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Summary of Yesterday

 Memory Latency Tolerance

 Runahead Execution

 Wrong Path Effects
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Today

 Prefetching
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Prefetching



Outline of Prefetching Lecture(s)

 Why prefetch? Why could/does it work?

 The four questions

 What (to prefetch), when, where, how

 Software prefetching

 Hardware prefetching algorithms

 Execution-based prefetching

 Prefetching performance

 Coverage, accuracy, timeliness

 Bandwidth consumption, cache pollution

 Prefetcher throttling 

 Issues in multi-core (if we get to it)
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Readings in Prefetching

 Required:

 Jouppi, “Improving Direct-Mapped Cache Performance by the 
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 
1997.

 Recommended:

 Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.

6



Prefetching

 Idea: Fetch the data before it is needed (i.e. pre-fetch) by 
the program

 Why? 

 Memory latency is high. If we can prefetch accurately and 
early enough we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict?

 Involves predicting which address will be needed in the 
future

 Works if programs have predictable miss address patterns

7



Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply 
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction
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Basics

 In modern systems, prefetching is usually done in cache 
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by 

 hardware

 compiler

 programmer
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How a HW Prefetcher Fits in the Memory System
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Prefetching: The Four Questions

 What

 What addresses to prefetch

 When

 When to initiate a prefetch request

 Where

 Where to place the prefetched data

 How

 Software, hardware, execution-based, cooperative
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Challenges in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate 
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch

 Predict based on past access patterns

 Use the compiler’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
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Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from 
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the 
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the 
processor’s access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)
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Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data  cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches  no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
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Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L2, memory to L1. Advantages/disadvantages?

 L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched 
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the 
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?
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Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory 
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only 

 L2 misses only 

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth 
intensive, more ports into the prefetcher?)
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Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Hardware monitors processor accesses

 Memorizes or finds patterns/strides

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware
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Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into 
appropriate places in code

 Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the 
program
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X86 PREFETCH Instruction
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Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency, 
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures
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for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?



Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access? 

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch 
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles 
of main memory latency  reduced accuracy
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Hardware Prefetching (I)

 Idea: Specialized hardware observes load/store access 
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases
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Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next 
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower 
addresses?

- Also prefetch “previous” N cache lines?
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Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to 
reduce data access penalty,” SC 1991.

 Idea: 

 Record the distance between the memory addresses referenced by 
a load instruction (i.e. stride of the load) as well as the last address 
referenced by the load

 Next time the same load instruction is fetched,                     
prefetch last address + stride
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Instruction Based Stride Prefetching

 What is the problem with this?

 How far can the prefetcher get ahead of the demand access stream? 

 Initiating the prefetch when the load is fetched the next time can be 
too late 

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table (decouple frontend of 
the processor from backend)

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches
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Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address 
based stride prefetching where N = 1
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Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of 
sequentially prefetched cache lines 

 On a load miss check the head of all 
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache 

with data 

 if not, allocate a new stream buffer to the new 
miss address (may have to replace a stream 
buffer following LRU policy)

 Stream buffer FIFOs are continuously 
topped-off with subsequent cache lines 
whenever there is room and the bus is not 
busy
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a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.



Stream Buffer Design
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Stream Buffer Design
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Tradeoffs in Stride Prefetching

 Instruction based stride prefetching vs.

cache block address based stride prefetching

 The latter can exploit strides that occur due to the 
interaction of multiple instructions

 The latter can more easily get further ahead of the 
processor access stream

 No need for lookahead PC

 The latter is more hardware intensive

 Usually there are more data addresses to monitor than 
instructions
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Locality Based Prefetchers

 In many applications access patterns are not perfectly 
strided

 Some patterns look random to closeby addresses

 How do you capture such accesses?

 Locality based prefetching

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware 
Prefetchers“, HPCA 2007.
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Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

 Multiple tracking entries for a range of addresses

 Invalid: The tracking entry is not allocated a stream to keep track of. Initially, 
all tracking entries are in this state. 

 Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the 
demand miss does not find any existing tracking entry for its cache-block address.

 Training: The prefetcher trains the direction (ascending or descending) of the 
stream based on the next two L2 misses that occur +/- 16 cache blocks from the 
first miss. If the next two accesses in the stream are to ascending (descending) 
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions 
to Monitor and Request state.

 Monitor and Request: The tracking entry monitors the accesses to a memory 
region from a start pointer (address A) to an end pointer (address P). The maximum 
distance between the start pointer and the end pointer is determined by Prefetch 
Distance, which indicates how far ahead of the demand access stream the 
prefetcher can send requests. If there is a demand L2 cache access to a cache block 
in the monitored memory region, the prefetcher requests cache blocks [P+1, ..., 
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1). 
N is called the Prefetch Degree. After sending the prefetch requests, the tracking 
entry starts monitoring the memory region between addresses A+N to P+N (i.e. 
effectively it moves the tracked memory region by N cache blocks).
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Limitations of Locality-Based Prefetchers
 Bandwidth intensive

 Why?

