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High-Level Summary of Last Lecture 
n  DRAM Operation Continued 
n  Memory Controllers 
n  Memory Latency 

q  Tiered-Latency DRAM 
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Agenda for Today 
n  Memory Latency Continued 
n  Memory Latency-Voltage-Reliability Relationship 
n  Processing In Memory 
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Memory Latency:  
Fundamental Tradeoffs 
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DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 

Long memory latency → performance bottleneck




What Causes  
the Long DRAM Latency? 

 
 
 
 



Why the Long Latency? 

n  Reason 1: Design of DRAM Micro-architecture 
q  Goal: Maximize capacity/area, not minimize latency 

n  Reason 2: “One size fits all” approach to latency specification 
q  Same latency parameters for all temperatures 
q  Same latency parameters for all DRAM chips (e.g., rows) 
q  Same latency parameters for all parts of a DRAM chip 
q  Same latency parameters for all supply voltage levels 
q  Same latency parameters for all application data  
q  … 
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Latency Variation in Memory Chips 
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High Low 
DRAM Latency 

DRAM B DRAM A DRAM C 

Slow cells 

Heterogeneous manufacturing & operating conditions → �

latency variation in timing parameters 



Why is Latency High? 
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•  DRAM latency: Delay as specified in DRAM standards 
–  Doesn’t reflect true DRAM device latency 

•  Imperfect manufacturing process → latency variation 
•  High standard latency chosen to increase yield 

 

High Low 
DRAM Latency 

DRAM A DRAM B DRAM C 

Manufacturing 
Variation 

Standard 
Latency 



What Causes the Long Memory Latency? 

n  Conservative timing margins!  

n  DRAM timing parameters are set to cover the worst case 

n  Worst-case temperatures  
q  85 degrees vs. common-case 
q  to enable a wide range of operating conditions 

n  Worst-case devices  
q  DRAM cell with smallest charge across any acceptable device 
q  to tolerate process variation at acceptable yield 

n  This leads to large timing margins for the common case 
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Understanding and Exploiting 
Variation in DRAM Latency 

 
 
 
 



14


DRAM Stores Data as Charge


1. Sensing

2. Restore

3. Precharge


DRAM Cell


Sense-Amplifier


Three steps of 
charge movement
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1. Process Varia7on 

– DRAM cells are not equal

–  Leads to extra Gming margin for cell that can 

store small amount of charge


`	



2. Temperature Dependence 


– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin when operaGng at 

low temperature 


	

Two Reasons for Timing Margin


1. Process Varia7on 

– DRAM cells are not equal

–  Leads to extra Gming margin for a cell that can 

store a large amount of charge


	

1. Process Varia7on 

– DRAM cells are not equal

–  Leads to extra Gming margin for a cell that can 

store a large amount of charge
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DRAM Cells are Not Equal

Real
Ideal


Same Size è 

Same Charge è 


Different Size è 

Different Charge è 


Largest Cell


Smallest Cell


Same Latency
 Different Latency


Large varia7on in cell size è 

Large varia7on in charge è 


Large varia7on in access latency
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Contact


Process VariaGon


Access Transistor


Bitline


Capacitor


Small cell can store small 
charge


• Small cell capacitance

• High contact resistance

• Slow access transistor


❶ Cell Capacitance


❷ Contact Resistance


❸ Transistor Performance


ACCESS


DRAM Cell


è High access latency 
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Two Reasons for Timing Margin


1. Process Varia7on 

– DRAM cells are not equal

–  Leads to extra Gming margin for a cell that can 

store a large amount of charge


`	



2. Temperature Dependence 


– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin for cells that 

operate at the high temperature 


	



2. Temperature Dependence 


– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin for cells that 

operate at the high temperature 


	



2. Temperature Dependence 


– DRAM leaks more charge at higher temperature

–  Leads to extra Gming margin for cells that 

operate at low temperature 
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Charge Leakage  Temperature

Room Temp.
 Hot Temp. (85°C)


Small Leakage
 Large Leakage
Cells store small charge at high temperature 

and large charge at low temperature 

à Large varia7on in access latency
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DRAM Timing Parameters

