
Computer Architecture
Lecture 22: Interconnects II

Prof. Onur Mutlu
ETH Zürich
Fall 2017

20 December 2017

Summary of Last Lecture
n Interconnection Network Basics

2

Today and Tomorrow
n Interconnection Networks Wrap-Up

n Research in Computer Architecture

n Course Logistics
q Final Lab
q Final Exam
q Past Exams and Homeworks

n Discussion session tomorrow
q Exam Questions
q Bring Questions

3

Interconnection Networks

4

Readings
n Required

q Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

n Recommended
q Das et al., “Application-Aware Prioritization Mechanisms for On-Chip

Networks,” MICRO 2009.

5

Review: Interconnection Network Performance

6

Latency

Injection rate into network

Min latency
given by
topology

Min latency
given by
routing

algorithm

Zero load latency
(topology+routing+

flow control)

Throughput
given by
topology

Throughput
given by
routing

Throughput
given by flow

control

Review: Network Performance Metrics
n Packet latency

n Round trip latency

n Saturation throughput

n Application-level performance: system performance
q Affected by interference among threads/applications

7

Buffering and Routing in
On-Chip Networks

8

On-Chip	Networks

9

R

PE
R

PE
R

PE

R

PE
R

PE
R

PE

R

PE
R

PE
R

PE

R Router

Processing	Element
(Cores,	L2	Banks,	Memory	Controllers,	etc)PE

• Connect	cores,	caches,	memory	
controllers,	etc
– Buses	and	crossbars	are	not	scalable

• Packet	switched
• 2D	mesh:	Most	commonly	used	
topology

• Primarily	serve	cache	misses	and
memory	requests

© Onur Mutlu, 2009, 2010

On-chip Networks

10

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1
VC 2

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West
To North
To South

Input Port with Buffers

Control Logic

Crossbar

R Router

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects
n On-chip advantages

q Low latency between cores
q No pin constraints
q Rich wiring resources
à Very high bandwidth
à Simpler coordination

n On-chip constraints/disadvantages
q 2D substrate limits implementable topologies
q Energy/power consumption a key concern
q Complex algorithms undesirable
q Logic area constrains use of wiring resources

11

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects (II)
n Cost

q Off-chip: Channels, pins, connectors, cables
q On-chip: Cost is storage and switches (wires are plentiful)
q Leads to networks with many wide channels, few buffers

n Channel characteristics
q On chip short distance à low latency
q On chip RC lines à need repeaters every 1-2mm

n Can put logic in repeaters

n Workloads
q Multi-core cache traffic vs. supercomputer interconnect traffic

12

On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides
(pptx)

13

• Buffers are necessary for high network throughput

à buffers increase total available bandwidth in network

Buffers in NoC Routers

Injection Rate

A
vg

. p
ac

ke
t

la
te

nc
y

large
buffers

medium
buffers

small
buffers

• Buffers are necessary for high network throughput

à buffers increase total available bandwidth in network

• Buffers consume significant energy/power
• Dynamic energy when read/write

• Static energy even when not occupied

• Buffers add complexity and latency
• Logic for buffer management

• Virtual channel allocation

• Credit-based flow control

• Buffers require significant chip area
• E.g., in TRIPS prototype chip, input buffers occupy 75% of

total on-chip network area [Gratz et al, ICCD’06]

Buffers in NoC Routers

• How much throughput do we lose?
à How is latency affected?

• Up to what injection rates can we use bufferless routing?

àAre there realistic scenarios in which NoC is
operated at injection rates below the threshold?

• Can we achieve energy reduction?
à If so, how much…?

• Can we reduce area, complexity, etc…?

Going Bufferless…?

Injection Rate

la
te

nc
y

buffersno
buffers

Answers	in	
our	paper!

$

• Always forward all incoming flits to some output port

• If no productive direction is available, send to another
direction

• à packet is deflected

à Hot-potato routing [Baran’64, etc]

BLESS: Bufferless Routing

Buffered BLESS

Deflected!

$

BLESS: Bufferless Routing

Routing

VC Arbiter

Switch Arbiter

Flit-Ranking

Port-
Prioritization

arbitration policy

Flit-Ranking 1. Create a ranking over all incoming flits

Port-
Prioritization 2. For a given flit in this ranking, find the best free output-port

Apply to each flit in order of ranking

$

• Each flit is routed independently.
• Oldest-first arbitration (other policies evaluated in paper)

• Network Topology:
à Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, …)

1) #output ports ¸ #input ports at every router
2) every router is reachable from every other router

• Flow Control & Injection Policy:
à Completely local, inject whenever input port is free

• Absence of Deadlocks: every flit is always moving
• Absence of Livelocks: with oldest-first ranking

FLIT-BLESS: Flit-Level Routing

Flit-Ranking 1. Oldest-first ranking

Port-
Prioritization

2. Assign flit to productive port, if possible.
Otherwise, assign to non-productive port.

$

Advantages

• No buffers

• Purely local flow control

• Simplicity
- no credit-flows
- no virtual channels
- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around
congested areas!

• Router latency reduction

• Area savings

BLESS: Advantages & Disadvantages

Disadvantages
• Increased latency
• Reduced bandwidth
• Increased buffering at

receiver
• Header information at

each flit
• Oldest-first arbitration

complex
• QoS becomes difficult

Impact on energy…?

$

Evaluation – Synthetic Traces

• First, the bad news J

• Uniform random injection

• BLESS has significantly lower
saturation throughput
compared to buffered
baseline. 0

20

40

60

80

100

0

0.
07 0.
1

0.
13

0.
16

0.
19

0.
22

0.
25

0.
28

0.
31

0.
34

0.
37 0.
4

0.
43

0.
46

0.
49

A
ve

ra
ge

 L
at

en
cy

Injection Rate (flits per cycle per node)

FLIT-2
WORM-2
FLIT-1
WORM-1
MIN-AD

BLESS Best
Baseline

$

Evaluation – Homogenous Case Study

• milc benchmarks
(moderately intensive)

• Perfect caches!

• Very little performance
degradation with BLESS
(less than 4% in dense
network)

• With router latency 1,
BLESS can even
outperform baseline
(by ~10%)

• Significant energy
improvements
(almost 40%)

0
2
4
6
8

10
12
14
16
18

W
-S

pe
ed

up

4x4,	8x	milc 4x4,	16x	milc 8x8,	16x	milc

0

0.2

0.4

0.6

0.8

1

1.2

E
ne

rg
y

(n
or

m
al

iz
ed

) BufferEnergy LinkEnergy RouterEnergy

4x4,	16x	milc 8x8,	16x	milc4x4, 8x milc

Baseline BLESS RL=1

$

Evaluation – Homogenous Case Study

0
2
4
6
8

10
12
14
16
18

W
-S

pe
ed

up

4x4,	8x	milc 4x4,	16x	milc 8x8,	16x	milc

0

0.2

0.4

0.6

0.8

1

1.2

E
ne

rg
y

(n
or

m
al

iz
ed

) BufferEnergy LinkEnergy RouterEnergy

4x4, 8 8x milc 4x4,	16x	milc 8x8,	16x	milc

Baseline BLESS RL=1

• milc benchmarks
(moderately intensive)

• Perfect caches!

• Very little performance
degradation with BLESS
(less than 4% in dense
network)

• With router latency 1,
BLESS can even
outperform baseline
(by ~10%)

• Significant energy
improvements
(almost 40%)

Observations:

1) Injection rates not extremely high
on average

à self-throttling!

2) For bursts and temporary hotspots,
use network links as buffers!

$

• For a very wide range of applications and network settings,
buffers are not needed in NoC
• Significant energy savings

(32% even in dense networks and perfect caches)
• Area-savings of 60%
• Simplified router and network design (flow control, etc…)
• Performance slowdown is minimal (can even increase!)

Ø A strong case for a rethinking of NoC design!

• Future research:
• Support for quality of service, different traffic classes, energy-

management, etc…

BLESS Conclusions

Bufferless Routing in NoCs
n Moscibroda and Mutlu, “A Case for Bufferless Routing in On-

Chip Networks,” ISCA 2009.
q https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

25

Issues In Bufferless Deflection Routing
n Livelock

n Resulting Router Complexity

n Performance & Congestion at High Loads

n Quality of Service and Fairness

n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip,
pp. 241-275, Springer, 2014.

26

Low-Complexity Bufferless Routing
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

27

CHIPPER: A Low-complexity
Bufferless Deflection Router

Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection Router"

Proceedings of the 17th International Symposium on High-Performance
Computer Architecture (HPCA), pages 144-155, San Antonio, TX, February

2011. Slides (pptx)

Motivation
n Recent work has proposed bufferless deflection routing

(BLESS [Moscibroda, ISCA 2009])

q Energy savings: ~40% in total NoC energy
q Area reduction: ~40% in total NoC area
q Minimal performance loss: ~4% on average

q Unfortunately: unaddressed complexities in router
è long critical path, large reassembly buffers

n Goal: obtain these benefits while simplifying the router
in order to make bufferless NoCs practical.

