Computer Architecture
Lecture 16:
Heterogeneous Multi-Core

Prof. Onur Mutlu
ETH Zirich
Fall 2017
16 November 2017

Summary of Yesterday

Shared Cache Management

o Utility Based Cache Partitioning

o Fair Shared Caching

o Software Based Cache Partitioning
o Dynamic Spill Receive Caching

Making Caching More Effective
o Dynamic Insertion Policy

o Evicted Address Filter

o Cache Compression

Today

Heterogeneous Multi-Core Systems

Bottleneck Acceleration

Some Readings

Suleman et al., "Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Joao et al., "Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

Joao et al., "Bottleneck Identification and Scheduling for
Multithreaded Applications,” ASPLOS 2012.

Joao et al., “"Utility-Based Acceleration of Multithreaded
Applications on Asymmetric CMPs,” ISCA 2013.

Grochowski et al., “"Best of Both Latency and Throughput,” ICCD
2004.

Heterogeneity (Asymmetry)

Heterogeneity (Asymmetry) = Specialization

Heterogeneity and asymmetry have the same meaning
o Contrast with homogeneity and symmetry

Heterogeneity is a very general system design concept (and
life concept, as well)

Idea: Instead of having multiple instances of a “resource” to
be the same (i.e., homogeneous or symmetric), design some
instances to be different (i.e., heterogeneous or asymmetric)

Different instances can be optimized to be more efficient in
executing different types of workloads or satisfying different
requirements/goals

o Heterogeneity enables specialization/customization

Why Asymmetry in Design? (I)

Different workloads executing in a system can have different
behavior

o Different applications can have different behavior

o Different execution phases of an application can have different behavior

o The same application executing at different times can have different
behavior (due to input set changes and dynamic events)

o E.q., locality, predictability of branches, instruction-level parallelism, data
dependencies, serial fraction in a parallel program, bottlenecks in parallel
portion of a program, interference characteristics, ...

Systems are designed to satisfy different metrics at the same
time
o There is almost never a single goal in design, depending on design point

o E.g., Performance, energy efficiency, fairness, predictability, reliability,
availability, cost, memory capacity, latency, bandwidth, ...
=

Why Asymmetry in Design? (1)

Problem: Symmetric design is one-size-fits-all

It tries to fit a single-size design to all workloads and
metrics

It is very difficult to come up with a single design
o that satisfies all workloads even for a single metric
o that satisfies all design metrics at the same time

This holds true for different system components, or
resources

o Cores, caches, memory, controllers, interconnect, disks,
Servers, ...

o Algorithms, policies, ...

Asymmetry Enables Customization

C C C C C2
C1
C C C C C3
C C C C C4 C4 C4 C4
C C C C C5 C5 C5 C5
Symmetric Asymmetric

Symmetric: One size fits all
o Energy and performance suboptimal for different “workload” behaviors

Asymmetric: Enables customization and adaptation
o Processing requirements vary across workloads (applications and phases)
o Execute code on best-fit resources (minimal energy, adequate perf.)

We Have Already Seen Examples (Before)

CRAY-1 design: scalar + vector pipelines
Modern processors: scalar instructions + SIMD extensions
Decoupled Access Execute: access + execute processors

Thread Cluster Memory Scheduling: different memory
scheduling policies for different thread clusters

RAIDR: Heterogeneous refresh rates in DRAM
Heterogeneous-Latency DRAM (Tiered Latency DRAM)

Hybrid memory systems

o DRAM + Phase Change Memory

o Fast, Costly DRAM + Slow, Cheap DRAM

o Reliable, Costly DRAM + Unreliable, Cheap DRAM

Heterogeneous cache replacement policies

10

An Example Asymmetric Design: CRAY-1

VECTOR REGISTERS
7

= CRAY-1
S—— = Russell, “The CRAY-1
— |||l : computer system,”
— |7 il CACM 1978.
[l;“ 51| FLOATING
o S==S Sl = Scalar and vector modes
o ™, = 8 64-element vector
= h registers
Lrcronge SCALAR .
=), = 64 bits per element

o, t@ T === = 16 memory banks
[N Ee: e ADDRESS -hi I
b =l l = 8 64-bit scalar registers

—‘_‘mn §|, : 5: ;" . .
=t r‘?ﬁ“"cﬁf ¢ — = 824-bit address registers

INSTRUCTION BUFFERS 1 1

Remember: Hybrid Memory Systems

4 N

DRAM MCtrl 1} Ctrl Phase Change Memory (or Tech. X)

= AN /

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

Remember: Throughput vs. Fairness

Throughput biased approach Fairness biased approach

Prioritize less memory-intensive threads Take turns accessing memory

Good for throughput ¢ hot starve

—<
R

thread B]
less memory - higher

intensive {M priority
not prioritized =»

starvation = unfairness reduced throughput

Single policy for all threads is insufficient

Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010.

Remember: Achieving the Best of Both Worlds

higher For Throughput

priority . : :
Prioritize memory-non-intensive threads

]

i} For Fairness

Unfairness caused by memory-intensive
being prioritized over each other
 Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference
 Shuffle asymmetrically

Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010. 14

Thread Cluster Memory Scheduling [Kim+ MICRO10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster

[[[[hl'
gher
3. Different policies for each cluster oy

) . Non-intensive
Memory-non-intensive

ﬁm(- Throughput

thread
fhigher \

Prioritized 2l
/ priority

Threads in -
Memory-intensive -

thread
[thread |

| thread _
| thread

stem

Intensive cluster
Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010. 15

Remember: Heterogeneous Retention Times in DRAM

04-128ms

128-250ms

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 16

Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%ﬁﬁﬁ

AYAYATA
Trad -Off. Area vs. Latency

17
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area —ImrpeATEG

' N/ N/ 7/ \

M Low Latency

g

AN OO0O0O0
Need Add Isolatlon (YOO

Isolation Transistors tline = Fast

18

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Approximating the Best of Both Worlds

Long Bitlin Tiered-Latency DRAM ort Bitline

Small Area Small Area M

' N7 N/ 7/ \

M Low Latency Low Latency

using long

o e
(]

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

19

Heterogeneous Interconnects (1n Tilera)
= 2D Mesh

Yy YYYY Yy]
= Five networks
ERAARN B :
ution e L[rew= = Four packet switched
< UDN al E": =S | [UDN-—>)) .
<IN BT [T (P17 ffeov= o Dimension order routing,
HH+ wormhole flow control
o TDN: Cache request
<~ Ton T ToN > packets
-+—UDN 1% UDN —#
s s o MDN: Response packets
o IDN: I/O packets
ra=== . m o UDN: Core to core
s ey L e L e -
R ol T ey ~ Wi is messaging
par i pl—— gl

A ALl TA,AAAA
Z2Z2Z=>2 Z2Z2Z2=2Z eZ2Z2=>Z
SPS8a5 SPS8585 SP885 ; ; :
ET e Ay T = One circuit switched

