Computer Architecture
Lecture 18:
Prefetching

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
23 November 2017

Summary of Yesterday

Memory Latency Tolerance
Runahead Execution

Wrong Path Effects

Today

= Prefetching

Prefetching

Outline of Prefetching Lecture(s)

Why prefetch? Why could/does it work?
The four questions

o What (to prefetch), when, where, how
Software prefetching

Hardware prefetching algorithms
Execution-based prefetching
Prefetching performance

o Coverage, accuracy, timeliness
o Bandwidth consumption, cache pollution

Prefetcher throttling
Issues in multi-core (if we get to it)

Readingsin Prefetching

= Required:

o Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

a Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA
1997.

= Recommended:

o Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

o Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.

o Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?

o Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

o Can eliminate compulsory cache misses

o Can it eliminate all cache misses? Capacity, conflict?

Involves predicting which address will be needed in the
future

o Works if programs have predictable miss address patterns

Pretetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a “mispredicted” address is simply
not used

There is no need for state recovery
o In contrast to branch misprediction or value misprediction

Basics

In modern systems, prefetching is usually done in cache
block granularity

Prefetching is a technique that can reduce both
o Miss rate
o Miss latency

Prefetching can be done by
o hardware

o compiler

0 programmer

How a HW Prefetcher Fits in the Memory System

|-Cache fills |-Cache fills
|I-Cache - I-Cache
I—(.?ache D-Cache D-Cache fills | I-C_ache D-Cache D-Cache fills
misses misses
i 1 D-Cache misses and O-Cache misses and
1 1 write backs Prefetches write backs
L2 Request Queue Prefetch Req Queue |-------- + L2 Request Queue
T
T s eeessss-—-—-
L] : :
1 ! f
L2-Cache hits L i L2-Cache hits
Hardware '
L2 Cache Stream fe----=-c-e-aa-ad L2 Cache | >.Cache i
L2-Cache fills | Prefetcher | .- dcmandaccesses -ache fils
T
, i | T
L2 misses and | write backs L2 demand misses L2 misses and | write backs
) Y : . create Sireams
Bus Request Queue L2 Fill Queue Bus Request Queue L2 Fill Queue
: T 2 i
! On-Chip On-Chip
Bus I Bus |
A - Y e #
Off-Chip T Off-Chip
1
|
Memory Controller Memory Controller
. |
1 l } [
DRAM Memory Banks DRAM Memory Banks
. - - - . @

10

Prefetching: The Four Questions

What
o What addresses to prefetch

When
o When to initiate a prefetch request

Where
o Where to place the prefetched data

How
o Software, hardware, execution-based, cooperative

11

Challenges 1n Prefetching: What

What addresses to prefetch

o Prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more accurate
prefetch requests

o Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

How do we know what to prefetch

o Predict based on past access patterns

o Use the compiler’ s knowledge of data structures

Prefetching algorithm determines what to prefetch
12

Challenges 1n Prefetching: When

When to initiate a prefetch request
o Prefetching too early

Prefetched data might not be used before it is evicted from
storage

o Prefetching too late
Might not hide the whole memory latency

When a data item is prefetched affects the timeliness of the
prefetcher

Prefetcher can be made more timely by

o Making it more aggressive: try to stay far ahead of the
processor’ s access stream (hardware)

o Moving the prefetch instructions earlier in the code (software)

13

Challenges 1n Prefetching: Where (I)

Where to place the prefetched data

o In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data - cache pollution
o In a separate prefetch buffer
+ Demand data protected from prefetches = no cache pollution
-- More complex memory system design
- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

Many modern systems place prefetched data into the cache
o Intel Pentium 4, Core2’ s, AMD systems, IBM POWER4,5,6, ...

14

Challenges 1n Prefetching: Where (11)

Which level of cache to prefetch into?
o Memory to L2, memory to L1. Advantages/disadvantages?
a L2 to L1? (a separate prefetcher between levels)

Where to place the prefetched data in the cache?

o Do we treat prefetched blocks the same as demand-fetched
blocks?

o Prefetched blocks are not known to be needed
With LRU, a demand block is placed into the MRU position

Do we skew the replacement policy such that it favors the
demand-fetched blocks?

o E.g., place all prefetches into the LRU position in a way?

