
Computer Architecture
Lecture 12: Memory Interference

and Quality of Service

Prof. Onur Mutlu
ETH Zürich
Fall 2017

1 November 2017

Summary of Last Week’s Lectures
n Control Dependence Handling

q Problem
q Six solutions

n Branch Prediction

n Trace Caches

n Other Methods of Control Dependence Handling
q Fine-Grained Multithreading
q Predicated Execution
q Multi-path Execution

2

Agenda for Today
n Shared vs. private resources in multi-core systems

n Memory interference and the QoS problem

n Memory scheduling

n Other approaches to mitigate and control memory
interference

3

Quick Summary Papers
n "Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems”

n "The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"

n "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems”

n "Parallel Application Memory Scheduling”

n "Reducing Memory Interference in Multicore Systems
via Application-Aware Memory Channel Partitioning"

4

Shared Resource Design for
Multi-Core Systems

5

Memory System: A Shared Resource View

6

Storage

Resource Sharing Concept
n Idea: Instead of dedicating a hardware resource to a

hardware context, allow multiple contexts to use it
q Example resources: functional units, pipeline, caches, buses,

memory
n Why?

+ Resource sharing improves utilization/efficiency à throughput
q When a resource is left idle by one thread, another thread can

use it; no need to replicate shared data
+ Reduces communication latency

q For example, shared data kept in the same cache in SMT
processors

+ Compatible with the shared memory model

7

Resource Sharing Disadvantages
n Resource sharing results in contention for resources

q When the resource is not idle, another thread cannot use it
q If space is occupied by one thread, another thread needs to re-

occupy it

- Sometimes reduces each or some thread’s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation à inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
8

Example: Problem with Shared Caches

9

L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2←t1

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Example: Problem with Shared Caches

10

L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Example: Problem with Shared Caches

11

L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Need for QoS and Shared Resource Mgmt.
n Why is unpredictable performance (or lack of QoS) bad?

n Makes programmer’s life difficult
q An optimized program can get low performance (and

performance varies widely depending on co-runners)

n Causes discomfort to user
q An important program can starve
q Examples from shared software resources

n Makes system management difficult
q How do we enforce a Service Level Agreement when

hardware resources are sharing is uncontrollable?
12

Resource Sharing vs. Partitioning
n Sharing improves throughput

q Better utilization of space

n Partitioning provides performance isolation (predictable
performance)
q Dedicated space

n Can we get the benefits of both?

n Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable
q No wasted resource + QoS mechanisms for threads

13

Shared Hardware Resources
n Memory subsystem (in both Multi-threaded and Multi-core)

q Non-private caches
q Interconnects
q Memory controllers, buses, banks

n I/O subsystem (in both Multi-threaded and Multi-core)
q I/O, DMA controllers
q Ethernet controllers

n Processor (in Multi-threaded)
q Pipeline resources
q L1 caches

14

Memory System is the Major Shared Resource

15

threads’ requests
interfere

Much More of a Shared Resource in Future

16

Inter-Thread/Application Interference
n Problem: Threads share the memory system, but memory

system does not distinguish between threads’ requests

n Existing memory systems
q Free-for-all, shared based on demand
q Control algorithms thread-unaware and thread-unfair
q Aggressive threads can deny service to others
q Do not try to reduce or control inter-thread interference

17

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

18

19

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

20

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

21

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

22

DRAM Controllers

n A row-conflict memory access takes significantly longer
than a row-hit access

n Current controllers take advantage of the row buffer

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput
n But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

23

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

24

Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

25

Distributed DoS in Networked Multi-Core Systems

26

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via
packet-switched
routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

More on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

27

More on Interconnect Based Starvation
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY,
December 2009. Slides (pdf)

28

How Do We Solve The Problem?

n Inter-thread interference is uncontrolled in all memory
resources
q Memory controller
q Interconnect
q Caches

n We need to control it
q i.e., design an interference-aware (QoS-aware) memory system

29

QoS-Aware Memory Systems: Challenges

n How do we reduce inter-thread interference?
q Improve system performance and core utilization
q Reduce request serialization and core starvation

n How do we control inter-thread interference?
q Provide mechanisms to enable system software to enforce

QoS policies
q While providing high system performance

n How do we make the memory system configurable/flexible?
q Enable flexible mechanisms that can achieve many goals

n Provide fairness or throughput when needed
n Satisfy performance guarantees when needed

30

Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q QoS-aware memory controllers
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
q Source throttling to control access to memory system
q QoS-aware data mapping to memory controllers
q QoS-aware thread scheduling to cores

31

Fundamental Interference Control Techniques
n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

32

QoS-Aware Memory Scheduling

n How to schedule requests to provide
q High system performance
q High fairness to applications
q Configurability to system software

n Memory controller needs to be aware of threads

33

Memory	
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling:
Evolution

QoS-Aware Memory Scheduling: Evolution
n Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q Idea: Estimate and balance thread slowdowns
q Takeaway: Proportional thread progress improves performance,

especially when threads are “heavy” (memory intensive)

n Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]
q Idea: Rank threads and service in rank order (to preserve bank

parallelism); batch requests to prevent starvation
q Takeaway: Preserving within-thread bank-parallelism improves

performance; request batching improves fairness

n ATLAS memory scheduler [Kim+ HPCA’10]
q Idea: Prioritize threads that have attained the least service from the

memory scheduler
q Takeaway: Prioritizing “light” threads improves performance

35

QoS-Aware Memory Scheduling: Evolution
n Thread cluster memory scheduling [Kim+ MICRO’10]

q Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

q Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

n Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]
n Idea: Only prioritize very latency-sensitive threads in the scheduler;