Figure 3. A 3 X 3 array of tiles connected by networks. (MDN: memory dynamic network; - STN) LOW-IatenCy’ hlgh-
TDN: tile dynamic network; UDN: user dynamic network; IDN: I/0 dynamic network; STN: bandwidth static network

static network.)
o Streaming data
Wentzlaff et al., “On-Chip Interconnection Architecture of the Tile Processor,” IEEE Micro 2007. 20

Aside: Examples from Life

Heterogeneity is abundant in life
o both in nature and human-made components

Humans are heterogeneous

Cells are heterogeneous - specialized for different tasks
Organs are heterogeneous

Cars are heterogeneous

Buildings are heterogeneous

Rooms are heterogeneous

21

General-Purpose vs. Special-Purpose

Asymmetry is a way of enabling specialization

It bridges the gap between purely general purpose and

purely special purpose

o Purely general purpose: Single design for every workload or
metric

o Purely special purpose: Single design per workload or metric

o Asymmetric: Multiple sub-designs optimized for sets of
workloads/metrics and glued together

The goal of a good asymmetric design is to get the best of
both general purpose and special purpose

22

Asymmetry Advantages and Disadvantages

Advantages over Symmetric Design
+ Can enable optimization of multiple metrics
+ Can enable better adaptation to workload behavior

+ Can provide special-purpose benefits with general-purpose
usability/flexibility

Disadvantages over Symmetric Design
- Higher overhead and more complexity in design, verification

- Higher overhead in management: scheduling onto asymmetric
components

- Overhead in switching between multiple components can lead
to degradation

23

Yet Another Example

Modern processors integrate general purpose cores and
GPUs

o CPU-GPU systems
o Heterogeneity in execution models

24

Three Key Problems in Future Systems

Memory system
o Applications are increasingly data intensive
o Data storage and movement limits performance & efficiency

Efficiency (performance and energy) - scalability

o Enables scalable systems = new applications
o Enables better user experience - new usage models

Predictability and robustness

e

\

s
Asymmetric Designs
Can Help Solve These Problems

/25

Commercial Asymmetric Design Examples

Integrated CPU-GPU systems (e.g., Intel SandyBridge)
CPU + Hardware Accelerators (e.g., your cell phone)

ARM big.LITTLE processor

IBM Cell processor

26

Increasing Asymmetry in Modern Systems

Shared Cache

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Heterogeneous memories: Fast vs. Slow DRAM
= Heterogeneous interconnects: Control, Data, Synchronization

27

Multi-Core Design:
An Asymmetric Perspective

28

Many Cores on Chip

= Simpler and lower power than a single large core
= Large scale parallelism on chip

Memory Controller

Intel Core i7 IBM Cell BE
8 cores 8+1 cores 8 cores

4 cores

= Nvidia Fermi Intel SCC Tilera TILE Gx
Sun Niagara Il 448 “cores” 48 cores, networked 100 cores, networked
8 cores

2N | T

29

With Many Cores on Chip

What we want:

a N times the performance with N times the cores when we
parallelize an application on N cores

What we get:
o Amdahl’s Law (serial bottleneck)
o Bottlenecks in the parallel portion

30

Caveats of Parallelism

Amdahl’ s Law
o f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
31

The Problem: Serialized Code Sections

Many parallel programs cannot be parallelized completely

Causes of serialized code sections

o Sequential portions (Amdahl’s “serial part”)
o Critical sections

o Barriers

o Limiter stages in pipelined programs

Serialized code sections
o Reduce performance

o Limit scalability

o Waste energy

32

Example from MySQL

Asymmetric
Critical
Section Access Open Tables Cache g
/ 7 -
a °°
=
2 4
ZBER
2 Today
1 .
0
\ Parallel 0 8 16 24 32

Chip Area (cores)

33

Demands in Different Code Sections

What we want:

In a serialized code section = one powerful “large” core

III

In a parallel code section > many wimpy “small” cores

These two conflict with each other:

a If you have a single powerful core, you cannot have many
cores

o A small core is much more energy and area efficient than a
large core

34

“Large” vs. “Small” Cores

Large Small
Core Core
o Qut-of-order * In-order
* Wide fetch e.g. 4-wide « Narrow Fetch e.g. 2-wide
* Deeper pipeline . Shallow pipeline
e Aggressive branch . .
predictor (e.g. hybrid) « Simple branch predictor
e Multiple functional units (e.g. Gshare)
e Trace cache few functional units
e Memory dependence
speculation

]] " \
Large Cores are power inefficient:

e.g., 2x performance for 4x area (power)
_

) 35

Large vs. Small Cores

= Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.
Large core Small core
Microarchitecture Out-of-order, In-order
128-256 entry
ROB
Width 3-4 1
Pipeline depth 20-30 5
Normalized 5-8x 1x
performance
Normalized power 20-50x 1X
Normalized 4-6x 1x
|_energy/instruction

36

Meet Large: IBM POWER4

= Tendler et al., “POWER4 system microarchitecture,” IBM J]

R&D, 2002.
—ea—
37

= A symmetric multi-core chip...
= Two powerful cores

IBM POWER4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

38

IBM POWER)

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

[. Dynamic
! Branch prediction J instruction
{ selection
Shared Sharqd
Program Branch| || Return| | Target i execution
counter nistory | i stack cache queues units
tables LSUO
< z Alternate [Fxuol
Instruction .
Instruction L EHUSH FoRTION - . . |FXU1/ =
cache Instruction decode — ¢ s * Loas —
Dispatch FPUO
Instruction FPU1
translation
| BXU |
[Exsa CRL
prionty Shared- Read Write
reqister shared- shared-
mappers register files register files
[__JShared by two threads [Thread O resources [l Thread 1 resources

Data Data

translation | |cache
L2

cache

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).

39

Meet Small: Sun Niagara (UltraSPARC T1)

= Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.

Ty T I - Oamoontol | B8
L2 B0 anne
Sparc pipe -
4-way MT
Sparc pipe DR
4w Yy MT - - Déahm CO(?!:O' P—
L2 B anne
Sparc pipe _ 1
4-way MT 3
g
Sparc pipe S DDR
4-way MT © - - Déahr: ::;béol | e
L2 B2
Sparc pipe -
4-way MT
Sparc pipe DR
Dram control
4 - e
way MT ' Channel 3
L2 B3
Sparc pipe -
4-way MT
A
X LA AAl
V'O and shared functions
1O interface

40

Niagara Core

= 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
= Round robin thread selection (unless cache miss)

= Shared FP unit among cores
Fetch Thread select Decode Execute Memory Writeback
Register
file
x4
'\\ l Y
~ A
(Cache | | Instruction [T™|) . ALU DCache -
LB bufferx4 | | .| Thread MUL = DTLB | Crossbar
SSGC' | Decode | % o store interface
= Mux ov [| buffers x 4
<
Ly P
~
~+—— |nstruction type
Thread selects Thread | Misses
select
}) logic -s—— Traps and interrupts
- - Resource conflicts
PC
Thread |-=— logic
select x4
Mux [
-
\\

41

Remember the Demands

What we want:

In a serialized code section = one powerful “large” core

III

In a parallel code section > many wimpy “small” cores

These two conflict with each other:

a If you have a single powerful core, you cannot have many
cores

o A small core is much more energy and area efficient than a
large core

Can we get the best of both worlds?
42

Performance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

43

Tile-Large Approach

Large Large
core core

Large Large
core core

“Tile-Large”

Tile a few large cores

IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)

Tile-Small Approach

Small Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

“Tile-Small”

Tile many small cores

Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)

Can we get the best of both worlds?

Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

Tile Small
+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

Idea: Have both large and small on the same chip 2
Performance asymmetry

46

Asymmetric Multi-Core

47

Asymmetric Chip Multiprocessor (ACMP)

Small | Small | Small | Small Small | Small

Large La rge core core core core Large core core
core core Small | Small | Small | Small core Small | Small
core core core core core core

Small Small Small Small Small Small Small Small

La rg e La rge core core core core core core core core
core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

é . ” 114 . ” ACMP
Tile-Large Tile-Small

Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

48

Accelerating Serial Bottlenecks

Single thread - Large core

Small
core

Small
core

Small
core

Small Small Small Small
core core core core

ACMP Approach

49

Performance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2

50

ACMP Performance vs. Parallelism

Area-budget = 16 small cores

(\ (Small Small|Small|Small \ (Small|Small \
Large Large core | core | core | core Large core | core
core core Small|Small{ Small|Small core |Small|Small
core | core | core | core core | core
Small{Small|Small[Small Small{Small[{Small[Small
Large Large core | core | core | core core | core | core | core
core core Small|Small|Small[Small Small|Small|Small[Small
core | core | core | core core | core | core | core
“Tile-Large” “Tile-Small” ACMP
Large 4 0 1
Cores
Small 0 16 12
Cores
Serial 2 1 2
Performance
Parallel 2x4=8 1x16 =16 1x2 + 1x12 = 14
Throughput

Amdahl’s Law Modified

Simplified Amdahl’ s Law for an Asymmetric Multiprocessor

Assumptions:

o Serial portion executed on the large core

o Parallel portion executed on both small cores and large cores
o f: Parallelizable fraction of a program

o L: Number of large processors

o S: Number of small processors

o X: Speedup of a large processor over a small one

Speedup =
P P 1-f f

X S+ X*L

52

Caveats of Parallelism, Revisited

Amdahl’ s Law
o f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
53

Accelerating Parallel Bottlenecks

Serialized or imbalanced execution in the parallel portion
can also benefit from a large core

Examples:
o Ciritical sections that are contended
o Parallel stages that take longer than others to execute

Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

54

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures”
Proceedings of the 14th International Conference on Architectural Support for Programming
Lanquages and Operating Systems (ASPLOS), 2009

55

Contention for Critical Sections

12 iterations, 33% instructions inside the critical section]

Critical
Section

[] Parallel
- = |dle

=)
]
e
S I O R, 4

Contention for Critical Sections

12 iterations, 33% instructions inside the critical section ggggs:]
_h' .l .l l | [Parallel
S R I —
----- — — — = = Idle
= o — — !
[i Y i S i i [
=4 - i T i T —
---------- IIZZ}"I[ZZ}"FIZZq
! |
__.: - ag = =
e Accelerating critical sections
P increases performance and scalability
______ = Critical
. S S B S e . — Section
: .- ._ - — - -. -E' |.: Accelerated
=2 o mw mw ww ww mw by 2x
S N B N W W N W W >
=1 ;l 5] -
| | | | |
0 4 5

| —

[— —
| | | |

9 10 11 12

57

Impact ot Critical Sections on Scalability

Contention for critical sections leads to serial execution
(serialization) of threads in the parallel program portion

Contention for critical sections increases with the number of
threads and limits scalability

Asymmetric
8 -
7 -
a °°
=S
$
Q
n 3
2 Today
1 -
0
0 8 16 24 32 MySQL (O|tp-1)

Chip Area (cores) ”

A Case for Asymmetry

Execution time of sequential kernels, critical sections, and
limiter stages must be short

It is difficult for the programmer to shorten these
serialized sections

o Insufficient domain-specific knowledge
o Variation in hardware platforms

o Limited resources

o Performance-debugging tradeoff

Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)
59

An Example: Accelerated Critical Sections

= Idea: HW/SW ships critical sections to a large, powerful core in an
asymmetric multi-core architecture

= Benefit:
o Reduces serialization due to contended locks
o Reduces the performance impact of hard-to-parallelize sections

o Programmer does not need to (heavily) optimize parallel code - fewer
bugs, improved productivity

= Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

= Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA
2010, IEEE Micro Top Picks 2011.

60

Accelerated Critical Sections

EnterCS() 1. P2 encounters a critical section (CSCALL)
o _ 2. P2 sends CSCALL Request to CSRB
PriorityQ.insert(...) 3. P1 executes Critical Section

LeaveCS() 4. P1 sends CSDONE signal

4) Core executing

critical section
P1
P2 || P3 || P4
- J

ritical Section
Request Buffer
SRB)

Onchip-
Interconnect

Accelerated Critical Sections (ACS)

Small Core

A = compute()
LOCK X

result = CS(A)
UNLOCK X

print result

Small Core Large Core

A = compute()
PUSHA
CSCALL X, Target PC

CSCALL Request e
e Waiting in
Send X, TPC, . Critical Section

STACK PTR, CORE_ID
- - Request Buffer

- (CSRB)
TPC: Acquire X
POP A

result = CS(A)
PUSH result
Release X
CSRET X

o

CSDONE Response
POP result

print result

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

62

False Serialization

ACS can serialize independent critical sections

Selective Acceleration of Critical Sections (SEL)
o Saturating counters to track false serialization

To large core

I

A 2 CSCALL (A) Critical Section
Request Buffer
5 | 5 CSCALL (A) (CSCIRB)
CSCALL (B)

I

From small cores

63

ACS Performance Tradeoffs

Pluses
+ Faster critical section execution
+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

Minuses

- Large core dedicated for critical sections: reduced parallel
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse
private data locality

64

ACS Performance Tradeoffs

Fewer parallel threads vs. accelerated critical sections
o Accelerating critical sections offsets loss in throughput

o As the number of cores (threads) on chip increase:
Fractional loss in parallel performance decreases

Increased contention for critical sections
makes acceleration more beneficial

Overhead of CSCALL/CSDONE vs. better lock locality

o ACS avoids “ping-ponging” of locks among caches by keeping them at
the large core

