch Solutions: Alignment

 Large cache blocks: Hope N instructions are contained in 
the block

 Split-line fetch: If address falls into second half of the 
cache block, fetch the first half of next cache block as well

 Enabled by banking of the cache

 Allows sequential fetch across cache blocks in one cycle

 Intel Pentium and AMD K5
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Split Line Fetch

102

Need alignment logic:



Short Distance Predicted-Taken Branches
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Basic Block Reordering

 Not-taken control flow instructions not a problem: no fetch 
break: make the likely path the not-taken path

 Idea: Convert taken branches to not-taken ones

 i.e., reorder basic blocks (after profiling)

 Basic block: code with a single entry and single exit point

 Code Layout 1 leads to the fewest fetch breaks
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Basic Block Reordering

 Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 
1990.

 Advantages:

+ Reduced fetch breaks (assuming profile behavior matches 
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

 Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation

106



Superblock
 Idea: Combine frequently executed basic blocks such that they form a 

single-entry multiple-exit larger block, which is likely executed as 
straight-line code

+ Helps wide fetch

+ Enables aggressive

compiler optimizations

and code reordering

within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

 Hwu et al. “The Superblock: An effective technique for VLIW 

and superscalar compilation,” Journal of Supercomputing, 1993.
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Superblock Formation (I)
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Superblock Formation (II)
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Superblock Code Optimization Example
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opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3<-r2,3



We did not cover the following slides in lecture. 

These are for your preparation for the next lecture. 



Computer Architecture
Lecture 10:  

Branch Prediction

Prof. Onur Mutlu

ETH Zürich

Fall 2017

25 October 2017



Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the outcomes of control 
transfer instructions within the trace.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store a dynamic instruction sequence in the 
same physical location so that it can be fetched in unison.
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Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous 
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996.   Received the MICRO Test of Time Award 20 years later

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
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Trace Cache: Example
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An Example Trace Cache Based Processor 

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999. 
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Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 
Thesis, University of Michigan, 1999. 
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What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 
1997.
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Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity)  called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?
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Trace Cache Design Issues: Example

 Branch promotion: promote highly-biased branches to branches 
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches

121



How to Determine Biased Branches 
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Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 
Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995 
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Front End BTB

4K Entries

ITLB &

Prefetcher
L2 Interface

x86 Decoder

Trace Cache

12K uop’s
Trace Cache BTB

512 Entries



Other Ways of Handling 

Branches
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)

125



Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

 Problem: How do you find instructions to fill the delay 
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on 
instructions in delay slots  difficult to fill the delay slot
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Delayed Branching (II)
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Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 Semantics: If the branch falls through (i.e., it is not taken), 
the delay slot instruction is not executed

 Why could this help?
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Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 

1. Number of delay slots == number of instructions to keep the pipeline 
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
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An Aside: Filling the Delay Slot
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a.  From before b.  From target c.  From fall through

sub $t4, $t5, $t6 

 

… 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

  

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

  sub $t4, $t5, $t6 

 

 

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

   sub $t4, $t5, $t6

add $s1, $s2, $s3 

 

if $s2 = 0 then 

 

    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

 

 

if $s2 = 0 then 

 

 add $s1, $s2, $s3

within same
basic block

For correctness: 
add a new instruction
to the not-taken path?

For correctness: 
add a new instruction
to the taken path?

Safe?

reordering data 
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Fine-Grained Multithreading
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Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts (PC+registers). 
Each cycle, fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with execution 
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple 
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor 

 available queue vs. unavailable (waiting) queue for threads 

 each thread can have only 1 instruction in the processor pipeline; each thread 
independent 

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to 

complete an 
instruction

 assuming no memory 
access

 No control and data 
dependency checking
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Multithreaded Pipeline Example

137Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
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Modern GPUs Are FGMT Machines
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NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 

for thread contexts 

(registers)

 Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

 Up to 32 warps are interleaved in an FGMT manner

 Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



End of

Fine-Grained Multithreading

144



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000))  { … }

 3 conditional branches

 Problem: This increases the number of control 
dependencies

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture
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Predication (Predicated Execution)

 Idea: Convert control dependence to data dependence

 Simple example: Suppose we had a Conditional Move 
instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
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D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data 

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1 

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code) 

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add   x, b, 1add   x, b, 1



Predicated Execution References

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional 
Branching and Predication for Adaptive Predicated 
Execution,” MICRO 2005.
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Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)
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Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient
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Predicated Execution
 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code)

 Advantages

 Eliminates hard-to-predict branches

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
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Predicated Execution (III)
 Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency

+ Can move instructions more freely within predicated code

 Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch 
behavior changes based on input set, program phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches 

-- Loop branches
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Predicated Execution in Intel Itanium

 Each instruction can be separately predicated 

 64 one-bit predicate registers

each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false
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Conditional Execution in the ARM ISA

 Almost all ARM instructions can include an optional 
condition code. 

 Prior to ARM v8

 An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition. 
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) only when it would 
actually be mispredicted

 If the branch were predicted when it would actually be 
correctly predicted

 Wouldn’t it be nice

 If predication did not require ISA support
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Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3
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Wish Branches

 The compiler generates code (with wish branches) that 

can be executed either as predicated code or non-

predicated code (normal branch code) 

 The hardware decides to execute predicated code or 

normal branch code at run-time based on the confidence of 

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and 
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro 
Top Picks, Jan/Feb 2006.
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TARGET:

(p1) mov b,0

TARGET:

(1) mov b,0

(!p1) mov b,1

wish.join !p1 JOIN

(1) mov b,1

wish.join (1) JOIN

Low Confidence
Wish Jump/Join

p1 = (cond)

branch p1, TARGET

C B

D

A
T N

mov b, 1 

jmp JOIN

TARGET:

mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code 

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)

wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence



Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to 

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g. 