mitigate all other applications’ interference via channel partitioning
n Takeaway: Intelligently combining application-aware channel

partitioning and memory scheduling provides better performance
than either

36

QoS-Aware Memory Scheduling: Evolution
n Parallel application memory scheduling [Ebrahimi+ MICRO’11]

q Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

q Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

n Staged memory scheduling [Ausavarungnirun+ ISCA’12]
n Idea: Divide the functional tasks of an application-aware memory

scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

n Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

37

QoS-Aware Memory Scheduling: Evolution

n MISE: Memory Slowdown Model [Subramanian+ HPCA’13]
n Idea: Estimate the performance of a thread by estimating its change

in memory request service rate when run alone vs. shared à use
this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

n Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

n ASM: Application Slowdown Model [Subramanian+ MICRO’15]
q Idea: Extend MISE to take into account cache+memory interference
q Takeaway: Cache access rate of an application can be estimated

accurately and is a good proxy for application performance

38

QoS-Aware Memory Scheduling: Evolution

n BLISS: Blacklisting Memory Scheduler [Subramanian+ ICCD’14]
q Idea: Deprioritize (i.e., blacklist) a thread that has consecutively

serviced a large number of requests
q Takeaway: Blacklisting greatly reduces interference enables the

scheduler to be simple without requiring full thread ranking

n DASH: Deadline-Aware Memory Scheduler [Usui+ TACO’16]
q Idea: Balance prioritization between CPUs, GPUs and Hardware

Accelerators (HWA) by keeping HWA progress in check vs. deadlines
such that HWAs do not hog performance and appropriately
distinguishing between latency-sensitive vs. bandwidth-sensitive CPU
workloads

q Takeaway: Proper control of HWA progress and application-aware
CPU prioritization leads to better system performance while meeting
HWA dedlines

39

QoS-Aware Memory Scheduling: Evolution
n Prefetch-aware shared resource management [Ebrahimi+

ISCA’11] [Ebrahimi+ MICRO’09] [Ebrahimi+ HPCA’09] [Lee+ MICRO’08]
q Idea: Prioritize prefetches depending on how they affect system

performance; even accurate prefetches can degrade performance of
the system

q Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

n DRAM-Aware last-level cache policies and write scheduling
[Lee+ HPS Tech Report’10] [Lee+ HPS Tech Report’10]
q Idea: Design cache eviction and replacement policies such that they

proactively exploit the state of the memory controller and DRAM
(e.g., proactively evict data from the cache that hit in open rows)

q Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness; writes should not be ignored

40

QoS-Aware Memory Scheduling: Evolution
n FIRM: Memory Scheduling for NVM [Zhao+ MICRO’14]

q Idea: Carefully handle write-read prioritization with coarse-grained
batching and application-aware scheduling

q Takeaway: Carefully controlling and prioritizing write requests
improves performance and fairness; write requests are especially
critical in NVMs

41

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

The Problem: Unfairness

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

43

How Do We Solve the Problem?
n Stall-time fair memory scheduling [Mutlu+ MICRO’07]

n Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone à
fair scheduling

n Also improves overall system performance by ensuring cores make
“proportional” progress

n Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

n Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

44

45

Stall-Time Fairness in Shared DRAM Systems

n A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

n DRAM-related stall-time: The time a thread spends waiting for DRAM memory
n STshared: DRAM-related stall-time when the thread runs with other threads
n STalone: DRAM-related stall-time when the thread runs alone
n Memory-slowdown = STshared/STalone

q Relative increase in stall-time

n Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance
q Considers inherent DRAM performance of each thread
q Aims to allow proportional progress of threads

46

STFM Scheduling Algorithm [MICRO’07]

n For each thread, the DRAM controller
q Tracks STshared
q Estimates STalone

n Each cycle, the DRAM controller
q Computes Slowdown = STshared/STalone for threads with legal requests
q Computes unfairness = MAX Slowdown / MIN Slowdown

n If unfairness < a
q Use DRAM throughput oriented scheduling policy

n If unfairness ≥ a
q Use fairness-oriented scheduling policy

n (1) requests from thread with MAX Slowdown first
n (2) row-hit first , (3) oldest-first

47

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown
T1 Slowdown 1.00

1.00

1.00Unfairness

1.03

1.03

1.06

1.06

a 1.05

1.03

1.06
1.031.04
1.08

1.04

1.04
1.11

1.06

1.07

1.04

1.10
1.14

1.03

Row 16Row 111

STFM Pros and Cons
n Upsides:

q First algorithm for fair multi-core memory scheduling
q Provides a mechanism to estimate memory slowdown of a

thread
q Good at providing fairness
q Being fair can improve performance

n Downsides:
q Does not handle all types of interference
q (Somewhat) complex to implement
q Slowdown estimations can be incorrect

48

More on STFM
n Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

49

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

Another Problem due to Memory Interference

n Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests
q Memory-Level Parallelism (MLP)
q Out-of-order execution, non-blocking caches, runahead execution

n Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

n Multiple threads share the DRAM controller
n DRAM controllers are not aware of a thread’s MLP

q Can service each thread’s outstanding requests serially, not in parallel

51

Bank Parallelism of a Thread

52

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0
Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

53

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99
Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0
Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

54

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99
Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:
~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

n Principle 1: Parallelism-awareness
q Schedule requests from a thread (to

different banks) back to back
q Preserves each thread’s bank parallelism
q But, this can cause starvation…

n Principle 2: Request Batching
q Group a fixed number of oldest requests

from each thread into a “batch”
q Service the batch before all other requests
q Form a new batch when the current one is done
q Eliminates starvation, provides fairness
q Allows parallelism-awareness within a batch

55

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

n Request batching

n Within-batch scheduling
q Parallelism aware

56

Request Batching

n Each memory request has a bit (marked) associated with it

n Batch formation:
q Mark up to Marking-Cap oldest requests per bank for each thread
q Marked requests constitute the batch
q Form a new batch when no marked requests are left

n Marked requests are prioritized over unmarked ones
q No reordering of requests across batches: no starvation, high fairness

n How to prioritize requests within a batch?

