Computer Architecture
Lecture 6: Low-Latency DRAM and
Processing In Memory

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
5 October 2017

High-level Summary of Last Lecture

DRAM Operation Continued
Memory Controllers

Memory Latency
o Tiered-Latency DRAM

Agenda for Today

Memory Latency Continued
Memory Latency-Voltage-Reliability Relationship
Processing In Memory

Memory Latency:
Fundamental Tradeoffs

Review: Memory Latency lLags Behind

& Capacity #Bandwidth ®Latency 128X
“00
o
= 100
5
2 20X
)
>
9
_g- 10
2
< 1.3x
— —o—a—0—0—0—0—0—90
®

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
SAFARI

DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’ 12; Umuroglu+, FPL | 5]
Clapp+ (Intel), ISWC’ 5]

o 2 N
Seark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (), ISCA’15]
Awan+, BDCloud’ 5]

SAFARI

DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

SparK:

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’ 5]

SAFARI

What Causes
the Long DRAM Latency?

Why the Long Latency?

Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

Reason 2: “One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)

Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels

Same latency parameters for all application data

o 0o O O o O

SAFARI)

Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

§Iow cells

e
4
2

DRAM A DRAM B DRAM C

Low <—=—O—C 1 @O———>High

DRAM Latency

SAFARI 10

Why is Latency High?

* DRAM latency: Delay as specified in DRAM standards
— Doesn’t reflect true DRAM device latency

* Imperfect manufacturing process — latency variation
* High standard latency chosen to increase yield

DRAM A DRAM B DRAM C Standard

>G>

DRAM Latency

Manufacturing
Variation

Low

What Causes the Long Memory Latency?

Conservative timing margins!

DRAM timing parameters are set to cover the worst case

Worst-case temperatures
o 85 degrees vs. common-case
o to enable a wide range of operating conditions

Worst-case devices
o DRAM cell with smallest charge across any acceptable device
o to tolerate process variation at acceptable yield

This leads to large timing margins for the common case

SAFARI 12

Understanding and Exploiting
Variation in DRAM Latency

DRAM Stores Data as Charge

DRAM Cell

i

Three steps of MO
charge movement)
- VV\VVV\VVV\?
1. Sensing
2. Restore
3. Precharge Sense-Amplifier

SAFARI 14

DRAM Charge over Time

A
Colf Cell
i Data 1
| Q
5
. S [Sense-Amplifier
Sense-Amplifier Data O
: >
Timing Parameters Sensing Restore time
In theoryt

In practice!

Why does DRAM need the extra timing margin?

SAFARI 15

Two Reasons for Timing Margin

1. Process Variation
— DRAM cells are not equal

— Leads to extra timing margin for a cell that can
store a large amount of charge

2. lemperature Depéndence

SAFARI 16

DRAM Cells are Not Equal
Ideal

Real _ smallest cell

Il

Sam 3 =

Sa mfaé‘é‘%r%‘/@hon ”g @Z?%% 9r e =

Sam @@@n@”a on 1Pt 8E 3¥ency
Large variation in access latency

SAFARI 17

Process Variation
DRAM Caell

/ O Cell Capacitance

c . ® Contact Resistance
apacitor

® Transistor Performance

Small cell can store small
charge

* Small cell capacitance
* High contact resistance
ACCESS * Slow access transistor

= High access latency

Bitline

SAFARI

Two Reasons for Timing Margin

1. Process Variation
— DRAM cells are not equal

— Leads to extra timing margin for a cell that can
store a large amount of charge

2. Temperature Dependence
— DRAM leaks more charge at higher temperature

— Leads to extra timing margin for cells that
operate at low temperature

SAFARI 19

Charge Leakage Temperature

Cells stovel sewleharge at bigh temperature
and large charge at low temperature

- Large variation in access latency

SAFARI

DRAM Timing Parameters

* DRAM timing parameters are dictated by
the worst-case

— The smallest cell with the smallest charge in
all DRAM products

— Operating at the highest temperature

* [large timing margin for the common-case

SAFARI 21

Adaptive-Latency DRAM [HPCA 2015]

Idea: Optimize DRAM timing for the common case
o Current temperature
a Current DRAM module

Why would this reduce latency?

o A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

o More charge in a DRAM cell
- Faster sensing, charge restoration, precharging
- Faster access (read, write, refresh, ...)

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

Extra Charge = Reduced Latency

1. Sensing
Sense cells with extra charge faster
-> Lower sensing latency

2. Restore
No need to fully restore cells with extra charge

= Lower restoration latency

3. Precharge
No need to fully precharge bitlines for cells with

extra charge

> Lower precharge latency
SAFARI

DRAM Characterization Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 24
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

DRAM Characterization Infrastructure

= Hasan Hassan et al.,
SoftMC: A Flexible and
Practical Open-Source
Infrastructure for Enabling
Experimental DRAM Studies,

HPCA 2017. o
Machme
* Flexible ' Controller ﬂ‘
= Easy to Use (C++ API) Heater R

\\«»J

= Open-source
github.com/CMU-SAFARI/SoftMC

SAFARI 25

SottMC: Open Source DRAM Infrastructure

s https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich ~ ?TOBB University of Economics & Technology 3Carnegie Mellon University
*University of Virginia > Microsoft Research SNVIDIA Research

SAFARI 26

Observation 1. Faster Sensing
Typical DIMM at 115 DIMM

Low Temperature Characterization
m More Charge -I(-!Cr;]égg
Strong Charge
Flow 17% \l/
_ Faster Sensing No Errors

