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Summary of Last Week’s Lectures

 Memory Latency Tolerance

 Runahead Execution

 Wrong Path Effects

 Prefetching
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Today

 Multiprocessors

 Memory Consistency

 Cache Coherence
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Multiprocessors and

Issues in Multiprocessing



Readings: Multiprocessing

 Required

 Amdahl, “Validity of the single processor approach to achieving large 
scale computing capabilities,” AFIPS 1967. 

 Recommended

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.
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Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That Correctly 
Executes Multiprocess Programs,” IEEE Transactions on Computers, 
1979
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Readings: Cache Coherence

 Required

 Papamarcos and Patel, “A low-overhead coherence solution 
for multiprocessors with private cache memories,” ISCA 1984.

 Recommended:

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

7



D-INFK Distinguished Lecture (Monday)

 Monday, 4 December 2017

 Prof. Michael Scott (Univ of Rochester)

 16:15-17:15 @ CAB G61
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CHALLENGE: CRASH CONSISTENCY

System crash can result in 
permanent data corruption in NVM
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Persistent Memory System



CRASH CONSISTENCY PROBLEM
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Example: Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in 
inconsistent memory state



One Key Challenge in Persistent Memory

 How to ensure consistency of system/data if all 
memory is persistent? 

 Two extremes

 Programmer transparent: Let the system handle it

 Programmer only: Let the programmer handle it 

 Many alternatives in-between…
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CURRENT SOLUTIONS
Explicit interfaces to manage consistency

– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition 
between volatile and non-volatile data

Burden on the programmers

12How do we make legacy code work?



A NEW APPROACH: ThyNVM
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Goal: 
Software transparent consistency in 

persistent memory systems



ThyNVM: Summary
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• Checkpoints at multiple granularities to 
reduce both checkpointing latency and 
metadata overhead

• Overlaps checkpointing and execution to 
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM 
with zero cost consistency

A new hardware-based 
checkpointing mechanism



More About ThyNVM
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 Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, 
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency 
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on 
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM


One Key Challenge in Persistent Memory

Programming Ease

to Exploit Persistence
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Tools/Libraries to Help Programmers

 Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric 
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based 
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads (INFLOW), Savannah, 
GA, USA, November 2016.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf


Multiprocessors and

Issues in Multiprocessing



Remember: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor
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Why Parallel Computers?

 Parallelism: Doing multiple things at a time

 Things: instructions, operations, tasks

 Main (or Original) Goal

 Improve performance (Execution time or task throughput)
 Execution time of a program governed by Amdahl’s Law

 Other Goals

 Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

 Why? 

 Improve cost efficiency and scalability, reduce complexity

 Harder to design a single unit that performs as well as N simpler units 

 Improve dependability: Redundant execution in space
20



Types of Parallelism and How to Exploit Them

 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel

 Pipelining, out-of-order execution, speculative execution, VLIW

 Dataflow

 Data Parallelism

 Different pieces of data can be operated on in parallel

 SIMD: Vector processing, array processing

 Systolic arrays, streaming processors

 Task Level Parallelism

 Different “tasks/threads” can be executed in parallel

 Multithreading

 Multiprocessing (multi-core)
21



Task-Level Parallelism: Creating Tasks

 Partition a single problem into multiple related tasks 
(threads)

 Explicitly: Parallel programming

 Easy when tasks are natural in the problem

 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation

 Partition a single thread speculatively

 Run many independent tasks (processes) together

 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task
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Multiprocessing Fundamentals
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Multiprocessor Types

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except

 Operations on shared data require synchronization
24



Main Design Issues in Tightly-Coupled MP 

 Shared memory synchronization

 How to handle locks, atomic operations

 Cache coherence

 How to ensure correct operation in the presence of private 
caches

 Memory consistency: Ordering of memory operations 

 What should the programmer expect the hardware to provide?

 Shared resource management

 Communication: Interconnects
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Main Programming Issues in Tightly-Coupled MP

 Load imbalance

 How to partition a single task into multiple tasks

 Synchronization

 How to synchronize (efficiently) between tasks

 How to communicate between tasks

 Locks, barriers, pipeline stages, condition variables, 
semaphores, atomic operations, …

 Ensuring correct operation while optimizing for performance
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Aside: Hardware-based Multithreading

 Coarse grained

 Quantum based

 Event based (switch-on-event multithreading), e.g., switch on L3 miss

 Fine grained

 Cycle by cycle

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 
1978.