• DRAM 7ming parameters are dictated by 

the worst-case 

–  The smallest cell with the smallest charge in 

all DRAM products


–  OperaGng at the highest temperature


•  Large 7ming margin for the common-case




Adaptive-Latency DRAM [HPCA 2015]  

n  Idea: Optimize DRAM timing for the common case 
q  Current temperature 
q  Current DRAM module 

n  Why would this reduce latency? 

q  A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case 

q  More charge in a DRAM cell 
    à Faster sensing, charge restoration, precharging 
    à Faster access (read, write, refresh, …) 
 
 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015. 
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Extra	Charge	à	Reduced	Latency	

1. Sensing


2. Restore


3. Precharge


Sense cells with extra charge faster 

à Lower sensing latency


No need to fully restore cells with extra charge

à Lower restoraGon latency


No need to fully precharge bitlines for cells with 
extra charge

à Lower precharge latency




DRAM Characterization Infrastructure 

24 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



DRAM Characterization Infrastructure 

n  Hasan Hassan et al., 
SoftMC: A Flexible and 
Practical Open-Source 
Infrastructure for Enabling 
Experimental DRAM Studies, 
HPCA 2017. 

 
 
n  Flexible 
n  Easy to Use (C++ API) 
n  Open-source  
    github.com/CMU-SAFARI/SoftMC  

25 



SoftMC: Open Source DRAM Infrastructure 

n  https://github.com/CMU-SAFARI/SoftMC  
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Typical DIMM at 

Low Temperature


ObservaGon 1. Faster Sensing


More Charge


Strong Charge

Flow


Faster Sensing


Typical DIMM at Low Temperature

è More charge è Faster sensing







Timing

(tRCD) 




17% ↓


 No Errors




115 DIMM 

Characteriza7on
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ObservaGon 2. Reducing Restore Time


Less Leakage è 

Extra Charge


No Need to Fully

Restore Charge


Typical DIMM at lower temperature

è More charge è Restore 7me reduc7on


Typical DIMM at 

Low Temperature
 





 Read (tRAS) 

37% ↓




 Write (tWR) 

54% ↓




No Errors


115 DIMM 

Characteriza7on
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AL-DRAM	

•  Key idea

–  OpGmize DRAM Gming parameters online


•  Two components

– DRAM manufacturer provides mulGple sets of 

reliable DRAM Gming parameters at different 
temperatures for each DIMM


– System monitors DRAM temperature & uses 
appropriate DRAM Gming parameters


reliable DRAM Gming parameters


DRAM temperature


Lee+,	“Adap;ve-Latency	DRAM:	Op;mizing	DRAM	Timing	for	the	Common-Case,”	HPCA	2015.	
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DRAM Temperature

•  DRAM temperature measurement


•  Server cluster: Operates at under 34°C  

•  Desktop: Operates at under 50°C

•  DRAM standard op7mized for 85°C



•  Previous works – DRAM temperature is low

•  El-Sayed+ SIGMETRICS 2012

•  Lin+ ISCA 2007


•  Previous works – Maintain low DRAM temperature 

•  David+ ICAC 2011

•  Lin+ ISCA 2007

•  Zhu+ ITHERM 2008





DRAM operates at low temperatures   
in the common-case
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Latency	Reduc;on	Summary	of	115	DIMMs	
•  Latency reduc7on for read & write (55°C)


– Read Latency: 32.7%

– Write Latency: 55.1%


•  Latency reduc7on for each 7ming 
parameter (55°C) 

– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2% 


Lee+,	“Adap;ve-Latency	DRAM:	Op;mizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	
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AL-DRAM:	Real	System	Evalua;on	
•  System


– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD


•  Workload

– 35 applica7ons from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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AL-DRAM:	Single-Core	Evalua;on	

AL-DRAM improves performance on a real system
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AL-DRAM:	Mul;-Core	Evalua;on	

AL-DRAM provides higher performance for

mul7-programmed & mul7-threaded workloads
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Reducing Latency Also Reduces Energy 

n  AL-DRAM reduces DRAM power consumption by 5.8% 

n  Major reason: reduction in row activation time 
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AL-DRAM: Advantages & Disadvantages 

n  Advantages 
   + Simple mechanism to reduce latency 
   + Significant system performance and energy benefits 
      + Benefits higher at low temperature 
   + Low cost, low complexity  
 
n  Disadvantages 
    - Need to determine reliable operating latencies for different 
temperatures and different DIMMs à higher testing cost 
      (might not be that difficult for low temperatures) 
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More on AL-DRAM 
n  Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 