Typical DIMM at Low Temperature
=» More charge = Faster sensing

SAFARI 27

Observation 2. Reducing Restore Time

Typical DIMM at 115 DIMM
Low Temperature Characterization
Less Leakage =
Extra Charge Read (tRAS)
37%
II;lo Lﬂeedc’;]o Fully — \write (£WR)
estore Charge
54% J
No Errors

Typical DIMM at lower temperature

=» More charge = Restore time reduction
SAFARI 28

AL-DRAM

e Keyidea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters ElReIliisIgElal

temperatures for each DIMM

— System monitors [BRVAV/REIaglolIEH0les] & USEeS

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015. 29

DRAM Temperature

* DRAM temperature measurement
* Server cluster: Operates at under 34°C
 Desktop: Operates at under 50°C
DRAM standard optimized for 85°C

DRAM operates at low temperatures

in the common-case

* Previous works — Maintain low DRAM temperature
 David+ ICAC 2011
* Lin+ ISCA 2007
e Zhu+ ITHERM 2008

SAFARI 30

Latency Reduction Summary of 115 DIMMs

e [atency reduction for read & write (55°C)

— Read Latency: 32.7%
— Write Latency: 55.1%

e [atency reduction for each timing

parameter (55°C)

— Sensing: 17.3%

— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 (8 Cores, 3.1GHz, EMB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0OF05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both
to the same chip select bank.

Bits Description

07h-00h Reserved

2Ah-08h <Tras> clocks

3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.

AL-DRAM: Single-Core Evaluation

= Average
@ 5%
S 500 ®SingleCore. | Improvement
>
R I B —
S 10% @ E e B g
£ 6.7% = o
O 5% 7 0 T T T -
O _I 1.4% I l
S 0% —
x O O E 7)) — 7)) Q Q

S s 2 & 5 £ ¢ % S Z 5
g O 00 O) Qo - c
G A O g 3
Q » S £

-

@)

(-

all-35-workload

AL-DRAM improves performance on a real system

SAFARI 33

AL-DRAM: Multi-Core Evaluation

IS

gé 25%

g 20%

QS 15%

Q.

S 10%

—

L 5% -

% O% X H4— &) % > — wn Q Q O

& g S8 = 38 ¢t c o 9 o > > T

| Wy E E * — Q O 4+ S . . O

(g @) (o70) - - (- N

A~ n IS Q Q —

& & e € g
= = $
c LN
@) o
(- _

©

AL-DRAM provides higher performance for

multi-programmed & multi-threaded workloads
SAFARI 34

Reducing Latency Also Reduces Energy
AL-DRAM reduces DRAM power consumption by 5.8%

Major reason: reduction in row activation time

SAFARI

35

AL-DRAM: Advantages & Disadvantages

Advantages

+ Simple mechanism to reduce latency

+ Significant system performance and energy benefits
+ Benefits higher at low temperature

+ Low cost, low complexity

Disadvantages

- Need to determine reliable operating latencies for different
temperatures and different DIMMs - higher testing cost

(might not be that difficult for low temperatures)

SAFARI 36

More on AL.-DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the
21st International Symposium on High-Performance Computer
Architecture (HPCA), Bay Area, CA, February 2015.

[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim Gennady Pekhimenko
Samira Khan Vivek Seshadri ~ Kevin Chang Onur Mutlu

Carnegie Mellon University

SAFARI 37

Ditterent Types ot Latency Variation

AL-DRAM exploits latency variation
o Across time (different temperatures)
o Across chips

Is there also latency variation within a chip?
o Across different parts of a chip

SAFARI

38

Variation in Activation Errors

Results from 7500 rounds over 240 chips

No ACT Errors Max

Many efrors
—_—— ’ ,’
1Q1 : l/,f’ \ilr" "I

—————
-~ S

Rife w/ errors
<---- Quartiles

-
-~ SN

'f\ i Very few errors
S e &----"" Min

I3.1ns 12.5 10.0 7.5 50 2.5
standard tRCD (ns

Modern DRAM chips exhibit

Bit Error Rate (BER)
=
o

(00

significant variation in activation latency

Spatial Locality of Activation Errors

One DIMM @ tRCD=7.5ns

16 027 &
14 ¢ 0.24 ©
_12¢ 0.21 §
§ 10 | | ®#0.18 —~
~ i 1 Gisd -
2 410.12 =
o 6} 2
o 1 0.09 O
4t 10.06 £

2 ¢ ' 1 [{0.03 @

0 - . . 1T U000 Y¥

0O 20 40 60 80 100 120 9

Activation errors are concentrated

at certain columns of cells

Mechanism to Reduce DRAM Latency

* Observation: DRAM timing errors (slow DRAM
cells) are concentrated on certain regions

* Flexible-LatencY (FLY) DRAM

— A software-transparent design that reduces latency

* Key idea:
|) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without
slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

FLY-DRAM Configurations

% 100%
O 80% tRCD
kS 60% O |3ns
é 40% @ [Ons
§ 20% B 7.5ns
L 0%

Baseline

(DDR3)
2 100%
()]
O 80% tRP
S 60% O |3ns
_§ 40% @ |Ons
& 20% B7.5ns
S 0%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.

Results

1.25

19.59% 19.7%

17.6%

=
N

1.15 % '
13.3% B Baseline (DDR3)

® FLY-DRAM (D1)
1.05 FLY-DRAM (D2)
FLY-DRAM (D3)

rmalized Performance
[T
IR

FLY-DRAM improves performance

by exploiting spatial latency variation in DRAM

Chang+, “"Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

FLY-DRAM: Advantages & Disadvantages

Advantages
+ Reduces latency significantly
+ Exploits significant within-chip latency variation

Disadvantages

- Need to determine reliable operating latencies for different
parts of a chip = higher testing cost

- Slightly more complicated controller

SAFARI 44

Analysis of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization”
Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Antibes Juan-Les-Pins, France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang! Abnhijith Kashyap* Hasan Hassan'?
Saugata Ghose' Kevin Hsieht Donghyuk Lee' Tianshi Li'?
Gennady Pekhimenko' Samira Khan* Onur Mutlu>!