57

Within-Batch Scheduling

n Can use any existing DRAM scheduling policy
q FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

n But, we also want to preserve intra-thread bank parallelism
q Service each thread’s requests back to back

n Scheduler computes a ranking of threads when the batch is
formed
q Higher-ranked threads are prioritized over lower-ranked ones
q Improves the likelihood that requests from a thread are serviced in

parallel by different banks
n Different threads prioritized in the same order across ALL banks

58

HOW?

Thread Ranking

59

Bank	0

Bank	1

req

reqreq

req

memory	service	timeline

thread	A	

thread	B	

thread	execution	timeline

WAIT

WAIT

thread	B	

thread	A	
Bank	0

Bank	1

req

reqreq

req

memory	service	timeline

thread	execution	timeline

WAIT

WAIT

ra
nk

thread	B	

thread	A	

thread	A	

thread	B	

SAVED	CYCLES

Key	Idea:

How to Rank Threads within a Batch
n Ranking scheme affects system throughput and fairness

n Maximize system throughput
q Minimize average stall-time of threads within the batch

n Minimize unfairness (Equalize the slowdown of threads)
q Service threads with inherently low stall-time early in the batch
q Insight: delaying memory non-intensive threads results in high

slowdown

n Shortest stall-time first (shortest job first) ranking
q Provides optimal system throughput [Smith, 1956]*

q Controller estimates each thread’s stall-time within the batch
q Ranks threads with shorter stall-time higher

60
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

n Maximum number of marked requests to any bank (max-bank-load)
q Rank thread with lower max-bank-load higher (~ low stall-time)

n Total number of marked requests (total-load)
q Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

61

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:
T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

62

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3
4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3
1 2 4 7Stall times

Ti
m

e

1
2

4

6

Ranking: T0 > T1 > T2 > T3

1
2
3
4
5
6
7

Ti
m

e

Putting It Together: PAR-BS Scheduling Policy
n PAR-BS Scheduling Policy

(1) Marked requests first
(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

n Three properties:
q Exploits row-buffer locality and intra-thread bank parallelism
q Work-conserving

n Services unmarked requests to banks without marked requests
q Marking-Cap is important

n Too small cap: destroys row-buffer locality
n Too large cap: penalizes memory non-intensive threads

n Many more trade-offs analyzed in the paper
63

Batching

Parallelism-aware
within-batch
scheduling

Hardware Cost

n <1.5KB storage cost for
q 8-core system with 128-entry memory request buffer

n No complex operations (e.g., divisions)

n Not on the critical path
q Scheduler makes a decision only every DRAM cycle

64

65

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

Un
fa

irn
es

s
(lo

w
er

 is
 b

et
te

r)

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

66

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
or

m
al

iz
ed

 H
m

ea
n

Sp
ee

du
p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

8.3% 6.1% 5.1%

PAR-BS Pros and Cons

n Upsides:
q First scheduler to address bank parallelism destruction across

multiple threads
q Simple mechanism (vs. STFM)
q Batching provides fairness
q Ranking enables parallelism awareness

n Downsides:
q Does not always prioritize the latency-sensitive applications

67

More on PAR-BS
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

68

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

ATLAS: Summary
n Goal: To maximize system performance

n Main idea: Prioritize the thread that has attained the least
service from the memory controllers (Adaptive per-Thread
Least Attained Service Scheduling)
q Rank threads based on attained service in the past time

interval(s)
q Enforce thread ranking in the memory scheduler during the

current interval

n Why it works: Prioritizes “light” (memory non-intensive)
threads that are more likely to keep their cores busy

70

4

6

8

10

12

14

16

1 2 4 8 16

Memory	controllers

Sy
st
em

	th
ro
ug
hp

ut

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

71

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%
8.4%

5.9%

3.5%

Sy
st

em
 th

ro
ug

hp
ut

of memory controllers

0
2
4
6
8
10
12
14

4 8 16 24 32

Cores

Sy
st
em

	th
ro
ug
hp

ut

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases è ATLAS performance benefit increases

72

1.1%
3.5%

4.0%

8.4%
10.8%

Sy
st

em
 th

ro
ug

hp
ut

of cores

ATLAS Pros and Cons
n Upsides:

q Good at improving overall throughput (compute-intensive
threads are prioritized)

q Low complexity
q Coordination among controllers happens infrequently

n Downsides:
q Lowest/medium ranked threads get delayed significantly à

high unfairness

73

More on ATLAS Memory Scheduler
n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