 Simultaneous

 Can dispatch instructions from multiple threads at the same time

 Good for improving execution unit utilization
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Limits of Parallel Speedup
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Parallel Speedup Example

 a4x
4 + a3x

3 + a2x
2 + a1x + a0

 Assume given inputs: x and each ai

 Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor

 How fast is this with a single processor?

 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors? 
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Speedup with 3 Processors
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Revisiting the Single-Processor Algorithm

33

Horner, “A new method of solving numerical equations of all orders, by continuous 

approximation,” Philosophical Transactions of the Royal Society, 1819.
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Superlinear Speedup

 Can speedup be greater than P with P processing 
elements?

 Unfair comparisons

Compare best parallel 

algorithm to wimpy serial

algorithm  unfair

 Cache/memory effects

More processors 

more cache or memory 

fewer misses in cache/mem
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Utilization, Redundancy, Efficiency

 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used 

 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel 
processing

 R = (# of operations in parallel version) / (# operations in best 
single processor algorithm version)

 Efficiency 

 E = (Time with 1 processor) / (processors x Time with P processors)

 E = U/R
36



Utilization of a Multiprocessor
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Amdahl’s Law and 

Caveats of Parallelism
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Caveats of Parallelism (I)
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Amdahl’s Law

41

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 



Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Caveats of Parallelism (II)

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
44

Speedup =
1

+1 - f
f

N



Sequential Bottleneck
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Why the Sequential Bottleneck?

 Parallel machines have the 
sequential bottleneck

 Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops)

for ( i = 0 ; i < N; i++)

A[i] = (A[i] + A[i-1]) / 2

 There are other causes as well:

 Single thread prepares data and 
spawns parallel tasks (usually 
sequential)

46



Another Example of Sequential Bottleneck (I)

47Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.



Another Example of Sequential Bottleneck (II)

48Suleman+, “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures,” ASPLOS 2009.



Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data 
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
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Bottlenecks in Parallel Portion: Another View

 Threads in a multi-threaded application can be inter-
dependent

 As opposed to threads from different applications

 Such threads can synchronize with each other

 Locks, barriers, pipeline stages, condition variables, 
semaphores, …

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not

 Even within a thread, some “code segments” may be on 
the critical path of execution; some are not
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Remember: Critical Sections

 Enforce mutually exclusive access to shared data

 Only one thread can be executing it at a time

 Contended critical sections make threads wait  threads 

causing serialization can be on the critical path

51

Each thread:

loop {

Compute

lock(A)

Update shared data

unlock(A)

}

N

C



Remember: Barriers

 Synchronization point

 Threads have to wait until all threads reach the barrier

 Last thread arriving to the barrier is on the critical path

52

Each thread:

loop1 {

Compute

}

barrier

loop2 {

Compute

}



Remember: Stages of Pipelined Programs

 Loop iterations are statically divided into code segments called stages

 Threads execute stages on different cores

 Thread executing the slowest stage is on the critical path

53

loop {

Compute1

Compute2

Compute3

}

A

B

C

A B C



Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Difficulty is in 

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs
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Memory Ordering in 

Multiprocessors
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Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering 
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Gharachorloo et al., “Two Techniques to Enhance the 
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential 
consistency,” ISCA 2007.
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Memory Consistency vs. Cache Coherence

 Consistency is about ordering of all memory operations 
from different processors (i.e., to different memory 
locations)

 Global ordering of accesses to all memory locations

 Coherence is about ordering of operations from different 
processors to the same memory location

 Local ordering of accesses to each cache block
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Difficulties of Multiprocessing

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

58



Ordering of Operations

 Operations: A, B, C, D

 In what order should the hardware execute (and report the 
results of) these operations?

 A contract between programmer and microarchitect

 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”) 
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware 
designer’s life difficult
 Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity
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Memory Ordering in a Single Processor

 Specified by the von Neumann model

 Sequential order

 Hardware executes the load and store operations in the order 
specified by the sequential program

 Out-of-order execution does not change the semantics

 Hardware retires (reports to software the results of) the load 
and store operations in the order specified by the sequential 
program

 Advantages: 1) Architectural state is precise within an execution. 