'Carnegie Mellon University 2TOBB ETU 2Peking University *University of Virginia SETH Zurich
SAFARI +

Why Is There
Spatial Latency Variation
Within a Chip?

What Is Desigh-Induced Variation?
fast slow |
—/—Mnherently slow

across column

distance from
wordline drivers

OM

@
@
@
@
(
o
MO|S

dCross row

distance from
sense amplifier

SIDALIP BUI|p

15e]

Inherently fast <—/

Systematic variation in cell access times

sense amplifiers

caused by the physical organization of DRAM

SAFARI 47

DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9A1IP BUI|pIOM

sense amplifier

Profile only slow regions to determine min. latency
—> Dynamic & low cost latency optimization

SAFARI 48

DIVA Online Profiling

Design-Induced-Variation-Aware

slow cells — @R-OOOOOY)
et

L o itelete
t\9+

random error

inherently slow

design-induced
variation

localized error

2

online profiling

J9AIIP BUI|PJO

8

error-correcting
code

sense amplifier

Combine error-correcting codes & online profiling
—> Reliably reduce DRAM latency

SAFARI 49

Read
50% o 50%
c
-B 40% 40%
O
S 30% [30% |-
© ° °
Q
-
> 20% [~ 20% |-
O
(-
Q 10% [~ 10% -
A
0% 0%
55°C 85°C|55°C 85°C|55°C 85°C 55°C 85°C|55°C 85°C|55°C 85°C
AL-DRAM |pvA Profilingppya Profiling AL-DRAM |pivA Profiling|piya Profiling
+ Shuffling + Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells

SAFARI 50

DIVA-DRAM: Advantages & Disadvantages

Advantages

++ Automatically finds the lowest reliable operating latency
at system runtime (lower production-time testing cost)

+ Reduces latency more than prior methods (w/ ECC)
+ Reduces latency at high temperatures as well

Disadvantages

- Requires knowledge of inherently-slow regions
- Requires ECC (Error Correcting Codes)
- Imposes overhead during runtime profiling

SAFARI o1

Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University
Samira Khan, University of Virginia
Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University

Gennady Pekhimenko, Vivek Seshadri, Microsoft Research
Onur Mutlu, ETH Ziirich and Carnegie Mellon University

SAFARI >2

Understanding & Exploiting the
Voltage-Latency-Reliability
Relationship

High DRAM Power Consumption

* Problem: High DRAM (memory) power in today’s
systems

>40% in POWER7 (Ware+,HPCA'10) >40% in GPU (Paul+,I1sCA'15)

SAFARI >

Low-Voltage Memory

* Existing DRAM designs to help reduce DRAM power
by lowering supply voltage conservatively

— PowerxVoltageT2

 DDRJ3L (low-voltage) reduces voltage from 1.5V to
.35V (-10%)

* LPDDR4 (low-power) employs low-power I/O
interface with 1.2V (lower bandwidth)

Can we reduce DRAM power and energy by
further reducing supply voltage?

SAFARI >

Goals

1 Understand and characterize the various
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by

lowering voltage while keeping performance loss
within a target

SAFARI >¢

Key Questions

* How does reducing voltage affect
reliability (errors)?

* How does reducing voltage affect
DRAM latency!

* How do we design a new DRAM energy
reduction mechanism?

SAFARI

57

Supply VYoltage Control on DRAM

" DRAM Moduilé"™"

os

3
|’| f;:!
o8 oo | B @ || B 3
SR S : Sy Wi adt
°% i &L 2o = °%
=0 7y FIDAR z ! sde
ce e N O sl AR B

o8 ., . . e e . A ta'e
L i Ne—

N ol Wl o

,.

Supply Voltage

Adjust the supply voltage to every chip on the same module

SAFARI >8

Custom Testing Platform

SOftMC [Hassan+, HPcA'17]: FPGA testing platform to

|) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

3 = \ 8s
I } \ .‘“‘ ™ \ 3
S YT sate § 3
& <) — e S 83 ;
e | = oltage
2 § g .r; ‘q
s i 3 “

controller

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

SAFARI >

Tested DRAM Modules

* 124 DDR3L (low-voltage) DRAM chips
— 31 SO-DIMMs
— (DDR3 uses 1.5V)
— Density: 4Gb per chip
— Three major vendors/manufacturers
— Manufacturing dates: 2014-2016

* |teratively read every bit in each 4Gb chip under a wide
range of supply voltage levels: 1.35V to |.0V (-26%)

SAFARI 0

Reliability Worsens with Lower Voltage

M Vendor A ® Vendor B A Vendor C

10°
o 10
—~ 10° Errors induced by
jo S 10" reduced-voltage operation
S L 402
S o 10
s 107°
SE 10™ Min. voltage (Vi) |
5 3 405 without errors Nominal
© 5 Voltage
L0 N o

h
Reducing voltage below V.. causes
an increasing number of errors

6l

SAFARI

Source of Errors

Detailed circuit simulations (SPICE) of a DRAM cell array to

model the behavior of DRAM operations
https://github.com/CMU-SAFARI/DRAM-Voltage-Study

20

@ Activate &-Precharge

Nominal

215
§ Volﬁlge
10
8
5

Reliable low-voltage operation requires higher latency

62

SAFARI

DIMMs Operating at Higher Latency

Measured minimum latency that does not cause errors in DRAM modules
40% of modules

—
N
o

Distribution of latency in 100% of modules

" | the total population /
1.0 1.0 1.0 1.0

RN
o O N

Activate Latency (ns)

&
S
£
k=
=
e
O
S
»
©
()
=

DRAM requires longer latency to access data

without errors at lower voltage

SAFARI 63

Spatial Locality of Errors

A module under 1.175V (12% voltage reduction)

0 10
— — o

5 —— — =
—— — 0-8 GJ

% 10 — — £
8 —— — 0-6 ‘_I|
9./ 15 —_— —_— N
= — 04 =
DC% 20 ————— =
25 — 02 &
30 ——— o

0.0
0 1 2 3 4 5 6 7
Bank

Errors concentrate in certain regions

64

SAFARI

Summary of Key Experimental Observations

* Voltage-induced errors increase as
voltage reduces further below V.