74

TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

No	previous	memory	scheduling	algorithm	provides	
both	the	best	fairness	and	system	throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax
im

um
	S
lo
w
do

w
n

Weighted	Speedup

FCFS
FRFCFS
STFM
PAR-BS
ATLAS

Previous Scheduling Algorithms are Biased

76

System	throughput	bias

Fairness	bias

Better system	throughput

Be
tt
er

fa
irn

es
s

24	cores,	4	memory	controllers,	96	workloads	

Take	turns	accessing	memory

Throughput vs. Fairness

77

Fairness	biased	approach

thread	C

thread	B

thread	A

less	memory	
intensive

higher
priority

Prioritize	less	memory-intensive	threads

Throughput	biased	approach

Good	for	throughput

starvation	è unfairness

thread	C thread	Bthread	A

Does	not	starve

not	prioritized	è
reduced	throughput

Single	policy	for	all	threads	is	insufficient

Achieving the Best of Both Worlds

78

thread

thread

higher
priority

thread

thread

thread	

thread

thread

thread

Prioritize	memory-non-intensive	threads

For	Throughput

Unfairness	caused	by	memory-intensive	
being	prioritized	over	each	other	

• Shuffle	thread	ranking

Memory-intensive	threads	have	
different	vulnerability	to	interference

• Shuffle	asymmetrically

For	Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group	threads	into	two	clusters
2. Prioritize	non-intensive	cluster
3. Different	policies	for	each	cluster

79

thread

Threads	in	the	system

thread

thread

thread

thread

thread

thread

Non-intensive	
cluster

Intensive	cluster

thread

thread

thread

Memory-non-intensive	

Memory-intensive	

Prioritized

higher
priority

higher
priority

Throughput

Fairness

TCM Outline

80

1.	Clustering

Clustering Threads
Step1 Sort	threads	by	MPKI (misses	per	kiloinstruction)

81

th
re
ad

th
re
ad

th
re
ad

th
re
ad

th
re
ad

th
re
ad

higher	
MPKI

T α <	10%	
ClusterThreshold

Intensive	
clusterαT

Non-intensive
cluster

T = Total	memory	bandwidth	usage

Step2Memory	bandwidth	usage	αT	divides	clusters

TCM Outline

82

1.	Clustering

2.	Between	
Clusters

Prioritize	non-intensive cluster

• Increases	system	throughput
– Non-intensive threads	have	greater	potential	for	
making	progress

• Does	not	degrade	fairness
– Non-intensive threads	are	“light”
– Rarely	interfere	with	intensive threads

Prioritization Between Clusters

83

>
priority

TCM Outline

84

1.	Clustering

2.	Between	
Clusters

3.	Non-Intensive	
Cluster

Throughput

Prioritize	threads	according	to	MPKI

• Increases	system	throughput
– Least	intensive	thread	has	the	greatest	potential	
for	making	progress	in	the	processor

Non-Intensive Cluster

85

thread

thread

thread

thread

higher
priority lowest	MPKI

highest	MPKI

TCM Outline

86

1.	Clustering

2.	Between	
Clusters

3.	Non-Intensive	
Cluster

4.	Intensive	
Cluster

Throughput

Fairness

Periodically	shuffle	the	priority	of	threads

• Is	treating	all	threads	equally	good	enough?
• BUT:	Equal	turns	≠ Same	slowdown

Intensive Cluster

87

thread

thread

thread

Increases	fairness

Most	prioritizedhigher
priority

thread

thread

thread

0
2
4
6
8

10
12
14

random-access streaming
Sl
ow

do
w
n

Case Study: A Tale of Two Threads
Case	Study: Two	intensive	threads	contending
1. random-access
2. streaming

88

Prioritize	random-access Prioritize	streaming

random-access thread	is	more	easily	slowed	down

0
2
4
6
8

10
12
14

random-access streaming

Sl
ow

do
w
n

7x
prioritized

1x

11x

prioritized
1x

Which	is	slowed	down	more	easily?

Why are Threads Different?

89

random-access streaming
reqreqreqreq

Bank	1 Bank	2 Bank	3 Bank	4 Memory
rows

•All	requests	parallel
•High	bank-level	parallelism

•All	requests	è Same	row
•High	row-buffer	locality

reqreqreqreq

activated	row
reqreqreqreq reqreqreqreqstuck

Vulnerable	to	interference

TCM Outline

90

1.	Clustering

2.	Between	
Clusters

3.	Non-Intensive	
Cluster

4.	Intensive	
Cluster

Fairness

Throughput

Niceness
How	to	quantify	difference	between	threads?

91

Vulnerability	to	interference
Bank-level	parallelism

Causes	interference
Row-buffer	locality

+ Niceness -

NicenessHigh Low

TCM: Quantum-Based Operation

92

Time

Previous	quantum	
(~1M	cycles)

During	quantum:
• Monitor	thread	behavior
1.Memory	intensity
2. Bank-level	parallelism
3. Row-buffer	locality

Beginning	of	quantum:
• Perform	clustering
• Compute	niceness	of	
intensive	threads

Current	quantum
(~1M	cycles)

Shuffle	interval
(~1K	cycles)

TCM: Scheduling Algorithm
1. Highest-rank: Requests	from	higher	ranked	threads	prioritized

• Non-Intensive cluster	> Intensive cluster
• Non-Intensive	cluster:	lower	intensity	è higher	rank
• Intensive cluster:	rank	shuffling

2.Row-hit: Row-buffer	hit	requests	are	prioritized

3.Oldest: Older	requests	are	prioritized

93

TCM: Implementation Cost
Required	storage	at	memory	controller	(24	cores)

• No	computation	is	on	the	critical	path

94

Thread memory	behavior Storage

MPKI ~0.2kb

Bank-level parallelism ~0.6kb

Row-buffer	locality ~2.9kb

Total <	4kbits

Previous Work
FRFCFS [Rixner et	al.,	ISCA00]:	Prioritizes	row-buffer	hits

– Thread-oblivious	è Low	throughput	&	Low	fairness

STFM [Mutlu et	al.,	MICRO07]:	Equalizes	thread	slowdowns
– Non-intensive	threads	not	prioritizedè Low	throughput