Vivek Seshadri, Kevin Chang, and Onur Mutlu, 
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"  
Proceedings of the 
21st International Symposium on High-Performance Computer 
Architecture (HPCA), Bay Area, CA, February 2015.  
[Slides (pptx) (pdf)] [Full data sets]  
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Different Types of Latency Variation 
n  AL-DRAM exploits latency variation 

q  Across time (different temperatures) 
q  Across chips 

n  Is there also latency variation within a chip? 
q  Across different parts of a chip 

38 



Variation in Activation Errors 

39 

Different characteristics across DIMMs 
 

 
 
 

No ACT Errors 
Results from 7500 rounds over 240 chips 

Very few errors 

Modern DRAM chips exhibit  
significant variation in activation latency 

Rife w/ errors 

13.1ns 
standard 

Many errors 
Max 

Min 

Quartiles 



Spatial Locality of Activation Errors 

40 

Activation errors are concentrated  
at certain columns of cells 

One DIMM @ tRCD=7.5ns 



Mechanism to Reduce DRAM Latency 

•  Observation: DRAM timing errors (slow DRAM 
cells) are concentrated on certain regions 

•  Flexible-LatencY (FLY) DRAM 
–  A software-transparent design that reduces latency  

•  Key idea: 
1) Divide memory into regions of different latencies 

2) Memory controller: Use lower latency for regions without 
slow cells; higher latency for other regions 

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 



FLY-DRAM Configurations 
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 



Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 

Results 
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17.6% 
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13.3% 

FLY-DRAM improves performance  
by exploiting spatial latency variation in DRAM 



FLY-DRAM: Advantages & Disadvantages 

n  Advantages 
   + Reduces latency significantly 
      + Exploits significant within-chip latency variation 
 
 
n  Disadvantages 
    - Need to determine reliable operating latencies for different 
parts of a chip à higher testing cost 
    - Slightly more complicated controller 
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Analysis of Latency Variation in DRAM Chips 
n  Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu, 
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Antibes Juan-Les-Pins, France, June 2016.  
[Slides (pptx) (pdf)]  
[Source Code]  
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Why Is There  
 Spatial Latency Variation  
    Within a Chip? 

46 
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Inherently fast


inherently slow


What Is Design-Induced VariaGon?

slow
fast


slow



fast


Systema(c	varia(on in cell access Gmes

caused by the physical	organiza(on of DRAM


sense amplifiers


w
ordline drivers


across row

distance from 
sense amplifier


across column


distance from 
wordline driver
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DIVA Online Profiling	
inherently slow


Profile only slow regions to determine min. latency

à Dynamic & low cost latency opGmizaGon


sense amplifier


w
ordline driver


Design-Induced-VariaGon-Aware
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inherently slow


DIVA Online Profiling	
slow cells  


design-induced

variaGon


process

variaGon


localized error
random error


online profiling
error-correcGng 
code


Combine error-correcGng codes & online profiling

à Reliably reduce DRAM latency


sense amplifier


w
ordline driver


Design-Induced-VariaGon-Aware
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DIVA-DRAM Reduces Latency

Read
 Write
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36.6%


27.5%


39.4%
38.7%

41.3%
40.3%
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DIVA
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DIVA-DRAM reduces	latency	more	aggressively	
and uses ECC to correct random slow cells




DIVA-DRAM: Advantages & Disadvantages 

n  Advantages 
   ++ Automatically finds the lowest reliable operating latency 
at system runtime (lower production-time testing cost) 
   + Reduces latency more than prior methods (w/ ECC) 
   + Reduces latency at high temperatures as well 
 
n  Disadvantages 
    - Requires knowledge of inherently-slow regions 
    - Requires ECC (Error Correcting Codes) 
    - Imposes overhead during runtime profiling 
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Design-Induced Latency Variation in DRAM 
n  Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu, 
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.  
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Understanding & Exploiting the  
 Voltage-Latency-Reliability 
     Relationship 
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High DRAM Power Consumption 

•  Problem: High DRAM (memory) power in today’s 
systems 

54 

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15) 
 



Low-Voltage Memory 

•  Existing DRAM designs to help reduce DRAM power 
by lowering supply voltage conservatively 
–  𝑃𝑜𝑤𝑒𝑟∝​𝑉𝑜𝑙𝑡𝑎𝑔𝑒↑2  

•  DDR3L (low-voltage) reduces voltage from 1.5V to 
1.35V (-10%) 

•  LPDDR4 (low-power) employs low-power I/O 
interface with 1.2V (lower bandwidth) 

55 

Can we reduce DRAM power and energy by 
further reducing supply voltage? 