* Errors exhibit spatial locality

* Increasing the latency of DRAM operations
mitigates voltage-induced errors

SAFARI -

DRAM Voltage Adjustment to Reduce Energy

* Goal: Exploit the trade-off between voltage and latency
to reduce energy consumption

* Approach: Reduce DRAM voltage reliably

— Performance loss due to increased latency at lower voltage
¥ Performance ® DRAM Power Savings

§ éo/ 40 - \ High Power Savings Low Power Savings
O o 30 Bad Performance Good Performance

o & 20 ’ ‘

g5 10

v 0

29 10 . E—
U=

>

o .S -0

5 €

g— o -20 N

- Z 0.9 1.0 .1 |.2 |.3

Supply Voltage (V)

SAFARI %6

Voltron Overview

Voltron

User specifies the Select the minimum DRAM voltage
performance loss target without violating the target

How do we predict performance loss due to
increased latency under low DRAM voltage?

SAFARI *

Linear Model to Predict Performance

Voltron

C_d
-
-
-
-
-
C 4
-
t _d
-
-
-
r
-
-
-
-
-
-
-
-

Application’s . |
characteristics . » [-1%, -3%, ...] ' Final
. Voltage Voltage
oL Predicted
[1.3v,125v,..] 5 (R i performance loss C

Target
DRAM Voltage | inear regression model

SAFARI 8

Regression Model to Predict Performance

* Application’s characteristics for the model:
— Memory intensity: Frequency of last-level cache misses

— Memory stall time: Amount of time memory requests stall
commit inside CPU

* Handling multiple applications:
— Predict a performance loss for each application

— Select the minimum voltage that satisfies the performance
target for all applications

SAFARI *?

Comparison to Prior Work

* Prior work: Dynamically scale frequency and voltage of the entire
DRAM based on bandwidth demand [David+, ICAC’I I]

— Problem: Lowering voltage on the peripheral circuitry
decreases channel frequency (memory data throughput)

* Voltron: Reduce voltage to only DRAM array without changing
the voltage to peripheral circuitry

Peripheral DRAM Peripheral DRAM
Circuitry Array Circuitry Array

Prior Work Voltron

ﬂ Off-chip channel f Off-chip channel

Low frequency High frequency
SAFARI

70

Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that
observe errors under low voltage

— Benefit: Higher performance

Peripheral
Circuitry

DRAM Array

Bank 2

. h J/
Off-chip channel \/

High latency Low latency

SAFARI 7!

Voltron Evaluation Methodology

* Cycle-level simulator: Ramulator [CAL15]
— McPAT and DRAMPower for energy measurement

https://github.com/CMU-SAFARI/ramulator

* 4-core system with DDR3L memory

 Benchmarks: SPEC2006,YCSB

* Comparison to prior work: MemDVFS [paid+,icacii

— Dynamic DRAM frequency and voltage scaling
— Scaling based on the memory bandwidth consumption

SAFARI 72

Energy Savings with Bounded Performance

MemDVFS B Voltron

[David+, ICAC’ | 1] Meets performance target
8 0
1.3% ~
7/ 7y X]
< 6 More savings for o
> > © high bandwidth 2 .
§ P 5 applications ?') -1.6% -1.8%
a3 o .3
& 3.2% S
D % S E 4
O o 2 L
cC (S
L o -5
| a- Performance Target
0 -6
Low High Low High
Memory Intensity Memory Intensity

SAFARI 73

Voltron: Advantages & Disadvantages

Advantages

+ Can trade-off between voltage and latency to improve
energy or performance

+ Can exploit the high voltage margin present in DRAM

Disadvantages

- Requires finding the reliable operating voltage for each
chip = higher testing cost

SAFARI 74

Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutluy,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang' Abdullah Giray Yaghke' Saugata Ghose” Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap' Donghyuk Lee! Mike O’Connor®* Hasan Hassan® Onur Mutlu®’

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich

SAFARI 7

And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?

SAFARI 76

Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures

SAFARI

More Fundamentally Reducing
Latency and Energy

Processing In Memory

79

Observation and Opportunity

High latency (and high energy) caused by data movement
o Long, energy-hungry interconnects

o Energy-hungry electrical interfaces

o Movement of large amounts of data

Opportunity: Minimize data movement by performing
computation directly where the data resides

o Processing in memory (PIM)

o In-memory computation/processing
o Near-data processing (NDP)
a

General concept applicable to any data storage unit (caches,
SSDs, main memory)

SAFARI 80

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

SAFARI 81

The Problem

Processing of data
IS performed
far away from the data

SAFARI

82

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit

-
-
-
.....
-
-
-
-
.-

e
-
-
-
-
-
oooo
-
-
-
-
-
-
-
L

Memory System Storage System

83

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

84

Today’s Computing Systems

Are overwhelmingly processor centric

All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

Computing System

4)
Computing E a Communication E ; Memory/Storage
Unit Unit Unit
_) e
Memory System Storage System

85

Yet ...
=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45 A
40 -
35 -
30
25 A
20 A
15 A
10

5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex

87

Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\

AJIOWRIA] paaeys

MWWS /

Shared
s | Memory
Control

Shared Memory

Most of the system is dedicated to storing and moving data

Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

SAFARI 89

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

-

—
256 pJ | 16 nJ I- ggl/}‘xr

256-bit access
8 kB SRAM

SAFARI

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

—
256 pJ | 16 nJ F Sl

| Efficient
>00p. off-chip link

256-bit access
8 kB SRAM

SAFARI Il

We Need A Paradigm Shift To ...