PAR-BS [Mutlu et	al.,	ISCA08]:	Prioritizes	oldest	batch	of	requests	
while	preserving	bank-level	parallelism

– Non-intensive	threads	not	always	prioritized	è Low	
throughput

ATLAS [Kim	et	al.,	HPCA10]:	Prioritizes	threads	with	less	memory	
service

– Most	intensive	thread	starves	è Low	fairness
95

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax
im

um
	S
lo
w
do

w
n

Weighted	Speedup

96

Better system	throughput

Be
tt
er

fa
irn

es
s

24	cores,	4	memory	controllers,	96	workloads	

TCM,	a	heterogeneous	scheduling	policy,
provides	best	fairness	and	system	throughput

TCM: Fairness-Throughput Tradeoff

97

2

4

6

8

10

12

12 13 14 15 16

M
ax
im

um
	S
lo
w
do

w
n

Weighted	Speedup

When	configuration	parameter	is	varied…

Adjusting		
ClusterThreshold

TCM	allows	robust	fairness-throughput	tradeoff	

STFM
PAR-BS

ATLAS

TCM

Better system	throughput

Be
tt
er

fa
irn

es
s FRFCFS

Operating System Support
• ClusterThreshold is	a	tunable	knob

– OS	can	trade	off	between	fairness	and	throughput

• Enforcing	thread	weights
– OS	assigns	weights	to	threads
– TCM	enforces	thread	weights	within	each	cluster

98

Conclusion

99

• No	previous	memory	scheduling	algorithm	provides	
both	high	system	throughput	and	fairness
– Problem: They	use	a	single	policy	for	all	threads

• TCM	groups	threads	into	two	clusters
1. Prioritize	non-intensive cluster	è throughput
2. Shuffle	priorities	in	intensive cluster	è fairness
3. Shuffling	should	favor	nice threads	è fairness

• TCM	provides	the	best	system	throughput	and	fairness

TCM Pros and Cons
n Upsides:

q Provides both high fairness and high performance
q Caters to the needs for different types of threads (latency vs.

bandwidth sensitive)
q (Relatively) simple

n Downsides:
q Scalability to large buffer sizes?
q Robustness of clustering and shuffling algorithms?
q Ranking is still too complex?

100

More on TCM
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-

Balter,
"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

101

The Blacklisting Memory Scheduler

Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High Performance and Fairness at Low Cost"

Proceedings of the 32nd IEEE International Conference on Computer Design (ICCD),
Seoul, South Korea, October 2014. [Slides (pptx) (pdf)]

Tackling	Inter-Application	Interference:
Application-aware	Memory	Scheduling

103

Monitor		 Rank
Highest	

Ranked	AID

Enforce
Ranks

Full	ranking	increases	
critical	path	latency	and	area	

significantly	to	improve	
performance	and	fairness

4

3

2

1
2

4

3

1

Req 1 1
Req 2 4
Req 3 1
Req 4 1
Req 5 3

Req 7 1
Req 8 3

Request	Buffer

Req 5 2

Request
App.	ID	
(AID)

=
=
=
=
=
=
=
=

Performance	vs.	Fairness	vs.	Simplicity	

104

Performance

Fairness

Simplicity

FRFCFS

PARBS

ATLAS

TCM

Blacklisting

Ideal

App-unaware

App-aware	
(Ranking)

Our	Solution	
(No	Ranking)

Is	it	essential	to	give	up	simplicity	to	
optimize	for	performance	and/or	fairness?
Our	solution	achieves	all	three	goals

Very	Simple

Low	performance	
and	fairness

Complex

Our	Solution

Key	Observation	1:	Group	Rather	Than	Rank

Observation	1: Sufficient	to	separate	applications	
into	two	groups,	rather	than	do	full	ranking

105

Benefit	1:	Low	complexity	compared	to	ranking

Group

Vulnerable
Interference
Causing

>

Monitor		 Rank

4

3

2

1
2

4

3

1

4

2

3

1

Benefit	2:	Lower	slowdowns	than	ranking

Key	Observation	1:	Group	Rather	Than	Rank

Observation	1: Sufficient	to	separate	applications	
into	two	groups,	rather	than	do	full	ranking

106

Group

Vulnerable
Interference
Causing

>

Monitor		 Rank

4

3

2

1
2

4

3

1

4

2

3

1

How	to	classify	applications	into	groups?

Key	Observation	2
Observation	2: Serving	a	large	number	of	consecutive	

requests	from	an	application	causes	interference

Basic	Idea:
• Group applications	with	a	large	number	of	consecutive	
requests	as	interference-causingà Blacklisting

• Deprioritize blacklisted	applications
• Clear blacklist	periodically	(1000s	of	cycles)

Benefits:
• Lower	complexity
• Finer	grained	grouping	decisions	à Lower	unfairness

107

Performance	vs.	Fairness	vs.	Simplicity

108

Performance

Fairness

Simplicity

FRFCFS
FRFCFS-Cap
PARBS
ATLAS
TCM
Blacklisting

Ideal

Highest	
performance

Close	to	
simplest

Close	to	
fairest

Blacklisting	is	the	closest	scheduler	to	ideal

Performance	and	Fairness

109

1
3
5
7
9

11
13
15

1 3 5 7 9

U
nf
ai
rn
es
s

Performance

FRFCFS FRFCFS-Cap PARBS
ATLAS TCM Blacklisting

5%
21%

(Higher	is	better)

(L
ow

er
	is
	b
et
te
r)

1.	Blacklisting	achieves	the	highest	performance	
2.	Blacklisting	balances	performance	and	fairness

Complexity

110

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12

Sc
he

du
le
r	A

re
a	
(s
q.
	u
m
)

Critical	Path	Latency	(ns)

FRFCFS FRFCFS-Cap PARBS
ATLAS TCM Blacklisting

43%

70%

Blacklisting	reduces	complexity	significantly

More on BLISS (I)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

111

More on BLISS: Longer Version
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

112

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance

and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),

Portland, OR, June 2012.

