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Mid-Semester Exam

 November 30

 In class

 Questions similar to homework questions
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High-Level Summary of Last Week

 SIMD Processing

 Array Processors

 Vector Processors

 SIMD Extensions

 Graphics Processing Units

 GPU Architecture

 GPU Programming
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Agenda for Today & Tomorrow

 Control Dependence Handling

 Problem

 Six solutions

 Branch Prediction

 Other Methods of Control Dependence Handling
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Required Readings

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      Required

 T. Yeh and Y. Patt,  “Two-Level Adaptive Training Branch 
Prediction,”  Intl. Symposium on Microarchitecture, 
November 1991.

 MICRO Test of Time Award Winner (after 24 years)

 Required
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Recommended Readings

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Recommended

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 

 Recommended
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Control Dependence Handling
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Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction?
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Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Stall Fetch Until Next PC is Known: Good Idea?
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The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide)

 A branch misprediction leads to N x W wasted instruction slots 
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Importance of The Branch Problem
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch 

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions? 

 100% accuracy 
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles 

 40% extra instructions fetched 

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched
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Branch Prediction
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Simplest: Always Guess NextPC = PC + 4 

 Always predict the next sequential instruction is the next 
instruction to be executed

 This is a form of next fetch address prediction (and branch 
prediction)

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch

 Profile guided code positioning  Pettis & Hansen, PLDI 1990.

 Hardware: ??? (how can you do this in hardware…) 

 Cache traces of executed instructions  Trace cache
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Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their 
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution
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Branch Prediction: Always PC+4
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Pipeline Flush on a Misprediction
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Performance Analysis

 correct guess  no penalty ~86% of the time

 incorrect guess  2 bubbles

 Assume

 no data dependency related stalls

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [ 1 + (0.20*0.7) * 2 ] = 

= [ 1 + 0.14 * 2 ] = 1.28 
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Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early 
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Is this a good idea?



Branch Prediction (A Bit More Enhanced)

 Idea: Predict the next fetch address (to be used in the next 
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access 
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache
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Three Things to Be Predicted

 Requires three things to be predicted at fetch stage:

1. Whether the fetched instruction is a branch

2. (Conditional) branch direction

3. Branch target address (if taken)

 Third (3.) can be accomplished using a BTB

 Remember target address computed last time branch was 
executed

 First (1.) can be accomplished using a BTB

 If BTB provides a target address for the program counter, then it 
must be a branch

 Or, we can store “branch metadata” bits in instruction 
cache/memory  partially decoded instruction stored in I-cache

 Second (2.): How do we predict the direction?
26



Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)
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More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based  (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)
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Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40% (for conditional branches)

 Remember: Compiler can layout code such that the likely path 
is the “not-taken” path  more effective prediction

 Always taken

 No direction prediction

 Better accuracy: ~60-70% (for conditional branches)

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken
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Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy

-- Accuracy depends on the representativeness of profile input 
set
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Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine statically-
predicted direction

 Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs)

 Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support (ditto for other static methods)

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate
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Static Branch Prediction (IV)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than 
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer? 
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Pragmas

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with 
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code.
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Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What is the common disadvantage of all three techniques?

 Cannot adapt to dynamic changes in branch behavior 

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…)

 What is a Dynamic Compiler? 

 A compiler that generates code at runtime: Remember Transmeta?

 Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime)
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More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based  (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

 Advanced algorithms (e.g., using perceptrons)
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Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information 
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness 
problem goes away

 Disadvantages

-- More complex (requires additional hardware)
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Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN  90% accuracy

 Always mispredicts the last iteration and the first iteration 
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large N (number of iterations)

-- Loop branches for loops will small N (number of iterations)

TNTNTNTNTNTNTNTNTNTN  0% accuracy
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Implementing the Last-Time Predictor
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State Machine for Last-Time Prediction
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Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly 

 even though the branch may be mostly taken or mostly not 
taken

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch 
instead of a single bit 

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981.
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Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single 
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN  50% accuracy

(assuming counter initialized to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)
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State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 Arithmetic with maximum and minimum values
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Hysteresis Using a 2-bit Counter
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Is This Good Enough?