More cache misses for private data vs. fewer misses
for shared data

65

Cache Misses for Private Data

{ PriorityHeap.insert(NewSubProblems) }

B —

Shared Data:
The priority heap

Private Data:
NewSubProblems

Puzzle Benchmark

66

ACS Performance Tradeoffs

Fewer parallel threads vs. accelerated critical sections
o Accelerating critical sections offsets loss in throughput

o As the number of cores (threads) on chip increase:
Fractional loss in parallel performance decreases

Increased contention for critical sections
makes acceleration more beneficial

Overhead of CSCALL/CSDONE vs. better lock locality

o ACS avoids “ping-ponging” of locks among caches by keeping them at
the large core

More cache misses for private data vs. fewer misses
for shared data

o Cache misses reduce if shared data > private data

This problem can be solved

See Suleman et al., "Data Marshaling for Multi-Core Architectures,” ISCA 2010. 67

ACS Comparison Points

Small Small Small Small Small Small Small Small
core core core core core core core core
Large Large
Small | Small | Small | Small core Small | Small core small | small
core core core core core core core core
Small Small Small Small Small Small Small Small Small Small Small Small
core core core core core core core core core core core core
Small Small Small Small Small Small Small Small Small Small Small Small
core core core core core core core core core core core core

SCMP ACMP ACS

Conventional Conventional Large core executes
locking locking Amdanhl’s serial part
Large core executes and critical sections

Amdahl’s serial part

68

Accelerated Critical Sections: Methodology

Workloads: 12 critical section intensive applications
o Data mining kernels, sorting, database, web, networking

Multi-core x86 simulator
o 1 large and 28 small cores
o Aggressive stream prefetcher employed at each core

Details:

o Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
o Small core: 2GHz, in-order, 2-wide, 5-stage

o Private 32 KB L1, private 256KB L2, 8MB shared L3

o On-chip interconnect: Bi-directional ring, 5-cycle hop latency

69

ACS Performance

Chip Area = 32 small cores Equa|_area Comparison
SCMP = 32 small cores

ACMP = 1 IarWues\Number of threads =-Best threads
160 269 180 185

o
= 140 \
O
»n 1 \ i
>
2 ol L\ L TR
g_ 4
B - Accelerating Sequen lal Kermpels |-
S R0 HA celeratlng Crltlcal >ect|o 1S H
w I I I I I
A\ < o
\Q \ & 24
O\ 5 QQQ (,0 Q
S
Coarse-grain locks Fine-grain locks

70

------ SCMP

mall core
= N w D

o

Speedup overas

/—N@ber of threads = No. of Tores
8 ; 4 7/ 1

i i i .
i 4 - > -
- 1 5 |
0 8 1624 32 O\ 8 16 24 32 0 8 16 24 32 D 8 16243
(a) ep (c) pagemi O0SG e
6 - 3 12 -
5 2.5 - 10
4 2 - 8
3 1.5 - 6
2 1 4
1 0.5 - 2
0 e 0 — 0
0 8 1624 32 0 8 162432 0 8162432 0 8 162432
(9) sqlite (h) iplookup (i) © (N~ (k) specjbb (1) webcache

Chip Area (small cores)

71

ACS Summary

Critical sections reduce performance and limit scalability

Accelerate critical sections by executing them on a powerful
core

ACS reduces average execution time by:
o 34% compared to an equal-area SCMP
o 23% compared to an equal-area ACMP

ACS improves scalability of 7 of the 12 workloads

Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

72

More on Accelerated Critical Sections

= M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures”
Proceedings of the 14th International Conference on Architectural
Support for Programming Lanquages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
20009. Slides (ppt)

Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt

University of Texas at Austin ~ Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu

73

Bottleneck Identification and
Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications”
Proceedings of the 1/th International Conference on Architectural Support for
Programming Lanquages and Operating Systems (ASPLOS), London, UK, March 2012.

74

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

Amdahl’s serial portions
o Only one thread exists = on the critical path

Critical sections
o Ensure mutual exclusion = likely to be on the critical path if contended

Barriers

o Ensure all threads reach a point before continuing = the latest thread arriving
is on the critical path

Pipeline stages

o Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait = on the critical path

75

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat
(ock A) 32 threads

30 |

Traverse list A
Remove X from A
\Unlock A)
Compute on X
Lock B)
Traverse list B
Insert X into B
\Unlock B)
until A is empty Lock A is limiter

25 r

20 r

15

10 |

Contention (# of threads waiting)
o

o
o
\V)

Lock B is limiter

76

Limiting Bottlenecks Do Change on Real Applications

MySQL running Sysbench queries, 16 threads

16 P —— : :

LOCK open —<—
14 XK) LOCK log —=— |1
12){) KK

PAas - e e}

Contention (# of threads waiting)

o N A~ O 00 O

1 2 3 4 5 6 7 8
time [Mcycles]

77

Bottleneck Identification and Scheduling (BIS)

Key insight:

o Thread waiting reduces parallelism and
is likely to reduce performance

o Code causing the most thread waiting
- likely critical path

Key idea:

o Dynamically identify bottlenecks that cause
the most thread waiting

o Accelerate them (using powerful cores in an ACMP)

78

Bottleneck Identification and Scheduling (BIS)

Compiler/Library/Programmer Hardware
4) @)
1. Annotate inary containing | 1- Megg.ure thread
bottleneck code 31S instructions waiting cycles (TWC)
2. Implement waitin > for each bottleneck
' for!g bottlenecks g 2. Accelerate bottleneck(s)
ith the highest TWC
K j \ Wi j

79

Critical Sections: Code Modifications

targetPC:

Wit toopfor —addr
/qu'lfﬂ' ealpakt\acquire lock \
Bzl doepifdhaivaich vaddih_addr

elgate Jock \ Used to enable

acceleration

release lock
4 BottleneckReturn bid

80

Barriers: Code Modifications

BottleneckCall bid, targetPC

enter barrier
while not all threads in barrier
BottleneckWait bid, watch_addr

exit barrier

targetPC: " code running for the barrier)

BottleneckReturn bid
_ J

81

Pipeline Stages: Code Moditications

BottleneckCall bid, targetPC

targetPC: /mle not done \
while empty queue

BottleneckWait prev_bid
dequeue work
do the work ...
while full queue
BottleneckWait next_bid

enqueue next work
ottleneckReturn bid /

82

Bottleneck Identification and Scheduling (BIS)

Compiler/Library/Programmer Hardware
4) @)
1. Annotate Binary containing | [1. Measure thread
bottleneck code BIS instructions waiting cycles (TWC)
2. Implement waitin P for each bottleneck
' for!g bottlenecks g 2. Accelerate bottleneck(s)
ith the highest TWC
K j \ Wi j

83

BIS: Hardware Overview

Performance-limiting bottleneck identification and
acceleration are independent tasks

Acceleration can be accomplished in multiple ways
o Increasing core frequency/voltage
a Prioritization in shared resources [Ebrahimi+, MICRO'11]

o |Migration to faster cores in an Asymmetric CMP |

Small
core

Small
core

Small
core

Small
core

Large core

Small
core

Small
core

Small | Small
core | core

Small
core

Small
core

Small | Small
core | core

84

Bottleneck Identification and Scheduling (BIS)