SMS ISCA 2012 Talk

SMS: Executive Summary
n Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n Compared to state-of-the-art memory schedulers:
q SMS is significantly simpler and more scalable
q SMS provides higher performance and fairness

114

SMS: Staged Memory Scheduling

115

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req
Req

Req
Req

Req
Req Req

Req Req Req

ReqReqReq
Req Req

Req Req

Req Req Req
Req
Req Req

Req

Req
Req

Req
Req Req

Req Req Req
ReqReqReqReq Req Req

Req
Req
Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
on

ol
ith

ic
Sc

he
du

le
r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

116

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req ReqBatch Scheduler

Batch
Formation

Stage 3
DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy
SJF

Current Batch
Scheduling

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

117

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Complexity
n Compared to a row hit first scheduler, SMS consumes*

q 66% less area
q 46% less static power

n Reduction comes from:
q Monolithic scheduler à stages of simpler schedulers
q Each stage has a simpler scheduler (considers fewer

properties at a time to make the scheduling decision)
q Each stage has simpler buffers (FIFO instead of out-of-order)
q Each stage has a portion of the total buffer size (buffering is

distributed across stages)

118* Based on a Verilog model using 180nm library

Performance at Different GPU Weights

119

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

n At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

120

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

More on SMS
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

121

DASH Memory Scheduler
[TACO 2016]

122

Current SoC Architectures

n Heterogeneous agents: CPUs and HWAs
q HWA : Hardware Accelerator

n Main memory is shared by CPUs and HWAs à Interference

123

CPU CPU CPU CPU

Shared Cache HWA HWA HWA

DRAM Controller

DRAM

How to schedule memory requests from CPUs and HWAs
to mitigate interference?

DASH Scheduler: Executive Summary
n Problem: Hardware accelerators (HWAs) and CPUs share the same

memory subsystem and interfere with each other in main memory
n Goal: Design a memory scheduler that improves CPU performance while

meeting HWAs’ deadlines
n Challenge: Different HWAs have different memory access characteristics

and different deadlines, which current schedulers do not smoothly handle
q Memory-intensive and long-deadline HWAs significantly degrade CPU

performance when they become high priority (due to slow progress)
q Short-deadline HWAs sometimes miss their deadlines despite high priority

n Solution: DASH Memory Scheduler
q Prioritize HWAs over CPU anytime when the HWA is not making good progress
q Application-aware scheduling for CPUs and HWAs

n Key Results:
1) Improves CPU performance for a wide variety of workloads by 9.5%
2) Meets 100% deadline met ratio for HWAs

n DASH source code freely available on our GitHub
124

Goal	of	Our	Scheduler	(DASH)

• Goal: Design	a	memory	scheduler	that	
– Meets	GPU/accelerators’	frame	rates/deadlines	and
– Achieves	high	CPU	performance

• Basic	Idea:
– Different	CPU	applications	and	hardware	accelerators	
have	different	memory	requirements

– Track	progress	of	different	agents	and	prioritize	
accordingly

125

Key	Observation:
Distribute	Priority	for	Accelerators

• GPU/accelerators	need	priority	to	meet	deadlines
• Worst	case	prioritization	not	always	the	best
• Prioritize	when	they	are	not on	track	to	meet	a	
deadline

126

Distributing	priority	over	time	mitigates	impact	
of	accelerators	on	CPU	cores’	requests

Key	Observation:	
Not	All	Accelerators	are	Equal

• Long-deadline	accelerators	are	more	likely	to	
meet their	deadlines

• Short-deadline	accelerators	are	more	likely	to	
miss their	deadlines

127

Schedule	short-deadline	accelerators	
based	on	worst-case	memory	access	time	

Key	Observation:	
Not	All	CPU	cores	are	Equal

• Memory-intensive	cores are	much	less	
vulnerable to	interference

• Memory	non-intensive	cores are	much	more	
vulnerable to	interference

128

Prioritize	accelerators	over	memory-intensive	cores	
to	ensure	accelerators	do	not	become	urgent

DASH	Summary:	
Key	Ideas	and	Results

• Distribute	priority	for	HWAs
• Prioritize	HWAs	over	memory-intensive	CPU	
cores	even	when	not	urgent

• Prioritize	short-deadline-period	HWAs	based	
on	worst	case	estimates

129

Improves	CPU	performance	by	7-21%
Meets	(almost)	100%	of	deadlines	for	HWAs

DASH: Scheduling Policy
n DASH scheduling policy

1. Short-deadline-period HWAs with high priority
2. Long-deadline-period HWAs with high priority
3. Memory non-intensive CPU applications
4. Long-deadline-period HWAs with low priority
5. Memory-intensive CPU applications
6. Short-deadline-period HWAs with low priority

130

Switch
probabilistically

More on DASH
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

131

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Computer Architecture
Lecture 12: Memory Interference

and Quality of Service

Prof. Onur Mutlu
ETH Zürich
Fall 2017

1 November 2017

Predictable Performance:
Strong Memory Service Guarantees

134

Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs

135

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the

presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

n Approach:
q Develop techniques/models to accurately estimate the

performance loss of an application/agent in the presence of
resource sharing

q Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

q All the while providing high system performance

n Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems,” HPCA 2013.