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?
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Let’s Do the Exercise Again
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch)

 Assume: 1 out of 5 instructions is a branch 

 Assume: Each 5 instruction-block ends with a branch

 How long does it take to fetch 500 instructions? 

 100% accuracy 
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 90% accuracy
 100 (correct path) + 20 * 10 (wrong path) = 300 cycles 

 200% extra instructions fetched 

 85% accuracy
 100 (correct path) + 20 * 15 (wrong path) = 400 cycles

 300% extra instructions fetched
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Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit “last-time” 
predictability

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes

 Global branch correlation 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed)

 Local branch correlation

46Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path 
are correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken
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Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken
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Global Branch Correlation (III)

 Eqntott, SPEC’92: Generates truth table from Boolean expr.

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

….

}

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. 
bb=0@B3) then B3 is certainly taken
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Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history” 
of all branches

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR)

 Use GHR to index into a table that recorded the outcome that 
was seen for each GHR value in the recent past  Pattern 

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)

50Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was 
seen
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How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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Intel Pentium Pro Branch Predictor

 Two level global branch predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower 
order bits of the branch address
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Global Branch Correlation Analysis

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

 Only 3 past branches’ directions 
*really* matter 

 Evers et al., “An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work,” ISCA 1998.
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Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT   

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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An Issue: Interference in the PHTs

 Sharing the PHTs between histories/branches leads to interference

 Different branches map to the same PHT entry and modify it

 Interference can be positive, negative, or neutral

 Interference can be eliminated by dedicating a PHT per branch

-- Too much hardware cost

 How else can you eliminate or reduce interference?
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Reducing Interference in PHTs (I)

 Increase size of PHT

 Branch filtering

 Predict highly-biased branches separately so that they do not 
consume PHT entries

 E.g., static prediction or BTB based prediction

 Hashing/index-randomization

 Gshare

 Gskew

 Agree prediction
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Biased Branches and Branch Filtering

 Observation: Many branches are biased in one direction 
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers

 Solution: Detect such biased branches, and predict them 
with a simpler predictor (e.g., last time, static, …)

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994.
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Reducing Interference: Gshare

 Idea 1: Randomize the indexing function into the PHT such that 
probability of two branches mapping to the same entry reduces

 Gshare predictor: GHR hashed with the Branch PC

+ Better utilization of PHT  + More context information

- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Reducing Interference: Agree Predictor

 Idea 2: Agree prediction

 Each branch has a “bias” bit associated with it in BTB

 Ideally, most likely outcome for the branch

 High bit of the PHT counter indicates whether or not the prediction 
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)

-- Requires determining bias bits (compiler vs. hardware)
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Sprangle et al., “The Agree Predictor:

A Mechanism for Reducing Negative 

Branch History Interference,” ISCA 
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Why Does Agree Prediction Make Sense?

 Assume two branches have taken rates of 85% and 15%.

 Assume they conflict in the PHT

 Let’s compute the probability they have opposite outcomes

 Baseline predictor:

 P (b1 T, b2 NT) + P (b1 NT, b2 T) 

= (85%*85%) + (15%*15%) = 74.5%

 Agree predictor:

 Assume bias bits are set to T (b1) and NT (b2)

 P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree) 

= (85%*15%) + (15%*85%) = 25.5%

 Works because most branches are biased (not 50% taken)
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Reducing Interference: Gskew

 Idea 3: Gskew predictor

 Multiple PHTs

 Each indexed with a different type of hash function

 Final prediction is a majority vote

+ Distributes interference patterns in a more randomized way 
(interfering patterns less likely in different PHTs at the same time)

-- More complexity (due to multiple PHTs, hash functions)
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Report 1993.