15

Challenges 1n Prefetching: Where (I11)

Where to place the hardware prefetcher in the memory
hierarchy?

o In other words, what access patterns does the prefetcher see?
o L1 hits and misses

o L1 misses only

0 L2 misses only

Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

16

Challenges 1n Prefetching: How

Software prefetching

o ISA provides prefetch instructions

o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Hardware monitors processor accesses

o Memorizes or finds patterns/strides

o Generates prefetch addresses automatically

Execution-based prefetchers
o A “thread” is executed to prefetch data for the main program
a Can be generated by either software/programmer or hardware

17

Sotftware Pretetching (I)

Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

Prefetch instructions prefetch data into caches

Compiler or programmer can insert such instructions into the
program

18

X86 PREFETCH Instruction

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction b4-Bit Compat/ Description
Mode Leg Mode
0OF18N PREFETCHTO m8 Valid \alid Move data from m8 closer to the
processor using TO hint.
OF18/2 PREFETCHT1 m& Valid Valid Move data from m8 closer 1o the
processor wsing T1 hint.
OF18/3 PREFETCHTZ m& Valid Valid Move data from m& closer 1o the
processor using T2 hint,
OF18/0 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the
processor using NTA hint.
Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

microarchitecture * T0O (temporal data)—prefetch data into all levels of the cache hierarchy.
dependent <— Pentium [l processor—1st- or 2nd-level cache.
specification — Pentium 4 and Intel Xeon processors—2nd-level cache.

* T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

* T2 (temporzal data with respect to second level cache)—prefetch data into level 2
cache and higher.

different instructions
for different cache
levels

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

MNTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium Il processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache 19

Sotftware Prefetching (1I)

for (i=0; i<N; i++) { while (p) { while (p) {
__prefetch(a[i+8]); ___prefetch(p=>next); ___prefetch(p—=>next>next>next);
___prefetch(b[i+8)); work(p—>data); work(p—>data);
sum += a[i]*b][i]; P = p=>next; =p-—>next;

} } }

Which one is better?
Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth
o How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) - portability?

-- Going too far back in code reduces accuracy (branches in between)
o Need “special” prefetch instructions in ISA?
Alpha load into register 31 treated as prefetch (r31==0)
PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

20

Sottware Pretetching (I11)

Where should a compiler insert prefetches?

o Prefetch for every load access?
Too bandwidth intensive (both memory and execution bandwidth)

o Profile the code and determine loads that are likely to miss
What if profile input set is not representative?

o How far ahead before the miss should the prefetch be inserted?
Profile and determine probability of use for various prefetch
distances from the miss
0 What if profile input set is not representative?

0 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency - reduced accuracy

21

Hardware Prefetching (I)

Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns
- Software can be more efficient in some cases

22

Next-Line Prefetchers

Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)
o Next-line prefetcher (or next sequential prefetcher)
o Tradeoffs:
+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:
- What is the prefetch accuracy if access stride =2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?

23

Stride Prefetchers

Two kinds

a Instruction program counter (PC) based
o Cache block address based

Instruction based:

o Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

o Idea:

Record the distance between the memory addresses referenced by

a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

Next time the same load instruction is fetched,
prefetch last address + stride

24

Instruction Based Stride Prefetching

- Load Inst. Last Address ~ Last Confidence
Load N PC (tag) Referenced | Stride
Inst T R R EXRETEITTRITE EXRTTRTTRTTRLTITRIY
PC T R RN I
N

What is the problem with this?
o How far can the prefetcher get ahead of the demand access stream?

o Initiating the prefetch when the load is fetched the next time can be
too late
Load will access the data cache soon after it is fetched!
o Solutions:

Use lookahead PC to index the prefetcher table (decouple frontend of
the processor from backend)

Prefetch ahead (last address + N*stride)
Generate multiple prefetches

25

Cache-Block Address Based Stride Prefetching

d

-~ Address tag Stride Control/Confidence

Block_’
address

Can detect
o A, A+N, A+2N, A+3N, ...

o Stream buffers are a special case of cache block address
based stride prefetching where N = 1

Stream Buftfers (Jouppi, ISCA 1990)

Each stream buffer holds one stream of
sequentially prefetched cache lines

On a load miss check the head of all a
stream buffers for an address match

o if hit, pop the entry from FIFO, update the cache
with data

o if not, allocate a new stream buffer to the new DCachele
miss address (may have to replace a stream
buffer following LRU policy)