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table 
entries

 Constrains the compiler’s scope for code optimizations
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict 
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Handling Other Types of 

Branches
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Remember: Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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How can we predict an indirect branch with many target addresses?



Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches 

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted 
target

 Accurate most of the time: 8-entry stack  > 95% accuracy
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Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement 

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls 
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?

Conditional (Direct) Branch Indirect Jump
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br.cond TARGET R1 = MEM[R2]

branch R1



Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

 Idea 2: Use history based target prediction 

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses
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More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect 
Branches via Hardware-Based Dynamic Devirtualization,” ISCA 
2007. 
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Indirect Branch Prediction (III)

 Idea 3: Treat an indirect branch as “multiple virtual 
conditional branches” in hardware

 Only for prediction purposes

 Predict each “virtual conditional branch” iteratively

 Kim et al., “VPC prediction,” ISCA 2007.
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VPC Prediction (I)
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1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Next iteration



VPC Prediction (II)
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1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration



VPC Prediction (III)
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cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3 

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L 
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3



VPC Prediction (IV)

 Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also 
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number 
of target addresses seen

 Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target 
address 

-- More interference in direction predictor and BTB

179



Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 Pre-decoded “branch type” information stored in the 
instruction cache identifies type of branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4
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Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend
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Complications in Superscalar Processors

 Superscalar processors

 attempt to execute more than 1 instruction-per-cycle 

 must fetch multiple instructions per cycle

 What if there is a branch in the middle of fetched instructions?

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on 
the first one predicted taken

 If the 1st instruction is the predicted taken branch 

 nullify 2nd instruction fetched
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Multiple Instruction Fetch: Concepts
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Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, 
just guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what 
about the remaining 14%?
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Conditional Execution in ARM (Prior to v8)

 Same as predicated execution

 Every instruction is conditionally executed

 in ARM ISAs prior to v8
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Trace Cache Design Issues (I)

 Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle

-- Trace based can be less accurate 

-- Trace based: How do you distinguish traces with the same start 
address?

 When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed

-- Very tight loops with short trip count might not benefit

 When to terminate the formation of a trace

 After N instructions, after B branches, at an indirect jump or 
return 
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Trace Cache Design Issues (II) 

 Should entire “path” match for a trace cache hit?

 Partial matching: A piece of a trace is supplied based on branch prediction

+ Increases hit rate when there is not a full path match

-- Lengthens critical path (next fetch address dependent on the match)
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Trace Cache Design Issues (III)

 Path associativity: Multiple traces starting at the same address can be present 
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)

-- Need to determine longest matching path

-- Increased cache pressure
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 Inactive issue: All blocks within a trace 
cache line are issued even if they do not 
match the predicted path

+ Reduces impact of branch mispredictions

+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch 
resolution

-- Some instructions not dispatched/flushed

Trace Cache Design Issues (IV)
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Trace Cache Design Issues (V)

 Branch promotion: promote highly-biased branches to branches 
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches
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How to Determine Biased Branches 
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Effect on Fetch Rate
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Effect on IPC (16-wide superscalar)

 ~15% IPC increase over “sequential I-cache” that breaks fetch on a 
predicted-taken branch
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Enhanced I-Cache vs. Trace Cache (I)
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1. Next trace prediction

2. Trace cache fetch

Trace Cache

Enhanced

Instruction Cache

Fetch

Completion

1. Multiple-branch prediction

2. Instruction cache fetch from

multiple blocks (N ports)

3. Instruction alignment & 

collapsing

1. Multiple-branch predictor 

update

1. Trace construction and fill

2. Trace predictor update



Enhanced I-Cache vs. Trace Cache (II)
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Frontend vs. Backend Complexity

 Backend is not on the critical path of instruction execution

 Easier to increase its latency without affecting performance

 Frontend is on the critical path

 Increased latency fetch directly increases

 Branch misprediction penalty

 Increased complexity can affect cycle time
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Fill Unit Optimizations

 Fill unit constructs traces out of decoded instructions

 Can perform optimizations across basic blocks

 Branch promotion: promote highly-biased branches to 
branches with static prediction

 Can treat the whole trace as an atomic execution unit

 All or none of the trace is retired (based on branch directions in trace)

 Enables many optimizations across blocks

 Dead code elimination

 Instruction reordering

 Reassociation

 Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for 
Trace Cache Microprocessors,” MICRO 1998.
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Remember This Optimization?
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opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Part of Trace in Fill Unit

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Optimized Trace

opC’: mul r3<-r2,3



Redundancy in the Trace Cache

 ABC, BCA, CAB can all be in

the trace cache

 Leads to contention and reduced 

hit rate

 One possible solution: Block based trace cache (Black et al., ISCA 1999)

 Idea: Decouple storage of basic blocks from their “names”

 Store traces of pointers to basic blocks rather than traces of basic 
blocks themselves

 Basic blocks stored in a separate “block table”

+ Reduces redundancy of basic blocks

-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with 
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block 

is discarded and the target of fault is fetched  

201



Block Structured ISA (II)

 Advantages:

+ Larger blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled 
within atomic blocks

+ Can explicitly represent dependencies among operations within an 
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary 
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that 
cannot normally be performed across basic blocks
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Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.
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Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block 

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic
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Superblock vs. BS-ISA

 Superblock 

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed     

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection. 

+ Dynamic prediction to choose the next enlarged block. Can 
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
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