29

Problems that Bufferless Routers Must Solve
1. Must provide livelock freedom

è A packet should not be deflected forever

2. Must reassemble packets upon arrival

30

Flit: atomic routing unit

0 1 2 3

Packet: one or multiple flits

Local Node

Router

Inject

Deflection
Routing
Logic

Crossbar

A Bufferless Router: A High-Level View

31

Reassembly
Buffers

Eject
Problem 2: Packet Reassembly

Problem 1: Livelock Freedom

Complexity in Bufferless Deflection Routers
1. Must provide livelock freedom

Flits are sorted by age, then assigned in age order to
output ports

è 43% longer critical path than buffered router

2. Must reassemble packets upon arrival

Reassembly buffers must be sized for worst case

è 4KB per node
(8x8, 64-byte cache block)

32

Inject

Deflection
Routing
Logic

Crossbar

Problem 1: Livelock Freedom

33

Reassembly
Buffers

EjectProblem 1: Livelock Freedom

Livelock Freedom in Previous Work
n What stops a flit from deflecting forever?
n All flits are timestamped
n Oldest flits are assigned their desired ports
n Total order among flits

n But what is the cost of this?

34

Flit age forms total order

Guaranteed
progress!

< < <<<

New traffic is lowest priority

Age-Based Priorities are Expensive: Sorting
n Router must sort flits by age: long-latency sort network

q Three comparator stages for 4 flits

35

4

1

2

3

Age-Based Priorities Are Expensive: Allocation
n After sorting, flits assigned to output ports in priority order
n Port assignment of younger flits depends on that of older flits

q sequential dependence in the port allocator

36

East? GRANT: Flit 1 è East

DEFLECT: Flit 2 è North

GRANT: Flit 3 è South

DEFLECT: Flit 4 è West

East?
{N,S,W}

{S,W}

{W}
South?

South?

Age-Ordered Flits

1

2

3

4

Age-Based Priorities Are Expensive
n Overall, deflection routing logic based on Oldest-First

has a 43% longer critical path than a buffered router

n Question: is there a cheaper way to route while
guaranteeing livelock-freedom?

37

Port AllocatorPriority Sort

Solution: Golden Packet for Livelock Freedom
n What is really necessary for livelock freedom?

Key Insight: No total order. it is enough to:
1. Pick one flit to prioritize until arrival
2. Ensure any flit is eventually picked

38

Flit age forms total order

Guaranteed
progress!

New traffic is
lowest-priority

< < <

Guaranteed
progress!

<

“Golden Flit”
partial ordering is sufficient!

n Only need to properly route the Golden Flit

n First Insight: no need for full sort
n Second Insight: no need for sequential allocation

What Does Golden Flit Routing Require?

39

Port AllocatorPriority Sort

Golden Flit Routing With Two Inputs
n Let’s route the Golden Flit in a two-input router first

n Step 1: pick a “winning” flit: Golden Flit, else random
n Step 2: steer the winning flit to its desired output

and deflect other flit

è Golden Flit is always routed toward its destination

40

Golden Flit Routing with Four Inputs

41

n Each block makes decisions independently!
n Deflection is a distributed decision

N

E

S

W

N

S

E

W

Permutation Network Operation

42

N

E

S

W

wins à swap!

wins à no swap! wins à no swap!

deflected

Golden:

wins à swap!

x

Port AllocatorPriority Sort

N

E

S

W

N

S

E

W

Problem 2: Packet Reassembly

43

Inject/Eject

Reassembly
Buffers

Inject Eject

Reassembly Buffers are Large
n Worst case: every node sends a packet to one receiver
n Why can’t we make reassembly buffers smaller?

44

Node
0

Node
1

Node
N-1

Receiver

one packet in flight
per node

N sending nodes …

O(N) space!

Small Reassembly Buffers Cause Deadlock
n What happens when reassembly buffer is too small?

45

Network

cannot eject:
reassembly
buffer full

reassembly
buffer

Many Senders

One Receiver

Remaining flits
must be injected
for forward progress

cannot inject new traffic

network full

Reserve Space to Avoid Deadlock?
n What if every sender asks permission from the receiver

before it sends?

è adds additional delay to every request

46

reassembly buffers
Reserve Slot?

Reserved
ACK

Sender

1. Reserve Slot
2. ACK
3. Send Packet

Receiver

Escaping Deadlock with Retransmissions
n Sender is optimistic instead: assume buffer is free

q If not, receiver drops and NACKs; sender retransmits

à no additional delay in best case
à transmit buffering overhead for all packets
à potentially many retransmits

47

Reassembly
Buffers

Retransmit
Buffers

NACK!

Sender

ACK

Receiver

1. Send (2 flits)
2. Drop, NACK
3. Other packet completes
4. Retransmit packet
5. ACK
6. Sender frees data

Solution: Retransmitting Only Once
n Key Idea: Retransmit only when space becomes available.

à Receiver drops packet if full; notes which packet it drops
à When space frees up, receiver reserves space so

retransmit is successful
à Receiver notifies sender to retransmit

48

Reassembly
Buffers

Retransmit
Buffers

NACK

Sender

Reserved

Receiver
Pending: Node 0 Req 0

Using MSHRs as Reassembly Buffers

49

Inject/Eject

Reassembly
Buffers

Inject Eject

Miss Buffers (MSHRs)

C Using miss buffers for
reassembly makes this a
truly bufferless network.

Inject

Deflection
Routing
Logic

Crossbar

CHIPPER: Cheap Interconnect Partially-Permuting Router

50

Reassembly
Buffers

Eject

Baseline Bufferless Deflection Router

Large buffers for worst case

àRetransmit-Once
àCache miss buffers

Long critical path:
1. Sort by age
2. Allocate ports sequentially

àGolden Packet
à Permutation Network

CHIPPER: Cheap Interconnect Partially-Permuting Router

51

Inject/Eject

Miss Buffers (MSHRs)

Inject Eject

EVALUATION

52

Methodology
n Multiprogrammed workloads: CPU2006, server, desktop

q 8x8 (64 cores), 39 homogeneous and 10 mixed sets

n Multithreaded workloads: SPLASH-2, 16 threads
q 4x4 (16 cores), 5 applications

n System configuration
q Buffered baseline: 2-cycle router, 4 VCs/channel, 8 flits/VC
q Bufferless baseline: 2-cycle latency, FLIT-BLESS

q Instruction-trace driven, closed-loop, 128-entry OoO window
q 64KB L1, perfect L2 (stresses interconnect), XOR mapping

53

Methodology
n Hardware modeling

q Verilog models for CHIPPER, BLESS, buffered logic
n Synthesized with commercial 65nm library

q ORION for crossbar, buffers and links

n Power
q Static and dynamic power from hardware models
q Based on event counts in cycle-accurate simulations

54

0

0.2

0.4

0.6

0.8

1

lu
c

ch
ol
es
ky

ra
di
x fft lu
n

AV
G

Sp
ee

du
p	
(N
or
m
al
ize

d)

Multithreaded

0

8

16

24

32

40

48

56

64
pe

rlb
en

ch

to
nt
o

gc
c

h2
64
re
f

vp
r

se
ar
ch
.1

M
IX
.5

M
IX
.2

M
IX
.8

M
IX
.0

M
IX
.6

Ge
m
sF
DT

D

st
re
am m
cf

AV
G	
(fu

ll	
se
t)

W
ei
gh
te
d	
Sp
ee
du

p

Multiprogrammed (subset	of	49	total) Buffered
BLESS
CHIPPER

Results: Performance Degradation

55

13.6%
1.8%

3.6% 49.8%

C Minimal loss for low-to-medium-intensity workloads

0

2

4

6

8

10

12

14

16

18
pe

rlb
en

ch

to
nt
o

gc
c

h2
64
re
f

vp
r

se
ar
ch
.1

M
IX
.5

M
IX
.2

M
IX
.8

M
IX
.0

M
IX
.6

Ge
m
sF
DT

D

st
re
am m
cf

AV
G	
(fu

ll	
se
t)

N
et
w
or
k	
Po

w
er
	(W

)

Multiprogrammed (subset	of	49	total)

