

Computer Architecture

Lecture 6: Low-Latency DRAM and
Processing In Memory

Prof. Onur Mutlu
ETH Zürich
Fall 2017

5 October 2017

High-Level Summary of Last Lecture
n  DRAM Operation Continued
n  Memory Controllers
n  Memory Latency

q  Tiered-Latency DRAM

2

Agenda for Today
n  Memory Latency Continued
n  Memory Latency-Voltage-Reliability Relationship
n  Processing In Memory

3

Memory Latency:
Fundamental Tradeoffs

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

 Capacity Bandwidth Latency

Review: Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

What Causes
the Long DRAM Latency?

Why the Long Latency?

n  Reason 1: Design of DRAM Micro-architecture
q  Goal: Maximize capacity/area, not minimize latency

n  Reason 2: “One size fits all” approach to latency specification
q  Same latency parameters for all temperatures
q  Same latency parameters for all DRAM chips (e.g., rows)
q  Same latency parameters for all parts of a DRAM chip
q  Same latency parameters for all supply voltage levels
q  Same latency parameters for all application data
q  …

9

Latency Variation in Memory Chips

10

High Low
DRAM Latency

DRAM B DRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions → �

latency variation in timing parameters

Why is Latency High?

11

•  DRAM latency: Delay as specified in DRAM standards
–  Doesn’t reflect true DRAM device latency

•  Imperfect manufacturing process → latency variation
•  High standard latency chosen to increase yield

High Low
DRAM Latency

DRAM A DRAM B DRAM C

Manufacturing
Variation

Standard
Latency

What Causes the Long Memory Latency?

n  Conservative timing margins!

n  DRAM timing parameters are set to cover the worst case

n  Worst-case temperatures
q  85 degrees vs. common-case
q  to enable a wide range of operating conditions

n  Worst-case devices
q  DRAM cell with smallest charge across any acceptable device
q  to tolerate process variation at acceptable yield

n  This leads to large timing margins for the common case

12

Understanding and Exploiting
Variation in DRAM Latency

14

DRAM Stores Data as Charge

1. Sensing

2. Restore

3. Precharge

DRAM Cell

Sense-Amplifier

Three steps of
charge movement

15

Data 0

Data 1

Cell

7me

ch
ar

ge

Sense-Amplifier

DRAM Charge over Time

Sensing
 Restore

Why does DRAM need the extra 7ming margin?

Timing Parameters

In theory

In prac7ce

margin

Cell

Sense-Amplifier

16

1. Process Varia7on

– DRAM cells are not equal

–  Leads to extra Gming margin for cell that can

store small amount of charge

`	

2. Temperature Dependence

– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin when operaGng at

low temperature

	

Two Reasons for Timing Margin

1. Process Varia7on

– DRAM cells are not equal

–  Leads to extra Gming margin for a cell that can

store a large amount of charge

	

1. Process Varia7on

– DRAM cells are not equal

–  Leads to extra Gming margin for a cell that can

store a large amount of charge

	

17

DRAM Cells are Not Equal

Real
Ideal

Same Size è

Same Charge è

Different Size è

Different Charge è

Largest Cell

Smallest Cell

Same Latency
 Different Latency

Large varia7on in cell size è

Large varia7on in charge è

Large varia7on in access latency

18

Contact

Process VariaGon

Access Transistor

Bitline

Capacitor

Small cell can store small
charge

• Small cell capacitance

• High contact resistance

• Slow access transistor

❶ Cell Capacitance

❷ Contact Resistance

❸ Transistor Performance

ACCESS

DRAM Cell

è High access latency

19

Two Reasons for Timing Margin

1. Process Varia7on

– DRAM cells are not equal

–  Leads to extra Gming margin for a cell that can

store a large amount of charge

`	

2. Temperature Dependence

– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin for cells that

operate at the high temperature

	

2. Temperature Dependence

– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin for cells that

operate at the high temperature

	

2. Temperature Dependence

– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin for cells that

operate at low temperature

	

20

Charge Leakage Temperature

Room Temp.
 Hot Temp. (85°C)

Small Leakage
 Large Leakage
Cells store small charge at high temperature

and large charge at low temperature

à Large varia7on in access latency

21

DRAM Timing Parameters

• DRAM 7ming parameters are dictated by

the worst-case

–  The smallest cell with the smallest charge in

all DRAM products

–  OperaGng at the highest temperature

•  Large 7ming margin for the common-case

Adaptive-Latency DRAM [HPCA 2015]

n  Idea: Optimize DRAM timing for the common case
q  Current temperature
q  Current DRAM module

n  Why would this reduce latency?

q  A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

q  More charge in a DRAM cell
 à Faster sensing, charge restoration, precharging
 à Faster access (read, write, refresh, …)

 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

23

Extra	Charge	à	Reduced	Latency	

1. Sensing

2. Restore

3. Precharge

Sense cells with extra charge faster

à Lower sensing latency

No need to fully restore cells with extra charge

à Lower restoraGon latency

No need to fully precharge bitlines for cells with
extra charge

à Lower precharge latency

DRAM Characterization Infrastructure

24 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

DRAM Characterization Infrastructure

n  Hasan Hassan et al.,
SoftMC: A Flexible and
Practical Open-Source
Infrastructure for Enabling
Experimental DRAM Studies,
HPCA 2017.

n  Flexible
n  Easy to Use (C++ API)
n  Open-source
 github.com/CMU-SAFARI/SoftMC