Stream buffer FIFOs are continuously B
topped-off with subsequent cache lines

whenever there is room and the bus is not
busy —

Memory interface

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

27

Stream Buftfer Design

CPU address

i

Compare

Next Address Cache Block Tag
v
Increment
Cache Block Tag
v

Prefetch Address

28

Stream Buftfer Design

From processor To processor

T

3 tags data Direct mapped cache

L

W

W

rsIL N/ [
+ + lag + -+
= a] data :?? al dJdala :'? al dal L&? al dala
fag |a| dala ag |a| dala Tag | a| dala Tag [&] damEa
fag |a| dala a| dala tag |a] daa lag— |a| dala
tag |a] data \l:lag a| dala lag [a] dala lag |a] dala
%—- +1 +1 +1
A
[r l’
I | [

: | : From next lowar cache

To next iower cache

Tradeofts in Stride Prefetching

Instruction based stride prefetching vs.
cache block address based stride prefetching

The latter can exploit strides that occur due to the
interaction of multiple instructions

The latter can more easily get further ahead of the
processor access stream

2 No need for lookahead PC

The latter is more hardware intensive

o Usually there are more data addresses to monitor than
instructions

30

Locality Based Prefetchers

In many applications access patterns are not perfectly
strided

a Some patterns look random to closeby addresses
a2 How do you capture such accesses?

Locality based prefetching

o Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers®, HPCA 2007.

31

Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

Multiple tracking entries for a range of addresses

Invalid: The tracking entry is not allocated a stream to keep track of. Initially,
all tracking entries are in this state.

Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the
demand miss does not find any existing tracking entry for its cache-block address.

Training: The prefetcher trains the direction (ascending or descending) of the
stream based on the next two L2 misses that occur +/- 16 cache blocks from the
first miss. If the next two accesses in the stream are to ascending (descending)
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions
to Monitor and Request state.

Monitor and Request: The tracking entry monitors the accesses to a memory
region from a start pointer (address A) to an end pointer (address P). The maximum
distance between the start pointer and the end pointer is determined by Prefetch
Distance, which indicates how far ahead of the demand access stream the
prefetcher can send requests. If there is a demand L2 cache access to a cache block
in the monitored memory region, the prefetcher requests cache blocks [P+1, ...,
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1).
N is called the Prefetch Degree. After sending the prefetch requests, the tracking
entry starts monitoring the memory region between addresses A+N to P+N (i.e.

effectively it moves the tracked memory region by N cache blocks).
32

Limitations of Locality-Based Prefetchers

Bandwidth intensive —
0 Why? E'_II-IWPEmI:Ied .
) 116 118 12 e —

o Can be fixed by
Stride detection
Feedback mechanisms

-
- %]

Relative Perfformance

=2 e
=]

=
=

o=
%]

[=r]
[[[[[[

0

&

F & & £ S & FF S
s é&ép ’,\\%9 @,}gﬁ’ e @ﬁ R & P
g

RS
& F
2
QA &

Limited to prefetching closeby addresses
o What about large jumps in addresses accessed?

However, they work very well in real life

o Single-core systems

o Boggs et al., “"The Microarchitecture of the Intel Pentium 4 Processor on
90nm Technology”, Intel Technology Journal, Feb 2004.
33

Prefetcher Performance (I)

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution
o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance

34

Pretetcher Performance (II)

Prefetcher aggressiveness affects all performance metrics
Aggressiveness dependent on prefetcher type

For most hardware prefetchers:
o Prefetch distance: how far ahead of the demand stream
o Prefetch degree: how many prefetches per demand access

Access Stream

Prefetch Degree

XX+1 «—
htream
| ‘ 123 1 tt
I I I max I mameax

Very Cbhida e asetHinAusmrasive

35

Pretetcher Pertormance (I11)

How do these metrics interact?

Very Aggressive Prefetcher (large prefetch distance & degree)
o Well ahead of the load access stream

o Hides memory access latency better

o More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

Very Conservative Prefetcher (small prefetch distance & degree)
o Closer to the load access stream

o Might not hide memory access latency completely

o Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

36

Pretetcher Performance (IV)

400%

350%

300%

250%

200%

150%

100%

50%

0% A

Percentage IPC change over No Prefetching

0.4 0.5 0.6 0.7

0.8

0.9

-50%

-100%

Prefetcher Accuracy

37

Pretetcher Pertormance (V)

o
o

| B No Prefetching

B Very Conservative
- @ Middle-of-the-Road
B Very Aggressive

.y
o
[

w
o

n
o

Instructions per Cycle

=
o

0.0

= Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.