Buffered

BLESS

CHIPPER

Results: Power Reduction

56

0

0.5

1

1.5

2

2.5

lu
c

ch
ol
es
ky

ra
di
x fft lu
n

AV
G

Multithreaded

54.9%
73.4%

C Removing buffers è majority of power savings

C Slight savings from BLESS to CHIPPER

Results: Area and Critical Path Reduction

57

0

0.25

0.5

0.75

1

1.25

1.5

Buffered BLESS CHIPPER

Normalized	Router	Area

0

0.25

0.5

0.75

1

1.25

1.5

Buffered BLESS CHIPPER

Normalized	Critical	Path

-36.2%

-29.1%

+1.1%

-1.6%

C CHIPPER maintains area savings of BLESS

C Critical path becomes competitive to buffered

Conclusions
n Two key issues in bufferless deflection routing

q livelock freedom and packet reassembly

n Bufferless deflection routers were high-complexity and impractical
q Oldest-first prioritization à long critical path in router
q No end-to-end flow control for reassembly à prone to deadlock with

reasonably-sized reassembly buffers

n CHIPPER is a new, practical bufferless deflection router
q Golden packet prioritization à short critical path in router
q Retransmit-once protocol à deadlock-free packet reassembly
q Cache miss buffers as reassembly buffers à truly bufferless network

n CHIPPER frequency comparable to buffered routers at much lower
area and power cost, and minimal performance loss

58

More on CHIPPER
n Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

59

Minimally-Buffered Deflection Routing
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides
(pptx) (pdf)

60

“Bufferless” Hierarchical Rings
n Ausavarungnirun et al., “Design and Evaluation of Hierarchical

Rings with Deflection Routing,” SBAC-PAD 2014.
q http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-

deflection_sbacpad14.pdf

n Discusses the design and implementation of a mostly-
bufferless hierarchical ring

61

“Bufferless” Hierarchical Rings (II)
n Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,

Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.
q arXiv.org version, February 2016.

62

Summary of Six Years of Research
n Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata

Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

63

On-Chip vs. Off-Chip Tradeoffs
n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,

and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides
(pptx)

64

Packet Scheduling
n Which packet to choose for a given output port?

q Router needs to prioritize between competing flits
q Which input port?
q Which virtual channel?
q Which application’s packet?

n Common strategies
q Round robin across virtual channels
q Oldest packet first (or an approximation)
q Prioritize some virtual channels over others

n Better policies in a multi-core environment
q Use application characteristics

65

Application-Aware Packet Scheduling

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip Networks,”
MICRO 2009.

The Problem: Packet Scheduling

Network-on-Chip

L2$L2$
L2$ L2$

Bank
mem
cont
Memory

Controller

P

Accelerator
L2$

Bank
L2$

Bank

P P P P P P P

Network-on-Chip

Network-on-Chip is a critical resource
shared by multiple applications

App1 App2 App NApp N-1

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1
VC 2

The Problem: Packet Scheduling

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West
To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 0 Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1
VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

The Problem: Packet Scheduling

VC 0 Routing Unit
(RC)

VC Allocator
(VA)

Switch

VC 1
VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

Sc
he

du
le

r

Conceptual

View

VC 0 Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1
VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

The Problem: Packet Scheduling

The Problem: Packet Scheduling
§ Existing scheduling policies

§ Round Robin
§ Age

§ Problem 1: Local to a router
§ Lead to contradictory decision making between routers: packets

from one application may be prioritized at one router, to be
delayed at next.

§ Problem 2: Application oblivious
§ Treat all applications packets equally
§ But applications are heterogeneous

§ Solution : Application-aware global scheduling policies.

STC Scheduling Example
In

je
ct

io
n

C
yc

le
s

1

2

3

4

5

6

7

8

2 2

3

Batch 0

Packet Injection Order at Processor
Core1 Core2 Core3

Batching interval length = 3 cycles

Ranking order =
Batch 1

Batch 2

STC Scheduling Example

48

5

17

2

1

6 2

1

3

Router

Sc
he

du
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

STC Scheduling Example

48

5

17

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
3 2 8 7 6

STALL CYCLES Avg

RR 8 6 11 8.3

Age

STC

Time

STC Scheduling Example

48

5

17

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC

Time

Time

STC Scheduling Example

48

5

17

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 81 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC 1 3 11 5.0

Ranking order

Time

Time

Time

Application-Aware Prioritization in NoCs
n Das et al., “Application-Aware Prioritization Mechanisms for

On-Chip Networks,” MICRO 2009.
q https://users.ece.cmu.edu/~omutlu/pub/app-aware-

noc_micro09.pdf

78

Slack-Based Packet Scheduling
n Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 106-116, Saint-Malo, France, June
2010. Slides (pptx)

79

Low-Cost QoS in On-Chip Networks (I)
n Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY, December
2009. Slides (pdf)

80

Low-Cost QoS in On-Chip Networks (II)
n Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

81

Computer Architecture
Lecture 22: Interconnects II

Prof. Onur Mutlu
ETH Zürich
Fall 2017

20 December 2017

We did not cover the following slides in lecture.
These are for benefit.

MinBD:
Minimally-Buffered Deflection Routing

for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient
Interconnect"

Proceedings of the 6th ACM/IEEE International Symposium on Networks on
Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)

Bufferless Deflection Routing
n Key idea: Packets are never buffered in the network. When two

packets contend for the same link, one is deflected.

n Removing buffers yields significant benefits
q Reduces power (CHIPPER: reduces NoC power by 55%)
q Reduces die area (CHIPPER: reduces NoC area by 36%)

n But, at high network utilization (load), bufferless deflection
routing causes unnecessary link & router traversals
q Reduces network throughput and application performance
q Increases dynamic power

n Goal: Improve high-load performance of low-cost deflection
networks by reducing the deflection rate.

85

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

86

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

87

Issues in Bufferless Deflection Routing
n Correctness: Deliver all packets without livelock

q CHIPPER1: Golden Packet
q Globally prioritize one packet until delivered

n Correctness: Reassemble packets without deadlock

q CHIPPER1: Retransmit-Once

n Performance: Avoid performance degradation at high load

q MinBD

881 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA
2011.

Key Performance Issues
1. Link contention: no buffers to hold traffic à

any link contention causes a deflection
à use side buffers

2. Ejection bottleneck: only one flit can eject per router
per cycle à simultaneous arrival causes deflection

à eject up to 2 flits/cycle

3. Deflection arbitration: practical (fast) deflection
arbiters deflect unnecessarily

à new priority scheme (silver flit)

89

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

90

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

91

Addressing Link Contention
n Problem 1: Any link contention causes a deflection

n Buffering a flit can avoid deflection on contention
n But, input buffers are expensive:

q All flits are buffered on every hop à high dynamic energy
q Large buffers necessary à high static energy and large area

n Key Idea 1: add a small buffer to a bufferless deflection
router to buffer only flits that would have been deflected

92

How to Buffer Deflected Flits

93

Baseline RouterEject Inject

1 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA
2011.

Destination

Destination

DEFLECTED

How to Buffer Deflected Flits

94

Side-Buffered RouterEject Inject

Step 1. Remove up to
one deflected flit per
cycle from the outputs.

Step 2. Buffer this flit in a small
FIFO “side buffer.”

Step 3. Re-inject this flit into
pipeline when a slot is available.

Side Buffer

Destination

Destination

DEFLECTED

Why Could A Side Buffer Work Well?
n Buffer some flits and deflect other flits at per-flit level

q Relative to bufferless routers, deflection rate reduces
(need not deflect all contending flits)
à 4-flit buffer reduces deflection rate by 39%

q Relative to buffered routers, buffer is more efficiently
used (need not buffer all flits)
à similar performance with 25% of buffer space

95

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

96

Addressing the Ejection Bottleneck
n Problem 2: Flits deflect unnecessarily because only one flit

can eject per router per cycle

n In 20% of all ejections, ≥ 2 flits could have ejected
à all but one flit must deflect and try again
à these deflected flits cause additional contention

n Ejection width of 2 flits/cycle reduces deflection rate 21%

n Key idea 2: Reduce deflections due to a single-flit ejection
port by allowing two flits to eject per cycle

97

Addressing the Ejection Bottleneck

98

Single-Width EjectionEject Inject

DEFLECTED

Addressing the Ejection Bottleneck

99

Dual-Width EjectionEject Inject

For fair comparison, baseline routers have
dual-width ejection for perf. (not power/area)

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

100

Improving Deflection Arbitration
n Problem 3: Deflections occur unnecessarily because fast

arbiters must use simple priority schemes

n Age-based priorities (several past works): full priority order
gives fewer deflections, but requires slow arbiters

n State-of-the-art deflection arbitration (Golden Packet &
two-stage permutation network)
q Prioritize one packet globally (ensure forward progress)
q Arbitrate other flits randomly (fast critical path)

n Random common case leads to uncoordinated arbitration

101

Fast Deflection Routing Implementation
n Let’s route in a two-input router first:

n Step 1: pick a “winning” flit (Golden Packet, else random)
n Step 2: steer the winning flit to its desired output

and deflect other flit

è Highest-priority flit always routes to destination

102

Fast Deflection Routing with Four Inputs

103

n Each block makes decisions independently
n Deflection is a distributed decision

N

E

S

W

N

S

E

W

Unnecessary Deflections in Fast Arbiters
n How does lack of coordination cause unnecessary deflections?