Compiler/Library/Programmer

-

_

1. Annotate

bottleneck code

2. Implement waiting

for bottlenecks

~

Binary containing
BIS instructions

J

Hardware

. Measure thread
waiting cycles (TWC)

for each bottleneck

\r

N

. Accelerate bottleneck(s)
with the highest TWC/

85

Determining Thread Waiting Cycles for Each Bottleneck

| | I 1
| | | |
1 1 1 1
| | | -
: < > |
I 1 I :
I 1 I I
I 1 1 I
I 1 I 1
] | 1 1
I 1 I I
1 1 1 1
| : 1 1
e e e e I - -
1 1

1 [

1

_______________________ bid=x4500, waiters=1, twc = 5 -
Small Core 2 i ——F—F— !

| |

1 1

BottleneckWailx4500 Bottleneck !

i‘ Table (BT) ‘===================----C

86

Bottleneck Identification and Scheduling (BIS)

Compiler/Library/Programmer

-

_

1. Annotate

bottleneck code

2. Implement waiting

for bottlenecks

~

Binary containing
BIS instructions

Hardware

(4

>

J

. Measure thread

~

waiting cycles (TWC)
for each bottleneck

Accelerate bottleneck(s)
with the highest TWC !

L‘z.

87

Bottleneck Acceleration

Small Core 1 E Large Core 0

1 1 1
! I !
1 f 1
i BottleneckCaﬂl bid=x4700, pc, sp, corel i BottleneckReturn x4700 i
I | Execute remoﬁly E< > :
! I I
1 . 1 1 1
I . O 1 I I
i Acceleration 8] | | |
E Index Table (AIT) : : ‘9/d=x4700, pc, sp, corel | !
] bid=x4700 , large core 0 Execute remotely | Scheduling Buffer (SB)E
T T T T T 1 1
1 | | | | 1 1
bid=x4600, twc=100 < twc < Threshold i
[————————————— - - - i
i Small Core 2 1 bid=x4700, twc=10000 | €« twc > Threshold E
| i Bottleneck | !
1
! © € Table (BT) ‘-===================-m-
1
| |
! 1
! I
! AlT !
i bid=x4700 , large core 0

38

BIS Mechanisms

Basic mechanisms for BIS:
o Determining Thread Waiting Cycles v
o Accelerating Bottlenecks v

Mechanisms to improve performance and generality of BIS:
o Dealing with false serialization

o Preemptive acceleration

o Support for multiple large cores

89

Hardware Cost

Main structures:

o Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

o Scheduling Buffers (SB): one table per large core,
as many entries as small cores

o Acceleration Index Tables (AIT): one 32-entry table
per small core

Off the critical path

Total storage cost for 56-small-cores, 2-large-cores < 19 KB

90

BIS Performance Trade-offs

= Faster bottleneck execution vs. fewer parallel threads
o Acceleration offsets loss of parallel throughput with large core counts

= Better shared data locality vs. worse private data locality

o Shared data stays on large core (good)

o Private data migrates to large core (bad, but latency hidden with Data
Marshaling [Suleman+, ISCA’ 10])

= Benefit of acceleration vs. migration latency
o Migration latency usually hidden by waiting (good)
o Unless bottleneck not contended (bad, but likely not on critical path)

91

Evaluation Methodology

Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications
o Data mining kernels, scientific, database, web, networking, specjbb

Cycle-level multi-core x86 simulator
o 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT
o 1 large core is area-equivalent to 4 small cores

Details:

o Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
o Small core: 4GHz, in-order, 2-wide, 5-stage

o Private 32KB L1, private 256KB L2, shared 8MB L3

o On-chip interconnect: Bi-directional ring, 2-cycle hop latency

92

BIS Comparison Points (Area-Equivalent)

SCMP (Symmetric CMP)
a All small cores

ACMP (Asymmetric CMP)
o Accelerates only Amdahl’ s serial portions
o Our baseline

ACS (Accelerated Critical Sections)
o Accelerates only critical sections and Amdahl’ s serial portions

o Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqglite, tsp, webcache, mg, ft)

FDP (Feedback-Directed Pipelining)
o Accelerates only slowest pipeline stages
o Applicable to pipeline-parallel workloads (rank, pagemine)

93

BIS Performance Improvement

Optimal number of threads, 28 small cores, 1 large core

160

[Y
o N B
o O O

Speedup norm. to ACMP (%)
o
o

o

\Q

a o
o O

No
o

192 192

AVAYAYF)
YA 11E U |

l

ﬂﬂﬂﬂ/\
il NN |

ik W“ /)

= BIS outpeﬂfﬂFﬁstﬂ@?Fﬁé'@WiS%Cannoé Cceﬁ”ggészwo

= BIS improves scalability on 4 of the benchmarks

94

Why Does BIS Work?

Fraction of execution time spent on predicted-important bottlenecks
100

90
80
70 -
60 -
50 -
40 -
30 -
20

Execution time (%)

Actually critical |

% § AN N N I I I

S & & & S T & ¢ & &
Q& & & &R & o ?

= Coverage: fraction of program critical path that is actually identified as bottlenecks
o 39% (ACS/FDP) to 59% (BIS)

= Accuracy: identified bottlenecks on the critical path over total identified bottlenecks
o 72% (ACS/FDP) to 73.5% (BIS)

95

BIS Scaling Results

Speedup over ACMP (%)

I
o

w
(9]

w
o

N
(92]

m ACS/FDP
M BIS

15%

N
o

[EEY
u

[N
o

6.2%

2.4%

8 16 32 64

Area (in small cores equivalent)

m MC-ACS/FDP
M BIS

1 2 3

Large cores (Area=64 equivalent small cores)

Performance increases with:

1) More small cores

= Contention due to bottlenecks

INnCreases

= Loss of parallel throughput due

to large core reduces

2) More large cores

= Can accelerate
independent bottlenecks

= Without reducing parallel
throughput (enough cores)

96

BIS Summary

Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

BIS is a hardware/software cooperative solution:

o Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

o Applicable to critical sections, barriers, pipeline stages

BIS improves application performance and scalability:
a Performance benefits increase with more cores

Provides comprehensive fine-grained bottleneck acceleration
with no programmer effort

97

More on Bottleneck Identification & Scheduling

= Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded
Applications”
Proceedings of the 17th International Conference on Architectural
Support for Programming Lanquages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

Bottleneck Identification and Scheduling
in Multithreaded Applications

José A. Joao M. Aater Suleman Onur Mutlu Yale N. Patt
ECE Department Calxeda Inc. Computer Architecture Lab. ECE Department
The University of Texas at Austin ~ 33ter.suleman®calxeda.com Carnegie Mellon University = The University of Texas at Austin
joao@ece.utexas.edu onur@cmu.edu patt@ece.utexas.edu

98

Handling Private Data Locality:
Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"”
Proceedings of the 37th International Symposium on Computer Architecture (ISCA),
pages 441-450, Saint-Malo, France, June 2010.