38

Feedback-Directed Prefetcher Throttling (I)

= Idea:
a Dynamically monitor prefetcher performance metrics

a Throttle the prefetcher aggressiveness up/down based on past
performance

o Change the location prefetches are inserted in cache based on
past performance

Decrease Increase No Change

39

Feedback-Directed Prefetcher Throttling (IT)

5.0

@ No Prefetching

| mVery Aggressive

|| ODynamicInsertion
ODynamic Aggressiveness
4 BFDP - Dyn Aggr. and Ins.

&
o

Instructions per Cycle

3.0
20 AT1% 3%
/N
1.0 ﬂ
0.0 1
Q% Q S & 4 $ Q o & 2 O o> 2> O N- QS e Q
Q > & @ K & > N @ & % N O 9 >
0 g & ¢ & R > X % g @ & @ %
0 & SR S & & & < 5 S & s

Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.

40

Feedback-Directed Prefetcher Throttling (I11)

BPKI - Memory Bus Accesses per 1000 retired Instructions
o Includes effects of L2 demand misses as well as pollution

induced misses and prefetches

A measure of bus bandwidth usage

O\

No. Pref. | Very Cons /Mid \\/éry AQBR/FDP

IPC 0.85 1.21 1.47 || 1.57 1.67
BPKI 8.56 9.34 \10.60//\13.38 /\10.88
N N

N

41

More on Feedback Directed Prefetching

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance

Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinathii Onur Mutlu§ Hyesoon Kimi Yale N. Patt}

. ft _ ft h IDepartment of Electrical and Computer Engineering
: @IMI crosof §MIC(;OS? Resfctearc The University of Texas at Austin
ssr@microsolt.com ONUrEmICrosolt.com santhosh, hyesoon, patt} @ece.utexas.edu
y p

42

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

How to Prefetch More Irregular Access Patterns?

Regular patterns: Stride, stream prefetchers do well

More irregular access patterns

o Indirect array accesses

Linked data structures

Multiple regular strides (1,2,3,1,2,3,1,2,3,...)
Random patterns?

Generalized prefetcher for all patterns?

Correlation based prefetchers

Content-directed prefetchers
Precomputation or execution-based prefetchers

43

Address Correlation Based Prefetching (I)

Consider the following history of cache block addresses
A B CDCEACFFEAABCD,E A B,CD,C
After referencing a particular address (say A or E),
some addresses are more likely to be referenced next

44

Address Correlation Based Prefetching (II)

Cache
Block™
Addr

d

N

Cache Block Addr

Prefetch

Confidence

Prefetch

Confidence

Idea: Record the likely-next addresses (B, C, D) after seeing an address A
o Next time A is accessed, prefetch B, C, D
o Ais said to be correlated with B, C, D

Prefetch up to N next addresses to increase coverage

Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) = (C)

(A,B) correlated with C

Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
o Also called “Markov prefetchers”

45

Address Correlation Based Prefetching (I11)

Advantages:
o Can cover arbitrary access patterns

Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

o Can consume a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses
46

Content Directed Prefetching (I)

A specialized prefetcher for pointer values

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

o Cooksey et al., “A stateless, content-directed data prefetching
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches a// pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’s address = if most-significant few bits match, pointer

47

Content Directed Prefetching (II)

Virtual Address Predictor

vGenerate Prefetch

X80022220

L2

DRAM

48

Making Content Directed Prefetching Etficient

Hardware does not have enough information on pointers
Software does (and can profile to get more information)

Idea:

o Compiler profiles/analyzes the code and provides hints as to
which pointer addresses are likely-useful to prefetch.

o Hardware uses hints to prefetch only likely-useful pointers.

Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

49

Shortcomings of CDP — An Example

Struct node{
HashLookup(int Key) { int Key;
int* D1_ptr;

for (node = head ; node -> Key != Key; node = node -> Next;) : int * D2_ptr;
if (node) return node->D1; node * Next;
} }
// \
Key » D1 \
" D2 Key » D1
- | D2
Key » D1 v
> D2 Key » D1
| D2
" D2

Example from mst

50

Shortcomings of CDP — An

“xample

[oz:T€E]

Cache Line Addr

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

‘ [31:20]

—(

1[31:201

[31:20] l [31:20] l [31:20] [31:20] [31:20]
0 O O

Virtual Address Predictor

l [31:20]

e

e \
o \
Key D1 —
" D2 Key >
v > D2
Key » D1 v =
> D2 Key >
" D2
Key » D1
" D2

51

Shortcomings of CDP — An Example

HashLookup(int Key) {

for (node = head ; node -> Key != Key; node = node -> Next;)

if (node) return node -> D1;