1. No flit is golden (pseudorandom arbitration)
2. Red flit wins at first stage
3. Green flit loses at first stage (must be deflected now)
4. Red flit loses at second stage; Red and Green are deflected

104

Destination

Destination

all flits have
equal priority

unnecessary
deflection!

Improving Deflection Arbitration
n Key idea 3: Add a priority level and prioritize one flit

to ensure at least one flit is not deflected in each cycle

n Highest priority: one Golden Packet in network
q Chosen in static round-robin schedule
q Ensures correctness

n Next-highest priority: one silver flit per router per cycle
q Chosen pseudo-randomly & local to one router
q Enhances performance

105

Adding A Silver Flit
n Randomly picking a silver flit ensures one flit is not deflected

1. No flit is golden but Red flit is silver
2. Red flit wins at first stage (silver)
3. Green flit is deflected at first stage
4. Red flit wins at second stage (silver); not deflected

106

Destination

Destination

At least one flit
is not deflected

red flit has
higher priority
all flits have
equal priority

Minimally-Buffered Deflection Router

107

Eject Inject

Problem 1: Link Contention
Solution 1: Side Buffer

Problem 2: Ejection Bottleneck
Solution 2: Dual-Width Ejection

Problem 3: Unnecessary Deflections
Solution 3: Two-level priority scheme

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

108

Outline: This Talk
n Motivation

n Background: Bufferless Deflection Routing

n MinBD: Reducing Deflections
q Addressing Link Contention
q Addressing the Ejection Bottleneck
q Improving Deflection Arbitration

n Results
n Conclusions

109

Methodology: Simulated System
n Chip Multiprocessor Simulation

q 64-core and 16-core models
q Closed-loop core/cache/NoC cycle-level model
q Directory cache coherence protocol (SGI Origin-based)
q 64KB L1, perfect L2 (stresses interconnect), XOR-mapping
q Performance metric: Weighted Speedup

(similar conclusions from network-level latency)
q Workloads: multiprogrammed SPEC CPU2006

n 75 randomly-chosen workloads
n Binned into network-load categories by average injection rate

110

Methodology: Routers and Network
n Input-buffered virtual-channel router

q 8 VCs, 8 flits/VC [Buffered(8,8)]: large buffered router
q 4 VCs, 4 flits/VC [Buffered(4,4)]: typical buffered router
q 4 VCs, 1 flit/VC [Buffered(4,1)]: smallest deadlock-free router
q All power-of-2 buffer sizes up to (8, 8) for perf/power sweep

n Bufferless deflection router: CHIPPER1

n Bufferless-buffered hybrid router: AFC2

q Has input buffers and deflection routing logic
q Performs coarse-grained (multi-cycle) mode switching

n Common parameters
q 2-cycle router latency, 1-cycle link latency
q 2D-mesh topology (16-node: 4x4; 64-node: 8x8)
q Dual ejection assumed for baseline routers (for perf. only)

111
1Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA 2011.
2Jafri et al., “Adaptive Flow Control for Robust Performance and Energy”, MICRO 2010.

Methodology: Power, Die Area, Crit. Path
n Hardware modeling

q Verilog models for CHIPPER, MinBD, buffered control logic
n Synthesized with commercial 65nm library

q ORION 2.0 for datapath: crossbar, muxes, buffers and links

n Power
q Static and dynamic power from hardware models
q Based on event counts in cycle-accurate simulations
q Broken down into buffer, link, other

112

Deflection

Reduced Deflections & Improved Perf.

113

12

12.5

13

13.5

14

14.5

15

W
ei
gh
te
d	
Sp
ee
du

p

Baseline
B	(Side-Buf)
D	(Dual-Eject)
S	(Silver	Flits)
B+D
B+S+D	(MinBD)

(Side	Buffer)

Rate
28% 17% 22% 27% 11% 10%

1. All mechanisms individually reduce deflections

2. Side buffer alone is not sufficient for performance
(ejection bottleneck remains)

3. Overall, 5.8% over baseline, 2.7% over dual-eject
by reducing deflections 64% / 54%

5.8%
2.7%

Overall Performance Results

114

8

10

12

14

16

W
ei
gh
te
d	
Sp
ee
du

p

Injection	Rate

Buffered	(8,8)

Buffered	(4,4)

Buffered	(4,1)

CHIPPER

AFC	(4,4)
MinBD-4

• Improves 2.7% over CHIPPER (8.1% at high load)• Similar perf. to Buffered (4,1) @ 25% of buffering space

2.7%

8.1%

2.7%

8.3%

• Within 2.7% of Buffered (4,4) (8.3% at high load)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bu
ffe

re
d	

(8
,8
)

Bu
ffe

re
d	

(4
,4
)

Bu
ffe

re
d	

(4
,1
)

CH
IP
PE
R

AF
C(
4,
4)

M
in
BD

-4

N
et
w
or
k	
Po

w
er
	(W

)

dynamic static

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bu
ffe

re
d	

(8
,8
)

Bu
ffe

re
d	

(4
,4
)

Bu
ffe

re
d	

(4
,1
)

CH
IP
PE
R

AF
C(
4,
4)

M
in
BD

-4

N
et
w
or
k	
Po

w
er
	(W

)

non-buffer buffer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bu
ffe

re
d	

(8
,8
)

Bu
ffe

re
d	

(4
,4
)

Bu
ffe

re
d	

(4
,1
)

CH
IP
PE
R

AF
C(
4,
4)

M
in
BD

-4

N
et
w
or
k	
Po

w
er
	(W

)
dynamic	other dynamic	link dynamic	buffer
static	other static	link static	buffer

Overall Power Results

115
• Buffers are significant fraction of power in baseline routers
• Buffer power is much smaller in MinBD (4-flit buffer)
• Dynamic power increases with deflection routing
• Dynamic power reduces in MinBD relative to CHIPPER

Performance-Power Spectrum

116

Buf (1,1)

13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0

0.5 1.0 1.5 2.0 2.5 3.0

W
ei
gh
te
d	
Sp
ee
du

p

Network	Power	(W)
• Most energy-efficient (perf/watt) of any

evaluated network router design

Buf (4,4)

Buf (4,1)

More Perf/Power Less Perf/Power

Buf (8,8)

AFC

CHIPPER

MinBD

0

0.5

1

1.5

2

2.5
Bu

ffe
re
d	
(8
,8
)

Bu
ffe

re
d	
(4
,4
)

Bu
ffe

re
d	
(4
,1
)

CH
IP
PE
R

M
in
BD

Normalized	Die	Area

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bu
ffe

re
d	
(8
,8
)

Bu
ffe

re
d	
(4
,4
)

Bu
ffe

re
d	
(4
,1
)

CH
IP
PE
R

M
in
BD

Normalized	Critical	Path

Die Area and Critical Path

117

• Only 3% area increase over CHIPPER (4-flit buffer)
• Reduces area by 36% from Buffered (4,4)• Increases by 7% over CHIPPER, 8% over Buffered (4,4)

+3%

-36%
+7%+8%

Conclusions
n Bufferless deflection routing offers reduced power & area
n But, high deflection rate hurts performance at high load

n MinBD (Minimally-Buffered Deflection Router) introduces:
q Side buffer to hold only flits that would have been deflected
q Dual-width ejection to address ejection bottleneck
q Two-level prioritization to avoid unnecessary deflections

n MinBD yields reduced power (31%) & reduced area (36%)
relative to buffered routers

n MinBD yields improved performance (8.1% at high load)
relative to bufferless routers à closes half of perf. gap

n MinBD has the best energy efficiency of all evaluated designs
with competitive performance

118

More Readings
n Studies of congestion and congestion control in on-chip vs.

internet-like networks

n George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and
Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference (SIGCOMM),
Helsinki, Finland, August 2012. Slides (pptx)

n George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu,
"Next Generation On-Chip Networks: What Kind of Congestion
Control Do We Need?"
Proceedings of the 9th ACM Workshop on Hot Topics in Networks
(HOTNETS), Monterey, CA, October 2010. Slides (ppt) (key)

119

HAT:	Heterogeneous	Adaptive	
Throttling	for	On-Chip	Networks

Kevin	Chang,	Rachata Ausavarungnirun,	Chris	Fallin,	and	Onur	Mutlu,
"HAT:	Heterogeneous	Adaptive	Throttling	for	On-Chip	Networks"

Proceedings	of	the	24th	International	Symposium	on	Computer	Architecture	and	
High	Performance	Computing (SBAC-PAD),	New	York,	NY,	October	2012.	Slides	

(pptx) (pdf)

Executive	Summary
• Problem:	Packets	contend	in	on-chip	networks	(NoCs),	

causing	congestion,	thus	reducing	performance
• Observations:	