25

SoftMC: Open Source DRAM Infrastructure

n  https://github.com/CMU-SAFARI/SoftMC

26

27

Typical DIMM at

Low Temperature

ObservaGon 1. Faster Sensing

More Charge

Strong Charge

Flow

Faster Sensing

Typical DIMM at Low Temperature

è More charge è Faster sensing

Timing

(tRCD)

17% ↓

 No Errors

115 DIMM

Characteriza7on

28

ObservaGon 2. Reducing Restore Time

Less Leakage è

Extra Charge

No Need to Fully

Restore Charge

Typical DIMM at lower temperature

è More charge è Restore 7me reduc7on

Typical DIMM at

Low Temperature

 Read (tRAS)

37% ↓

 Write (tWR)

54% ↓

No Errors

115 DIMM

Characteriza7on

29

AL-DRAM	

•  Key idea

–  OpGmize DRAM Gming parameters online

•  Two components

– DRAM manufacturer provides mulGple sets of

reliable DRAM Gming parameters at different
temperatures for each DIMM

– System monitors DRAM temperature & uses
appropriate DRAM Gming parameters

reliable DRAM Gming parameters

DRAM temperature

Lee+,	“Adap;ve-Latency	DRAM:	Op;mizing	DRAM	Timing	for	the	Common-Case,”	HPCA	2015.	

30

DRAM Temperature

•  DRAM temperature measurement

•  Server cluster: Operates at under 34°C

•  Desktop: Operates at under 50°C

•  DRAM standard op7mized for 85°C

•  Previous works – DRAM temperature is low

•  El-Sayed+ SIGMETRICS 2012

•  Lin+ ISCA 2007

•  Previous works – Maintain low DRAM temperature

•  David+ ICAC 2011

•  Lin+ ISCA 2007

•  Zhu+ ITHERM 2008

DRAM operates at low temperatures
in the common-case

31

Latency	Reduc;on	Summary	of	115	DIMMs	
•  Latency reduc7on for read & write (55°C)

– Read Latency: 32.7%

– Write Latency: 55.1%

•  Latency reduc7on for each 7ming
parameter (55°C)

– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+,	“Adap;ve-Latency	DRAM:	Op;mizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	

32

AL-DRAM:	Real	System	Evalua;on	
•  System

– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

•  Workload

– 35 applica7ons from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

33

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

1.4%

6.7%

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

5.0%

AL-DRAM:	Single-Core	Evalua;on	

AL-DRAM improves performance on a real system

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t
 Average

Improvement

al
l-3

5-
w

or
kl

oa
d

34

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

14.0%

2.9%

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 MulG Core

10.4%

AL-DRAM:	Mul;-Core	Evalua;on	

AL-DRAM provides higher performance for

mul7-programmed & mul7-threaded workloads

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t
 Average

Improvement

al
l-3

5-
w

or
kl

oa
d

Reducing Latency Also Reduces Energy

n  AL-DRAM reduces DRAM power consumption by 5.8%

n  Major reason: reduction in row activation time

35

AL-DRAM: Advantages & Disadvantages

n  Advantages
 + Simple mechanism to reduce latency
 + Significant system performance and energy benefits
 + Benefits higher at low temperature
 + Low cost, low complexity

n  Disadvantages
 - Need to determine reliable operating latencies for different
temperatures and different DIMMs à higher testing cost
 (might not be that difficult for low temperatures)

36

More on AL-DRAM
n  Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,

Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the
21st International Symposium on High-Performance Computer
Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)] [Full data sets]

37

Different Types of Latency Variation
n  AL-DRAM exploits latency variation

q  Across time (different temperatures)
q  Across chips

n  Is there also latency variation within a chip?
q  Across different parts of a chip

38

Variation in Activation Errors

39

Different characteristics across DIMMs

No ACT Errors
Results from 7500 rounds over 240 chips

Very few errors

Modern DRAM chips exhibit
significant variation in activation latency

Rife w/ errors

13.1ns
standard

Many errors
Max

Min

Quartiles

Spatial Locality of Activation Errors

40

Activation errors are concentrated
at certain columns of cells

One DIMM @ tRCD=7.5ns

Mechanism to Reduce DRAM Latency

•  Observation: DRAM timing errors (slow DRAM
cells) are concentrated on certain regions

•  Flexible-LatencY (FLY) DRAM
–  A software-transparent design that reduces latency

•  Key idea:
1) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without
slow cells; higher latency for other regions

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

FLY-DRAM Configurations

0%
20%
40%
60%
80%

100%

Baseline
(DDR3)

D1 D2 D3 Upper
Bound

Fr
ac

ti
on

 o
f C

el
ls

13ns

10ns

7.5ns

0%
20%
40%
60%
80%

100%

Baseline
(DDR3)

D1 D2 D3 Upper
Bound

Fr
ac

ti
on

 o
f C

el
ls

13ns

10ns

7.5ns

Profiles of 3 real DIMMs

12%

93%
99%

13%

74%
99%

tRCD

tRP

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Results

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

1.25	
N
or
m
al
iz
ed

	P
er
fo
rm

an
ce
	

40	Workloads	

Baseline	(DDR3)	
FLY-DRAM	(D1)	
FLY-DRAM	(D2)	
FLY-DRAM	(D3)	
Upper	Bound	

17.6%
19.5%

19.7%

13.3%

FLY-DRAM improves performance
by exploiting spatial latency variation in DRAM

FLY-DRAM: Advantages & Disadvantages

n  Advantages
 + Reduces latency significantly
 + Exploits significant within-chip latency variation

n  Disadvantages
 - Need to determine reliable operating latencies for different
parts of a chip à higher testing cost
 - Slightly more complicated controller

44

Analysis of Latency Variation in DRAM Chips
n  Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Antibes Juan-Les-Pins, France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

45

Why Is There
 Spatial Latency Variation
 Within a Chip?