}
pd N\
« \
" D2 Key » D1
v > D2
Key » D1 v
" D2 Key » D1
" D2
Key » D1
" D2

52

Shortcomings of CDP — An

“xample

[oz:T€E]

Cache Line Addr

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next

[31:20]
—>

1[31:201 [31:20] 1[31:201 1[31:201 [31:20]
5D O O B o

l [31:20]

l [31:20]

e

Virtual Address Predictor

i

AN

< \
Key » D1
" D2 Key » D1
v > D2
Key » D1 v
> D2 Key » D1
" D2
Key » D1
> D2

53

More on Content Directed Prefetching

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems”
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009.Slides (ppt)

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Pattj

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu

54

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Hybrid Hardware Prefetchers

Many different access patterns
o Streaming, striding

o Linked data structures

o Localized random

Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention,
pollution)
- Need to manage accesses from each prefetcher

55

Execution-based Prefetchers (I)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)

56

Execution-based Pretetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

o Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

57

Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.

58

Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)

59

Thread-Based Pre-Execution Issues

What, when, where, how

a Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”

ISCA 2001.
o Many issues in software-based pre-execution discussed

Key (a) Multiple Pointer Chains {b) Non-Affine Array Accesses

=3 Main Execution

™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths

60

An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; 1< trips;){
!l loop over ‘trips™ lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;

I
arcin = (arc_t *)first_of sparse_list
—tail— mark;
!l traverse the list starting with
!/ the first node just assigned
while (arcin) {
tail = arein— tail;

arcin = (arc_t *)tail—» mark:
}
1++, arcout+=3;

}

(b) Code with Pre-Execution

register int 1;
repister arc_t *arcout;
for(; 1< tnps;)|
/! loop over ‘trips" lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
/! inveke a pre-execution starting
/ at END_FOR
PreExecute_StartitEND_FOR);
arcin = (arc_t *)first_of_sparse_list

ktaﬂ‘»mark,

/f traverse the list starting with
[the first node just assigned
while (arcin) |

tail = arcin— tail ;

arcin = (arc_t *)tail— marlk;
1
[/l terminate this pre-execution after
/! prefetching the entire list
PreExecute _Stop();
END_FOR:
/I the target address of the pre-
I execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 7', starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i’s value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 1" will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop, the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.

61

Example ISA Extensions

{'hread_{ D = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: T'hread_{) holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated 1if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(! hread_{1)): Terminate the pre-
execution thread with T'hread_{). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

62

Results on a Multithreaded Processor

105 (a) Execution Time Normalized to the Original Case

® 100 L 100 100 100 100 100 100
E
:]
=
% l load L2-miss stall
E load L2-hit stall
w50 |- other stall
E busy
E
[=]
=

0 [o) PX 0 PX (8] PX 0 PX (o) PX 0 PX 0 PX

Compress Em3d Equake Mcf Mst Raytrace Twolf

Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.

03

Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

int ifrom = heap_tail; misprediction
int ito = ifrom/2; .
heap _tail++; cache miss
while ((ito >= 1) &&

(heap[ifrom]->cost < heap[itoc]->cost))
struct s heap *temp ptr = heap[ito];
heap[itc] = heap[ifrom];
heap[ifrom] = temp ptr;
ifrom = ito;
ito = ifrom/2;

H O W @ =] oW i Wk
= & & &8 & ® 8 &

[l = T |

04

Fork Point for Prefetching Thread

Figure 3. The node to heap function, which serves as
the fork point for the slice that covers add _to heap.

volid node to heap (..., fleat cost, ...} {
struct s heap *hptr; --———— fork point

hptr = alloc _heap data();
hptr->cost = cost;

add to heap (hptr);

65

Pre-execution Thread Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instricfions
are in bold and the shaded instructions comprise fhe
un-optimized slice.

lda
1d1
1ldg
cmplt
addl
sB8addg
stl
stq
addl
sra
ble
ocop:
s8addg
sB8addqg
cmplt
move
ldg
1ldg
addl
sra
lds
1lds
cmptlt
fheq
stq
stg
bgt

return:

o O i W1 W s s W BB

(%41
L=]