1)	Some	applications	are	more	sensitive	to	network	
latency	than	others
2)	Applications	must	be	throttled	differently	to	achieve	
peak	performance

• Key	Idea:	Heterogeneous	Adaptive	Throttling	(HAT)
1)	Application-aware	source	throttling	
2)	Network-load-aware	throttling	rate	adjustment

• Result: Improves	performance	and	energy	efficiency	over	
state-of-the-art	source	throttling	policies

121

Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results

122

On-Chip	Networks

123

R

PE
R

PE
R

PE

R

PE
R

PE
R

PE

R

PE
R

PE
R

PE

R Router

Processing	Element
(Cores,	L2	Banks,	Memory	Controllers,	etc)PE

• Connect	cores,	caches,	memory	
controllers,	etc

• Packet	switched
• 2D	mesh:	Most	commonly	used	topology
• Primarily	serve	cache	misses	and

memory	requests
• Router	designs

– Buffered:	Input	buffers to	hold	
contending	packets

– Bufferless:	Misroute	(deflect)
contending	packets

Network	Congestion	Reduces	Performance

124

Network	congestion:
êNetwork throughput	
êApplication performanceR

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

P P P

P

P

R Router
Processing	Element
(Cores,	L2	Banks,	Memory	Controllers,	etc)PE

P Packet

Limited	shared	resources	
(buffers	and	links)
• Design	constraints:	power,
chip	area,	and	timing

Goal
• Improve	performance	in	a	highly	congested	NoC

• Reducing	network	load	decreases	network	
congestion,	hence	improves	performance

• Approach: source	throttling	to	reduce	network	load
– Temporarily	delay	new	traffic	injection

• Naïve	mechanism:	throttle	every	single	node

125

0.0
0.2
0.4
0.6
0.8
1.0
1.2

mcf gromacs system

N
or
m
al
ize

d	
Pe

rf
or
m
an

ce

Throttle	gromacs
Throttle	mcf

Key	Observation	#1

126

gromacs:	network-non-intensive

+	9%- 2%

Different	applications	respond	differently	to	changes	in	
network	latency

mcf:	network-intensive	

Throttling	mcf reduces	congestion
gromacs is	more	sensitive	to	network	latency
Throttling	network-intensive applications	benefits	
system	performance	more

6
7
8
9

10
11
12
13
14
15
16

80 82 84 86 88 90 92 94 96 98 100

Pe
rf
or
m
an

ce
	

(W
ei
gh
te
d	
Sp

ee
du

p)

Throttling	Rate	(%)

Workload	1
Workload	2
Workload	3

Key	Observation	#2

127

Different	workloads	achieve	peak	performance	at	
different	throttling	rates

Dynamically	adjusting	throttling	rate	yields	
better	performance	than	a	single	static	rate

90% 92%

94%

Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results

128

Heterogeneous	Adaptive	Throttling	(HAT)
1. Application-aware	throttling:

Throttle	network-intensive applications	that	
interfere	with	network-non-intensive
applications

2. Network-load-aware	throttling	rate	
adjustment:
Dynamically adjusts	throttling	rate	to	adapt	to	
different	workloads

129

Heterogeneous	Adaptive	Throttling	(HAT)
1. Application-aware	throttling:

Throttle	network-intensive applications	that	
interfere	with	network-non-intensive
applications

2. Network-load-aware	throttling	rate	
adjustment:
Dynamically adjusts	throttling	rate	to	adapt	to	
different	workloads

130

Application-Aware	Throttling
1. Measure	Network	Intensity

Use	L1	MPKI	(misses	per	thousand	instructions)	to	estimate	
network	intensity

2. Classify	Application
Sort applications	by	L1	MPKI

3. Throttle	network-intensive	applications

131

Ap
p

Σ MPKI <	NonIntensiveCap

Network-non-intensive Network-intensive

Higher	L1	MPKI	

Heterogeneous	Adaptive	Throttling	(HAT)
1. Application-aware	throttling:

Throttle	network-intensive applications	that	
interfere	with	network-non-intensive
applications

2. Network-load-aware	throttling	rate	
adjustment:
Dynamically adjusts	throttling	rate	to	adapt	to	
different	workloads

132

Dynamic	Throttling	Rate	Adjustment

• For	a	given	network	design,	peak	performance	
tends	to	occur	at	a	fixed	network	load	point

• Dynamically adjust	throttling	rate	to	achieve	that	
network	load	point

133

Dynamic	Throttling	Rate	Adjustment
• Goal:	maintain	network	load	at	a	peak	
performance	point

1. Measure	network	load
2. Compare	and	adjust	throttling	rate

If	network	load	> peak	point:	
Increase	throttling	rate

elif network	load	≤ peak	point:	
Decrease	throttling	rate

134

Epoch-Based	Operation
• Continuous	HAT operation	is	expensive
• Solution:	performs	HAT at	epoch	granularity

135

Time

Current	Epoch
(100K	cycles)

Next	Epoch
(100K	cycles)

During	epoch:
1) Measure	L1	MPKI

of	each	application
2) Measure	network	

load

Beginning	of	epoch:
1) Classify	applications
2) Adjust	throttling	rate
3) Reset	measurements

Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results

136

Prior	Source	Throttling	Works
• Source	throttling	for	bufferless NoCs

[Nychis+	Hotnets’10,	SIGCOMM’12]

– Application-aware	throttling	based	on	starvation	rate
– Does	not	adaptively	adjust	throttling	rate
– “Heterogeneous	Throttling”

• Source	throttling	off-chip	buffered	networks	
[Thottethodi+	HPCA’01]

– Dynamically	trigger	throttling	based	on	fraction	of	
buffer	occupancy

– Not	application-aware:	fully	block	packet	injections	of	
every	node

– “Self-tuned	Throttling”
137

Outline
• Background	and	Motivation
• Mechanism
• Prior	Works
• Results

138

Methodology
• Chip	Multiprocessor	Simulator

– 64-nodemulti-core	systems	with	a	2D-mesh	topology
– Closed-loop	core/cache/NoC cycle-level model
– 64KB	L1,	perfect	L2	(always	hits	to	stress	NoC)

• Router	Designs
– Virtual-channel	buffered	router:	4	VCs,	4	flits/VC	[Dally+	IEEE	TPDS’92]
– Bufferless deflection	routers:	BLESS	[Moscibroda+	ISCA’09]

• Workloads
– 60	multi-core	workloads:	SPEC	CPU2006	benchmarks
– Categorized	based	on	their	network	intensity

• Low/Medium/High	intensity	categories

• Metrics:	Weighted	Speedup	(perf.),	perf./Watt	(energy	eff.),
and	maximum	slowdown	(fairness)

139

0
5

10
15
20
25
30
35
40
45
50

HL HML HM H amean

W
ei
gh
te
d	
Sp

ee
du

p

Workload	Categories

BLESS
Hetero.
HAT

Performance:	Bufferless NoC (BLESS)

140

HAT	provides	better	performance	improvement	than	
past	work
Highest	improvement	on	heterogeneous workload	mixes
- L	andM	are	more	sensitive to	network	latency

7.4%

0
5

10
15
20
25
30
35
40
45
50

HL HML HM H amean

W
ei
gh
te
d	
Sp

ee
du

p

Workload	Categories

Buffered
Self-Tuned
Hetero.
HAT

Performance:	Buffered	NoC

141

Congestion	is	much	lower	in	Buffered	NoC,	but	HAT still	
provides	performance	benefit

+	3.5%

Application	Fairness

142

HAT	provides	better	fairness	than	prior	works

0.0

0.2

0.4

0.6

0.8

1.0

1.2

amean

N
or
m
al
ize

d	
M
ax
im

um
	S
lo
w
dw

on
BLESS Hetero. HAT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

amean

Buffered Self-Tuned
Hetero. HAT

- 15%
- 5%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BLESS Buffered

N
or
m
al
ize

d	
Pe

rf.
	p
er
	W

at

Baseline

HAT

Network	Energy	Efficiency

143

8.5% 5%

HAT	increases	energy	efficiency	by	
reducing	congestion

Other	Results	in	Paper

• Performance	on	CHIPPER

• Performance	on	multithreaded workloads

• Parameters	sensitivity	sweep	of	HAT

144

Conclusion
• Problem:	Packets	contend	in	on-chip	networks	(NoCs),	

causing	congestion,	thus	reducing	performance
• Observations:	

1)	Some	applications	are	more	sensitive	to	network	
latency	than	others
2)	Applications	must	be	throttled	differently	to	achieve	
peak	performance

• Key	Idea:	Heterogeneous	Adaptive	Throttling	(HAT)
1)	Application-aware	source	throttling	
2)	Network-load-aware	throttling	rate	adjustment

• Result: Improves	performance	and	energy	efficiency	over	
state-of-the-art	source	throttling	policies

145

Application-Aware Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Application-Aware Prioritization Mechanisms for On-Chip Networks"