Michaud, “Trading conflict 

and capacity aliasing in 

conditional branch 

predictors,” ISCA 1997
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More Techniques to Reduce PHT Interference

 The bi-mode predictor

 Separate PHTs for mostly-taken and mostly-not-taken branches

 Reduces negative aliasing between them

 Lee et al., “The bi-mode branch predictor,” MICRO 1997.

 The YAGS predictor

 Use a small tagged “cache” to predict branches that have experienced 
interference 

 Aims to not mispredict them again

 Eden and Mudge, “The YAGS branch prediction scheme,” MICRO 1998.

 Alpha EV8 (21464) branch predictor

 Seznec et al., “Design tradeoffs for the Alpha EV8 conditional 
branch predictor,” ISCA 2002.
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Can We Do Better: Two-Level Prediction

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes

 Global branch correlation 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed)

 Local branch correlation

67Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR 1993.
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More Motivation for Local History

 To predict a loop 
branch “perfectly”, we 
want to identify the 
last iteration of the 
loop

 By having a separate 
PHT entry for each 
local history, we can 
distinguish different 
iterations of a loop

 Works for “short” 
loops
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Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history” 
of the same branch

 Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register + 
history at that history register value)
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Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was 
seen
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1 1 ….. 1 0

Local history 

registers

00 …. 00
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0 1

2 3

index

Pattern History Table (PHT) 

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.
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target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the 

current instruction

Which directions earlier instances of *this branch* went



 BHR can be global (G), per set of branches (S), or per branch (P)

 PHT counters can be adaptive (A) or static (S)

 PHT can be global (g), per set of branches (s), or per branch (p)

 Yeh and Patt, “Alternative Implementations of Two-Level 
Adaptive Branch Prediction,” ISCA 1992.

Two-Level Predictor Taxonomy
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Can We Do Even Better?

 Predictability of branches varies

 Some branches are more predictable using local history

 Some using global

 For others, a simple two-bit counter is enough

 Yet for others, a bit is enough 

 Observation: There is heterogeneity in predictability 
behavior of branches

 No one-size fits all branch prediction algorithm for all branches

 Idea: Exploit that heterogeneity by designing 
heterogeneous branch predictors
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Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up)

 Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
76



Are We Done w/ Branch Prediction?

 Hybrid branch predictors work well

 E.g., 90-97% prediction accuracy on average

 Some “difficult” workloads still suffer, though!

 E.g., gcc

 Max IPC with tournament prediction: 9

 Max IPC with perfect prediction: 35
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Are We Done w/ Branch Prediction?
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Chappell et al., “Simultaneous Subordinate Microthreading (SSMT),” ISCA 1999.



Some Other Branch Predictor Types

 Loop branch detector and predictor

 Loop iteration count detector/predictor

 Works well for loops with small number of iterations, where 
iteration count is predictable

 Used in Intel Pentium M

 Perceptron branch predictor

 Learns the direction correlations between individual branches

 Assigns weights to correlations

 Jimenez and Lin, “Dynamic Branch Prediction with 
Perceptrons,” HPCA 2001.

 Hybrid history length based predictor

 Uses different tables with different history lengths

 Seznec, “Analysis of the O-Geometric History Length branch 
predictor,” ISCA 2005.
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Intel Pentium M Predictors

80

Gochman et al., 

“The Intel Pentium M Processor: Microarchitecture and Performance,”

Intel Technology Journal, May 2003.