99

Staged Execution Model (I)

Goal: speed up a program by dividing it up into pieces
Idea

o Split program code into segments
o Run each segment on the core best-suited to run it
o Each core assigned a work-queue, storing segments to be run

Benefits

o Accelerates segments/critical-paths using specialized/heterogeneous cores
o Exploits inter-segment parallelism

o Improves locality of within-segment data

Examples

Accelerated critical sections, Bottleneck identification and scheduling
Producer-consumer pipeline parallelism

Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)
Special-purpose cores and functional units

o O O O

100

Staged Execution Model (II)

101

Staged Execution Model (I11)

Split code into segments

Segment SO

Segment S1

Segment S2

102

Staged Execution Model (IV)

T T T

Instances Instances Instances
of SO of S1 of S2

Work-queues

103

Staged Execution Model: Segment Spawning

Core 0 Core 1 Core 2

104

Staged Execution Model: Two Examples

Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

o Idea: Ship critical sections to a large core in an asymmetric CMP
Segment 0: Non-critical section
Segment 1: Critical section

o Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

Producer-Consumer Pipeline Parallelism

o Idea: Split a loop iteration into multiple “pipeline stages” where
one stage consumes data produced by the previous stage - each
stage runs on a different core

Segment N: Stage N
o Benefit: Stage-level parallelism, better locality = faster execution

105

Problem: Locality of Inter-segment Data

Core 0 Core 1 Core 2

SO0

Transfer Y
Cache Miss

Transfer Z
Cache Miss

106

Problem: Locality of Inter-segment Data

= Accelerated Critical Sections [Suleman et al., ASPLOS 2010]
o Idea: Ship critical sections to a large core in an ACMP

o Problem: Critical section incurs a cache miss when it touches data
produced in the non-critical section (i.e., thread private data)

= Producer-Consumer Pipeline Parallelism

o Idea: Split a loop iteration into multiple “pipeline stages” = each
stage runs on a different core

o Problem: A stage incurs a cache miss when it touches data
produced by the previous stage

= Performance of Staged Execution limited by inter-segment
cache misses

107

What if We .

“liminated All Inter-segment Misses?

Performance Potential

1.25

1.2

1.15

1.1

1.05

ACS

Pipeline

108

Terminology

Core 0 Core 1

SO0

Generator instruction:
The last instruction to write to an
inter-segment cache block in a segment

Core 2

Inter-segment data: Cache
block written by one segment
and consumed by the next
segment

109

Key Observation and Idea

Observation: Set of generator instructions is stable over
execution time and across input sets

Idea:
o Identify the generator instructions
o Record cache blocks produced by generator instructions

o Proactively send such cache blocks to the next segment’ s
core before initiating the next segment

Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

110

Data Marshaling

Compiler/Profiler Hardware
4) 4)
1. Identify generator 1. Record generator-
instructions . produced addresses
2. Insert marshal _ o 2. Marshal recorded
instructions Bmarz/ Cont:p':g 2 blocks to next core
generator prefix
\ j marshal Instructions \ /

111

Data Marshaling

Compiler/Profiler Hardware
4)
. Identify generator 1. Record generator-
instructions . produced addresses
. Insert marshal 2. Marshal recorded
instructions eii;‘ra;z’o‘;o”rt:;_”igg 2 blocks to next core
IX
) P _ J

marshal Instructions

112

Profiling Algorithm

Inter-segment data

Mark as Generator
Instruction

113

Marshal Instructions

When to send (Marshal)
Where to send (C1)

114

DM Support/Cost

Profiler/Compiler: Generators, marshal instructions
ISA: Generator prefix, marshal instructions
Library/Hardware: Bind next segment ID to a physical core

Hardware

o Marshal Buffer
Stores physical addresses of cache blocks to be marshaled
16 entries enough for almost all workloads - 96 bytes per core

o Ability to execute generator prefixes and marshal instructions
o Ability to push data to another cache

115

DM: Advantages, Disadvantages

Advantages

o Timely data transfer: Push data to core before needed

o Can marshal any arbitrary sequence of lines: Identifies
generators, not patterns

o Low hardware cost: Profiler marks generators, no need for
hardware to find them

Disadvantages
o Requires profiler and ISA support

o Not always accurate (generator set is conservative): Pollution
at remote core, wasted bandwidth on interconnect

Not a large problem as number of inter-segment blocks is small

116

Accelerated Critical Sections with DM

Critical

Section

Marshal
Buffer

Cache Hit!

117

Accelerated Critical Sections: Methodology

Workloads: 12 critical section intensive applications
o Data mining kernels, sorting, database, web, networking
o Different training and simulation input sets

Multi-core x86 simulator
o 1 large and 28 small cores
o Aggressive stream prefetcher employed at each core

Details:

o Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
o Small core: 2GHz, in-order, 2-wide, 5-stage

o Private 32 KB L1, private 256KB L2, 8MB shared L3

o On-chip interconnect: Bi-directional ring, 5-cycle hop latency

118

DM on Accelerated Critical Sections: Results

Speedup over ACS

140

120

100

168 170

[5.7%

[\
\

il

H DM
H |deal

: R
S
& & &

6@

QQ

00

0

,ga

6“

XS,
K

(&

&“

g

119

Pipeline Parallelism

Marshal

Cache Hit!

Buffer

120

Pipeline Parallelism: Methodology

Workloads: 9 applications with pipeline parallelism
o Financial, compression, multimedia, encoding/decoding
o Different training and simulation input sets

Multi-core x86 simulator

o 32-core CMP: 2GHz, in-order, 2-wide, 5-stage

o Aggressive stream prefetcher employed at each core

o Private 32 KB L1, private 256KB L2, 8MB shared L3

o On-chip interconnect: Bi-directional ring, 5-cycle hop latency

121

OOOOOOOOO 0
© < N O O © <«

- = @

auljoseg J9A0 dnpoaadg

DM on Pipeline Parallelism: Results

122

DM Coverage, Accuracy, Timeliness

100 1
90 -

0 - -
20 - -
-
|

60 -
50 “
40 -
30 -
20 -
10 1

Percentage

@ Coverage

B Accuracy
B Timeliness

ACS Pipeline

= High coverage of inter-segment misses in a timely manner

= Medium accuracy does not impact performance
o Only 5.0 and 6.8 cache blocks marshaled for average segment

123

Scaling Results

DM performance improvement increases with
o More cores

o Higher interconnect latency

o Larger private L2 caches

Why? Inter-segment data misses become a larger bottleneck
o More cores - More communication

o Higher latency - Longer stalls due to communication

o Larger L2 cache > Communication misses remain

124

Other Applications of Data Marshaling

Can be applied to other Staged Execution models
o Task parallelism models
Cilk, Intel TBB, Apple Grand Central Dispatch
o Special-purpose remote functional units
o Computation spreading [Chakraborty et al., ASPLOS’ 06]
o Thread motion/migration [e.g., Rangan et al., ISCA’ 09]