Proceedings of the 42nd International Symposium on Microarchitecture
(MICRO), pages 280-291, New York, NY, December 2009. Slides (pptx)

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

147

Network-on-Chip

L2$L2$L2$L2$
Bank

mem
cont
Memory

Controller

P

AcceleratorL2$
Bank

L2$
Bank

P P P P P P P

On-chip Network

App1 App2 App N+1App N

On-chip Network is a critical resource
shared by multiple applications

© Onur Mutlu, 2009, 2010

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1
VC 2

R

PE
R

PE
R

PE
R

PE

R

PE
R

PE
R

PE
R

PE

R

PE
R

PE
R

PE
R

PE

R

PE
R

PE
R

PE
R

PE

Crossbar (5 x 5)

To East

To PE

To West
To North
To South

Input Port with Buffers

Control Logic

Crossba
r

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (S

A)

The Problem: Packet Scheduling

148

© Onur Mutlu, 2009, 2010

VC 0 Routing Unit
(RC)

VC
Allocator(VA)

SwitchAllocator (S
A)

VC 1
VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

149

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

150

Conceptual

View

From East

From West

From North

From South

From PE

VC 0
VC 1
VC 2

App1 App2 App3 App4
App5 App6 App7 App8

VC 0 Routing Unit
(RC)

VC
Allocator(VA)

Switch

VC 1
VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

151

Sc
he

du
le

r

Conceptual

View

VC 0 Routing Unit
(RC)

VC
Allocator(VA)

Switch Allocator (SA)

VC 1
VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0
VC 1
VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

n Existing scheduling policies
q Round Robin
q Age

n Problem 1: Local to a router
q Lead to contradictory decision making between routers:

packets from one application may be prioritized at one router,
to be delayed at next.

n Problem 2: Application oblivious
q Treat all applications packets equally
q But applications are heterogeneous

n Solution: Application-aware global scheduling policies.

152

© Onur Mutlu, 2009, 2010

Motivation: Stall-Time Criticality

n Applications are not homogenous

n Applications have different criticality with respect to the
network
q Some applications are network latency sensitive
q Some applications are network latency tolerant

n Application’s Stall Time Criticality (STC) can be measured
by its average network stall time per packet (i.e.
NST/packet)
q Network Stall Time (NST) is number of cycles the processor

stalls waiting for network transactions to complete

153

© Onur Mutlu, 2009, 2010

Motivation: Stall-Time Criticality

n Why do applications have different network stall time
criticality (STC)?

q Memory Level Parallelism (MLP)
n Lower MLP leads to higher criticality

q Shortest Job First Principle (SJF)
n Lower network load leads to higher criticality

154

© Onur Mutlu, 2009, 2010

STC Principle 1: MLP

n Observation 1: Packet Latency != Network Stall Time

155

STALLSTALL
STALL of Red Packet = 0

LATENCY
LATENCY

LATENCY

Application with high MLP

Compute

© Onur Mutlu, 2009, 2010

STC Principle 1: MLP

n Observation 1: Packet Latency != Network Stall Time
n Observation 2: A low MLP application’s packets have

higher criticality than a high MLP application’s

156

STALLSTALL
STALL of Red Packet = 0

LATENCY
LATENCY

LATENCY

Application with high MLP

Compute

STALL

LATENCY

STALL

LATENCY

STALL

LATENCY

Application with low MLP

© Onur Mutlu, 2009, 2010

STC Principle 2: Shortest-Job-First

157

4X network slow down

1.2X network slow down

1.3X network slow down

1.6X network slow down

Overall system throughput (weighted speedup) increases by 34%

Running ALONE

Baseline (RR) Scheduling

SJF Scheduling

Light Application Heavy Application

© Onur Mutlu, 2009, 2010

Solution: Application-Aware Policies

n Idea
q Identify critical applications (i.e. network

sensitive applications) and prioritize their packets
in each router.

n Key components of scheduling policy:
q Application Ranking
q Packet Batching

n Propose low-hardware complexity solution

158

© Onur Mutlu, 2009, 2010

Component 1: Ranking

n Ranking distinguishes applications based on Stall Time
Criticality (STC)

n Periodically rank applications based on STC

n Explored many heuristics for estimating STC
q Heuristic based on outermost private cache Misses Per

Instruction (L1-MPI) is the most effective
q Low L1-MPI => high STC => higher rank

n Why Misses Per Instruction (L1-MPI)?
q Easy to Compute (low complexity)
q Stable Metric (unaffected by interference in network)

159

© Onur Mutlu, 2009, 2010

Component 1 : How to Rank?
n Execution time is divided into fixed “ranking intervals”

q Ranking interval is 350,000 cycles
n At the end of an interval, each core calculates their L1-MPI

and sends it to the Central Decision Logic (CDL)
q CDL is located in the central node of mesh

n CDL forms a rank order and sends back its rank to each core
q Two control packets per core every ranking interval

n Ranking order is a “partial order”

n Rank formation is not on the critical path
q Ranking interval is significantly longer than rank computation time
q Cores use older rank values until new ranking is available

160

© Onur Mutlu, 2009, 2010

Component 2: Batching
n Problem: Starvation

q Prioritizing a higher ranked application can lead to starvation
of lower ranked application

n Solution: Packet Batching
q Network packets are grouped into finite sized batches
q Packets of older batches are prioritized over younger

batches

n Time-Based Batching
q New batches are formed in a periodic, synchronous manner

across all nodes in the network, every T cycles

161

© Onur Mutlu, 2009, 2010

Putting it all together: STC Scheduling
Policy
n Before injecting a packet into the network, it is tagged with

q Batch ID (3 bits)
q Rank ID (3 bits)

n Three tier priority structure at routers
q Oldest batch first (prevent starvation)
q Highest rank first (maximize performance)
q Local Round-Robin (final tie breaker)

n Simple hardware support: priority arbiters
n Global coordinated scheduling

q Ranking order and batching order are same across all routers

162

© Onur Mutlu, 2009, 2010

STC Scheduling Example

163

48

5

17

2

1

6 2

1

3

Router

Sc
he

du
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

© Onur Mutlu, 2009, 2010

STC Scheduling Example

164

48

5

17

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
3 2 8 7 6

STALL CYCLES Avg
RR 8 6 11 8.3
Age
STC

Time

© Onur Mutlu, 2009, 2010

STC Scheduling Example

165

48

5

17

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
5 4 3 1 2 2 3 2 8 7 6

Age
3 3 5 4 6 7 8

STALL CYCLES Avg
RR 8 6 11 8.3
Age 4 6 11 7.0
STC

Time

Time

© Onur Mutlu, 2009, 2010

STC Scheduling Example

166

48

5

17

3

2

6 2

2

3

Router

Sc
he

du
le

r

Round Robin
5 4 3 1 2 2 3 2 8 7 6

Age
2 3 3 5 4 6 7 81 2 2

STC
3 5 4 6 7 8

STALL CYCLES Avg
RR 8 6 11 8.3
Age 4 6 11 7.0
STC 1 3 11 5.0

Time

Time

Time

Rank order

© Onur Mutlu, 2009, 2010

STC Evaluation Methodology
n 64-core system

q x86 processor model based on Intel Pentium M
q 2 GHz processor, 128-entry instruction window
q 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers
q 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

n Detailed Network-on-Chip model
q 2-stage routers (with speculation and look ahead routing)
q Wormhole switching (8 flit data packets)
q Virtual channel flow control (6 VCs, 5 flit buffer depth)
q 8x8 Mesh (128 bit bi-directional channels)

n Benchmarks
q Multiprogrammed scientific, server, desktop workloads (35 applications)
q 96 workload combinations

167

© Onur Mutlu, 2009, 2010

Comparison to Previous Policies
n Round Robin & Age (Oldest-First)

q Local and application oblivious
q Age is biased towards heavy applications

n heavy applications flood the network
n higher likelihood of an older packet being from heavy application

n Globally Synchronized Frames (GSF) [Lee et al., ISCA 2008]
q Provides bandwidth fairness at the expense of system

performance
q Penalizes heavy and bursty applications

n Each application gets equal and fixed quota of flits (credits) in each batch.
n Heavy application quickly run out of credits after injecting into all active

batches & stalls until oldest batch completes and frees up fresh credits.
n Underutilization of network resources

168

© Onur Mutlu, 2009, 2010

STC System Performance and Fairness

n 9.1% improvement in weighted speedup over the best
existing policy (averaged across 96 workloads)

169

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 S
ys

te
m

 S
pe

ed
up

LocalRR LocalAge
GSF STC

0

2

4

6

8

10

N
et

w
or

k
U

nf
ai

rn
es

s

LocalRR LocalAge
GSF STC

© Onur Mutlu, 2009, 2010

Enforcing Operating System Priorities
n Existing policies cannot enforce operating system (OS)

assigned priorities in Network-on-Chip
n Proposed framework can enforce OS assigned priorities

q Weight of applications => Ranking of applications
q Configurable batching interval based on application weight