Perceptron Branch Predictor (I)

 Idea: Use a perceptron to learn the correlations between branch history 
register bits and branch outcome

 A perceptron learns a target Boolean function of N inputs

 Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

 Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962
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Each branch associated with a perceptron

A perceptron contains a set of weights wi

 Each weight corresponds to a bit in 

the GHR 

How much the bit is correlated with the 

direction of the branch

 Positive correlation: large + weight

 Negative correlation: large - weight

Prediction:

 Express GHR bits as 1 (T) and -1 (NT)

 Take dot product of GHR and weights

 If output > 0, predict taken



Perceptron Branch Predictor (II)
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Bias weight

(bias of branch independent of 

the history)

Dot product of GHR

and perceptron weights

Output

compared

to 0

Prediction function:

Training function:



Perceptron Branch Predictor (III)

 Advantages

+ More sophisticated learning mechanism  better accuracy

 Disadvantages

-- Hard to implement (adder tree to compute perceptron output)

-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history 
bits and branch outcome
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Prediction Using Multiple History Lengths

 Observation: Different 
branches require 
different history lengths 
for better prediction 
accuracy

 Idea: Have multiple 
PHTs indexed with 
GHRs with different 
history lengths and 
intelligently allocate 
PHT entries to different 
branches
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Seznec and Michaud, “A case for (partially) tagged Geometric History Length 

Branch Prediction,” JILP 2006.



TAGE: Tagged & prediction by the longest history matching entry

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction 

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base 

predictor

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



=

?

=

?

=

?1
1 1 1 1 1 1

1

1

Hit

Hit

Altpred: Alternative 

prediction

Pred

Miss

TAGE: Multiple Tables 

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



TAGE: Which Table to Use? 

 General case:

 Longest history-matching component provides the prediction

 Special case: 

 Many mispredictions on newly allocated entries: weak Ctr

On many applications, Altpred more accurate than Pred

 Property dynamically monitored through 4-bit counters

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



A Tagged Table Entry

 Ctr: 3-bit prediction counter

 U: 1 or  2-bit counters 

 Was the entry recently useful?

 Tag: partial tag

Tag CtrU

Andre Seznec, “TAGE-SC-L branch predictors again,” CBP 2016.



State of the Art in Branch Prediction

 See the Branch Prediction Championship

 https://www.jilp.org/cbp2016/program.html
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Andre Seznec, 

“TAGE-SC-L branch predictors,”

CBP 2014.

Andre Seznec,

“TAGE-SC-L branch predictors 

again,” CBP 2016.

https://www.jilp.org/cbp2016/program.html


Another Direction: Helper Threading

 Idea: Pre-compute the outcome of the branch with a 
separate, customized thread (i.e., a helper thread)

 Chappell et al., “Difficult-Path Branch Prediction Using Subordinate 
Microthreads,” ISCA 2002.

 Chappell et al., “Simultaneous Subordinate Microthreading,” ISCA 1999.
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Branch Confidence Estimation

 Idea: Estimate if the prediction is likely to be correct 

 i.e., estimate how “confident” you are in the prediction 

 Why?

 Could be very useful in deciding how to speculate:

 What predictor/PHT to choose/use

 Whether to keep fetching on this path

 Whether to switch to some other way of handling the branch, 
e.g. dual-path execution (eager execution) or dynamic 
predication 

 …

 Jacobsen et al., “Assigning Confidence to Conditional Branch 
Predictions,” MICRO 1996.
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How to Estimate Confidence

 An example estimator:

 Keep a record of correct/incorrect outcomes for the past N 
instances of the “branch”

 Based on the correct/incorrect patterns, guess if the curent 
prediction will likely be correct/incorrect

92Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,” MICRO 1996.



What to Do With Confidence Estimation?

 An example application: Pipeline Gating 
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Manne et al., “Pipeline Gating: Speculation Control for Energy Reduction,” ISCA 1998.



What to Do With Confidence Estimation?

 Another application: Statistical Correction of Prediction
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Andre Seznec, 

“TAGE-SC-L branch predictors,”
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Issues in Fast & Wide Fetch 

Engines

95



I-Cache Line and Way Prediction

 Problem: Complex branch prediction can take too long (many 
cycles)

 Goal

 Quickly generate (a reasonably accurate) next fetch address 

 Enable the fetch engine to run at high frequencies

 Override the quick prediction with more sophisticated prediction

 Idea: Predicted the next cache line and way at the time you 
fetch the current cache line 

 Example Mechanism (e.g., Alpha 21264)

 Each cache line tells which line/way to fetch next (prediction)

 On a fill, line/way predictor points to next sequential line

 On branch resolution, line/way predictor is updated

 If line/way prediction is incorrect, one cycle is wasted
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Alpha 21264 Line & Way Prediction

97Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



Alpha 21264 Line & Way Prediction

98Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.