Enable computation with minimal data movement

Compute where it makes sense (where data resides)

Make computing architectures more data-centric

92

Goal: Processing Inside Memory

= Many questions ... How do we design the:

Q

o O 0O O

Processor
Core

1 Database

Graphs

Interconnect
Results

compute-capable memory & controllers?
processor chip?

software and hardware interfaces?
system software and languages?
algorithms?

| Media

Problem

Program/Language

System Software

SW/HW Interface

Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI o

Two Approaches to In-Memory Processing

=| 1. Minimally change DRAM to enable simple yet powerful
computation primitives

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

= 2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory

o PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-
Memory Architecture (Ahn et al., ISCA 2015)

o A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

o Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation (Hsieh et al., ICCD 2016)

SAFARI 7>

Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal bandwidth to move data
o Can exploit analog computation capability

a ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of
Bulk Data (Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL
2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve
the Spatial Locality of Non-unit Strided Accesses (Seshadri et al.,

MICRO 2015)
SAFARI 96

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

SAFARI

Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod,
wmett Witchel, and Anoop Gupta

Hardware S
upport f
or Bulk Data Movement in Server P|
r Platforms

Li Zhao™ . s
Department o 0", Ravilyer* Srihari Makinenit

0 Ompu[er SC] 4
ence and Enej .
gineering,

s Email: {zhao, bhuy

h

Universit :
sity of California, Rj
an} @cs.ucr.edy tlornia, Riverside, CA 9257

Architecture Support for Improving Bulk Memory Copying and Initialization
Performance

Li Zhao. Ravishankar lyer
Intel Labs
Intel Corporation
Hillsboro, USA

Xiaowei Jiang, Yan Solihin

Dept. of Electrical and Computer Engineering

North Carolina State University
Raleigh. USA

SAFARI

Bulk Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’I5]

00000
00000
00000 -

. _Zero initialization o
Forking ¢ g. security) Checkpointing

Many more

VM Cloning page Migration
Deduplication

SAFARI 9

Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA) .

Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6ul —> 90ns, 0.04ul o

RowClone: In-DRAM Row Copy

Transfer
row

Transfer
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus

RowClone: Intra-Subarray

Voo /2¥ i IV%

e
Amplify the
difference
Data gets

copied

Sense Amplifier

(Row Buffer) ||} Yoo/

RowClone: Intra-Subarray (1)

Row Buffer

1. Activate src row (copy data from src to row buffer)

" 2. Activate dst row (disconnect src from row buffer,
connect dst — copy data from row buffer to dst)

_

~\

RowClone: Inter-Bank

A

Memory Channel

\4

-

Chip I/O

_Shared

J

Internal bus

(

Overlap the latency of the read and the write
_1.9X latency reduction, 3.2X energy reduction)

~N

Generalized RowClone 0.01% area cost

Inter Subarray Copy
(Use Inter-Bank Copy Twice)
TC) A ™\ ’ \\\
C \ Y
<l llo [][Ba“k} Bankl/O J| \
o ~ I I d- o __] \ J ,l :
> = | | ,'
O
=\ \ y

Inter Bank Copy Intra Subarray

(Pipelined Copy (2 ACTs)
Internal RD/WR)

RowClone: Fast Row Initialization

v

Fix a row at Zero
(0.5% loss in capacity)

107

RowClone: Bulk Initialization

Initialization with arbitrary data
o Initialize one row
o Copy the data to other rows

Zero initialization (most common)
o Reserve a row in each subarray (always zero)
Copy data from reserved row (FPM mode)

a
o 6.0X lower latency, 41.5X lower DRAM energy
a 0.2% loss in capacity

SAFARI 108

RowClone: Latency & |

Latency Reduction

“nergy Benefits

Energy Reduction

14 | 11.6x go 44
12
10 5.0x 60 41.5x
8 40
: 20 -
> 3.2x 1.5x
L B R Telzlele
- : D
Very low cost: 0.01% increase in die area
g J

SAFARI

Copy

‘ Zem)‘

Copy

. Zero |

109

Copy and Initialization in Workloads

0.4 -

Fraction of Memory Traffic
©) (@]
N o))

DRA®
| | -

W Write M Read
)

W Zero H Copy

A-d B

R .

J

bootup compile forkbench mcached mysql shell

SAFARI

110

RowClone: Application Performance

® [PC Improvement ® Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell

111

End-to-End System Design

Application

Operating System

Microarchitecture

DRAM (RowClone)

How to communicate
occurrences of bulk copy/
initialization across layers?

How to ensure cache
coherence?

How to maximize latency and
energy savings?

How to handle data reuse?

