
Computer Architecture

Lecture 19: Multiprocessors,

Consistency, Coherence

Prof. Onur Mutlu

ETH Zürich

Fall 2017

29 November 2017

Summary of Last Week’s Lectures

 Memory Latency Tolerance

 Runahead Execution

 Wrong Path Effects

 Prefetching

2

Today

 Multiprocessors

 Memory Consistency

 Cache Coherence

3

Multiprocessors and

Issues in Multiprocessing

Readings: Multiprocessing

 Required

 Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” AFIPS 1967.

 Recommended

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

5

Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
1979

6

Readings: Cache Coherence

 Required

 Papamarcos and Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA 1984.

 Recommended:

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

7

D-INFK Distinguished Lecture (Monday)

 Monday, 4 December 2017

 Prof. Michael Scott (Univ of Rochester)

 16:15-17:15 @ CAB G61

8

CHALLENGE: CRASH CONSISTENCY

System crash can result in
permanent data corruption in NVM

9

Persistent Memory System

CRASH CONSISTENCY PROBLEM

10

Example: Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in
inconsistent memory state

One Key Challenge in Persistent Memory

 How to ensure consistency of system/data if all
memory is persistent?

 Two extremes

 Programmer transparent: Let the system handle it

 Programmer only: Let the programmer handle it

 Many alternatives in-between…

11

CURRENT SOLUTIONS
Explicit interfaces to manage consistency

– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

12How do we make legacy code work?

A NEW APPROACH: ThyNVM

13

Goal:
Software transparent consistency in

persistent memory systems

ThyNVM: Summary

14

• Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

• Overlaps checkpointing and execution to
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM
with zero cost consistency

A new hardware-based
checkpointing mechanism

More About ThyNVM

15

 Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

One Key Challenge in Persistent Memory

Programming Ease

to Exploit Persistence

16

Tools/Libraries to Help Programmers

 Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

17

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

Multiprocessors and

Issues in Multiprocessing

Remember: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

19

Why Parallel Computers?

 Parallelism: Doing multiple things at a time

 Things: instructions, operations, tasks

 Main (or Original) Goal

 Improve performance (Execution time or task throughput)
 Execution time of a program governed by Amdahl’s Law

 Other Goals

 Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

 Why?

 Improve cost efficiency and scalability, reduce complexity

 Harder to design a single unit that performs as well as N simpler units

 Improve dependability: Redundant execution in space
20

Types of Parallelism and How to Exploit Them

 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel

 Pipelining, out-of-order execution, speculative execution, VLIW

 Dataflow

 Data Parallelism

 Different pieces of data can be operated on in parallel

 SIMD: Vector processing, array processing

 Systolic arrays, streaming processors

 Task Level Parallelism

 Different “tasks/threads” can be executed in parallel

 Multithreading

 Multiprocessing (multi-core)
21

Task-Level Parallelism: Creating Tasks

 Partition a single problem into multiple related tasks
(threads)

 Explicitly: Parallel programming

 Easy when tasks are natural in the problem

 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation

 Partition a single thread speculatively

 Run many independent tasks (processes) together

 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task

22

Multiprocessing Fundamentals

23

Multiprocessor Types

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

 Operations on shared data require synchronization
24

Main Design Issues in Tightly-Coupled MP

 Shared memory synchronization

 How to handle locks, atomic operations

 Cache coherence

 How to ensure correct operation in the presence of private
caches

 Memory consistency: Ordering of memory operations

 What should the programmer expect the hardware to provide?

 Shared resource management

 Communication: Interconnects

25

Main Programming Issues in Tightly-Coupled MP

 Load imbalance

 How to partition a single task into multiple tasks

 Synchronization

 How to synchronize (efficiently) between tasks

 How to communicate between tasks

 Locks, barriers, pipeline stages, condition variables,
semaphores, atomic operations, …

 Ensuring correct operation while optimizing for performance

26

Aside: Hardware-based Multithreading

 Coarse grained

 Quantum based

 Event based (switch-on-event multithreading), e.g., switch on L3 miss

 Fine grained

 Cycle by cycle

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

 Simultaneous

 Can dispatch instructions from multiple threads at the same time

 Good for improving execution unit utilization

27

Limits of Parallel Speedup

28

Parallel Speedup Example

 a4x
4 + a3x

3 + a2x
2 + a1x + a0

 Assume given inputs: x and each ai

 Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

 How fast is this with a single processor?

 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

29

30

31

Speedup with 3 Processors

32

Revisiting the Single-Processor Algorithm

33

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

34

Superlinear Speedup

 Can speedup be greater than P with P processing
elements?