Issues in Wide Fetch Engines

 Wide Fetch: Fetch multiple instructions per cycle

 Superscalar

 VLIW

 SIMT (GPUs’ single-instruction multiple thread model)

 Wide fetch engines suffer from the branch problem:

 How do you feed the wide pipeline with useful instructions in a 
single cycle?

 What if there is a taken branch in the “fetch packet”?

 What is there are “multiple (taken) branches” in the “fetch 
packet”?
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Fetching Multiple Instructions Per Cycle

 Two problems

1. Alignment of instructions in I-cache

 What if there are not enough (N) instructions in the cache line 
to supply the fetch width?

2. Fetch break: Branches present in the fetch block

 Fetching sequential instructions in a single cycle is easy

 What if there is a control flow instruction in the N instructions?

 Problem: The direction of the branch is not known but we 
need to fetch more instructions

 These can cause effective fetch width < peak fetch width
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Wide Fetch Solutions: Alignment

 Large cache blocks: Hope N instructions are contained in 
the block

 Split-line fetch: If address falls into second half of the 
cache block, fetch the first half of next cache block as well

 Enabled by banking of the cache

 Allows sequential fetch across cache blocks in one cycle

 Intel Pentium and AMD K5
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Split Line Fetch

102

Need alignment logic:



Short Distance Predicted-Taken Branches
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Basic Block Reordering

 Not-taken control flow instructions not a problem: no fetch 
break: make the likely path the not-taken path

 Idea: Convert taken branches to not-taken ones

 i.e., reorder basic blocks (after profiling)

 Basic block: code with a single entry and single exit point

 Code Layout 1 leads to the fewest fetch breaks
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Basic Block Reordering

 Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 
1990.

 Advantages:

+ Reduced fetch breaks (assuming profile behavior matches 
runtime behavior of branches)

+ Increased I-cache hit rate

+ Reduced page faults

 Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased

-- Requires recompilation
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Superblock
 Idea: Combine frequently executed basic blocks such that they form a 

single-entry multiple-exit larger block, which is likely executed as 
straight-line code

+ Helps wide fetch

+ Enables aggressive

compiler optimizations

and code reordering

within the superblock

-- Increased code size

-- Profile dependent

-- Requires recompilation

 Hwu et al. “The Superblock: An effective technique for VLIW 

and superscalar compilation,” Journal of Supercomputing, 1993.
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Superblock Formation (I)

108

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90 10

900

0
90

10
99

1

Y

A

100

C

10

B

90

E

90

D

0

F

100

Z

1

90
10

900

0
90

10

99

1

Is this a superblock?



Superblock Formation (II)
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Superblock Code Optimization Example
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opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3<-r2,3
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Trace Cache: Basic Idea

 A trace is a sequence of executed instructions.

 It is specified by a start address and the outcomes of control 
transfer instructions within the trace.

 Traces repeat: programs have frequently executed paths

 Trace cache idea: Store a dynamic instruction sequence in the 
same physical location so that it can be fetched in unison.
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Reducing Fetch Breaks: Trace Cache

 Dynamically determine the basic blocks that are executed consecutively

 Trace: Consecutively executed basic blocks

 Idea: Store consecutively-executed basic blocks in physically-contiguous 
internal storage (called trace cache)

 Basic trace cache operation:
 Fetch from consecutively-stored basic blocks (predict next trace or branches)

 Verify the executed branch directions with the stored ones

 If mismatch, flush the remaining portion of the trace

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996.   Received the MICRO Test of Time Award 20 years later

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
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Trace Cache: Example
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An Example Trace Cache Based Processor 

 From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999. 
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Multiple Branch Predictor

 S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 
Thesis, University of Michigan, 1999. 
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What Does A Trace Cache Line Store?

 Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 
1997.
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Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)

+ No need for decoding (instructions can be stored in decoded form)

+ Can enable dynamic optimizations within a trace

-- Requires hardware to form traces (more complexity)  called fill unit

-- Results in duplication of the same basic blocks in the cache

-- Can require the prediction of multiple branches per cycle

-- If multiple cached traces have the same start address

-- What if XYZ and XYT are both likely traces?
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Trace Cache Design Issues: Example

 Branch promotion: promote highly-biased branches to branches 
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches
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How to Determine Biased Branches 
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Intel Pentium 4 Trace Cache

 A 12K-uop trace cache replaces the L1 I-cache

 Trace cache stores decoded and cracked instructions

 Micro-operations (uops): returns 6 uops every other cycle

 x86 decoder can be simpler and slower

 A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 
Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995 
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Front End BTB

4K Entries
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Prefetcher
L2 Interface
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Trace Cache

12K uop’s
Trace Cache BTB

512 Entries



Other Ways of Handling 

Branches
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

 Problem: How do you find instructions to fill the delay 
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on 
instructions in delay slots  difficult to fill the delay slot
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Delayed Branching (II)
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Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 Semantics: If the branch falls through (i.e., it is not taken), 
the delay slot instruction is not executed

 Why could this help?
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Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 

1. Number of delay slots == number of instructions to keep the pipeline 
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
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An Aside: Filling the Delay Slot
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a.  From before b.  From target c.  From fall through

sub $t4, $t5, $t6 

 

… 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

  

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

  sub $t4, $t5, $t6 

 

 

 

 

add $s1, $s2, $s3 

 

if $s1 = 0 then 

 

   sub $t4, $t5, $t6

add $s1, $s2, $s3 

 

if $s2 = 0 then 

 

    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

 

 

if $s2 = 0 then 

 

 add $s1, $s2, $s3

within same
basic block

For correctness: 
add a new instruction
to the not-taken path?

For correctness: 
add a new instruction
to the taken path?

Safe?

reordering data 
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Fine-Grained Multithreading
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Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts (PC+registers). 
Each cycle, fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with execution 
of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)

 Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple 
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-Grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor 

 available queue vs. unavailable (waiting) queue for threads 

 each thread can have only 1 instruction in the processor pipeline; each thread 
independent 

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff 
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Fine-Grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to 

complete an 
instruction

 assuming no memory 
access

 No control and data 
dependency checking
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Multithreaded Pipeline Example
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Sun Niagara Multithreaded Pipeline
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
139



Modern GPUs Are FGMT Machines
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NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= data-parallel (SIMD) func. unit, 

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for thread contexts 

(registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 

for thread contexts 

(registers)

 Groups of 32 threads share instruction stream (each group is 
a Warp): they execute the same instruction on different data

 Up to 32 warps are interleaved in an FGMT manner

 Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



End of

Fine-Grained Multithreading

144



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000))  { … }

 3 conditional branches

 Problem: This increases the number of control 
dependencies

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture
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Predication (Predicated Execution)

 Idea: Convert control dependence to data dependence

 Simple example: Suppose we had a Conditional Move 
instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
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D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data 

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1 

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code) 

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add   x, b, 1add   x, b, 1



Predicated Execution References

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional 
Branching and Predication for Adaptive Predicated 
Execution,” MICRO 2005.
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Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)
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Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient
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Predicated Execution
 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code)

 Advantages

 Eliminates hard-to-predict branches

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
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Predicated Execution (III)
 Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency

+ Can move instructions more freely within predicated code

 Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch 
behavior changes based on input set, program phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches 

-- Loop branches
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Predicated Execution in Intel Itanium

 Each instruction can be separately predicated 

 64 one-bit predicate registers

each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false
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br

else1

else2

br

then1

then2
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join1
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else1p2
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then1p1



Conditional Execution in the ARM ISA

 Almost all ARM instructions can include an optional 
condition code. 