=
=

(WY == e = " V= T« VT
=

node to heap:
/* skips ~40 instructions */

g1,
t2,
t5,
t2,
t2,
t2,
te,
s0,

252(gp)
0D({sl)
-T6(sl)
0, t4
0x1l, t&
t5, t3
0(sl)
0{t3)
t2, t4, t4
t4, 0x1, t4
t4, return
t2, t5, al
t4, t5, t7
t4, 0, t9
t4, t2

az, 0(ad)
a4, 0(t7T)
t4, to9, to9
t9, 0Ox1l, t4
sfo, 4(az)
5f1, a(a4)
$fo,s5f1,5f0
5f0, returm
a2z, 0(t7)
ad, 0(ad)
t4, loop

e e oo He oo e B T T He e e R W e e T e e e He e T e

theap tail
ifrom = heap tail
theap[0]

see note

heap tail +4
theap[heap tail]
store heap tail
heap[heap tail]
see note

ito = ifrom/2
{ito < 1)

theap[ifrom]
theap[ito]

see note

ifrom = ito
heap[ifrom]
heap[iteo]

see note

ito = ifrom/2
heap[ifroem]->cost
heap[ito]=>cost
{heap[ifrom]->cost
< heap[ito]->cost)
heap[iteo]
heap[ifrom]

{ito >= 1)

/* register restore code & return */

note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization.

Figure 5. Slice constructed for example problem insfructions.
Much smaller than the original code, the slice contains a loop
that mimics the loop in the original code.

slice:

1 ldg $6, 328(gp)

2 1d1 $3, 252(gp)
slice loop:

3,11 sra 23, 0xl, 53

[sBaddg $3, $6, 516

6 ldg $18, 0(S16)

& lds sf1, 4(518)

[cmptle $f1,5f17,5£31

br slice loop

Annotations

e e e e e T A

theap
ite = heap tail
ito /= 2
theap[ito]
heap[ito]
heap[ito]->cost
(heap[ito] =>cost
< cost)y PRED

fork: on first instruction of node to heap

live-in: $f17<cost>, gp
max loop iterations: 4

06

Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

o Speculatively pre-execute instructions

o The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

67

Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 Miss 2

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Saved Cycles
Miss 1

Miss 2

068

Runahead as an Execution-based Prefetcher

Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

Idea of Runahead: Pre-execute the main program solely for
prefetching data

Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

Can you make runahead even better by pruning the
program portion executed in runahead mode?

09

Taking Advantage of Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
70

Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful
-- speculatively execute many instructions
-- Can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
71

Multi-Core Issues in Prefetching

Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts

o Bus contention

o DRAM bank and row buffer contention

SAFARI

73

Prefetching in Multi-Core (I1)

Two key issues

o How to prioritize prefetches vs. demands (of different cores)

o How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

Need to coordinate the actions of independent prefetchers
for best system performance

Each prefetcher has different accuracy, coverage, timeliness

SAFARI 74

Some Ideas

Controlling prefetcher aggressiveness

o Feedback directed prefetching [HPCA'07

a | Coordinated control of multiple prefetchers [MICRO09]
How to prioritize prefetches vs. demands from cores

o Prefetch-aware memory controllers and shared resource
management [MICRO08, ISCA11]

Bandwidth efficient prefetching of linked data structures

o Through hardware/software cooperation (software hints)
[HPCA'09]

SAFARI

75

Motivation

B Aggressive prefetching improves
memory latency tolerance of
many applications when they run alone

B Prefetching for concurrently-executing
applications on a CMP can lead to

[0 Significant system performance degradation and
bandwidth waste

B Problem: | |
Prefetcher-caused inter-core interference

[0 Prefetches of one application contend with
prefetches and demands of other applications

76

Potential Performance

System performance improvement of ideally removing all

prefetcher-caused inter-core interference in shared resources

2.2

2 1
1.8 +

1 56%

1.6 +

1.4 +

1.2 +

1
0.8

0.6

0.4

0.2

O ! ! ! ! ! ! ! ! ! ! ! ! !