46

47

Inherently fast

inherently slow

What Is Design-Induced VariaGon?

slow
fast

slow

fast

Systema(c	varia(on in cell access Gmes

caused by the physical	organiza(on of DRAM

sense amplifiers

w
ordline drivers

across row

distance from
sense amplifier

across column

distance from
wordline driver

48

DIVA Online Profiling	
inherently slow

Profile only slow regions to determine min. latency

à Dynamic & low cost latency opGmizaGon

sense amplifier

w
ordline driver

Design-Induced-VariaGon-Aware

49

inherently slow

DIVA Online Profiling	
slow cells

design-induced

variaGon

process

variaGon

localized error
random error

online profiling
error-correcGng
code

Combine error-correcGng codes & online profiling

à Reliably reduce DRAM latency

sense amplifier

w
ordline driver

Design-Induced-VariaGon-Aware

50

DIVA-DRAM Reduces Latency

Read
 Write

31.2%

25.5%

35.1%
34.6%
36.6%
35.8%

0%

10%

20%

30%

40%

50%

55°C
 85°C
 55°C
 85°C
 55°C
 85°C

AL-DRAM
 AVA Profiling
 AVA Profiling
+ Shuffling

La
te

nc
y

Re
du

cG
on

DIVA
DIVA

36.6%

27.5%

39.4%
38.7%

41.3%
40.3%

0%

10%

20%

30%

40%

50%

55°C
 85°C
 55°C
 85°C
 55°C
 85°C

AL-DRAM
 AVA Profiling
 AVA Profiling
+ Shuffling

DIVA
DIVA

DIVA-DRAM reduces	latency	more	aggressively	
and uses ECC to correct random slow cells

DIVA-DRAM: Advantages & Disadvantages

n  Advantages
 ++ Automatically finds the lowest reliable operating latency
at system runtime (lower production-time testing cost)
 + Reduces latency more than prior methods (w/ ECC)
 + Reduces latency at high temperatures as well

n  Disadvantages
 - Requires knowledge of inherently-slow regions
 - Requires ECC (Error Correcting Codes)
 - Imposes overhead during runtime profiling

51

Design-Induced Latency Variation in DRAM
n  Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.

52

Understanding & Exploiting the
 Voltage-Latency-Reliability
 Relationship

53

High DRAM Power Consumption

•  Problem: High DRAM (memory) power in today’s
systems

54

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)

Low-Voltage Memory

•  Existing DRAM designs to help reduce DRAM power
by lowering supply voltage conservatively
–  𝑃𝑜𝑤𝑒𝑟∝​𝑉𝑜𝑙𝑡𝑎𝑔𝑒↑2 

•  DDR3L (low-voltage) reduces voltage from 1.5V to
1.35V (-10%)

•  LPDDR4 (low-power) employs low-power I/O
interface with 1.2V (lower bandwidth)

55

Can we reduce DRAM power and energy by
further reducing supply voltage?

Goals

56

1 Understand and characterize the various
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by
lowering voltage while keeping performance loss
within a target

Key Questions

•  How does reducing voltage affect
reliability (errors)?

•  How does reducing voltage affect
DRAM latency?

•  How do we design a new DRAM energy
reduction mechanism?

57

Supply Voltage Control on DRAM

58

Supply Voltage

Adjust the supply voltage to every chip on the same module

DRAM Module

Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to
1) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

59

Voltage
controller

DRAM
module FPGA

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Tested DRAM Modules

•  124 DDR3L (low-voltage) DRAM chips
–  31 SO-DIMMs
–  1.35V (DDR3 uses 1.5V)
–  Density: 4Gb per chip
–  Three major vendors/manufacturers
–  Manufacturing dates: 2014-2016

•  Iteratively read every bit in each 4Gb chip under a wide
range of supply voltage levels: 1.35V to 1.0V (-26%)

60

Reliability Worsens with Lower Voltage

61

1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.25 1.3 1.35
6uSSly Voltage (V)

0
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

)r
aF

tLo
n

of
 C

aF
he

 L
Ln

eV
w

Lth
 (

rr
or

V
(%

)

Vendor A Vendor % Vendor C

Nominal
Voltage

Min. voltage (Vmin)
without errors

Reducing voltage below Vmin causes �
an increasing number of errors

Errors induced by
reduced-voltage operation

Source of Errors

62

5	

10	

15	

20	

0.9	 1.0	 1.1	 1.2	 1.3	
La
te
nc
y	
(n
s)
	

Supply	Voltage	(V)	

Ac;vate	 Precharge	

Detailed circuit simulations (SPICE) of a DRAM cell array to
model the behavior of DRAM operations

Circuit model

Nominal
Voltage

https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Reliable low-voltage operation requires higher latency

DIMMs Operating at Higher Latency

63

Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns

M
ea

su
re

d
M

in
im

um

 A
ct

iv
at

e
La

te
nc

y
(n

s)