170

0
2
4
6
8

10
12
14
16
18
20

LocalRR LocalAge GSF STC

N
et

w
or

k
Sl

ow
do

w
n

xalan-1

xalan-2

xalan-3

xalan-4

xalan-5

xalan-6

xalan-7

xalan-8
0
2
4
6
8

10
12
14
16
18
20
22

LocalRR LocalAge GSF-1-2-2-8 STC-1-2-2-8

N
et

w
or

k
Sl

ow
do

w
n

xalan-weight-1 leslie-weight-2
lbm-weight-2 tpcw-weight-8

W. Speedup 0.49 0.49 0.46 0.52 W. Speedup 0.46 0.44 0.27 0.43

© Onur Mutlu, 2009, 2010

Application Aware Packet Scheduling: Summary
n Packet scheduling policies critically impact performance and

fairness of NoCs
n Existing packet scheduling policies are local and application

oblivious

n STC is a new, global, application-aware approach to
packet scheduling in NoCs
q Ranking: differentiates applications based on their criticality
q Batching: avoids starvation due to rank-based prioritization

n Proposed framework
q provides higher system performance and fairness than existing

policies
q can enforce OS assigned priorities in network-on-chip

171

Slack-Driven Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"

Proceedings of the 37th International Symposium on Computer Architecture
(ISCA), pages 106-116, Saint-Malo, France, June 2010. Slides (pptx)

Packet Scheduling in NoC
§ Existing scheduling policies

§ Round robin
§ Age

§ Problem
§ Treat all packets equally
§ Application-oblivious

§ Packets have different criticality
§ Packet is critical if latency of a packet affects application’s

performance
§ Different criticality due to memory level parallelism (MLP)

All packets are not the same…!!!

Latency ()

MLP Principle

StallCompute

Latency ()

Latency ()

Stall () = 0

Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality() > Criticality() > Criticality()

Outline

§ Introduction
§ Packet Scheduling
§ Memory Level Parallelism

§ Aérgia
§ Concept of Slack
§ Estimating Slack

§ Evaluation
§ Conclusion

What is Aérgia?

§ Aérgia is the spirit of laziness in Greek mythology
§ Some packets can afford to slack!

Outline

§ Introduction
§ Packet Scheduling
§ Memory Level Parallelism

§ Aérgia
§ Concept of Slack
§ Estimating Slack

§ Evaluation
§ Conclusion

Slack of Packets

§ What is slack of a packet?
§ Slack of a packet is number of cycles it can be delayed in a router

without (significantly) reducing application’s performance
§ Local network slack

§ Source of slack: Memory-Level Parallelism (MLP)
§ Latency of an application’s packet hidden from application due to

overlap with latency of pending cache miss requests

§ Prioritize packets with lower slack

Concept of Slack
Instruction
Window

Stall

Network-on-Chip

Load Miss Causes

returns earlier than necessary

Compute

Slack () = Latency () – Latency () = 26 – 6 = 20 hops

Execution Time

Packet() can be delayed for available slack cycles
without reducing performance!

Causes Load Miss

Latency ()

Latency ()

SlackSlack

Prioritizing using Slack

Core A

Core B

Packet Latency Slack

13 hops 0 hops

3 hops 10 hops

10 hops 0 hops

4 hops 6 hops

Causes

CausesLoad Miss

Load Miss

Prioritize

Load Miss

Load Miss Causes

Causes

Interference at 3 hops

Slack() > Slack ()

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f a
ll

Pa
ck

et
s

(%
)

Slack in cycles

Gems

50% of packets have 350+ slack cycles

10% of packets have <50 slack cycles

Non-critical

critical

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f a
ll

Pa
ck

et
s

(%
)

Slack in cycles

Gems

art

68% of packets have zero slack cycles

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f a
ll

Pa
ck

et
s

(%
)

Slack in cycles

Gems
omnet
tpcw
mcf
bzip2
sjbb
sap
sphinx
deal
barnes
astar
calculix
art
libquantum
sjeng
h264ref

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f a
ll

Pa
ck

et
s

(%
)

Slack in cycles

Gems
omnet
tpcw
mcf
bzip2
sjbb
sap
sphinx
deal
barnes
astar
calculix
art
libquantum
sjeng
h264ref

Slack varies between packets of different applications

Slack varies between packets of a single application

Outline

§ Introduction
§ Packet Scheduling
§ Memory Level Parallelism

§ Aérgia
§ Concept of Slack
§ Estimating Slack

§ Evaluation
§ Conclusion

Estimating Slack Priority
Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

Predecessors(P) are the packets of outstanding cache miss
requests when P is issued

§ Packet latencies not known when issued

§ Predicting latency of any packet Q
§ Higher latency if Q corresponds to an L2 miss
§ Higher latency if Q has to travel farther number of hops

§ Slack of P = Maximum Predecessor Latency – Latency of P

§ Slack(P) =

PredL2: Set if any predecessor packet is servicing L2 miss

MyL2: Set if P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2
(2 bits)

MyL2
(1 bit)

HopEstimate
(2 bits)

Estimating Slack Priority
§ How to predict L2 hit or miss at core?

§ Global Branch Predictor based L2 Miss Predictor
§ Use Pattern History Table and 2-bit saturating counters

§ Threshold based L2 Miss Predictor
§ If #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.

§ Number of miss predecessors?
§ List of outstanding L2 Misses

§ Hops estimate?
§ Hops => ∆X + ∆ Y distance
§ Use predecessor list to calculate slack hop estimate

Starvation Avoidance
§ Problem: Starvation

§ Prioritizing packets can lead to starvation of lower priority
packets

§ Solution: Time-Based Packet Batching
§ New batches are formed at every T cycles

§ Packets of older batches are prioritized over younger batches

Putting it all together
§ Tag header of the packet with priority bits before injection

§ Priority(P)?
§ P’s batch (highest priority)
§ P’s Slack
§ Local Round-Robin (final tie breaker)

PredL2
(2 bits)

MyL2
(1 bit)

HopEstimate
(2 bits)

Batch
(3 bits)Priority (P) =

Outline

§ Introduction
§ Packet Scheduling
§ Memory Level Parallelism

§ Aérgia
§ Concept of Slack
§ Estimating Slack

§ Evaluation
§ Conclusion

Evaluation Methodology
§ 64-core system

§ x86 processor model based on Intel Pentium M
§ 2 GHz processor, 128-entry instruction window
§ 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers
§ 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

§ Detailed Network-on-Chip model
§ 2-stage routers (with speculation and look ahead routing)
§ Wormhole switching (8 flit data packets)
§ Virtual channel flow control (6 VCs, 5 flit buffer depth)
§ 8x8 Mesh (128 bit bi-directional channels)

§ Benchmarks
§ Multiprogrammed scientific, server, desktop workloads (35 applications)
§ 96 workload combinations

Qualitative Comparison
§ Round Robin & Age

§ Local and application oblivious
§ Age is biased towards heavy applications

§ Globally Synchronized Frames (GSF)
[Lee et al., ISCA 2008]

§ Provides bandwidth fairness at the expense of system performance
§ Penalizes heavy and bursty applications

§ Application-Aware Prioritization Policies (SJF)
[Das et al., MICRO 2009]

§ Shortest-Job-First Principle
§ Packet scheduling policies which prioritize network sensitive

applications which inject lower load

System Performance

§ SJF provides 8.9% improvement
in weighted speedup

§ Aérgia improves system
throughput by 10.3%

§ Aérgia+SJF improves system
throughput by 16.1%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 S
ys

te
m

 S
pe

ed
up

Age RR
GSF SJF
Aergia SJF+Aergia

Network Unfairness

§ SJF does not imbalance
network fairness

§ Aergia improves network
unfairness by 1.5X

§ SJF+Aergia improves
network unfairness by 1.3X

0.0

3.0

6.0

9.0

12.0

N
et

w
or

k
U

nf
ai

rn
es

s

Age RR
GSF SJF
Aergia SJF+Aergia

Conclusions & Future Directions
§ Packets have different criticality, yet existing packet

scheduling policies treat all packets equally
§ We propose a new approach to packet scheduling in NoCs

§ We define Slack as a key measure that characterizes the
relative importance of a packet.

§ We propose Aérgia a novel architecture to accelerate low
slack critical packets

§ Result
§ Improves system performance: 16.1%
§ Improves network fairness: 30.8%

Express-Cube Topologies

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects"

Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 163-174, Raleigh, NC, February 2009.