 Unfair comparisons

Compare best parallel

algorithm to wimpy serial

algorithm  unfair

 Cache/memory effects

More processors 

more cache or memory 

fewer misses in cache/mem

35

Utilization, Redundancy, Efficiency

 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used

 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel
processing

 R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

 Efficiency

 E = (Time with 1 processor) / (processors x Time with P processors)

 E = U/R
36

Utilization of a Multiprocessor

37

38

Amdahl’s Law and

Caveats of Parallelism

39

Caveats of Parallelism (I)

40

Amdahl’s Law

41

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

42

Amdahl’s Law Implication 2

43

Caveats of Parallelism (II)

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
44

Speedup =
1

+1 - f
f

N

Sequential Bottleneck

45

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

 Parallel machines have the
sequential bottleneck

 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

 There are other causes as well:

 Single thread prepares data and
spawns parallel tasks (usually
sequential)

46

Another Example of Sequential Bottleneck (I)

47Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Another Example of Sequential Bottleneck (II)

48Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

49

Bottlenecks in Parallel Portion: Another View

 Threads in a multi-threaded application can be inter-
dependent

 As opposed to threads from different applications

 Such threads can synchronize with each other

 Locks, barriers, pipeline stages, condition variables,
semaphores, …

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 Even within a thread, some “code segments” may be on
the critical path of execution; some are not

50

Remember: Critical Sections

 Enforce mutually exclusive access to shared data

 Only one thread can be executing it at a time

 Contended critical sections make threads wait  threads

causing serialization can be on the critical path

51

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C

Remember: Barriers

 Synchronization point

 Threads have to wait until all threads reach the barrier

 Last thread arriving to the barrier is on the critical path

52

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}

Remember: Stages of Pipelined Programs

 Loop iterations are statically divided into code segments called stages

 Threads execute stages on different cores

 Thread executing the slowest stage is on the critical path

53

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C

Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Difficulty is in

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

54

Memory Ordering in

Multiprocessors

55

Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Gharachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

56

Memory Consistency vs. Cache Coherence

 Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)

 Global ordering of accesses to all memory locations

 Coherence is about ordering of operations from different
processors to the same memory location

 Local ordering of accesses to each cache block

57

Difficulties of Multiprocessing

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

58

Ordering of Operations

 Operations: A, B, C, D

 In what order should the hardware execute (and report the
results of) these operations?

 A contract between programmer and microarchitect

 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware
designer’s life difficult
 Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity

59

Memory Ordering in a Single Processor

 Specified by the von Neumann model

 Sequential order

 Hardware executes the load and store operations in the order
specified by the sequential program

 Out-of-order execution does not change the semantics

 Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

 Advantages: 1) Architectural state is precise within an execution.

2) Architectural state is consistent across different runs of the program
 Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces

performance, increases complexity, reduces scalability
60

Memory Ordering in a Dataflow Processor

 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if
they have no dependency

 Advantage: Lots of parallelism  high performance

 Disadvantages:

 Precise state is very hard to maintain (No specified order)
 Very hard to debug

 Order can change across runs of the same program
 Very hard to debug

61

Memory Ordering in a MIMD Processor

 Each processor’s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations
concurrently

 How does the memory see the order of operations from all
processors?

 In other words, what is the ordering of operations across
different processors?

62

Why Does This Even Matter?

 Ease of debugging

 It is nice to have the same execution done at different times
to have the same order of execution  Repeatability

 Correctness

 Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

 Performance and overhead

 Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

63

When Could Order Affect Correctness?

 When protecting shared data

64

Protecting Shared Data

 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at
a given time

 Mutual exclusion principle

 A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to
protect shared data

65

Supporting Mutual Exclusion
 Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented

 We will assume this

 But, correct parallel programming is an important topic

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

 See Dekker’s algorithm for mutual exclusion

 Programmer relies on hardware primitives to support correct
synchronization

 If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

 If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

66

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

67

Protecting Shared Data

Assume P1 is in critical section.

Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),

which means P2 should not enter the critical section.

A Question

 Can the two processors be in the critical section at the
same time given that they both obey the von Neumann
model?

 Answer: yes

68

69

Both Processors in Critical Section

70

71

A appeared to happen

before X

X appeared to happen

before A

The Problem

 The two processors did NOT see the same order of
operations to memory

 The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

 As a result, each processor thought the other was not in
the critical section

72

How Can We Solve The Problem?