8

10

12

14 100% of modules

40% of modules

DRAM requires longer latency to access data
without errors at lower voltage

Distribution of latency in
the total population

Spatial Locality of Errors

64

A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions

Summary of Key Experimental Observations

•  Voltage-induced errors increase as
voltage reduces further below Vmin

•  Errors exhibit spatial locality

•  Increasing the latency of DRAM operations
mitigates voltage-induced errors

65

DRAM Voltage Adjustment to Reduce Energy

•  Goal: Exploit the trade-off between voltage and latency
to reduce energy consumption

•  Approach: Reduce DRAM voltage reliably
–  Performance loss due to increased latency at lower voltage

66

-20
-10

0
10
20
30
40

0.9 1.0 1.1 1.2 1.3Im
pr

ov
em

en
t

O
ve

r
N

om
in

al
 V

ol
ta

ge
 (

%
)

Supply Voltage (V)

Performance DRAM Power Savings
High Power Savings
Bad Performance

Low Power Savings
Good Performance

Voltron Overview

67

How do we predict performance loss due to
increased latency under low DRAM voltage?

Voltron

User specifies the
performance loss target

Select the minimum DRAM voltage
without violating the target

Linear Model to Predict Performance

68

Voltron

User specifies the
performance loss target

Select the minimum DRAM voltage
without violating the target

Linear regression model

Application’s
characteristics

[1.3V, 1.25V, …]

DRAM Voltage

[-1%, -3%, …]

Predicted
performance loss

Min.
Voltage

Target

Final
Voltage

Regression Model to Predict Performance

•  Application’s characteristics for the model:
–  Memory intensity: Frequency of last-level cache misses
–  Memory stall time: Amount of time memory requests stall

commit inside CPU

•  Handling multiple applications:
–  Predict a performance loss for each application
–  Select the minimum voltage that satisfies the performance

target for all applications

69

Comparison to Prior Work

•  Prior work: Dynamically scale frequency and voltage of the entire
DRAM based on bandwidth demand [David+, ICAC’11]
–  Problem: Lowering voltage on the peripheral circuitry

decreases channel frequency (memory data throughput)
•  Voltron: Reduce voltage to only DRAM array without changing

the voltage to peripheral circuitry

70

Peripheral
Circuitry

DRAM
Array

Control
Logic

I/O
Bank

Off-chip channel
Low frequency

Peripheral
Circuitry

DRAM
Array

Control
Logic

I/O
Bank

Off-chip channel
High frequency

Low Voltage
 Low
Voltage

Prior Work Voltron

Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that
observe errors under low voltage

–  Benefit: Higher performance

71

Peripheral
Circuitry DRAM Array

Control
Logic

I/O
Bank 0

Off-chip channel

Bank 1 Bank 2

High latency Low latency

Voltron Evaluation Methodology

•  Cycle-level simulator: Ramulator [CAL’15]

–  McPAT and DRAMPower for energy measurement

•  4-core system with DDR3L memory

•  Benchmarks: SPEC2006, YCSB

•  Comparison to prior work: MemDVFS [David+, ICAC’11]
–  Dynamic DRAM frequency and voltage scaling
–  Scaling based on the memory bandwidth consumption

72

https://github.com/CMU-SAFARI/ramulator

Energy Savings with Bounded Performance

73

0
1
2
3
4
5
6
7
8

Low High

C
PU

+
D

R
A

M
 �

En
er

gy
 S

av
in

gs
 (

%
)

Memory Intensity

MemDVFS Voltron

-6

-5

-4

-3

-2

-1

0

Low High
Pe

rf
or

m
an

ce
 L

os
s

(%
)

Memory Intensity

Performance Target

[David+, ICAC’11]

More savings for
high bandwidth
applications

Meets performance target

7.3%

3.2%

-1.6% -1.8%

Voltron: Advantages & Disadvantages

n  Advantages
 + Can trade-off between voltage and latency to improve
energy or performance
 + Can exploit the high voltage margin present in DRAM

n  Disadvantages
 - Requires finding the reliable operating voltage for each
chip à higher testing cost

74

Analysis of Latency-Voltage in DRAM Chips
n  Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the
ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.

75

And, What If …

n  … we can sacrifice reliability of some data to access it with
even lower latency?

76

Challenge and Opportunity for Future

Fundamentally
Low Latency

Computing Architectures

77

More Fundamentally Reducing
 Latency and Energy

78

Processing In Memory

79

Observation and Opportunity

n  High latency (and high energy) caused by data movement
q  Long, energy-hungry interconnects
q  Energy-hungry electrical interfaces
q  Movement of large amounts of data

n  Opportunity: Minimize data movement by performing
computation directly where the data resides
q  Processing in memory (PIM)
q  In-memory computation/processing
q  Near-data processing (NDP)
q  General concept applicable to any data storage unit (caches,

SSDs, main memory)

80

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste

81

The Problem

Processing of data
is performed

far away from the data

82

A Computing System
n  Three key components
n  Computation
n  Communication
n  Storage/memory

83

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

A Computing System
n  Three key components
n  Computation
n  Communication
n  Storage/memory

84

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Today’s Computing Systems
n  Are overwhelmingly processor centric
n  All data processed in the processor à at great system cost
n  Processor is heavily optimized and is considered the master
n  Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