112

More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"

Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozuchf Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University flntel Pittsburgh

Memory as an Accelerator

— s
| GPU GPU |[:
CPU CPU core : |(throughput)| |(throughput)] :
core core | core oot I
video
core : :
CPU CPU [[—]] - | N |
— | i|(throughput)| [(throughput)]
core core meaed i| core core |} Memory
LLC
- Specialized
Memory Controller compute-capability
in memory

Memory Bus

Memory similar to a "conventional” accelerator

In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

a Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

115

In-DRAM AND/OR: Triple Row Activation

l ~ %V ppto
A A 4

Final State
AB + BC + AC

| %wDD

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM", IEEE CAL 2015. 116

In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B = C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C

SAFARI 17

D W N =

More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. GibbonsT, Todd C. Mowry*

*Carnegie Mellon University fIntel Pittsburgh

SAFARI 118

In-DRAM NOT: Dual Contact Cell

d-wordline .
dual-contact X{ T = §
cell (DCC) | i | E 2 .
n-wordline | J_L_L | Idea .
wense | = ' Feed the
amplifier — 7\ =7 negated value

in the sense amplifier
into a special row

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 19

In-DRAM NOT Operation

VoD 0 VoD 9

Initial State After Charge Sharing Activated d-wordline Activated n-wordline

(=]
(=]

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 120

Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 HMC 2.0 Ambit [l Ambit-3D
’\c'n\ DO4E —peresrrrrrersrrraee o oeeescseesns st e
wn 1024 S
8-‘ 512 g, Beeeee......I............oeee. ...
(D i‘) 256 —_ eiiiiinierneees] R T e e D e
: 8 128 —_—eiereeeeee:l 1 B...-..eee .-l ...
a N 64 -l 1 O BR...eeee......d | B..-.............] | BEB...............] | BHB..............
o) 324 | IR R | R
"go e 164 | IR || | R | R
= S48 | - | el | BRomd | R
o N HE e BN e B e N
—ﬁ S N WS B ERE I R .
| | | | |
not and/or nand/nor XOr/Xnor mean

Figure 9: Throughput of bitwise operations on various systems.

SAFARI 121

Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor Xxor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy Ambit 1.6 3.2 4.0 5.5
(nJ/KB)) 59.5X 43.9X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 122

Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range queries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60

SAFARI

Performance: Bitmap Index on Ambit

~~ 11 S N NN ey RS
o & 108_. [1 Baseline I Ambit ool b
c £
cE o0—4L— O] e,
= S, 80 e] e L
- GL) T O —eeeeremeemein] L b
C_) -] 60_ ..
.5: O‘ 510 I TETECTITRLUNRURRISRURV RN N POSUROUR [(PRI [ST R
—tsssssnsnnnsannnssnnnsnnnd fesswswwnssmmnas] 0 Rkesessmsammmsna] 00 fessesssmnranas . s 6 6
LI>J< :_“ 20 - 5 4X 6.1X | 163X 57x.| [62X | |2
o) 10 S R e I ustio oot L St I ey -

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 124

Pertormance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW Count (r) _ D 1m . 2m D 4m . 8m

Speedup offered by Ambit

4 12 16 20 24 28 32
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 125

Required Reading: Ambit

= Vivek Seshadri et al., "

Ambit: In-Memory Accelerator for Bulk Bitwise

Operations Using Commodity DRAM Technology,”
MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri’® Donghyuk Lee?® Thomas Mullins®>® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”

'Microsoft Research India 2NVIDIA Research Z3Intel *ETH Ziirich °Carnegie Mellon University

SAFARI 126

Two Approaches to In-Memory Processing

= 1. Minimally change DRAM to enable simple yet powerful

computation primitives

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

=| 2. Exploit the control logic in 3D-stacked memory to enable
more comprehensive computation near memor
o PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

o A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

o Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation (Hsieh et al., ICCD 2016)

SAFARI 127

Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

SAFARI 128

DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [18]

Low-Power LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]
Performance eDRAM [2£], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [£]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, “"Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
SAFARI 129

Two Key Questions in 3D Stacked PIM

What is the minimal processing-in-memory support we can
provide ?
o without changing the system significantly

o while achieving significant benefits of processing in 3D-
stacked memory

3D-stacked memory as a coarse-grained accelerator?
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

SAFARI 130

Graph Processing

= Large graphs are everywhere (circa 2015)

oo [

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages Facebook Users Twitter Users Instagram Photos

= Scalable large-scale graph processing is challenging

32 cores [
128 _ +420/0—
Cores

0 1 2 3 4
Speedup

131

Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

w.rank
w.next_rank

w.edges

SAFARI

1. Frequent random memory accesses

2. Little amount of computation

132

Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface .
Noncacheable, Physically Addressed) !

= I ~ o
'} ~
- . i
o N \J |})
B € 3 i 918 i B 1
"\ Sal LA !
) & =3l BN [/
"\“ 1 1
1 T, 1
1 v 1
] & 1
1 1
1 1
1 1
1 1
' In-Order Core
7
1/
Vi | I BN |

» Logic

-,
)
>
<
O

K nan (@)
1] [LP * PFBuffer -~ 2
/ Crossbar Network o
)
) MTP

O‘_,. /

J Message Queue NI

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Communications via
Remote Function Calls

Message Queue

Prefetching

LP PF Buffer

MTP

Evaluated Systems

DDR3-000 | HMC-000 | HMCMC = Tesseract

I | | | | | |
]]]] . \ |
| i a 1 | 1 A T l | y y y y | y X y y |
CECS C3C8 | | 32
R (R m | | | Tesseract
v v v) 4 \ 4 :; \ 4 :: \ 4 :: v :: i v :: v :; v :; \ 4 :: i Cores
128 128
8000 | {8000 | | |8000 | {8000 | | | ouerleod norer| | L
; ; . AT TR
A 4 A 4 ! 4 A 4 ! v v < <
128 128 |
8000 | 8000 | 8000 8000 | | oo 0 oo b E :
| X y Y y — Y Y v v v v
4 A A A ' v \ 4 \ 4 v '
v \ 4 \ 4 v ! ' g g g
I | | | | | | | | | |
I | | | | | |
I I I I v 4 A 4 v A \ 4 \ 4
I | | | | | |
| | | |
I | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
17 11.6x
o 10 9.0x
>
©
v 8
)
6
4
5 +56% 4259
., == BN e
DDR3-000 HMC-O00 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— Tm