Goals 

56 

1 Understand and characterize the various 
characteristics of DRAM under reduced voltage 

2 Develop a mechanism that reduces DRAM energy by 
lowering voltage while keeping performance loss 
within a target 



Key Questions 

•  How does reducing voltage affect 
reliability (errors)? 

•  How does reducing voltage affect  
DRAM latency? 

•  How do we design a new DRAM energy 
reduction mechanism? 

57 



Supply Voltage Control on DRAM 

58 

Supply Voltage 

Adjust the supply voltage to every chip on the same module 

DRAM Module 



Custom Testing Platform 

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to  
1) Adjust supply voltage to DRAM modules 
2) Schedule DRAM commands to DRAM modules 

Existing systems: DRAM commands not exposed to users 
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Voltage 
controller 

DRAM 
module FPGA 

https://github.com/CMU-SAFARI/DRAM-Voltage-Study 



Tested DRAM Modules 

•  124 DDR3L (low-voltage) DRAM chips 
–  31 SO-DIMMs 
–  1.35V (DDR3 uses 1.5V) 
–  Density: 4Gb per chip 
–  Three major vendors/manufacturers 
–  Manufacturing dates: 2014-2016 

•  Iteratively read every bit in each 4Gb chip under a wide 
range of supply voltage levels: 1.35V to 1.0V (-26%) 
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Reliability Worsens with Lower Voltage 
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Source of Errors 
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Reliable low-voltage operation requires higher latency




DIMMs Operating at Higher Latency 
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Measured minimum latency that does not cause errors in DRAM modules 

Lower bound of latency as our latency adjustment granularity is 2.5ns  
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Distribution of latency in 
the total population 



Spatial Locality of Errors 
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A module under 1.175V (12% voltage reduction) 

Errors concentrate in certain regions




Summary of Key Experimental Observations 

•  Voltage-induced errors increase as  
voltage reduces further below Vmin 

•  Errors exhibit spatial locality 

•  Increasing the latency of DRAM operations 
mitigates voltage-induced errors 
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DRAM Voltage Adjustment to Reduce Energy 

•  Goal: Exploit the trade-off between voltage and latency 
to reduce energy consumption 

•  Approach: Reduce DRAM voltage reliably 
–  Performance loss due to increased latency at lower voltage 

66 

-20
-10

0
10
20
30
40

0.9 1.0 1.1 1.2 1.3Im
pr

ov
em

en
t 

O
ve

r 
N

om
in

al
 V

ol
ta

ge
 (

%
)

Supply Voltage (V)

Performance DRAM Power Savings
High Power Savings 
Bad Performance 

Low Power Savings 
Good Performance 



Voltron Overview 
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How do we predict performance loss due to 
increased latency under low DRAM voltage? 

Voltron 

User specifies the 
performance loss target 

Select the minimum DRAM voltage 
without violating the target 



Linear Model to Predict Performance 
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Voltron 

User specifies the 
performance loss target 

Select the minimum DRAM voltage 
without violating the target 

Linear regression model 

Application’s 
characteristics 

[1.3V, 1.25V, …]

DRAM Voltage 

[-1%, -3%, …]

Predicted 
performance loss 

Min. 
Voltage 

Target 

Final 
Voltage 



Regression Model to Predict Performance 

•  Application’s characteristics for the model: 
–  Memory intensity: Frequency of last-level cache misses 
–  Memory stall time: Amount of time memory requests stall 

commit inside CPU 

•  Handling multiple applications: 
–  Predict a performance loss for each application 
–  Select the minimum voltage that satisfies the performance 

target for all applications 
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Comparison to Prior Work 