85

Yet …
n  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design

n  Grossly-imbalanced systems
q  Processing done only in one place
q  Everything else just stores and moves data: data moves a lot
à Energy inefficient
à Low performance
à Complex

n  Overly complex and bloated processor (and accelerators)

q  To tolerate data access from memory
q  Complex hierarchies and mechanisms
à Energy inefficient
à Low performance
à Complex

87

Perils of Processor-Centric Design

88

Most of the system is dedicated to storing and moving data

Three Key Systems Trends

1. Data access is a major bottleneck
q  Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q  Especially true for off-chip to on-chip movement

89

Data Movement vs. Computation Energy

90

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

91

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

n  Enable computation with minimal data movement

n  Compute where it makes sense (where data resides)

n  Make computing architectures more data-centric

92

Goal: Processing Inside Memory

n  Many questions … How do we design the:
q  compute-capable memory & controllers?
q  processor chip?
q  software and hardware interfaces?
q  system software and languages?
q  algorithms?

Cache

Processor
Core

 Interconnect

 Memory
Database

Graphs

Media

Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Why In-Memory Computation Today?

n  Push from Technology
q  DRAM Scaling at jeopardy
 à Controllers close to DRAM
 à Industry open to new memory architectures

n  Pull from Systems and Applications
q  Data access is a major system and application bottleneck
q  Systems are energy limited
q  Data movement much more energy-hungry than computation

94

Dally, HiPEAC 2015

Two Approaches to In-Memory Processing
n  1. Minimally change DRAM to enable simple yet powerful

computation primitives
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

n  2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory
q  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)
q  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

(Ahn et al., ISCA 2015)
q  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation (Hsieh et al., ICCD 2016)
95

Approach 1: Minimally Changing DRAM
n  DRAM has great capability to perform bulk data movement and

computation internally with small changes
q  Can exploit internal bandwidth to move data
q  Can exploit analog computation capability
q  …

n  Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of

Bulk Data (Seshadri et al., MICRO 2013)
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL

2015)
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve

the Spatial Locality of Non-unit Strided Accesses (Seshadri et al.,
MICRO 2015)

96

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

src	 dst	

dst	val

Bulk Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

src	 dst	

dst	val

Bulk Data Copy and Initialization

99

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	High	latency	

2)	High	bandwidth	u;liza;on	

3)	Cache	pollu;on	

4)	Unwanted	data	movement	

100 1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	

Future Systems: In-Memory Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	Low	latency	

2)	Low	bandwidth	u;liza;on	

3)	No	cache	pollu;on	

4)	No	unwanted	data	movement	

101 1046ns,	3.6uJ	 à			90ns,	0.04uJ	

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
 Idea: Two consecutive ACTivates

RowClone: Intra-Subarray

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD
VDD VDD/2 + δ

Sense Amplifier
(Row Buffer)

Amplify the
difference

0

Data gets
copied

src

dst

RowClone: Intra-Subarray (II)

r	 c r	 o ws	

s	 t	 o wd r	

Row Buffer

r	 c r	 o ws	

s	 r	 c	 r	 o	 w

1.	Activate	src	row	(copy	data	from	src	to	row	buffer)	

2.	Activate	dst	row	(disconnect	src	from	row	buffer,	
connect	dst	–	copy	data	from	row	buffer	to	dst)	

RowClone: Inter-Bank
M

em
or

y
C

ha
nn

el

Ch
ip
	I/
O
	 Bank	

Shared
internal bus

Overlap	the	latency	of	the	read	and	the	write	
1.9X	latency	reduction,	3.2X	energy	reduction		

M
em

or
y

C
ha

nn
el

Ch
ip
	I/
O
	 Bank	 Bank	I/O	

Subarray	

Intra Subarray
Copy (2 ACTs)

Inter Bank Copy
(Pipelined

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost

RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix	a	row	at	Zero	
(0.5%	loss	in	capacity)	

107	

RowClone: Bulk Initialization

n  Initialization with arbitrary data
q  Initialize one row
q  Copy the data to other rows

n  Zero initialization (most common)
q  Reserve a row in each subarray (always zero)
q  Copy data from reserved row (FPM mode)
q  6.0X lower latency, 41.5X lower DRAM energy

q  0.2% loss in capacity

108

RowClone: Latency & Energy Benefits

109

0
2
4
6
8

10
12
14

In
tr
a-
Su

ba
rr
ay

	

In
te
r-
Ba

nk
	

In
te
r-S

ub
ar
ra
y	

In
tr
a-
Su

ba
rr
ay

	

Copy	 Zero	

Latency	Reduction	

0
20
40
60
80

In
tr
a-
Su

ba
rr
ay

	

In
te
r-
Ba

nk
	

In
te
r-S

ub
ar
ra
y	

In
tr
a-
Su

ba
rr
ay

	

Copy	 Zero	

Energy	Reduction	

11.6x

1.9x

6.0x

1.0x

74.4x

3.2x 1.5x

41.5x

Very	low	cost:	0.01%	increase	in	die	area	

Copy and Initialization in Workloads

110

0	

0.2	

0.4	

0.6	

0.8	

1	

bootup	 compile	 forkbench	 mcached	 mysql	 shell	

Fr
ac

ti
on

	o
f	M

em
or
y	
Tr
affi

c	

Zero	 Copy	 Write	 Read	

RowClone: Application Performance

111

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

om
pa

re
d

to
 B

as
el

in
e IPC Improvement Energy Reduction

End-to-End System Design

112

	DRAM	(RowClone)	

Microarchitecture	

ISA	

OperaGng	System	

ApplicaGon	
How to communicate
occurrences of bulk copy/
initialization across layers?