 Prior to ARM v8

 An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition. 
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) only when it would 
actually be mispredicted

 If the branch were predicted when it would actually be 
correctly predicted

 Wouldn’t it be nice

 If predication did not require ISA support
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Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3
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Wish Branches

 The compiler generates code (with wish branches) that 

can be executed either as predicated code or non-

predicated code (normal branch code) 

 The hardware decides to execute predicated code or 

normal branch code at run-time based on the confidence of 

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and 
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro 
Top Picks, Jan/Feb 2006.
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TARGET:

(p1) mov b,0

TARGET:

(1) mov b,0

(!p1) mov b,1

wish.join !p1 JOIN

(1) mov b,1

wish.join (1) JOIN

Low Confidence
Wish Jump/Join

p1 = (cond)

branch p1, TARGET

C B

D

A
T N

mov b, 1 

jmp JOIN

TARGET:

mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code 

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)

wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence



Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to 

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g. 

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table 
entries

 Constrains the compiler’s scope for code optimizations
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)

166



Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict 
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Hard to predict

C

D

E
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B

D
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BC

D

E

F

path 1 path 2 
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D

E
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B

path 1 path 2 

Dual-path Predicated Execution
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Handling Other Types of 

Branches
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Remember: Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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How can we predict an indirect branch with many target addresses?



Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches 

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted 
target

 Accurate most of the time: 8-entry stack  > 95% accuracy
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Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement 

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls 
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TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1



Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

 Idea 2: Use history based target prediction 

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses

173



More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect 
Branches via Hardware-Based Dynamic Devirtualization,” ISCA 
2007. 
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Indirect Branch Prediction (III)

 Idea 3: Treat an indirect branch as “multiple virtual 
conditional branches” in hardware

 Only for prediction purposes

 Predict each “virtual conditional branch” iteratively

 Kim et al., “VPC prediction,” ISCA 2007.
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0xabcd

0x018a

0x7a9c

0x…

iteration 
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PC

Virtual PC

Hash value table



VPC Prediction (I)
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1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Next iteration



VPC Prediction (II)
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1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration



VPC Prediction (III)
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cond. jump TARG1 // VPC: L 

cond. jump TARG2 // VPC: VL2 

cond. jump TARG3 // VPC: VL3 

cond. jump TARG4 // VPC: VL4

call R1                     // PC: L 
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3



VPC Prediction (IV)

 Advantages:

+ High prediction accuracy (>90%)

+ No separate indirect branch predictor

+ Resource efficient (reuses existing components)

+ Improvement in conditional branch prediction algorithms also 
improves indirect branch prediction

+ Number of locations in BTB consumed for a branch = number 
of target addresses seen

 Disadvantages:

-- Takes multiple cycles (sometimes) to predict the target 
address 

-- More interference in direction predictor and BTB
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Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 Pre-decoded “branch type” information stored in the 
instruction cache identifies type of branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4
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Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend
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Complications in Superscalar Processors

 Superscalar processors

 attempt to execute more than 1 instruction-per-cycle 

 must fetch multiple instructions per cycle

 What if there is a branch in the middle of fetched instructions?

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on 
the first one predicted taken

 If the 1st instruction is the predicted taken branch 

 nullify 2nd instruction fetched
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Multiple Instruction Fetch: Concepts
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Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, 
just guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what 
about the remaining 14%?
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Conditional Execution in ARM (Prior to v8)

 Same as predicated execution

 Every instruction is conditionally executed

 in ARM ISAs prior to v8
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Trace Cache Design Issues (I)

 Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle

-- Trace based can be less accurate 

-- Trace based: How do you distinguish traces with the same start 
address?