n Subramanian et al., “The Application Slowdown Model,” MICRO 2015.
136

Strong Memory Service Guarantees
n We will defer this for later…

137

More on MISE
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

138

More on Application Slowdown Model
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

139

Handling Memory Interference
In Multithreaded Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"

Proceedings of the 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

Multithreaded (Parallel) Applications
n Threads in a multi-threaded application can be inter-

dependent
q As opposed to threads from different applications

n Such threads can synchronize with each other
q Locks, barriers, pipeline stages, condition variables,

semaphores, …

n Some threads can be on the critical path of execution due
to synchronization; some threads are not

n Even within a thread, some “code segments” may be on
the critical path of execution; some are not

141

Critical Sections

n Enforce mutually exclusive access to shared data
n Only one thread can be executing it at a time
n Contended critical sections make threads wait à threads

causing serialization can be on the critical path

142

Each thread:
loop {

Compute
lock(A)

Update shared data
unlock(A)

}

N

C

Barriers

n Synchronization point
n Threads have to wait until all threads reach the barrier
n Last thread arriving at the barrier is on the critical path

143

Each thread:
loop1 {

Compute
}
barrier
loop2 {

Compute
}

Stages of Pipelined Programs
n Loop iterations are statically divided into code segments called stages
n Threads execute stages on different cores
n Thread executing the slowest stage is on the critical path

144

loop {
Compute1

Compute2

Compute3
}

A

B

C

A B C

Handling Interference in Parallel Applications

n Threads in a multithreaded application are inter-dependent
n Some threads can be on the critical path of execution due

to synchronization; some threads are not
n How do we schedule requests of inter-dependent threads

to maximize multithreaded application performance?

n Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n Hardware/software cooperative limiter thread estimation:
n Thread executing the most contended critical section
n Thread executing the slowest pipeline stage
n Thread that is falling behind the most in reaching a barrier

145PAMS Micro 2011 Talk

Prioritizing Requests from Limiter Threads

146

Critical Section 1 BarrierNon-Critical Section

Waiting for Sync
or Lock

Thread D
Thread C

Thread B

Thread A

Time

Barrier

Time

Barrier

Thread D

Thread C

Thread B
Thread A

Critical Section 2 Critical Path

Saved
Cycles Limiter Thread: DBCA

Most Contended
Critical Section: 1

Limiter Thread Identification

More on PAMS
n Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo

Lee, Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

147

Other Ways of
Handling Memory Interference

Fundamental Interference Control Techniques
n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

149

Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q QoS-aware memory controllers
q QoS-aware interconnects
q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
q Source throttling to control access to memory system
q QoS-aware data mapping to memory controllers
q QoS-aware thread scheduling to cores

150

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via

Application-Aware Memory Channel Partitioning”
44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels

152

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Data Mapping in Current Systems

153

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Partitioning Channels Between Applications

154

Channel 0Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Overview: Memory Channel Partitioning (MCP)

n Goal
q Eliminate harmful interference between applications

n Basic Idea
q Map the data of badly-interfering applications to different

channels

n Key Principles
q Separate low and high memory-intensity applications
q Separate low and high row-buffer locality applications

155Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low

memory-intensity applications in shared memory channels

156

Map data of low and high memory-intensity applications
to different channels

12345
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

12345

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

157

High row-buffer locality applications interfere with low
row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0R1

R0R2R3R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0R0

Service Order
123456

R2R3

R4R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
CyclesMap data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

158

Hardware

System
Software

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Interval Based Operation

159

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Observations

n Applications with very low memory-intensity rarely
access memory
à Dedicating channels to them results in precious
memory bandwidth waste

n They have the most potential to keep their cores busy
à We would really like to prioritize them

n They interfere minimally with other applications
à Prioritizing them does not hurt others

160

Integrated Memory Partitioning and Scheduling (IMPS)

n Always prioritize very low memory-intensity
applications in the memory scheduler

n Use memory channel partitioning to mitigate
interference between other applications

161Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Hardware Cost
n Memory Channel Partitioning (MCP)

q Only profiling counters in hardware
q No modifications to memory scheduling logic
q 1.5 KB storage cost for a 24-core, 4-channel system

n Integrated Memory Partitioning and Scheduling (IMPS)
q A single bit per request
q Scheduler prioritizes based on this single bit

162Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Performance of Channel Partitioning

163

1%

5%

0.9

0.95

1

1.05

1.1

1.15
N
or
m
al
ize

d	
Sy
st
em

	P
er
fo
rm

an
ce FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Better system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

Combining Multiple Interference Control Techniques

n Combined interference control techniques can mitigate
interference much more than a single technique alone can
do

n The key challenge is:
q Deciding what technique to apply when
q Partitioning work appropriately between software and

hardware

164

More on Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

165

Fundamental Interference Control Techniques
n Goal: to reduce/control inter-thread memory interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

166

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip BoundaryOn-chip
Off-chip

168

The Problem with “Smart Resources”

n Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

n Explicitly coordinating mechanisms for different
resources requires complex implementation

n How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

169

Source Throttling: A Fairness Substrate
n Key idea: Manage inter-thread interference at the cores

(sources), not at the shared resources

n Dynamically estimate unfairness in the memory system
n Feed back this information into a controller
n Throttle cores’ memory access rates accordingly

q Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

q E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

170

171

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
1-Throttle down App-interfering