Can be an enabler for more aggressive SE models

o Lowers the cost of data migration
an important overhead in remote execution of code segments

o Remote execution of finer-grained tasks can become more
feasible - finer-grained parallelization in multi-cores

125

Data Marshaling Summary

Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’ s core

o Significantly reduces cache misses for inter-segment data

o Low cost, high-coverage, timely for arbitrary address sequences

o Achieves most of the potential of eliminating such misses

Applicable to several existing Staged Execution models
o Accelerated Critical Sections: 9% performance benefit
o Pipeline Parallelism: 16% performance benefit

Can enable new models=> very fine-grained remote execution

126

More on Bottleneck Identification & Scheduling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures”

Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June

2010. Slides (ppt)

Data Marshaling for Multi-core Architectures

M. Aater Sulemant Onur Mutlu§ José A. Joaot Khubaibt Yale N. Pattt

tThe University of Texas at Austin §Carnegie Mellon University
{suleman, joao, khubaib, patt}@hps.utexas.edu onur@cmu.edu

127

Other Uses of Asymmetry

Use ot Asymmetry for Energy Etticiency

Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction,” MICRO 2003.

Idea:

o Implement multiple types of cores on chip
o Monitor characteristics of the running thread (e.g., sample energy/perf
on each core periodically)

o Dynamically pick the core that provides the best energy/performance
tradeoff for a given phase
“Best core” - Depends on optimization metric

129

Use ot Asymmetry for Energy Etticiency

EV8-

Figure 1. Relative sizes of the Alpha cores scaled to 0.10 pm. EV8 is 80 times

bigger but provides only two to three times more single-threaded performance.

Table 1. Power and relative performance of Alpha cores scaled to
0.10 pm. Performance is expressed normalized to EV4 performance.

Peak power Average power Performance
Core (Watts) (Watts) (norm. IPC)
EV4 4.97 3.73 1.00
EV5 9.83 6.88 1.30
EV6 17.8 10.68 1.87
EV8 92.88 46.44 2.14

2.0
1.6

z 12

=

E ~ EV8-

&L

= 1 EV6

EVS
0.4
EV4
0
201 401 601 801

(a) Committed instructions (millions)
= EVS,
58 EV6
=5 EV5
25 EV4
S

(b)
= EVE-
E 5 EV6
g 5 I! ” ll | | | | EVS
§ EV4

om—
)
N—

=4

Use ot Asymmetry for Energy Etticiency

Advantages
+ More flexibility in energy-performance tradeoff

+ Can execute computation to the core that is best suited for it (in terms of
energy)

Disadvantages/issues

- Incorrect predictions/sampling = wrong core - reduced performance or
increased energy

- Overhead of core switching
- Disadvantages of asymmetric CMP (e.g., design multiple cores)
- Need phase monitoring and matching algorithms

- What characteristics should be monitored?

- Once characteristics known, how do you pick the core?

131

Asymmetric vs. Symmetric Cores

Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
+ Schedule computation to the core type that can best execute it

Disadvantages

- Need to design more than one type of core. Always?

- Scheduling becomes more complicated
- What computation should be scheduled on the large core?
- Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources
132

How to Achieve Asymmetry

Static
o Type and power of cores fixed at design time

o Two approaches to design “faster cores”:

High frequency

Build a more complex, powerful core with entirely different uarch
o Is static asymmetry natural? (chip-wide variations in frequency)

Dynamic
a Type and power of cores change dynamically

o Two approaches to dynamically create “faster cores”:
Boost frequency dynamically (limited power budget)
Combine small cores to enable a more complex, powerful core
Is there a third, fourth, fifth approach?

133

Computer Architecture
Lecture 16:
Heterogeneous Multi-Core

Prof. Onur Mutlu
ETH Zirich
Fall 2017
16 November 2017

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Asymmetry via Boosting of Frequency

Static

o Due to process variations, cores might have different
frequency

o Simply hardwire/design cores to have different frequencies

Dynamic

o Annavaram et al., “Mitigating Amdahl’ s Law Through EPI
Throttling,” ISCA 2005.

o Dynamic voltage and frequency scaling

136

EPI Throttling

Goal: Minimize execution time of parallel programs while
keeping power within a fixed budget

For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism

o P = EPI «IPS

o P = fixed power budget

o EPI = energy per instruction

o IPS = aggregate instructions retired per second

Idea: For a fixed power budget
o Run sequential phases on high-EPI processor

o Run parallel phases on multiple low-EPI processors
137

EPI Throttling via DVES

DVFS: Dynamic voltage frequency scaling

In phases of low thread parallelism
o Run a few cores at high supply voltage and high frequency

In phases of high thread parallelism
a2 Run many cores at low supply voltage and low frequency

138

Possible EPI Throttling Techniques

Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

Mobod | EPlRange | Time o e P

Volta.ge /frequency 1:2to 1: 4 100us (ramp Vcec) Lower voltage and frequency
etticcores 1:4 to 1:6 10us (migrate 256KB | Migrate threads from large
L2 cache) cores to small cores

Variable-size core 1:1 to 1:2 1us (fill 32KB L1 Reduce capacity of processor
cache) resources

Speculation control 1:1 to 1:1.4 10ns (pipeline Reduce amount of
latency) speculation

139

Boosting Frequency of a Small Core vs. Large Core

Frequency boosting implemented on Intel Nehalem, IBM
POWER7

Advantages of Boosting Frequency

+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

Disadvantages
- Does not improve performance if thread is memory bound

- Does not reduce Cycles per Instruction (remember the
performance equation?)

- Changing frequency/voltage can take longer than switching to a

large core
140

A Case tor
Asymmetry Everywhere

Onur Mutlu,

"Asymmetry Everywhere (with Automatic Resource Management)"
CRA Workshop on Advancing Computer Architecture Research: Popular
Parallel Programming, San Diego, CA, February 2010.

Position paper

141

Asymmetry Enables Customization

C C C C C2
C1
C C C C C3
C C C C C4 C4 C4 C4
C C C C C5 C5 C5 C5
Symmetric Asymmetric

Symmetric: One size fits all
o Energy and performance suboptimal for different phase behaviors

Asymmetric: Enables tradeoffs and customization
o Processing requirements vary across applications and phases
o Execute code on best-fit resources (minimal energy, adequate perf.)

142

Thought Experiment: Asymmetry Everywhere

Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

o Different power/performance/reliability characteristics
o To fit different computation/access/communication patterns

Asymmetric / configurable
cores and accelerators

High—power
High perf.