2) Architectural state is consistent across different runs of the program 
 Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces 

performance, increases complexity, reduces scalability
60



Memory Ordering in a Dataflow Processor

 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if 
they have no dependency

 Advantage: Lots of parallelism  high performance

 Disadvantages: 

 Precise state is very hard to maintain (No specified order)     
 Very hard to debug

 Order can change across runs of the same program 
 Very hard to debug
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Memory Ordering in a MIMD Processor

 Each processor’s memory operations are in sequential order 
with respect to the “thread” running on that processor 
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations 
concurrently

 How does the memory see the order of operations from all 
processors? 

 In other words, what is the ordering of operations across 
different processors?
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Why Does This Even Matter?

 Ease of debugging

 It is nice to have the same execution done at different times 
to have the same order of execution  Repeatability

 Correctness

 Can we have incorrect execution if the order of memory 
operations is different from the point of view of different 
processors?

 Performance and overhead

 Enforcing a strict “sequential ordering” can make life harder 
for the hardware designer in implementing performance 
enhancement techniques (e.g., OoO execution, caches)
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When Could Order Affect Correctness?

 When protecting shared data
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Protecting Shared Data

 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside 
critical sections or protected via synchronization constructs 
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at 
a given time

 Mutual exclusion principle

 A multiprocessor should provide the correct execution of 
synchronization primitives to enable the programmer to 
protect shared data

65



Supporting Mutual Exclusion
 Programmer needs to make sure mutual exclusion 

(synchronization) is correctly implemented

 We will assume this 

 But, correct parallel programming is an important topic

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

 See Dekker’s algorithm for mutual exclusion

 Programmer relies on hardware primitives to support correct 
synchronization

 If hardware primitives are not correct (or unpredictable), 
programmer’s life is tough

 If hardware primitives are correct but not easy to reason about 
or use, programmer’s life is still tough

66

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html


67

Protecting Shared Data

Assume P1 is in critical section.

Intuitively, it must have executed A, 

which means F1 must be 1 (as A happens before B), 

which means P2 should not enter the critical section.



A Question

 Can the two processors be in the critical section at the 
same time given that they both obey the von Neumann 
model?

 Answer: yes
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Both Processors in Critical Section

70



71

A appeared to happen 

before X

X appeared to happen 

before A



The Problem

 The two processors did NOT see the same order of 
operations to memory

 The “happened before” relationship between multiple 
updates to memory was inconsistent between the two 
processors’ points of view

 As a result, each processor thought the other was not in 
the critical section
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How Can We Solve The Problem?

 Idea: Sequential consistency

 All processors see the same order of operations to memory

 i.e., all memory operations happen in an order (called the 
global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s 
operations appear in sequential order with respect to its 
own operations.
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Sequential Consistency

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions on 
Computers, 1979

 A multiprocessor system is sequentially consistent if:

 the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order

AND

 the operations of each individual processor appear in this 
sequence in the order specified by its program

 This is a memory ordering model, or memory model

 Specified by the ISA
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Programmer’s Abstraction

 Memory is a switch that services one load or store at a time 
from any processor

 All processors see the currently serviced load or store at the 
same time

 Each processor’s operations are serviced in program order

75

MEMORY

P1 P3P2 Pn



Sequentially Consistent Operation Orders

 Potential correct global orders (all are correct):

 A B X Y

 A X B Y

 A X Y B

 X A B Y

 X A Y B

 X Y A B

 Which order (interleaving) is observed depends on 
implementation and dynamic latencies
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Consequences of Sequential Consistency

 Corollaries

1. Within the same execution, all processors see the same 
global order of operations to memory

 No correctness issue

 Satisfies the “happened before” intuition

2. Across different executions, different global orders can be 
observed (each of which is sequentially consistent)

 Debugging is still difficult (as order changes across runs)
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Issues with Sequential Consistency?

 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements

 Limits the aggressiveness of performance enhancement 
techniques

 Is the total global order requirement too strong?

 Do we need a global order across all operations and all 
processors?

 How about a global order only across all stores?

 Total store order memory model; unique store order model

 How about enforcing a global order only at the boundaries of 
synchronization?