How to maximize latency and
energy savings?

How to ensure cache
coherence?

How to handle data reuse?

More on RowClone
n  Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

113

Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core
GPU

(throughput)
core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memory imaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-Memory Bulk Bitwise Operations
n  We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n  At low cost
n  Using analog computation capability of DRAM

q  Idea: activating multiple rows performs computation

n  30-60X performance and energy improvement
q  Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” MICRO 2017.

n  New memory technologies enable even more opportunities
q  Memristors, resistive RAM, phase change mem, STT-MRAM, …
q  Can operate on data with minimal movement

115

In-DRAM AND/OR: Triple Row Activation

116

½VDD	

½VDD	

dis	

A	

B	

C	

Final	State	
AB	+	BC	+	AC	

½VDD+δ	

C(A	+	B)	+	
~C(AB)	en	

0	

VDD	

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM Bulk Bitwise AND/OR Operation

n  BULKAND A, B à C
n  Semantics: Perform a bitwise AND of two rows A and B and

store the result in row C

n  R0 – reserved zero row, R1 – reserved one row
n  D1, D2, D3 – Designated rows for triple activation

1. RowClone A into D1
2. RowClone B into D2
3. RowClone R0 into D3
4. ACTIVATE D1,D2,D3
5. RowClone Result into C

117

More on In-DRAM Bulk AND/OR

n  Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

118

In-DRAM NOT: Dual Contact Cell

119

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

In-DRAM NOT Operation

120

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: In-DRAM Bitwise Operations

121

Energy of In-DRAM Bitwise Operations

122

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Example Data Structure: Bitmap Index

n  Alternative to B-tree and its variants
n  Efficient for performing range queries and joins
n  Many bitwise operations to perform a query

Bi
tm

ap
	1	

Bi
tm

ap
	2	

Bi
tm

ap
	4	

Bi
tm

ap
	3	

age	<	18	 18	<	age	<	25	 25	<	age	<	60	 age	>	60	

Performance: Bitmap Index on Ambit

124

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

125

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Required Reading: Ambit

n  Vivek Seshadri et al., “
Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology,”
MICRO 2017.

126

Two Approaches to In-Memory Processing
n  1. Minimally change DRAM to enable simple yet powerful

computation primitives
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

n  2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory
q  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)
q  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

(Ahn et al., ISCA 2015)
q  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation (Hsieh et al., ICCD 2016)
127

Opportunity: 3D-Stacked Logic+Memory

128

Logic

Memory

DRAM Landscape (circa 2015)

129

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D Stacked PIM

n  What is the minimal processing-in-memory support we can
provide ?
q  without changing the system significantly
q  while achieving significant benefits of processing in 3D-

stacked memory

n  How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q  what is the architecture and programming model?
q  what are the mechanisms for acceleration?

130

Graph Processing

131

n  Large graphs are everywhere (circa 2015)

n  Scalable large-scale graph processing is challenging	

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128
Cores

32 Cores

Speedup

Key Bottlenecks in Graph Processing

132

for	(v:	graph.ver;ces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank

v�

w�

&w�

1. Frequent random memory accesses

2. Little amount of computation

w.rank	

w.next_rank	

w.edges	

…	

Tesseract System for Graph Processing

Crossbar	Network�

…
…

…
…

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

134

Crossbar	Network�

…
…

…
…

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communica;ons	via	
Remote	Func;on	Calls�

Logic

Memory

Tesseract System for Graph Processing

135

Crossbar	Network�

…
…

…
…

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching�

Evaluated Systems

HMC-MC

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO Tesseract

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�
>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

138

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	ConsumpGon	

Tesseract Graph Processing System Energy

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract
n  Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the
42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

140

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Computer Architecture

Lecture 6: Low-Latency DRAM and
Processing In Memory

Prof. Onur Mutlu
ETH Zürich
Fall 2017

5 October 2017

Two Key Questions in 3D Stacked PIM

n  What is the minimal processing-in-memory support we can
provide ?
q  without changing the system significantly
q  while achieving significant benefits of processing in 3D-

stacked memory

n  How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q  what is the architecture and programming model?
q  what are the mechanisms for acceleration?

143

PEI: PIM-Enabled Instructions (Ideas)
n  Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

n  Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
q  e.g., __pim_add(&w.next_rank,	value)	à	pim.add	r1,	(r2)�
q  No changes sequential execution/programming model
q  No changes to virtual memory
q  Minimal changes to cache coherence
q  No need for data mapping: Each PEI restricted to a single memory module

n  Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
q  Execute each operation at the location that provides the best performance

144

PEI: PIM-Enabled Instructions (Example)