•  Prior work: Dynamically scale frequency and voltage of the entire 
DRAM based on bandwidth demand [David+, ICAC’11]   
–  Problem: Lowering voltage on the peripheral circuitry 

decreases channel frequency (memory data throughput) 
•  Voltron: Reduce voltage to only DRAM array without changing 

the voltage to peripheral circuitry 
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Exploiting Spatial Locality of Errors 

Key idea: Increase the latency only for DRAM banks that 
observe errors under low voltage 

–  Benefit: Higher performance 
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Voltron Evaluation Methodology 

•  Cycle-level simulator: Ramulator [CAL’15] 

–  McPAT and DRAMPower for energy measurement 

•  4-core system with DDR3L memory 

•  Benchmarks: SPEC2006, YCSB 

•  Comparison to prior work: MemDVFS [David+, ICAC’11] 
–  Dynamic DRAM frequency and voltage scaling 
–  Scaling based on the memory bandwidth consumption 
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https://github.com/CMU-SAFARI/ramulator 



Energy Savings with Bounded Performance 
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Voltron: Advantages & Disadvantages 

n  Advantages 
   + Can trade-off between voltage and latency to improve 
energy or performance 
   + Can exploit the high voltage margin present in DRAM 
 
n  Disadvantages 
    - Requires finding the reliable operating voltage for each 
chip à higher testing cost 
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Analysis of Latency-Voltage in DRAM Chips 
n  Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish 

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu, 
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.  
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And, What If … 

n  … we can sacrifice reliability of some data to access it with 
even lower latency? 
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Challenge and Opportunity for Future 

Fundamentally 
Low Latency 

Computing Architectures 
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More Fundamentally Reducing 
   Latency and Energy 
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Processing In Memory 
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Observation and Opportunity 

n  High latency (and high energy) caused by data movement 
q  Long, energy-hungry interconnects 
q  Energy-hungry electrical interfaces 
q  Movement of large amounts of data 

n  Opportunity: Minimize data movement by performing 
computation directly where the data resides 
q  Processing in memory (PIM) 
q  In-memory computation/processing 
q  Near-data processing (NDP) 
q  General concept applicable to any data storage unit (caches, 

SSDs, main memory) 
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The Problem 

Data access is the major performance and energy bottleneck 

 

Our current 
design principles  

cause great energy waste 
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The Problem 

Processing of data  
is performed  

far away from the data 
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A Computing System 
n  Three key components 
n  Computation  
n  Communication 
n  Storage/memory 
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Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 



A Computing System 
n  Three key components 
n  Computation  
n  Communication 
n  Storage/memory 
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Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 



Today’s Computing Systems 
n  Are overwhelmingly processor centric 
n  All data processed in the processor à at great system cost 
n  Processor is heavily optimized and is considered the master 
n  Data storage units are dumb and are largely unoptimized 

(except for some that are on the processor die) 
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Yet … 
n  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996) 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003. 



Perils of Processor-Centric Design 

n  Grossly-imbalanced systems 
q  Processing done only in one place 
q  Everything else just stores and moves data: data moves a lot 
à Energy inefficient  
à Low performance 
à Complex 

 
n  Overly complex and bloated processor (and accelerators) 

q  To tolerate data access from memory 
q  Complex hierarchies and mechanisms  
à Energy inefficient  
à Low performance 
à Complex 
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Perils of Processor-Centric Design 
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Most of the system is dedicated to storing and moving data  



Three Key Systems Trends 

1. Data access is a major bottleneck 
q  Applications are increasingly data hungry 

2. Energy consumption is a key limiter 

3. Data movement energy dominates compute 
q  Especially true for off-chip to on-chip movement 
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Data Movement vs. Computation Energy 
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Dally, HiPEAC 2015 



Data Movement vs. Computation Energy 
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Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



We Need A Paradigm Shift To … 

n  Enable computation with minimal data movement 

n  Compute where it makes sense (where data resides) 

n  Make computing architectures more data-centric 
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Goal: Processing Inside Memory 

 

n  Many questions … How do we design the: 
q  compute-capable memory & controllers? 
q  processor chip? 
q  software and hardware interfaces? 
q  system software and languages? 
q  algorithms? 