Slides (ppt)

UTCS 198HPCA '09

2-D Mesh

p Pros
n Low design & layout

complexity
n Simple, fast routers

p Cons
n Large diameter
n Energy & latency impact

UTCS 199HPCA '09

2-D Mesh

p Pros
n Multiple terminals

attached to a router node
n Fast nearest-neighbor

communication via the
crossbar

n Hop count reduction
proportional to
concentration degree

p Cons
n Benefits limited by

crossbar complexity

UTCS 200HPCA '09

Concentration (Balfour & Dally, ICS ‘06)

UTCS 201HPCA '09

Concentration

p Side-effects
n Fewer channels
n Greater channel width

UTCS 202HPCA ‘09

Replication

CMesh-X2

p Benefits
n Restores bisection

channel count
n Restores channel width
n Reduced crossbar

complexity

UTCS 203HPCA '09

Flattened Butterfly (Kim et al., Micro
‘07)

p Objectives:
n Improve connectivity
n Exploit the wire budget

UTCS 204HPCA '09

Flattened Butterfly (Kim et al., Micro
‘07)

UTCS 205HPCA '09

Flattened Butterfly (Kim et al., Micro
‘07)

UTCS 206HPCA '09

Flattened Butterfly (Kim et al., Micro
‘07)

UTCS 207HPCA '09

Flattened Butterfly (Kim et al., Micro
‘07)

p Pros
n Excellent connectivity
n Low diameter: 2 hops

p Cons
n High channel count:
k2/2 per row/column

n Low channel utilization
n Increased control

(arbitration) complexity

UTCS 208HPCA '09

Flattened Butterfly (Kim et al., Micro
‘07)

UTCS 209HPCA '09

Multidrop Express Channels (MECS)

p Objectives:
n Connectivity
n More scalable channel

count
n Better channel

utilization

UTCS 210HPCA '09

Multidrop Express Channels (MECS)

UTCS 211HPCA '09

Multidrop Express Channels (MECS)

UTCS 212HPCA '09

Multidrop Express Channels (MECS)

UTCS 213HPCA '09

Multidrop Express Channels (MECS)

UTCS 214HPCA ‘09

Multidrop Express Channels (MECS)

p Pros
n One-to-many topology
n Low diameter: 2 hops
n k channels row/column
n Asymmetric

p Cons
n Asymmetric
n Increased control

(arbitration) complexity

UTCS 215HPCA ‘09

Multidrop Express Channels (MECS)

Partitioning: a GEC Example

UTCS 216HPCA '09

MECS

MECS-X2

Flattened
Butterfly

Partitioned
MECS

Analytical Comparison

UTCS 217HPCA '09

CMesh FBfly MECS
Network Size 64 256 64 256 64 256
Radix (conctr’d) 4 8 4 8 4 8
Diameter 6 14 2 2 2 2
Channel count 2 2 8 32 4 8
Channel width 576 1152 144 72 288 288
Router inputs 4 4 6 14 6 14
Router outputs 4 4 6 14 4 4

Experimental Methodology

Topologies Mesh, CMesh, CMesh-X2, FBFly, MECS, MECS-X2
Network sizes 64 & 256 terminals
Routing DOR, adaptive
Messages 64 & 576 bits
Synthetic traffic Uniform random, bit complement, transpose, self-similar
PARSEC
benchmarks

Blackscholes, Bodytrack, Canneal, Ferret,
Fluidanimate, Freqmine, Vip, x264

Full-system config M5 simulator, Alpha ISA, 64 OOO cores
Energy evaluation Orion + CACTI 6

UTCS 218HPCA '09

UTCS 219HPCA '09

64 nodes: Uniform Random

0

10

20

30

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40

La
te
nc
y	(
cy
cl
es
)

injection	rate	(%)

mesh cmesh cmesh-x2 fbfly mecs mecs-x2

UTCS 220HPCA '09

256 nodes: Uniform Random

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25

La
te
nc
y	(
cy
cl
es
)

Injection	rate	(%)

mesh cmesh-x2 fbfly mecs mecs-x2

UTCS 221HPCA '09

Energy (100K pkts, Uniform Random)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Av
er
ag
e	p

ac
ke
t	e
ne

rg
y	(
nJ
)

Link	Energy Router	Energy

64	nodes 256	nodes

UTCS 222HPCA '09

64 Nodes: PARSEC

0
2
4
6
8
10
12
14
16
18
20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Router	Energy Link	Energy latency

Blackscholes Canneal Vip

To
ta
l	n
et
w
or
k	E

ne
rg
y	(
J)

Av
g	p

ac
ke
t	l
at
en

cy
	(c
yc
le
s)

x264

Summary
p MECS

n A new one-to-many topology
n Good fit for planar substrates
n Excellent connectivity
n Effective wire utilization

p Generalized Express Cubes
n Framework & taxonomy for NOC topologies
n Extension of the k-ary n-cube model
n Useful for understanding and exploring

on-chip interconnect options
n Future: expand & formalize

UTCS 223HPCA '09

Kilo-NoC: Topology-Aware QoS

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for

Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer

Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Motivation
n Extreme-scale chip-level integration

q Cores
q Cache banks
q Accelerators
q I/O logic
q Network-on-chip (NOC)

n 10-100 cores today
n 1000+ assets in the near future

225

Kilo-NOC requirements
n High efficiency

q Area
q Energy

n Good performance
n Strong service guarantees (QoS)

226

Topology-Aware QoS
n Problem: QoS support in each router is expensive (in terms

of buffering, arbitration, bookkeeping)
q E.g., Grot et al., “Preemptive Virtual Clock: A Flexible,

Efficient, and Cost-effective QOS Scheme for Networks-on-
Chip,” MICRO 2009.

n Goal: Provide QoS guarantees at low area and power cost

n Idea:
q Isolate shared resources in a region of the network, support

QoS within that area
q Design the topology so that applications can access the region

without interference

227

Baseline QOS-enabled CMP

Multiple VMs
sharing a die

228

Shared resources
(e.g., memory controllers)

VM-private resources
(cores, caches)

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM	#1

VM	#1

VM	#3

VM	#2

QOS-enabled routerQ

Conventional NOC QOS

Contention scenarios:

n Shared resources
q memory access

n Intra-VM traffic
q shared cache access

n Inter-VM traffic
q VM page sharing

229

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM	#1

VM	#1

VM	#3

VM	#2

Conventional NOC QOS

230

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM	#1

VM	#1

VM	#3

VM	#2

Contention scenarios:

n Shared resources
q memory access

n Intra-VM traffic
q shared cache access

n Inter-VM traffic
q VM page sharing

Network-wide guarantees without
network-wide QOS support

Kilo-NOC QOS
n Insight: leverage rich network connectivity

q Naturally reduce interference among flows
Ø Limit the extent of hardware QOS support

n Requires a low-diameter topology
q This work: Multidrop Express Channels (MECS)

231

Grot et al., HPCA
2009

n Dedicated, QOS-enabled
regions
q Rest of die: QOS-free

n Richly-connected
topology
q Traffic isolation

n Special routing rules
q Manage interference

232

Q

Q

Q

Q

VM	#1 VM	#2

VM	#1

VM	#3

Topology-Aware QOS

n Dedicated, QOS-enabled
regions
q Rest of die: QOS-free

n Richly-connected
topology
q Traffic isolation

n Special routing rules
q Manage interference

233

Q

Q

Q

Q

VM	#1 VM	#2

VM	#1

VM	#3

Topology-Aware QOS

n Dedicated, QOS-enabled
regions
q Rest of die: QOS-free

n Richly-connected
topology
q Traffic isolation

n Special routing rules
q Manage interference

234

Q

Q

Q

Q

VM	#1 VM	#2

VM	#1

VM	#3

Topology-Aware QOS

n Dedicated, QOS-enabled
regions
q Rest of die: QOS-free

n Richly-connected
topology
q Traffic isolation

n Special routing rules
q Manage interference

235

Q

Q

Q

Q

VM	#1 VM	#2

VM	#1

VM	#3

Topology-Aware QOS

n Topology-aware QOS
support
q Limit QOS complexity to

a fraction of the die

n Optimized flow control
q Reduce buffer

requirements in QOS-
free regions

236

Q

Q

Q

Q

VM	#1 VM	#2

VM	#1

VM	#3

Kilo-NOC view

Parameter Value

Technology 15 nm

Vdd 0.7 V

System 1024 tiles:
256 concentrated nodes (64 shared resources)

Networks:

MECS+PVC VC flow control, QOS support (PVC) at each node

MECS+TAQ VC flow control, QOS support only in shared regions

MECS+TAQ+EB EB flow control outside of SRs,
Separate Request and Reply networks

K-MECS Proposed organization: TAQ + hybrid flow control

237

238

239

Kilo-NOC: a heterogeneous NOC architecture
for kilo-node substrates

¡ Topology-aware QOS
§ Limits QOS support to a fraction of the die
§ Leverages low-diameter topologies
§ Improves NOC area- and energy-efficiency
§ Provides strong guarantees

240