 Idea: Sequential consistency

 All processors see the same order of operations to memory

 i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

73

Sequential Consistency

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

 A multiprocessor system is sequentially consistent if:

 the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

 the operations of each individual processor appear in this
sequence in the order specified by its program

 This is a memory ordering model, or memory model

 Specified by the ISA

74

Programmer’s Abstraction

 Memory is a switch that services one load or store at a time
from any processor

 All processors see the currently serviced load or store at the
same time

 Each processor’s operations are serviced in program order

75

MEMORY

P1 P3P2 Pn

Sequentially Consistent Operation Orders

 Potential correct global orders (all are correct):

 A B X Y

 A X B Y

 A X Y B

 X A B Y

 X A Y B

 X Y A B

 Which order (interleaving) is observed depends on
implementation and dynamic latencies

76

Consequences of Sequential Consistency

 Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

 No correctness issue

 Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

 Debugging is still difficult (as order changes across runs)

77

Issues with Sequential Consistency?

 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements

 Limits the aggressiveness of performance enhancement
techniques

 Is the total global order requirement too strong?

 Do we need a global order across all operations and all
processors?

 How about a global order only across all stores?

 Total store order memory model; unique store order model

 How about enforcing a global order only at the boundaries of
synchronization?

 Relaxed memory models

 Acquire-release consistency model

78

Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC
implementation difficult

 Out-of-order execution

 Loads happen out-of-order with respect to each other and
with respect to independent stores  makes it difficult for all

processors to see the same global order of all memory
operations

 Caching

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors
 makes it difficult for all processors to see the same global

order of all memory operations

79

Weaker Memory Consistency

 The ordering of operations is important when the order
affects operations on shared data  i.e., when processors

need to synchronize to execute a “program region”

 Weak consistency

 Idea: Programmer specifies regions in which memory
operations do not need to be ordered

 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before
fence is executed

 All memory operations after the fence must wait for the fence to
complete

 Fences complete in program order

 All synchronization operations act like a fence

80

Tradeoffs: Weaker Consistency

 Advantage

 No need to guarantee a very strict order of memory
operations

 Enables the hardware implementation of performance

enhancement techniques to be simpler

 Can be higher performance than stricter ordering

 Disadvantage

 More burden on the programmer or software (need to get the
“fences” correct)

 Another example of the programmer-microarchitect tradeoff

81

Example Question (I)
 Question 4 in

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

82

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

Example Question (II)

83

Caching in Multiprocessors

 Caching not only complicates ordering of all operations…

 A memory location can be present in multiple caches

 Prevents the effect of a store or load to be seen by other
processors  makes it difficult for all processors to see the

same global order of (all) memory operations

 … but it also complicates ordering of operations on a single
memory location

 A single memory location can be present in multiple caches

 Makes it difficult for processors that have cached the same
location to have the correct value of that location (in the
presence of updates to that location)

84

Cache Coherence

85

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

86

Shared Memory Model

 Many parallel programs communicate through shared memory

 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone

 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

87

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence

 Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

88

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

89

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

90

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

91

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

92

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT

load 1000

Cache Coherence: Whose Responsibility?

 Software

 Can the programmer ensure coherence if caches are invisible to
software?

 What if the ISA provided a cache flush instruction?

 FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware

 Simplifies software’s job

 One idea: Invalidate all other copies of block A when a processor writes
to it

93

A Very Simple Coherence Scheme (VI)

 Caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate the block.

 A simple protocol:

94

 Write-through, no-
write-allocate
cache

 Actions of the local
processor on the
cache block: PrRd,
PrWr,

 Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache Coherence

 No hardware based coherence

 Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

 need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software (e.g., page
protection and page-based software coherence)

 All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way

95

Maintaining Coherence

 Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory
location

 Writes to location A by P0 should be seen by P1
(eventually), and all writes to A should appear in some
order

 Coherence needs to provide:

 Write propagation: guarantee that updates will propagate

 Write serialization: provide a consistent order seen by all
processors for the same memory location

 Need a global point of serialization for this store ordering
96

Hardware Cache Coherence

 Basic idea:

 A processor/cache broadcasts its write/update to a memory
location to all other processors

 Another cache that has the location either updates or
invalidates its local copy

97

Coherence: Update vs. Invalidate

 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies

 Option 2 (Invalidate protocol): ensure there is only one
copy (local), update it

 On a Read:

 If local copy is Invalid, put out request

 (If another node has a copy, it returns it, otherwise
memory does)

98

Coherence: Update vs. Invalidate (II)

 On a Write:

 Read block into cache as before

Update Protocol:

 Write to block, and simultaneously broadcast written
data and address to sharers

 (Other nodes update the data in their caches if block is
present)

Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation
of address to sharers

 (Other nodes invalidate block in their caches if block is
present)

99

Update vs. Invalidate Tradeoffs

 Which do we want?