 Relaxed memory models

 Acquire-release consistency model

78



Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC 
implementation difficult

 Out-of-order execution 

 Loads happen out-of-order with respect to each other and 
with respect to independent stores  makes it difficult for all 

processors to see the same global order of all memory 
operations

 Caching 

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors 
 makes it difficult for all processors to see the same global 

order of all memory operations

79



Weaker Memory Consistency

 The ordering of operations is important when the order 
affects operations on shared data  i.e., when processors 

need to synchronize to execute a “program region”

 Weak consistency

 Idea: Programmer specifies regions in which memory 
operations do not need to be ordered

 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before 
fence is executed

 All memory operations after the fence must wait for the fence to 
complete

 Fences complete in program order

 All synchronization operations act like a fence
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Tradeoffs: Weaker Consistency

 Advantage

 No need to guarantee a very strict order of memory 
operations

 Enables the hardware implementation of performance     

enhancement techniques to be simpler 

 Can be higher performance than stricter ordering

 Disadvantage

 More burden on the programmer or software (need to get the 
“fences” correct)

 Another example of the programmer-microarchitect tradeoff
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Example Question (I)
 Question 4 in

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

82

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf


Example Question (II)
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Caching in Multiprocessors

 Caching not only complicates ordering of all operations…

 A memory location can be present in multiple caches

 Prevents the effect of a store or load to be seen by other 
processors  makes it difficult for all processors to see the 

same global order of (all) memory operations

 … but it also complicates ordering of operations on a single 
memory location

 A single memory location can be present in multiple caches

 Makes it difficult for processors that have cached the same 
location to have the correct value of that location (in the 
presence of updates to that location)
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Cache Coherence
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Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with 
private cache memories,” ISCA 1984.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA 
1988.
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Shared Memory Model

 Many parallel programs communicate through shared memory

 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone

 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

87

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]



Cache Coherence 

 Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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Cache Coherence: Whose Responsibility?

 Software

 Can the programmer ensure coherence if caches are invisible to 
software?

 What if the ISA provided a cache flush instruction?

 FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache. 

 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches. 

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware

 Simplifies software’s job

 One idea: Invalidate all other copies of block A when a processor writes 
to it
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A Very Simple Coherence Scheme (VI)

 Caches “snoop” (observe) each other’s write/read 
operations. If a processor writes to a block, all others 
invalidate the block.

 A simple protocol:
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 Write-through, no-
write-allocate 
cache

 Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

 Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



(Non-)Solutions to Cache Coherence

 No hardware based coherence

 Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder 

 need to worry about hardware caches to maintain program 
correctness?

-- Overhead in ensuring coherence in software (e.g., page 
protection and page-based software coherence)

 All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache 
access this way
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Maintaining Coherence

 Need to guarantee that all processors see a consistent 
value (i.e., consistent updates) for the same memory 
location

 Writes to location A by P0 should be seen by P1 
(eventually), and all writes to A should appear in some 
order

 Coherence needs to provide:

 Write propagation: guarantee that updates will propagate

 Write serialization: provide a consistent order seen by all 
processors for the same memory location

 Need a global point of serialization for this store ordering
96



Hardware Cache Coherence

 Basic idea:

 A processor/cache broadcasts its write/update to a memory 
location to all other processors

 Another cache that has the location either updates or 
invalidates its local copy
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Coherence: Update vs. Invalidate

 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies

 Option 2 (Invalidate protocol): ensure there is only one 
copy (local), update it

 On a Read:

 If local copy is Invalid, put out request

 (If another node has a copy, it returns it, otherwise 
memory does)
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Coherence: Update vs. Invalidate (II)

 On a Write:

 Read block into cache as before

Update Protocol:

 Write to block, and simultaneously broadcast written 
data and address to sharers

 (Other nodes update the data in their caches if block is 
present)

Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation 
of address to sharers

 (Other nodes invalidate block in their caches if block is 
present)
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Update vs. Invalidate Tradeoffs

 Which do we want?

 Write frequency and sharing behavior are critical

 Update

+ If sharer set is constant and updates are infrequent, avoids 

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores, 

updates were useless

- Write-through cache policy  bus becomes bottleneck

 Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid 

invalidation-reacquire traffic from different processors)
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Two Cache Coherence Methods 

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all memory requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks which caches have each block

 Directory coordinates invalidation and updates

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1
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Directory Based 

Cache Coherence
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Directory Based Coherence

 Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that a cache has the only copy of the block 
and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data 

 On a write: invalidate all caches that have the block and reset 
their bits

 Have an “exclusive bit” associated with each block in each cache 
(so that the cache can update the exclusive block silently)
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Directory Based Coherence Example (I)
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Directory Based Coherence Example (I)
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Directory Optimizations