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

Tesseract Graph Processing System Energy

® Memory Layers H Logic Layers [lCores
1.2

0.8
0.6

0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the

42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University

SAFARI 140

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Computer Architecture
Lecture 6: Low-Latency DRAM and
Processing In Memory

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
5 October 2017

Two Key Questions in 3D Stacked PIM

What is the minimal processing-in-memory support we can
provide ?

o without changing the system significantly

o while achieving significant benefits of processing in 3D-
stacked memory

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

SAFARI 143

PEIL: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

o e.g., _ pim_add(&w.next_rank, value) 2 pim.add r1, (r2)

o No changes sequential execution/programming model

o No changes to virtual memory

o Minimal changes to cache coherence

o No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 144

PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank; oim.add rL, (r2)
for (w: v.successors) {
__pim_add(&w.next_rank, value);

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfence 8-byte integer increment O O Obytes Obytes AT
fe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
p ’ Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X lbyte I16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)
SAFARI 145

Example (Abstract) PEI uArchitecture

Host Processor 3D-stacked Memory

I
|
1
|
I
Out-Of-Order © © T | ! DRAM
Core S S 3 < ; PCU Controller
— ~ a
PCU (PEl 1 y = % : v DRAM
Computation Unit) far| | : B PCU Controller
S 2
) I +
PMU (PEI[= ofF| g
- 2 |
Mgmt Umt) Directory i :
1
Locality : DRAM
Monitor ! PCU Controller
|
1

Example PEI uArchitecture

SAFARI 146

PEI: Initial Evaluation Results

Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

Q In-memory data ana Iyt|CS Table 2: Baseline Simulation Configuration
o Machine learning and data mining Component _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
i i L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
- Th ree in pUt Sets (Sma I I’ med Iu m’ Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the Im paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
1 Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca | Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

Pin-based cycle-level x86-64 simulation

Performance Improvement and Energy Reduction:
47% average speedup with large input data sets
32% speedup with small input data sets
25% avg. energy reduction in a single node with large input data sets

SAFARI 147

More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture”
Proceedings of the

42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University J’Carnegie Mellon University

SAFARI

More on PIM Design: 3D-Stacked GPU I

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich

Key Challenge 1

__global__

void applyScaleFactorsKernel(uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

3 D-stacked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

x
\ \
\ x

............ Logic layer

Logic layer
SM

I

Crossbar switch
[I

Vault| ... Vault
Ctri Ctri

Main GPU

Key Challenge 1

* Challenge 1: Which operations should be executed
on the logic layer SMs!?

3D-stacked memory

(memory stack)

?

‘IIIIIIIIIIII

Main GPU

__global__

void applyScaleFactorsKernel(uint8 T *

{

SM (Streaming Multiprocessor)

const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element
size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

J
/)

?

Logic layer

¥

Logic layer
SM

I

Crossbar switch
[I

Vault Vault
Ctri Ctri

Key Challenge 2

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)
o T TN N

SM

Logic layer

I

Crossbar switch

[
Vault
Ctri

Vault
Ctri

More on PIM Design: 3D-Stacked GPU 11

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,

"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the

25th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Haifa, Israel, September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishrat Mahmut T. Kandemirt Onur Mutlu>¢ Chita R. Das!

'Pennsylvania State University = 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zlrich °Carnegie Mellon University

SAFARI 153

More on PIM: Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the
34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! ~Samira Khan* Nandita Vijaykumar!
Kevin K. Chang" Amirali Boroumand' Saugata Ghose Onur Mutlu®'

TCarnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 154

Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table structure

* Key Results:

* 1.2X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
155

More on PIM Design: Dependent Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA 3ETH Ziirich & Carnegie Mellon University

SAFARI 156

More on PIM Design: Coherence

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*T

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 157

Traditional Coherence Approaches Do Not Work

Traditional

coherence

(O]
> = 2
E 2z &
a | L o
O|l2 O 2|8z Cm
m|S B @flalo] 232
.............. UB3IAID
8ZI-dVIH
=)
>
9S¢-dV1H -
| yueyaseq
| 6
lpey =
Ll
Niiiii24 sjusuodwo)
1 yueyasSed
0
| 1pey 5
c
(]
=222 sjuauodwo)
)ueyasded
=
lpey <
©
sjuauodwo)

158

SAFARI

More on PIM Design: Data Structures

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch

SAFARI 159

Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim! Weikun Yang!-? Onur Mutlu*
ICarnegie Mellon University 2Peking University

SAFARI 160

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., "SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

= Flexible [/r
= Easy to Use (C++ API) ,. " Co-l;\etrpopller "
= Open-source Heater EX

| o

github.com/CMU-SAFARI/SoftMC

SAFARI 161

An FPGA-based Test-bed for PIM

= Hasan Hassan et al.,
SoftMC: A Flexible and
Practical Open-Source
Infrastructure for Enabling
Experimental DRAM Studies

-

HPCA 2017. = A H°5t
Machlne
i N Temp
= Easy to Use (C++ API) Heater \-\ *,

\\«»J

= Open-source
github.com/CMU-SAFARI/SoftMC

SAFARI 162

Challenge and Opportunity tor Future

Fundamentally
Energy-Efficient

(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity tor Future

Fundamentally
Low-Latency
(Data-Centric)

Computing Architectures

SAFARI

Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

SAFARI 16

Accelerating Pointer Chasing in
3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh

Samira Khan, Nandita Vijaykumar, Kevin K. Chang,

Amirali Boroumand, Saugata Ghose, Onur Mutlu

Carnegie .
Mellon i UNREREY ETH zlrich
University

SAFARI

Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table structure

* Key Results:

* 1.2X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
167

Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value |
Data Storane 11

Linked data structures are
connected by pointers

- -
ey Ir———+_
Key2>——/§:_’| e
Ty T LT keys——
B-Tree Hash Table

168

The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

CPU

Serialized and irregular access pattern
6X cycles per instruction in real workloads

169

Our Goal

Accelerating pointer chasing
inside main memory

Logic layer 170

Outline

*Parallelism Challenge
*IMPICA Core Architecture

* Address Translation Challenge
*IMPICA Page Table

* Evaluation

* Conclusion

171

Parallelism Challenge

> Time

dCCessS

CPU core {CompI Memory IcompJ

CPU core {COmpI Memory Icoimp}

dCCesSs

] M |v| |
In-Memory {Com 1 emory ICOmpICOmpI emory I Omp}
Accelerator ermes access I

slower for two operations

172

Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

gy

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{Compl Memory access (10-15X of Comp) ICompJ

173

Our Solution:
Address-Access Decoupling

— Time

CPU core {Comp[Memory IComp}
access ;
/ Y \:

CPU core camnl Memon |

Address-access decoupling enab ezost

Addri - ar allellsm in both engmes with low
Engin P B g
Memory
Access access -
Engine Memory I I

dCCessS

174

IMPICA Core Architecture
DRAM

|
DRAM Layers

Logic Layer

Memory
IMPICA Controller

/ Cache
Access Queue t

Request Queue — —
’_, Address ‘ Access
Engine | \ «— Engine
Traversal
I Response Queve
Tc Travzersal CPU

Outline

* Address Translation Challenge
*IMPICA Page Table

e Evaluation
 Conclusion

176

Address Translation Challenge

e walk requires

tabl
The pag® accesses

multiple memory

0. ‘Q

A d 4
0‘ .0

Virtual Address
1 _#pPMid_|___#PDPT

No TLB/MMU on the memory side
Duplicating it is costly and creates
compatibility issue

29

PDPT PGD PGT

. .
G .
--

Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
INEPOP Rz dabilele

IMPICA regions

ucture into .
nked data st¥ _to-any mapping

Map li ble is a partial

IMPICA page ta

Virtual Page Physical Page

Virtual Address Space ~ Physical Address Space

178

IMPICA Page Table: Mechanism

Virtual Address
Bit [47:4 Flat page table

L saves one€ memory access

Bit [11:0]

bie is almostg
he cache | ™

I— |dDIe Small Page Table
(2MB) (4KB)

o. o

Tiny region ta
always in t

Physical Address

Outline

* Motivation and Our Approach
* Parallelism Challenge
*IMPICA Core Architecture

* Address Translation Challenge
*IMPICA Page Table

* Evaluation

* Conclusion

180

Evaluated Workloads

* Microbenchmarks
* Linked list (from Olden benchmark)
* Hash table (from Memcached)

* B-tree (from DBx1000)

* Application
* DBx 1000 (with TPC-C benchmark)

181

Evaluation Methodology

* Simulator: gemb5

* System Configuration

e CPU
* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2
* IMPICA
* 1 core, 500MHz, 32KB Cache
* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
* https://github.com/CMU-SAFARI/IMPICA

182

Result = Microbenchmark Performance

E Baseline + extra 128KB L2 O [IMPICA

1.9X

2.0
215 I 1.3X 1.2X
y o
Q10 ~ - ——— — -
Q
o

0.0

Linked List Hash Table B-Tree

183

Result — Database Performance

20 +16%

Database
Throughput

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

1.00 ™ —
0.95
0.90
0.85
0.80

Database
Latency

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

184

System Energy Consumption

[Baseline + extra 128KB L2 B IMPICA

=
o

Normalized Energy

o
o

Linked Hash B-Tree DBx1000
List Table

185

Area and Power Overhead

CPU (Cortex-A57)

5.85 mm? per core

L2 Cache 5 mm? per MB
Memory Controller 10 mm?
IMPICA (+32KB cache) [0.45 mm?

* Power overhead: average power

increases by 5.6%

186

More in the Paper

* Interface and design considerations
* CPU interface and programming model
* Page table management
* Cache coherence

* Area and power overhead analysis
* Sensitivity to IMPICA page table design

187

Conclusion

* Performing pointer-chasing inside main memory can greatly
speed up the traversal of linked data structures

* Challenges: Parallelism challenge and Address translation
challenge

* Our Solution: In-Memory Polnter Chasing Accelerator
* Address-access decoupling: enabling parallelism with low cost
* IMPICA page table: low cost page table structure

* Key Results:

* 1.2X — 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption

* Our solution can be applied to a broad class of in-memory
accelerators 188

Current Investigations

* More efficient address translation and protection
mechanisms for PIM

* More concurrent data structures for PIM

189

More Info on IMPICA (Current Status)

* Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD),
Phoenix,AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! ~Samira Khan* Nandita Vijaykumar!
Kevin K. Chang" Amirali Boroumand' Saugata Ghose Onur Mutlu®'

TCarnegie Mellon University — *University of Virginia SETH Ziirich

190

Accelerating Pointer Chasing in
3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh

Samira Khan, Nandita Vijaykumar, Kevin K. Chang,

Amirali Boroumand, Saugata Ghose, Onur Mutlu

Carnegie .
Mellon i UNREREY ETH zlrich
University

SAFARI

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Computer Architecture
Lecture 6: Low-Latency DRAM and
Processing In Memory

Prof. Onur Mutlu
ETH Zlrich
Fall 2017
5 October 2017