 Write frequency and sharing behavior are critical

 Update

+ If sharer set is constant and updates are infrequent, avoids

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,

updates were useless

- Write-through cache policy  bus becomes bottleneck

 Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid

invalidation-reacquire traffic from different processors)

100

Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all memory requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks which caches have each block

 Directory coordinates invalidation and updates

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

101

Directory Based

Cache Coherence

102

Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that a cache has the only copy of the block
and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each cache
(so that the cache can update the exclusive block silently)

103

Directory Based Coherence Example (I)

104

Directory Based Coherence Example (I)

105

Directory Optimizations

 Directory is the coordinator for all actions to be performed
on the block by any processor

 Guarantees correctness, ordering

 Yet, there are many opportunities for optimization

 Enabled by bypassing the directory and directly
communicating between caches

 We will see this later

106

We did not cover the following slides in

lecture. They are for your benefit.

Computer Architecture

Lecture 19: Multiprocessors,

Consistency, Coherence

Prof. Onur Mutlu

ETH Zürich

Fall 2017

29 November 2017

Snoopy Cache Coherence

109

Snoopy Cache Coherence

 Idea:

 All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

 Each cache block has “coherence metadata” associated with it
in the tag store of each cache

 Easy to implement if all caches share a common bus

 Each cache broadcasts its read/write operations on the bus

 Good for small-scale multiprocessors

 What if you would like to have a 1000-node multiprocessor?

110

111

A Simple Snoopy Cache Coherence Protocol

 Caches “snoop” (observe) each others’ write/read
operations

 A simple protocol (VI protocol):

112

 Write-through,
no-write-allocate
cache

 Actions of the local
processor on the
cache block: PrRd,
PrWr,

 Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

Extending the Protocol

 What if you want write-back caches?

 We want a “modified” state

113

A More Sophisticated Protocol: MSI

 Extend metadata per block to encode three states:

 M(odified): cache line is the only cached copy and is dirty

 S(hared): cache line is potentially one of several cached
copies

 I(nvalid): cache line is not present in this cache

 Read miss makes a Read request on bus, transitions to S

 Write miss makes a ReadEx request, transitions to M state

 When a processor snoops ReadEx from another writer, it
must invalidate its own copy (if any)

 SM upgrade can be made without re-reading data from

memory (via Invalidations)

114

MSI State Machine

115

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI

 A block is in no cache to begin with

 Problem: On a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached (i.e., no other processor will cache it)

 Why is this a problem?

 Suppose the cache that read the block wants to write to it at
some point

 It needs to broadcast “invalidate” even though it has the only
cached copy!

 If the cache knew it had the only cached copy in the system,
it could have written to the block without notifying any other
cache  saves unnecessary broadcasts of invalidations

116

The Solution: MESI

 Idea: Add another state indicating that this is the only
cached copy and it is clean.

 Exclusive state

 Block is placed into the exclusive state if, during BusRd, no
other cache had it

 Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

 Silent transition ExclusiveModified is possible on write!

 MESI is also called the Illinois protocol
 Papamarcos and Patel, “A low-overhead coherence solution for

multiprocessors with private cache memories,” ISCA 1984.

117

118

119

MESI State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

120

M

E

S

I

[Culler/Singh96]

MESI State Machine from Optional Lab 5

121

A transition from a single-owner state (Exclusive or Modified) to Shared is called a

downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an

upgrade, because the transition grants the ability to the owner (the cache which contains

the respective block) to write to the block.

MESI State Machine from Optional Lab 5

122

Intel Pentium Pro

123Slide credit: Yale Patt

Snoopy Invalidation Tradeoffs

 Should a downgrade from M go to S or I?

 S: if data is likely to be reused (before it is written to by another
processor)

 I: if data is likely to be not reused (before it is written to by another)

 Cache-to-cache transfer

 On a BusRd, should data come from another cache or memory?

 Another cache

 May be faster, if memory is slow or highly contended

 Memory

 Simpler: no need to wait to see if another cache has the data first

 Less contention at the other caches

 Requires writeback on M downgrade

 Writeback on Modified->Shared: necessary?

 One possibility: Owner (O) state (MOESI protocol)

 One cache owns the latest data (memory is not updated)

 Memory writeback happens when all caches evict copies

124

The Problem with MESI

 Observation: Shared state requires the data to be clean

 i.e., all caches that have the block have the up-to-date copy
and so does the memory

 Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

 Why is this a problem?