 Directory is the coordinator for all actions to be performed 
on the block by any processor

 Guarantees correctness, ordering

 Yet, there are many opportunities for optimization

 Enabled by bypassing the directory and directly 
communicating between caches

 We will see this later
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Snoopy Cache Coherence
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Snoopy Cache Coherence

 Idea: 

 All caches “snoop” all other caches’ read/write requests and 
keep the cache block coherent

 Each cache block has “coherence metadata” associated with it 
in the tag store of each cache

 Easy to implement if all caches share a common bus

 Each cache broadcasts its read/write operations on the bus

 Good for small-scale multiprocessors

 What if you would like to have a 1000-node multiprocessor?
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A Simple Snoopy Cache Coherence Protocol

 Caches “snoop” (observe) each others’ write/read 
operations

 A simple protocol (VI protocol):
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 Write-through, 
no-write-allocate 
cache

 Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

 Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



Extending the Protocol

 What if you want write-back caches?

 We want a “modified” state
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A More Sophisticated Protocol: MSI

 Extend metadata per block to encode three states:

 M(odified): cache line is the only cached copy and is dirty

 S(hared): cache line is potentially one of several cached 
copies

 I(nvalid): cache line is not present in this cache

 Read miss makes a Read request on bus, transitions to S

 Write miss makes a ReadEx request, transitions to M state

 When a processor snoops ReadEx from another writer, it 
must invalidate its own copy (if any)

 SM upgrade can be made without re-reading data from 

memory (via Invalidations)
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MSI State Machine
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M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action



The Problem with MSI

 A block is in no cache to begin with

 Problem: On a read, the block immediately goes to 
“Shared” state although it may be the only copy to be 
cached (i.e., no other processor will cache it)

 Why is this a problem?

 Suppose the cache that read the block wants to write to it at 
some point

 It needs to broadcast “invalidate” even though it has the only 
cached copy!

 If the cache knew it had the only cached copy in the system, 
it could have written to the block without notifying any other 
cache  saves unnecessary broadcasts of invalidations
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The Solution: MESI

 Idea: Add another state indicating that this is the only 
cached copy and it is clean.

 Exclusive state

 Block is placed into the exclusive state if, during BusRd, no 
other cache had it

 Wired-OR “shared” signal on bus can determine this: 
snooping caches assert the signal if they also have a copy

 Silent transition ExclusiveModified is possible on write!

 MESI is also called the Illinois protocol 
 Papamarcos and Patel, “A low-overhead coherence solution for 

multiprocessors with private cache memories,” ISCA 1984.
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MESI State Machine



PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine
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[Culler/Singh96]



MESI State Machine from Optional Lab 5
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A transition from a single-owner state (Exclusive or Modified) to Shared is called a 

downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an 

upgrade, because the transition grants the ability to the owner (the cache which contains 

the respective block) to write to the block.



MESI State Machine from Optional Lab 5
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Intel Pentium Pro

123Slide credit: Yale Patt



Snoopy Invalidation Tradeoffs

 Should a downgrade from M go to S or I?

 S: if data is likely to be reused (before it is written to by another 
processor)

 I: if data is likely to be not reused (before it is written to by another)

 Cache-to-cache transfer

 On a BusRd, should data come from another cache or memory?

 Another cache

 May be faster, if memory is slow or highly contended

 Memory

 Simpler: no need to wait to see if another cache has the data first

 Less contention at the other caches

 Requires writeback on M downgrade

 Writeback on Modified->Shared: necessary?

 One possibility: Owner (O) state (MOESI protocol)

 One cache owns the latest data (memory is not updated)

 Memory writeback happens when all caches evict copies
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The Problem with MESI

 Observation: Shared state requires the data to be clean 

 i.e., all caches that have the block have the up-to-date copy 
and so does the memory

 Problem: Need to write the block to memory when BusRd 
happens when the block is in Modified state

 Why is this a problem?