 When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed

-- Very tight loops with short trip count might not benefit

 When to terminate the formation of a trace

 After N instructions, after B branches, at an indirect jump or 
return 
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Trace Cache Design Issues (II) 

 Should entire “path” match for a trace cache hit?

 Partial matching: A piece of a trace is supplied based on branch prediction

+ Increases hit rate when there is not a full path match

-- Lengthens critical path (next fetch address dependent on the match)
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Trace Cache Design Issues (III)

 Path associativity: Multiple traces starting at the same address can be present 
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)

-- Need to determine longest matching path

-- Increased cache pressure
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 Inactive issue: All blocks within a trace 
cache line are issued even if they do not 
match the predicted path

+ Reduces impact of branch mispredictions

+ Reduces basic block duplication in trace cache

-- Slightly more complex scheduling/branch 
resolution

-- Some instructions not dispatched/flushed

Trace Cache Design Issues (IV)
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Trace Cache Design Issues (V)

 Branch promotion: promote highly-biased branches to branches 
with static prediction

+ Larger traces

+ No need for consuming

branch predictor BW

+ Can enable optimizations

within trace

-- Requires hardware to

determine highly-biased

branches
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How to Determine Biased Branches 
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Effect on Fetch Rate
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Effect on IPC (16-wide superscalar)

 ~15% IPC increase over “sequential I-cache” that breaks fetch on a 
predicted-taken branch
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Enhanced I-Cache vs. Trace Cache (I)
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1. Next trace prediction

2. Trace cache fetch

Trace Cache

Enhanced

Instruction Cache

Fetch

Completion

1. Multiple-branch prediction

2. Instruction cache fetch from

multiple blocks (N ports)

3. Instruction alignment & 

collapsing

1. Multiple-branch predictor 

update

1. Trace construction and fill

2. Trace predictor update



Enhanced I-Cache vs. Trace Cache (II)
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Frontend vs. Backend Complexity

 Backend is not on the critical path of instruction execution

 Easier to increase its latency without affecting performance

 Frontend is on the critical path

 Increased latency fetch directly increases

 Branch misprediction penalty

 Increased complexity can affect cycle time
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Fill Unit Optimizations

 Fill unit constructs traces out of decoded instructions

 Can perform optimizations across basic blocks

 Branch promotion: promote highly-biased branches to 
branches with static prediction

 Can treat the whole trace as an atomic execution unit

 All or none of the trace is retired (based on branch directions in trace)

 Enables many optimizations across blocks

 Dead code elimination

 Instruction reordering

 Reassociation

 Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for 
Trace Cache Microprocessors,” MICRO 1998.
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Remember This Optimization?

198

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,199

1

Part of Trace in Fill Unit

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,199

1

Optimized Trace

opC’: mul r3<-r2,3



Redundancy in the Trace Cache

 ABC, BCA, CAB can all be in

the trace cache

 Leads to contention and reduced 

hit rate

 One possible solution: Block based trace cache (Black et al., ISCA 1999)

 Idea: Decouple storage of basic blocks from their “names”

 Store traces of pointers to basic blocks rather than traces of basic 
blocks themselves

 Basic blocks stored in a separate “block table”

+ Reduces redundancy of basic blocks

-- Lengthens fetch cycle (indirection needed to access blocks)

-- Block table needs to be multiported to obtain multiple blocks per cycle
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Techniques to Reduce Fetch Breaks

 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Trace cache

 Hardware/software cooperative

 Block structured ISA
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Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with 
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block 

is discarded and the target of fault is fetched  
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Block Structured ISA (II)

 Advantages:

+ Larger blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled 
within atomic blocks

+ Can explicitly represent dependencies among operations within an 
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary 
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that 
cannot normally be performed across basic blocks
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Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.
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Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block 

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic
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Superblock vs. BS-ISA

 Superblock 

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed     

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection. 

+ Dynamic prediction to choose the next enlarged block. Can 
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
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