“““““““ Asymmetric / partitionable

Power/performance L L0 | memory hierarchies
optimized for L L
each access pattern oo SR

r T T T T T T T T T T T T 1T ™~ . .« .
| N Asymmetric / partitionable

L l l L. ..t) Interconnect

Different technologies

Power characteristics Asymmetric main memories

143

Thought Experiment: Asymmetry Everywhere

Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase

o Satisfy performance/SLA with minimal energy
o Dynamically stitch together the “best-fit” chip for each phase

Asymmetric / configurable

Phase 1 High—power cores and accelerators
High perf.
Phase 2
Phase 3 Asymmetric / partitionable

Power/performance memory hierarchies
optimized for

each access pattern

[} Asymmetric / partitionable

interconnect

-

Differerf§ technologies
Power cjaracteristics

144

Thought |

Cxperiment: Asymmetry

“verywhere

Morph software components to match asymmetric HW
components

o Multiple versions for different resource characteristics

Asymmetric / configurable

Version 1 High—power cores and accelerators
. High perf.
Version 2
Version 3 B cororee T Asymmetric / partitionable
Power/performance R ' 1111111 | memory hierarchies
optimized for RN REREREREN

each access pattern ! e N R

-

.

wwwwwwwwww Asymmetric / partitionable

11111111111 _ interconnect

Different technologies
Power characteristics

Asymmetric main memories

145

Many Research and Design Questions

How to design asymmetric components?
o Fixed, partitionable, reconfigurable components?
o What types of asymmetry? Access patterns, technologies?

What monitoring to perform cooperatively in HW/SW?
o Automatically discover phase/task requirements

How to design feedback/control loop between components and
runtime system software?

How to design the runtime to automatically manage resources?
o Track task behavior, pick “best-fit” components for the entire workload

146

Exploiting Asymmetry: Simple Examples

| Asymmetric / configurable

cores and accelerators

High—power

High perf.

Serial

Power/performance
optimized for
each access pattern

Asymmetric / partitionable
memory hierarchies

Ve T T T T T T T T T T T1

o000) Asymmetric / partitionable

N ! A) 1nterconnect

Different technologies
Power characteristics

Asymmetric main memories

= Execute critical/serial sections on

nigh-power, high-performance

COrES/reSOU IFCES [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+

ASPLOS’12,ISCA’13]

= Programmer can write less optimized, but more likely correct programs

147

Exploiting Asymmetry: Simple Examples

| Asymmetric / configurable
cores and accelerators

High—power

High 3¢5
Backend

Asymmetric / partitionable

Power/performance memory hierarchies
optimized for

each access pattern

Ve T T T T T T T T T T T1 ~N

| | oo Asymmetric / partitionable
N ! R S) interconnect

Different technologies

Power characteristics Asymmetric main memories

Execute each code block on the most efficient execution backend
for that block [Fallin+ IcCD’14]

Enables a much more efficient and still high performance core design

148

Exploiting Asymmetry: Simple Examples

Asymmetric / configurable
cores and accelerators

High—power
High perf.

Asymmetric / partitionable
memory hierarchies

Power/performance
optimized for

each access pattern

Streami R

— a

/ 'R) Asymmetric / partitionable

N | | .di i) interconnect

Different technologies A . . .

Power characteristics symmetric main memories
d

Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies ¢

More efficient and higher perform%nce than general purpose hierarchy

S
149

Exploiting Asymmetry: Simple Examples

High—power

High perf.

Power/performance
optimized for
each access pattern

Latency optimized NoC

Different technologies
Power characteristics

r

Asymmetric / configurable
cores and accelerators

Asymmetric / partitionable
memory hierarchies

Asymmetric / partitionable
Interconnect

Asymmetric main memories

Execute bandwidth-sensitive thre%ds on a bandwidth-optimized
network, latency-sensitive ones an a latency-optimized network

[Das+ DAC’13]

o

Higher performance and energy-eit?iciency than a single network

]
m

150

Exploiting Asymmetry: Simple Examples

Asymmetric / configurable
High—power cores and accelerators
High perf.

Asymmetric / partitionable
Power/performance memory hierarchies

optimized for
each access pattern

s

Asymmetric / partitionable

Laten nsitiv :
atency se Slt € interconnect

.

Different technologies A tri . .
Power characteristics i Symmetric main memories

= Partition memory controller and an-chip network bandwidth

asymmetrically among threads [kifh+ HPCA 2010, MICRO 2010, Top Picks
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2899, ISCA 2010, Top Picks 2011]

= Higher performance and energy-eﬁficiency than symmetric/free-for-all

S 151
I

Exploiting Asymmetry: Simple Examples

High—power

High perf.

Power/performance
optimized for
each access pattern

s

.

Compute intensive

Memory intens

Different technologies
Power characteristics

Asymmetric / configurable
cores and accelerators

Asymmetric / partitionable
memory hierarchies

Asymmetric / partitionable
Interconnect

E Asymmetric main memories

Have multiple different memory scheduling policies apply them to

different sets of threads based on thread behavior [Kim+ MICRO
2010, Top Picks 2011] [Ausavarungnirun+ ISCA 2012]

Higher performance and fairness than a homogeneous policy

152

Exploiting Asymmetry: Simple Examples

Asymmetric / configurable
cores and accelerators

High—power
High perf.

uuuuuuuuuu Asymmetric / partitionable

Power/performance CPU B memory hierarchies
optimized for EEREREREE
each access pattern - DRA ~ PCM S

DRAM MCtrl il Phase Change. Meory (or Tech. X)

partitionable

aln memories

= Build main memory with different technologies with different

characteristics (e.qg., latency, bandwidth, cost, energy, reliability)
[Meza+ IEEE CAL'12, Yoon+ ICCD’12, Luo+ DSN’14]

= Higher performance and energy-efficiency than homogeneous memory

153

Exploiting Asymmetry: Simple Examples

High—power

Asymmetric / configurable

cores and accelerators

High perf.

Power/performance
optimized for
each access pattern

Asymmetric / partitionable
memory hierarchies

s

Reliable DRAM

e | Agymmetric / partitionable
" Less R.e.li.a.b!e DRA Interconnect

Asymmetric main memories

= Build main memory with different technologies with different

characteristics (e.g., latency, bandwidth, cost, energy, reliability)
[Meza+ IEEE CAL'12, Yoon+ ICCD’12, Luo+ DSN’14]

= Lower-cost than homogeneous-reliability memory at same availability

154

Exploiting Asymmetry: Simple Examples

Asymmetric / configurable
High—power cores and accelerators
High perf.

Asymmetric / partitionable
Power/performance memory hierarchies

optimized for
each access pattern

' ' o0 Asymmetric / partitionable
Heterogeneous-Refresh-Rate DRAM, |

...........) 1nterconnect

Different technologies A . . .
Power characteristics symmetric main memories

Design each memory chip to be heterogeneous to achieve low

latency and low energy at reasonably low cost [Lee+ HPCA'13,
Liu+ ISCA’12]

Higher performance and energy-efficiency than single-level memory

155