 Memory can be updated unnecessarily  some other 

processor may want to write to the block again
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Improving on MESI

 Idea 1: Do not transition from MS on a BusRd. Invalidate 

the copy and supply the modified block to the requesting 
processor directly without updating memory

 Idea 2: Transition from MS, but designate one cache as 

the owner (O), who will write the block back when it is 
evicted

 Now “Shared” means “Shared and potentially dirty”

 This is a version of the MOESI protocol
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Tradeoffs in Sophisticated Cache Coherence Protocols

 The protocol can be optimized with more states and 
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

 However, more states and optimizations 

-- Are more difficult to design and verify (lead to more cases to 
take care of, race conditions)

-- Provide diminishing returns
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Revisiting Two Cache Coherence Methods 

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all memory requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks which caches have each block

 Directory coordinates invalidation and updates

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1
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Snoopy Cache vs. Directory Coherence
 Snoopy Cache

+ Miss latency (critical path) is short: request  bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order): 

 single point of serialization (bus): not scalable

 need a virtual bus (or a totally-ordered interconnect)

 Directory

- Adds indirection to miss latency (critical path): request  dir.  mem.

- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK for correctness)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
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Revisiting Directory-Based 

Cache Coherence
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Remember: Directory Based Coherence

 Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that the cache that has the only copy of 
the block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data 

 On a write: invalidate all caches that have the block and reset 
their bits

 Have an “exclusive bit” associated with each block in each 
cache
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Remember: Directory Based Coherence 

Example
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Directory-Based Protocols

 Required when scaling past the capacity of a single bus

 Distributed, but:

 Coherence still requires single point of serialization (for write 
serialization)

 Serialization location can be different for every block (striped 
across nodes/memory-controllers)

 We can reason about the protocol for a single block: one 
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends 
Invl requests: invalidation is explicit (as opposed to snoopy 
buses)
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Directory: Data Structures

 Required to support invalidation and cache block requests

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain 
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance

 Most accurate (and expensive): full bit-vector

 Compressed representation, linked list, Bloom filters are all 
possible
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0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}
---
Exclusive: P2
---
---



Directory: Basic Operations

 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:

 Receives Read, ReadEx, Upgrade requests from nodes

 Sends Inval/Downgrade messages to sharers if needed

 Forwards request to memory if needed

 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation

 For example, do cache-to-cache transfer?
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MESI Directory Transaction: Read
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P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1



RdEx with Former Owner
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P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev



Contention Resolution (for Write)
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P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

 

3. RdEx4. Invl

5a. Rev

5b. DatEx





Issues with Contention Resolution

 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries

 Original requestor retries

 OR, queuing requests and granting in sequence

 (Or some combination thereof)

 Fairness

 Which requestor should be preferred in a conflict?

 Interconnect delivery order, and distance, both matter

 Ping-ponging is a higher-level issue

 With solutions like combining trees (for locks/barriers) and 
better shared-data-structure design
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Scaling the Directory: Some Questions

 How large is the directory?

 How can we reduce the access latency to the directory?

 How can we scale the system to thousands of nodes?

 Can we get the best of snooping and directory protocols?

 Heterogeneity 

 E.g., token coherence [Martin+, ISCA 2003]
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Advancing Coherence
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Token Coherence – Milo Martinslide 142

Motivation: Three Desirable Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Dictated by workload and technology trends
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Workload Trends

P P P M

1

2

P P P M

2

1

3

Directory

Protocol

Workload trends  snooping protocols

• Commercial workloads

– Many cache-to-cache misses

– Clusters of small multiprocessors

• Goals:

– Direct cache-to-cache misses

(2 hops, not 3 hops)

– Moderate scalability
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Workload Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient
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Workload Trends Snooping Protocols

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

(Yes: direct 
request/response)

(No: requires a “virtual bus”) (No: broadcast always)
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Technology Trends

• High-speed point-to-point links

– No (multi-drop) busses

• Desire: low-latency interconnect

– Avoid “virtual bus” ordering

– Enabled by directory protocols

Technology trends  unordered interconnects

• Increasing design integration

– “Glueless” multiprocessors

– Improve cost & latency
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Technology Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient
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Technology Trends Directory Protocols

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

(No: indirection
through directory)

(Yes: no ordering required) (Yes: avoids broadcast)
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Goal: All Three Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Step#1

Step#2



Token Coherence – Milo Martinslide 150

Token Coherence: Key Insight

• Goal of invalidation-based coherence

– Invariant: many readers -or- single writer

– Enforced by globally coordinated actions

• Enforce this invariant directly using tokens

– Fixed number of tokens per block

– One token to read, all tokens to write

• Guarantees safety in all cases

– Global invariant enforced with only local rules

– Independent of races, request ordering, etc.

Key insight