145

n  Executed either in memory or in the processor: dynamic decision
q  Low-cost locality monitoring for a single instruction

n  Cache-coherent, virtually-addressed, single cache block only
n  Atomic between different PEIs
n  Not atomic with normal instructions (use pfence for ordering)

for	(v:	graph.ver;ces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	
pfence();	

pim.add	r1,	(r2)�

pfence�

Example (Abstract) PEI uArchitecture

146

Out-Of-Order	
Core�

L1
	C
ac
he
�

L2
	C
ac
he
�

La
st
-L
ev
el
	

Ca
ch
e�

HM
C	
Co

nt
ro
lle
r�

N
et
w
or
k�

DRAM	
Controller�

DRAM	
Controller�

DRAM	
Controller�

Host Processor 3D-stacked Memory
…

PCU	(PEI	
Computa;on	Unit)�

PCU�

PCU�

PCU�

PIM	
Directory�

Locality	
Monitor�

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

PEI: Initial Evaluation Results
n  Initial evaluations with 10 emerging data-intensive workloads

q  Large-scale graph processing
q  In-memory data analytics
q  Machine learning and data mining
q  Three input sets (small, medium, large)

for each workload to analyze the impact
of data locality

n  Pin-based cycle-level x86-64 simulation	

n  Performance Improvement and Energy Reduction:
n  47% average speedup with large input data sets
n  32% speedup with small input data sets
n  25% avg. energy reduction in a single node with large input data sets

147

More on PIM-Enabled Instructions
n  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the
42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

More on PIM Design: 3D-Stacked GPU I
n  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

149

Key Challenge 1	

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Key Challenge 1	

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?	

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
on the logic layer SMs?

?	
SM (Streaming Multiprocessor)

Key Challenge 2

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

More on PIM Design: 3D-Stacked GPU II
n  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the
25th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Haifa, Israel, September 2016.

153

More on PIM: Linked Data Structures
n  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the
34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

154

Executive Summary
• Our Goal: Accelerating pointer chasing inside

main memory

• Challenges: Parallelism challenge and Address
translation challenge

• Our Solution: In-Memory PoInter Chasing
Accelerator (IMPICA)

•  Address-access decoupling: enabling parallelism in the
accelerator with low cost

•  IMPICA page table: low cost page table structure

• Key Results:
•  1.2X – 1.9X speedup for pointer chasing operations, +16%

database throughput
•  6% - 41% reduction in energy consumption

155

More on PIM Design: Dependent Misses
n  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

156

More on PIM Design: Coherence

n  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

157

Traditional Coherence Approaches Do Not Work

158

Traditional
coherence

No coherence
overhead

More on PIM Design: Data Structures

n  Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

159

Simulation Infrastructures for PIM

n  Ramulator extended for PIM
q  Flexible and extensible DRAM simulator
q  Can model many different memory standards and proposals
q  Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
q  https://github.com/CMU-SAFARI/ramulator

160

An FPGA-based Test-bed for PIM?

n  Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n  Flexible
n  Easy to Use (C++ API)
n  Open-source
 github.com/CMU-SAFARI/SoftMC

161

An FPGA-based Test-bed for PIM

n  Hasan Hassan et al.,
SoftMC: A Flexible and
Practical Open-Source
Infrastructure for Enabling
Experimental DRAM Studies
HPCA 2017.

n  Flexible
n  Easy to Use (C++ API)
n  Open-source
 github.com/CMU-SAFARI/SoftMC

162

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
163

Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures

164

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

165

Accelerating Pointer Chasing in
3D-Stacked Memory:

Challenges, Mechanisms, Evaluation

Kevin Hsieh
Samira Khan, Nandita Vijaykumar, Kevin K. Chang,
Amirali Boroumand, Saugata Ghose, Onur Mutlu

Executive Summary
• Our Goal: Accelerating pointer chasing inside

main memory

• Challenges: Parallelism challenge and Address
translation challenge

• Our Solution: In-Memory PoInter Chasing
Accelerator (IMPICA)

•  Address-access decoupling: enabling parallelism in the
accelerator with low cost

•  IMPICA page table: low cost page table structure

• Key Results:
•  1.2X – 1.9X speedup for pointer chasing operations, +16%

database throughput
•  6% - 41% reduction in energy consumption

167

Linked Data Structures

• Linked data structures are widely used
in many important applications

168

Database

B-Tree Hash Table

Key-value stores Linked	data	structures
	are		

connected	by	pointers
	

The Problem: Pointer Chasing

• Traversing linked data structures
requires chasing pointers

169

MEM	

H

E

A F

Q

M

Find(A)

Addr	
(H)	

Data	
(H)	

Addr	
(E)	

Data	
(E)	

Addr	
(A)	

Data	
(A)	

Serialized and irregular access pattern
6X cycles per instruction in real workloads

DRAM layers

Our Goal

170

Accelerating pointer chasing
inside main memory

H

E

A F

Q

M

Find(A)

MEM	

Data	
(A)	

Logic layer

Find	
(A)	

Outline

• Motivation and Our Approach
• Parallelism Challenge
• IMPICA Core Architecture
• Address Translation Challenge
• IMPICA Page Table
• Evaluation
• Conclusion

171

Parallelism Challenge

172

Time
Memory		
access	CPU core

In-Memory
Accelerator

Comp	 Memory	
access	

CPU core

Comp	

Comp	 Comp	

Memory		
access	Comp	 Comp	

Comp	 Memory	
access	 Comp	

Faster	for	one	operaGo
n	Slower	for	two	operaG
ons	

Parallelism Challenge and Opportunity

• A simple in-memory accelerator can
still be slower than multiple CPU cores

• Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

173

CPU	core	

Accelerator	

CPU	core	 CPU	core	

Comp	 Memory	access	(10-15X	of	Comp)	 Comp	

Our Solution:
Address-Access Decoupling

174

Time

Comp	

Memory	
access	

Comp	 Comp	
Address
Engine

Access
Engine

Comp	

Memory	
access	

Memory		
access	CPU core

CPU core

Comp	 Comp	

Memory		
access	Comp	 Comp	

Address-access	decoup
ling	enables	

parallelism	in	both	engines	with	lo
w	cost	

DRAM Dies

IMPICA Core Architecture

175

Address
Engine

Access
Engine

Memory
Controller

DRAM

Logic Layer

DRAM Layers

Request Queue

To/From CPU

Access Queue

Response Queue

IMPICA
Cache

Traversal
1	

Traversal
2	

Outline

• Motivation and Our Approach
• Parallelism Challenge
• IMPICA Core Architecture
• Address Translation Challenge
• IMPICA Page Table
• Evaluation
• Conclusion