(limit injection rate and parallelism)
2-Throttle up App-slowest

}

FST
Unfairness Estimate

App-slowest
App-interfering

⎪ ⎨ ⎪ ⎧⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

System Software Support

n Different fairness objectives can be configured by
system software
q Keep maximum slowdown in check

n Estimated Max Slowdown < Target Max Slowdown
q Keep slowdown of particular applications in check to achieve a

particular performance target
n Estimated Slowdown(i) < Target Slowdown(i)

n Support for thread priorities
q Weighted Slowdown(i) =

Estimated Slowdown(i) x Weight(i)

172

Source Throttling Results: Takeaways

n Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching
q Decisions made at the memory scheduler and the cache

sometimes contradict each other

n Neither source throttling alone nor “smart resources” alone
provides the best performance

n Combined approaches are even more powerful
q Source throttling and resource-based interference control

173

Core (Source) Throttling
n Idea: Estimate the slowdown due to (DRAM) interference

and throttle down threads that slow down others
q Ebrahimi et al., “Fairness via Source Throttling: A Configurable

and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

n Advantages
+ Core/request throttling is easy to implement: no need to change the

memory scheduling algorithm
+ Can be a general way of handling shared resource contention
+ Can reduce overall load/contention in the memory system

n Disadvantages
- Requires interference/slowdown estimations à difficult to estimate
- Thresholds can become difficult to optimize à throughput loss

174

More on Source Throttling (I)
n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

175

More on Source Throttling (II)
n Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

176

More on Source Throttling (III)
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

177

Fundamental Interference Control Techniques
n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling
Idea: Pick threads that do not badly interfere with each

other to be scheduled together on cores sharing the memory
system

178

Application-to-Core Mapping to Reduce Interference

n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

n Key ideas:
q Cluster threads to memory controllers (to reduce across chip interference)
q Isolate interference-sensitive (low-intensity) applications in a separate

cluster (to reduce interference from high-intensity applications)
q Place applications that benefit from memory bandwidth closer to the

controller

179

Application-to-Core Mapping

180

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p
BASE BASE+CLS A2C

181

System performance improves by 17%

Network Power

182

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 N
oC

 P
ow

er

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

More on App-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

183

Interference-Aware Thread Scheduling
n An example from scheduling in clusters (data centers)
n Clusters can be running virtual machines

184

Virtualized	Cluster

185

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How	to	dynamically	
schedule	VMs	onto	

hosts?

Distributed	Resource	Management	
(DRM)	policies

Conventional	DRM	Policies

186

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory	Capacity

CPU

Based	on	operating-system-level	metrics
e.g.,	CPU	utilization,	memory	capacity	
demand

Microarchitecture-level	Interference

187

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App
• VMs	within	a	host	compete	for:

– Shared	cache	capacity
– Shared	memory	bandwidth

Can	operating-system-level	metrics	capture	the	
microarchitecture-level	resource	interference?

Microarchitecture	Unawareness

188

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level	metrics

CPU	Utilization Memory	Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level	metrics

LLC	Hit	Ratio Memory	Bandwidth

2% 2267	MB/s

98% 1 MB/s

VM

App

Memory	Capacity

CPU

Impact	on	Performance

189

0.0

0.2

0.4

0.6

IPC	
(Harmonic	
Mean)

Conventional	DRM with	Microarchitecture	Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory	Capacity

CPU SWAP

Impact	on	Performance

190

0.0

0.2

0.4

0.6

IPC	
(Harmonic	
Mean)

Conventional	DRM with	Microarchitecture	Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory	Capacity

CPU

We	need	microarchitecture-
level	interference	awareness	in	

DRM!

A-DRM:	Architecture-aware	DRM

• Goal:	Take	into	account	microarchitecture-level	
shared	resource	interference
– Shared	cache	capacity
– Shared	memory	bandwidth

• Key	Idea:	
– Monitor	and	detect	microarchitecture-level	shared	
resource	interference

– Balance	microarchitecture-level	resource	usage	across	
cluster	to	minimize	memory	interference	while	
maximizing	system	performance

191

A-DRM:	Architecture-aware	DRM

192

OS+Hypervisor

VM

App

VM

App

A-DRM:	Global	Architecture	–
aware	Resource	Manager

Profiling	Engine

Architecture-aware
Interference	Detector

Architecture-aware	
Distributed	Resource	
Management	(Policy)

Migration	Engine

Hosts Controller

CPU/Memory	
Capacity

Profiler

Architectural	
Resource

•••

Architectural	
Resources

More on Architecture-Aware DRM
n Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

193

Interference-Aware Thread Scheduling
n Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)
+ Less intrusive to hardware (less need to modify the hardware
resources)

n Disadvantages and Limitations
-- High overhead to migrate threads between cores and
machines
-- Does not work (well) if all threads are similar and they
interfere

194

Summary: Fundamental Interference Control Techniques

n Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?
195

Summary: Memory QoS Approaches and Techniques

n Approaches: Smart vs. dumb resources
q Smart resources: QoS-aware memory scheduling
q Dumb resources: Source throttling; channel partitioning
q Both approaches are effective in reducing interference
q No single best approach for all workloads

n Techniques: Request/thread scheduling, source throttling,
memory partitioning
q All approaches are effective in reducing interference
q Can be applied at different levels: hardware vs. software
q No single best technique for all workloads

n Combined approaches and techniques are the most powerful
q Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

196MCP Micro 2011 Talk

Summary: Memory Interference and QoS
n QoS-unaware memory à

uncontrollable and unpredictable system

n Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

n Discussed many new techniques to:
q Minimize memory interference
q Provide predictable performance

n Many new research ideas needed for integrated techniques
and closing the interaction with software

197

What Did We Not Cover?

n Prefetch-aware shared resource management
n DRAM-controller co-design
n Cache interference management
n Interconnect interference management
n Write-read scheduling
n …

198