 Memory can be updated unnecessarily  some other

processor may want to write to the block again

125

Improving on MESI

 Idea 1: Do not transition from MS on a BusRd. Invalidate

the copy and supply the modified block to the requesting
processor directly without updating memory

 Idea 2: Transition from MS, but designate one cache as

the owner (O), who will write the block back when it is
evicted

 Now “Shared” means “Shared and potentially dirty”

 This is a version of the MOESI protocol

126

Tradeoffs in Sophisticated Cache Coherence Protocols

 The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

 However, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to
take care of, race conditions)

-- Provide diminishing returns

127

Revisiting Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all memory requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks which caches have each block

 Directory coordinates invalidation and updates

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

128

Snoopy Cache vs. Directory Coherence
 Snoopy Cache

+ Miss latency (critical path) is short: request  bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

 single point of serialization (bus): not scalable

 need a virtual bus (or a totally-ordered interconnect)

 Directory

- Adds indirection to miss latency (critical path): request  dir.  mem.

- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK for correctness)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
129

Revisiting Directory-Based

Cache Coherence

130

Remember: Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

131

Remember: Directory Based Coherence

Example

132

Directory-Based Protocols

 Required when scaling past the capacity of a single bus

 Distributed, but:

 Coherence still requires single point of serialization (for write
serialization)

 Serialization location can be different for every block (striped
across nodes/memory-controllers)

 We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

133

Directory: Data Structures

 Required to support invalidation and cache block requests

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance

 Most accurate (and expensive): full bit-vector

 Compressed representation, linked list, Bloom filters are all
possible

134

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Directory: Basic Operations

 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:

 Receives Read, ReadEx, Upgrade requests from nodes

 Sends Inval/Downgrade messages to sharers if needed

 Forwards request to memory if needed

 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation

 For example, do cache-to-cache transfer?

135

MESI Directory Transaction: Read

136

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

137

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

138

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

 

3. RdEx4. Invl

5a. Rev

5b. DatEx



Issues with Contention Resolution

 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries

 Original requestor retries

 OR, queuing requests and granting in sequence

 (Or some combination thereof)

 Fairness

 Which requestor should be preferred in a conflict?

 Interconnect delivery order, and distance, both matter

 Ping-ponging is a higher-level issue

 With solutions like combining trees (for locks/barriers) and
better shared-data-structure design

139

Scaling the Directory: Some Questions

 How large is the directory?

 How can we reduce the access latency to the directory?

 How can we scale the system to thousands of nodes?

 Can we get the best of snooping and directory protocols?

 Heterogeneity

 E.g., token coherence [Martin+, ISCA 2003]

140

Advancing Coherence

141

Token Coherence – Milo Martinslide 142

Motivation: Three Desirable Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Dictated by workload and technology trends

Token Coherence – Milo Martinslide 143

Workload Trends

P P P M

1

2

P P P M

2

1

3

Directory

Protocol

Workload trends  snooping protocols

• Commercial workloads

– Many cache-to-cache misses

– Clusters of small multiprocessors

• Goals:

– Direct cache-to-cache misses

(2 hops, not 3 hops)

– Moderate scalability

Token Coherence – Milo Martinslide 144

Workload Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Token Coherence – Milo Martinslide 145

Workload Trends Snooping Protocols

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

(Yes: direct
request/response)

(No: requires a “virtual bus”) (No: broadcast always)

Token Coherence – Milo Martinslide 146

Technology Trends

• High-speed point-to-point links

– No (multi-drop) busses

• Desire: low-latency interconnect

– Avoid “virtual bus” ordering

– Enabled by directory protocols

Technology trends  unordered interconnects

• Increasing design integration

– “Glueless” multiprocessors

– Improve cost & latency

Token Coherence – Milo Martinslide 147

Technology Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Token Coherence – Milo Martinslide 148

Technology Trends Directory Protocols

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

(No: indirection
through directory)

(Yes: no ordering required) (Yes: avoids broadcast)

Token Coherence – Milo Martinslide 149

Goal: All Three Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Step#1

Step#2

Token Coherence – Milo Martinslide 150

Token Coherence: Key Insight

• Goal of invalidation-based coherence

– Invariant: many readers -or- single writer

– Enforced by globally coordinated actions

• Enforce this invariant directly using tokens

– Fixed number of tokens per block

– One token to read, all tokens to write

• Guarantees safety in all cases

– Global invariant enforced with only local rules

– Independent of races, request ordering, etc.

Key insight