176

Address Translation Challenge

177

TLB/MMU

Pointer (VA)

Pointer (PA)

Page table walk

PTW

PTW

PTW
PTW

PTW
No TLB/MMU on the memory side

Duplicating it is costly and creates

compatibility issue

The page table walk requires

multiple memory accesses

Our Solution: IMPICA Page Table

• Completely decouple the page table of
IMPICA from the page table of the
CPUs

178

IMPICA
Region

Physical Address Space

Virtual	Page	

Physical	Page	

Physical	Page	

Virtual	Page	

CPU Page Table

Virtual Address Space

IMPICA Page Table

Map linked data structure into IMPICA regions

IMPICA page table is a partial-to-any mapping

IMPICA Page Table: Mechanism

Bit	[47:41]	 Bit	[40:21]	 Bit	[20:12]	 Bit	[11:0]	

Region Table

Flat Page Table
(2MB)

Small Page Table
(4KB)

+

+

Virtual Address

+

Physical Address

Tiny region table is almost

always in the cache

Flat page table

saves one memory access

Outline

• Motivation and Our Approach
• Parallelism Challenge
• IMPICA Core Architecture
• Address Translation Challenge
• IMPICA Page Table
• Evaluation
• Conclusion

180

Evaluated Workloads

• Microbenchmarks
• Linked list (from Olden benchmark)
• Hash table (from Memcached)
• B-tree (from DBx1000)

• Application
• DBx1000 (with TPC-C benchmark)

181

Evaluation Methodology

• Simulator: gem5
• System Configuration

• CPU
•  4 OoO cores, 2GHz
• Cache: 32KB L1, 1MB L2

• IMPICA
• 1 core, 500MHz, 32KB Cache

• Memory Bandwidth
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

• Our simulator code is open source
• https://github.com/CMU-SAFARI/IMPICA

182

Result – Microbenchmark Performance

183

0.0	

0.5	

1.0	

1.5	

2.0	

Linked	List	 Hash	Table	 B-Tree	

Sp
ee
du

p	
Baseline	+	extra	128KB	L2	 IMPICA	

1.9X	

1.3X	 1.2X	

Result – Database Performance

184

0.90	

1.00	

1.10	

1.20	

Baseline	+	extra	
128KB	L2	

Baseline	+	extra	
1MB	L2	

IMPICA	

Da
ta
ba
se
	

Th
ro
ug
hp

ut
	

+2%	
+5%	

+16%	

0.80	
0.85	
0.90	
0.95	
1.00	

Baseline	+	extra	
128KB	L2	

Baseline	+	extra	
1MB	L2	

IMPICA	

Da
ta
ba
se
	

La
te
nc
y	 -4%	

-13%	

-0%	

System Energy Consumption

185

0.0	

0.5	

1.0	

Linked	
List	

Hash	
Table	

B-Tree	 DBx1000	

N
or
m
al
ize

d	
En

er
gy
		 Baseline	+	extra	128KB	L2	 IMPICA	

-41%	
-24%	

-6%	
-10%	

Area and Power Overhead

• Power overhead: average power
increases by 5.6%

186

CPU	(Cortex-A57)	 5.85	mm2	per	core	

L2	Cache	 5	mm2	per	MB	

Memory	Controller	 10	mm2	

IMPICA	(+32KB	cache)	 0.45	mm2	

More in the Paper

• Interface and design considerations
• CPU interface and programming model
• Page table management
• Cache coherence

• Area and power overhead analysis

• Sensitivity to IMPICA page table design

187

Conclusion
•  Performing pointer-chasing inside main memory can greatly

speed up the traversal of linked data structures

• Challenges: Parallelism challenge and Address translation
challenge

• Our Solution: In-Memory PoInter Chasing Accelerator
•  Address-access decoupling: enabling parallelism with low cost
•  IMPICA page table: low cost page table structure

• Key Results:
•  1.2X – 1.9X speedup for pointer chasing operations, +16%

database throughput
•  6% - 41% reduction in energy consumption

• Our solution can be applied to a broad class of in-memory
accelerators 188

Current Investigations
• More efficient address translation and protection

mechanisms for PIM

• More concurrent data structures for PIM

189

More Info on IMPICA (Current Status)

•  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

190

Accelerating Pointer Chasing in
3D-Stacked Memory:

Challenges, Mechanisms, Evaluation

Kevin Hsieh
Samira Khan, Nandita Vijaykumar, Kevin K. Chang,
Amirali Boroumand, Saugata Ghose, Onur Mutlu

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Computer Architecture

Lecture 6: Low-Latency DRAM and
Processing In Memory

Prof. Onur Mutlu
ETH Zürich
Fall 2017

5 October 2017