Perf. Normalized to No Throttling

WLS8

WL1
WL2
WL3
WL4
WL5
WL6
WL7
WL9
WL10
WL11
WL12
WL13

WL14

Gmean-32

Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]

77

High Interference caused by
Accurate Prefetchers

Legend:

Core0

Shared Cache

Hit

Requests

DRAM Being |
Serviced

— : :
< Row : i : >
Buffers Cto C+8K | ! D to D+8K
X:

! ;,4

BankO Bank1

78

Shortcoming of Local Pretetcher Throttling

Core O Core 1 Core 2 Core 3
~refetcher k4 Prefetcher ™~
Degree: 2 Degree: 2

DP Throttle Up DP Throttle Up

Set 0 Beefi 1P | Dsefi 1P Dem 3 |Dem 3
' Set1 |BsfiP |DeefitP Dem 3 |Dem 3

. Set2 PehB | PehB | PeehB | PehB

Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

79

Shortcoming of Local-Only
Prefetcher Control

4-core workload example: Ibm_06 + swim_00 + crafty_00 + bzip2_00

B No Prefetching
O Pref. + No Throttling
B Feedback-Directed Prefetching

OHPAC
1 -

o
o

o
o
D

o
~
]

o
N
l

Hspeedup

peedup over Alone Run

Our Abproacw: Use both g/obal and per-core feedback
to determine each prefetcher’s aggressiveness

7

80

Prefetching in Multi-Core (I1)

Ideas for coordinating different prefetchers’ actions

o Utility-based prioritization

Prioritize prefetchers that provide the best marginal utility on
system performance

o Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

o Heuristic based methods

Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

Ebrahimi et al., "Coordinated Management of Multiple Prefetchers
in Multi-Core Systems,” MICRO 2009.

81

Hierarchical Pretetcher Throttling

ChobakbGuintis: goale pts or Global control's goal: Keep
Maxinize deeisions made by traclﬁd[g;‘n%pdcggpgqplr
peietdnne e faipanse of | prefe Chery-ca,uife

Li 0195]9' Inter-core interference in
GOEFelI ke grmance i shared memcjnré; s;gs_tem
Final :

T e Throttling Decision .
Pref. | — ¢
+ ! Throttling Decision Accuracy Global

Local / Control

Core i |Throttling Decision Cache Pollution
Feedback

Shared Cache

82

Hierarchical Pretetcher Throttling Example

- High accuracy

- High pollution
- High bandwidth consumed

Memory Controller

while other cores need bandwidth

Em@alrce
Throttileg_Degcision

v High Acc (i)

Local
Control Local
Core i |Throttliagpecision

Pref. |

High BW (i)
High BWNO (i)

1
\ 4

Global
Control

y \
1

High Pol (i)

mPol. Filteri || Shared Cache

83

HPAC Control Policies

Pol (i) Acc (i) BW (i) BWNO (i) Interference Class Action
,)
Others” low | _
Low BW 2 BW need)
Consumption ' hih |
4 Inaccurate PHOTY g Others’ high |, se\ere interference throttle
High BW) BW need) down
Causing Low Consumption| Others’ low |
Pollution BW need >
J
Highly | X
Accurate J
) : throttle
Inaccurate » Severe interference down
) —
Causing High Others low —»
BW need
[Pollution - Low BW J
onsumption R
Others’ high|
Highly BW need)
Accurate : N
Others’ low |
High BW BW need |
i ™
consumption Others’ high| . throttle
BW need Severe interference down

84

HPAC Evaluation

® No Throttling |
B Feedback-Directed Prefetching (FDP)

B Hierarchical Prefetcher Aggressiveness Control (HPAC)]
11 J..z

1.05

'115%

0.9

Normalized System Unfairness

Normalized System Performance

Normalized to system with no prefetching
85

More on Coordinated Prefetcher Control

= Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"”
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems
Eiman Ebrahimi; Onur Mutlu§ Chang Joo Leet Yale N. Patt;

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu

86

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Prefetching in Multi-Core (I)

= Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers”

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leef Onur Mutlu§ Veynu Narasimanj Yale N. Patt{

fDepartment of E.lectr}cal and Computer]:Z*lngmeermg §Microsoft Research and Carnegie Mellon University
The University of Texas at Austin

. . onur @{microsoft.com,cmu.edu}
{cjlee, narasima, patt} @ece.utexas.edu

87

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

Problems of Prefetch Handling

m How to schedule prefetches vs demands?