 Can be fixed by

 Stride detection

 Feedback mechanisms

 Limited to prefetching closeby addresses

 What about large jumps in addresses accessed?

 However, they work very well in real life

 Single-core systems

 Boggs et al., “The Microarchitecture of the Intel Pentium 4 Processor on 
90nm Technology”, Intel Technology Journal, Feb 2004.
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Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without 
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance
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Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream 

 Prefetch degree: how many prefetches per demand access
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Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive Prefetcher (large prefetch distance & degree)

 Well ahead of the load access stream 

 Hides memory access latency better 

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative Prefetcher (small prefetch distance & degree)

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely
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Prefetcher Performance (IV)
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Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

 Idea: 

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past 
performance

 Change the location prefetches are inserted in cache based on 
past performance
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Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (III)

 BPKI - Memory Bus Accesses per 1000 retired Instructions

 Includes effects of L2 demand misses as well as pollution 
induced misses and prefetches

 A measure of bus bandwidth usage

41

No. Pref. Very Cons Mid Very Aggr FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPKI 8.56 9.34 10.60 13.38 10.88



More on Feedback Directed Prefetching

 Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt


How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers
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Address Correlation Based Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), 
some addresses are more likely to be referenced next
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Address Correlation Based Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch up to N next addresses to increase coverage 

 Prefetch accuracy can be improved by using multiple addresses as key for 
the next address: (A, B)  (C)

(A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

 Also called “Markov prefetchers”
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Address Correlation Based Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses 
is infeasible

 Can have low timeliness: Lookahead is limited since a prefetch 
for the next access/miss is initiated right after previous

 Can consume a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
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Content Directed Prefetching (I) 

 A specialized prefetcher for pointer values 

 Idea: Identify pointers among all values in a fetched cache 
block and issue prefetch requests for them.

 Cooksey et al., “A stateless, content-directed data prefetching 
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache 
block’s address  if most-significant few bits match, pointer
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Content Directed Prefetching (II)
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Making Content Directed Prefetching Efficient

 Hardware does not have enough information on pointers

 Software does (and can profile to get more information)

 Idea:

 Compiler profiles/analyzes the code and provides hints as to 
which pointer addresses are likely-useful to prefetch.

 Hardware uses hints to prefetch only likely-useful pointers.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of 
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.
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Shortcomings of CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node -> Key != Key;

Struct node{

int Key;

int * D1_ptr;

int * D2_ptr;

node * Next;

}

node = node -> Next;

if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

)  ;

Key

Example from mst
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Shortcomings of CDP – An Example

= = = = = = = =

[3
1

:2
0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key
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Shortcomings of CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node = node -> Next;

if (node) 

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key
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Shortcomings of CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next
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More on Content Directed Prefetching

 Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009.Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt


Hybrid Hardware Prefetchers

 Many different access patterns

 Streaming, striding

 Linked data structures

 Localized random

 Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage

-- More complexity

-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention, 
pollution)

- Need to manage accesses from each prefetcher
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Execution-based Prefetchers (I)

 Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data 

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can 
be considered a “thread”

 Speculative thread can be executed 
 On a separate processor/core

 On a separate hardware thread context (think fine-grained 
multithreading)

 On the same thread context in idle cycles (during cache misses)
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Execution-based Prefetchers (II)

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but 

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Perform only address generation computation, branch prediction, 
value prediction (to predict “unknown” values) 

 Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect
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Thread-Based Pre-Execution

 Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998.

 Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context 

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead? 

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback (recall throttling)
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Thread-Based Pre-Execution Issues

 What, when, where, how

 Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

 Many issues in software-based pre-execution discussed
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An Example

61



Example ISA Extensions
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Results on a Multithreaded Processor
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Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in 
Simultaneous Multithreading Processors,” ISCA 2001.



Problem Instructions

 Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 
2001.

 Zilles and Sohi, ”Understanding the backward slices of performance degrading 
instructions,” ISCA 2000.
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Fork Point for Prefetching Thread
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Pre-execution Thread Construction
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Review: Runahead Execution

 A simple pre-execution method for prefetching purposes

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)
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Runahead as an Execution-based Prefetcher

 Idea of an Execution-Based Prefetcher: Pre-execute a piece 
of the (pruned) program solely for prefetching data 

 Idea of Runahead: Pre-execute the main program solely for 
prefetching data 

 Advantages and disadvantages of runahead vs. other 
execution-based prefetchers?

 Can you make runahead even better by pruning the 
program portion executed in runahead mode?

69



Taking Advantage of Pure Speculation

 Runahead mode is purely speculative

 The goal is to find and generate cache misses that would 
otherwise stall execution later on

 How do we achieve this goal most efficiently and with the 
highest benefit?

 Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

 How?
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Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context

+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction 
accuracy

- Mispredicted branches dependent on missing data throw the thread   
off the correct execution path 

-- Can be wasteful

-- speculatively execute many instructions

-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
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Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)

 Prefetching shared data

 Coherence misses

 Prefetch efficiency is a lot more important

 Bus bandwidth more precious

 Cache space more valuable

 One cores’ prefetches interfere with other cores’ requests

 Cache conflicts

 Bus contention

 DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)

 Two key issues

 How to prioritize prefetches vs. demands (of different cores)

 How to control the aggressiveness of multiple prefetchers to 
achieve high overall performance

 Need to coordinate the actions of independent prefetchers
for best system performance

 Each prefetcher has different accuracy, coverage, timeliness
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Some Ideas

 Controlling prefetcher aggressiveness

 Feedback directed prefetching [HPCA’07]

 Coordinated control of multiple prefetchers [MICRO’09]

 How to prioritize prefetches vs. demands from cores

 Prefetch-aware memory controllers and shared resource 
management [MICRO’08, ISCA’11]

 Bandwidth efficient prefetching of linked data structures

 Through hardware/software cooperation (software hints) 
[HPCA’09]
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Motivation

 Aggressive prefetching improves 
memory latency tolerance of 
many applications when they run alone

 Prefetching for concurrently-executing 
applications on a CMP can lead to
 Significant system performance degradation and 

bandwidth waste

 Problem:
Prefetcher-caused inter-core interference
 Prefetches of one application contend with 

prefetches and demands of other applications
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Potential Performance

System performance improvement of ideally removing all 
prefetcher-caused inter-core interference in shared resources

  

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

W
L

1

W
L

2

W
L

3

W
L

4

W
L

5

W
L

6

W
L

7

W
L

8

W
L

9

W
L

1
0

W
L

1
1

W
L

1
2

W
L

1
3

W
L

1
4

G
m

e
a
n

-3
2

P
e
rf

. 
N

o
rm

a
li
z
e
d

 t
o

 N
o

 T
h

ro
tt

li
n

g

56%

Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]



High Interference caused by  
Accurate Prefetchers
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Shortcoming of Local Prefetcher Throttling
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…
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…
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Shortcoming of Local-Only 
Prefetcher Control
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Prefetching in Multi-Core (II)

 Ideas for coordinating different prefetchers’ actions

 Utility-based prioritization 

 Prioritize prefetchers that provide the best marginal utility on 
system performance

 Cost-benefit analysis

 Compute cost-benefit of each prefetcher to drive prioritization

 Heuristic based methods

 Global controller overrides local controller’s throttling decision 
based on interference and accuracy of prefetchers

 Ebrahimi et al., “Coordinated Management of Multiple Prefetchers 
in Multi-Core Systems,” MICRO 2009.
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Hierarchical Prefetcher Throttling
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Hierarchical Prefetcher Throttling Example
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HPAC Control Policies
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HPAC Evaluation
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15%

9%

Normalized to system with no prefetching



More on Coordinated Prefetcher Control

 Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

 Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt
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Problems of Prefetch Handling

 How to schedule prefetches vs demands?
 Demand-first: Always prioritizes demands over 

prefetch requests

 Demand-prefetch-equal: Always treats them the same

Neither take into account both:

1. Non-uniform access latency of DRAM systems

2. Usefulness of prefetches 

Neither of these perform best
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When Prefetches are Useful
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2 row-conflicts, 1 row-hit
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When Prefetches are Useful

Row A
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Row-hitRow-conflict

Saved Cycles

Row B

Miss Y Miss X Miss Z

Miss Y Hit X Hit Z

Demand-pref-equal outperforms demand-first

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

2 row-hits, 1 row-conflict
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When Prefetches are Useless

Row A
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Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled
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More on Prefetching in Multi-Core (II)

 Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx


More on Prefetching in Multi-Core (IV)
 Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim


Informed Caching Policies for Prefetched Blocks

Caching Policies for Prefetched Blocks
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Problem: Existing caching policies for prefetched 
blocks result in significant cache pollution

Cache Set

MRU LRU

Cache Miss: 
Insertion Policy

Cache Hit: 
Promotion Policy



Informed Caching Policies for Prefetched Blocks

Prefetch Usage Experiment
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L
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Monitor L2 misses Prefetch into L3

Classify prefetched blocks into three categories

1.  Blocks that are unused

2.  Blocks that are used exactly once before evicted from cache

3.  Blocks that are used more than once before evicted from cache



Informed Caching Policies for Prefetched Blocks

Usage Distribution of Prefetched Blocks
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Informed Caching Policies for Prefetched Blocks

Shortcoming of Traditional Promotion Policy
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Cache Set

MRU LRUP
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Informed Caching Policies for Prefetched Blocks

Demotion of Prefetched Block
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Informed Caching Policies for Prefetched Blocks

Cache Insertion Policy for Prefetched Blocks
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Cache Set

MRU LRU

Prefetch Miss: 
Insertion Policy?

Good (Accurate prefetch)
Bad (Inaccurate prefetch)

Good (Inaccurate prefetch)
Bad (accurate prefetch)



Informed Caching Policies for Prefetched Blocks

Predicting Usefulness of Prefetch
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Prefetch Miss 
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Prefetching in GPUs 

 Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf
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