= Demand-first: Always prioritizes demands over
prefetch requests

= Demand-prefetch-equal: Always treats them the same

Neither of these perform best

Neither take into account both:

1. Non-uniform access latency of DRAM systems
2. Usefulness of prefetches

88

When Prefetches are Useful

Row Buffer

DRAM | Controller

Pref Row A

Dem Row B

Pref Row A

Processor needs Y, X, and Z

> Demand-first

— Stall = Execution

2 row-conflicts, 1 row-hit
DRAM
Processor ﬁ ﬁ =
Miss Y Miss X Miss Z

89

When Prefetches are Useful

— Stall = Execution

DRAM > Demand-first
Row R Row Buffer 2 row-conflicts, 1 row-hit
A DRAM

Processor

Dem Row B | Y > Demand-pref-equal i

Pref Row A |: Z

2 row-hits, 1 row-conflict
orav | D

|
1
1
1
Processor R,

Processor needs Y, X, and Z _ ‘ ‘ Saved Cycles

Miss Y Hit X Hit Z

90

When Prefetches are Useless

Row A Row Buffer

Pref Row A |: Z

Processor needs ONLY Y

>

DRAM

Processor

DRAM

Processor,

Demand-first

Miss Y

91

Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled

Demand f|
" 11 Demand-pré
\' Useless prefetches:
_ Off-chip bandwidth
Queue resources

Cache Pollution

2
(&)
S
o
(©)
<
@]
+—
5®)
()
L
[
=
S
o
=
O
o

Goal 1: Adaptive Goal 2: Eliminate useless prefetches tch usefulness

More on Pretetching in Multi-Core (II)

= Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching
Chang Joo Leet Veynu Narasimani Onur Mutlu§ Yale N. Pattt

TDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{cjlee, narasima, patt}@ece.utexas.edu

§Computer Architecture Laboratory (CALCM)
Carnegie Mellon University
onur@cmu.edu

93

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Pretetching in Multi-Core (I1I)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimit Chang Joo Leett Onur Mutlu§ Yale N. Patt;

tHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi, patt}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu

94

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Pretetching in Multi-Core (IV)

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGY!I XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University

95

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Caching Policies for Prefetched Blocks

Problem: Existing caching policies for prefetched
blocks result in significant cache pollution

Cache

ion and promotion

Are these insertl
policies good for prefetched blocks?

MRU LRU

Cache Set

Informed Caching Policies for Prefetched Blocks

96

Prefetch Usage Experiment

Monitor L2 misses Prefetch into L3

Off-Chip

L Memory

CPU >
1 Prefetcher

Classify prefetched blocks into three categories

1. Blocks that are unused
2. Blocks that are used exactly once before evicted from cache

3. Blocks that are used more than once before evicted from cache

Informed Caching Policies for Prefetched Blocks 97

Usage Distribution of Prefetched Blocks

2 90% (IEEEN
(& oo
o
@ 80% Typically, large data structures
E 703/ benefit repeatedly frome|
= 607 fetching. Blocks of such data
< pre .
2 50 prefetched blocks are Cructures are unlikely to be
E 409 used only once! used more than once!
0300 ____—--------‘L _____]
$ oo JARRARERENNY 1
B j H = :] I I
g 10% Many applications have a T
0% [[] [°
S|gn|flca nt fra Ctlon Of 9‘;;3*0(,?}00 oﬁ@Q ?9@\\3’6 Q'S"e’ (0&\00’5’ ,8(1@4@"
LR (’}'06 & & o 9

| inaccurate prefetches. & &
Once B Used Once H Unused

Informed Caching Policies for Prefetched Blocks

98

Shortcoming of Traditional Promotion Policy

Promote to MRU

.
' | This is a bad policy. The block is

I

," kunlikely to be reused in the cache.
),

I

— oy,

state-of-the-art

This problem exists with
g., DRRIP, DIP)
_

replacement policies (e.
—CdCne Set

Informed Caching Policies for Prefetched Blocks
99

Demotion of Prefetched Block

Demote to LRU

?nsures that the block is evicted fromj

the cache quickly after it is used!

\
\

‘ =
he cache to distinguish between \

Only requires t
prefetched blocks and demand-fetched blocks. J
_

Cache Set

Informed Caching Policies for Prefetched Blocks
100

Cache Insertion Policy for Prefetched Blocks

Good (Accurate prefetch) Good (Inaccurate prefetch)
Bad (Inaccurate prefetch) Bad (accurate prefetch)

Prefetch Miss:
_.-"""Insertion Policy?

N\

/ \
/ \
/ \
/ \

MRU LRU

Cache Set

Informed Caching Policies for Prefetched Blocks 101

Predicting Usefulness of Prefetch

Fraction of Useful Prefetches

Cache Set

Informed Caching Policies for Prefetched Blocks 102

Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jogt Onur Kayirant Asit K. Mishra® Mahmut T. Kandemirt
Onur Mutlu* Ravishankar lyer® Chita R. Das'
fThe Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com

103

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Computer Architecture
Lecture 18:
Prefetching

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
23 November 2017