Cache 

Processor 
Core 

 Interconnect 

 Memory 
Database 
 
Graphs 
 
Media   

Query 

Results 

Micro-architecture 

SW/HW Interface 
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Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 



Why In-Memory Computation Today? 

n  Push from Technology 
q  DRAM Scaling at jeopardy  
   à Controllers close to DRAM 
   à Industry open to new memory architectures 

n  Pull from Systems and Applications 
q  Data access is a major system and application bottleneck 
q  Systems are energy limited 
q  Data movement much more energy-hungry than computation 
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Dally, HiPEAC 2015 



Two Approaches to In-Memory Processing  
n  1. Minimally change DRAM to enable simple yet powerful   

computation primitives 
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) 

 
n  2. Exploit the control logic in 3D-stacked memory to enable 

more comprehensive computation near memory 
q  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 
q  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 

(Ahn et al., ISCA 2015) 
q  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 

Mechanisms, Evaluation  (Hsieh et al., ICCD 2016) 
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Approach 1: Minimally Changing DRAM 
n  DRAM has great capability to perform bulk data movement and 

computation internally with small changes 
q  Can exploit internal bandwidth to move data 
q  Can exploit analog computation capability 
q  … 

n  Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM 
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of 

Bulk Data (Seshadri et al., MICRO 2013) 
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 

2015) 
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve 

the Spatial Locality of Non-unit Strided Accesses (Seshadri et al., 
MICRO 2015) 
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Starting Simple: Data Copy and Initialization 

Bulk Data 
Copy 

Bulk Data 
Initialization 

src	 dst	

dst	val 



Bulk Data Copy and Initialization 

Bulk Data 
Copy 

Bulk Data 
Initialization 

src	 dst	

dst	val 



Bulk Data Copy and Initialization 
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Forking 

00000
00000
00000 

Zero initialization 
(e.g., security) 

VM Cloning 
Deduplication 

Checkpointing 

Page Migration 

Many more 

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15] 



Today’s Systems: Bulk Data Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	High	latency	

2)	High	bandwidth	u;liza;on	

3)	Cache	pollu;on	

4)	Unwanted	data	movement	

100 1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	



Future Systems: In-Memory Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	Low	latency	

2)	Low	bandwidth	u;liza;on	

3)	No	cache	pollu;on	

4)	No	unwanted	data	movement	

101 1046ns,	3.6uJ	 à			90ns,	0.04uJ	



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbytes) 

Data Bus 

8 bits 

DRAM subarray 

4 Kbytes 

Step 1: Activate row A 

Transfer 
row 

Step 2: Activate row B 

 
Transfer 
row 

Negligible HW cost 
   Idea: Two consecutive ACTivates 



RowClone: Intra-Subarray 
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RowClone: Intra-Subarray (II) 
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Row Buffer 
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s	 r	 c	 r	 o	 w

1.	Activate	src	row	(copy	data	from	src	to	row	buffer)	

2.	Activate	dst	row	(disconnect	src	from	row	buffer,	
connect	dst	–	copy	data	from	row	buffer	to	dst)	



RowClone: Inter-Bank 
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RowClone: Fast Row Initialization 

0 0 0 0 0 0 0 0 0 0 0 0 

Fix	a	row	at	Zero	
(0.5%	loss	in	capacity)	
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RowClone: Bulk Initialization 

n  Initialization with arbitrary data 
q  Initialize one row 
q  Copy the data to other rows 

n  Zero initialization (most common) 
q  Reserve a row in each subarray (always zero) 
q  Copy data from reserved row (FPM mode) 
q  6.0X lower latency, 41.5X lower DRAM energy 

q  0.2% loss in capacity 
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RowClone: Latency & Energy Benefits 
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Copy and Initialization in Workloads 
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RowClone: Application Performance 
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End-to-End System Design 
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	DRAM	(RowClone)	

Microarchitecture	

ISA	

OperaGng	System	

ApplicaGon	
How to communicate 
occurrences of bulk copy/
initialization across layers? 

How to maximize latency and 
energy savings? 

How to ensure cache 
coherence? 
 
 

How to handle data reuse? 



More on RowClone 
n  Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry, 
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization" 
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]  
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Memory as an Accelerator 
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In-Memory Bulk Bitwise Operations 
n  We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ 
n  At low cost 
n  Using analog computation capability of DRAM 

q  Idea: activating multiple rows performs computation 

n  30-60X performance and energy improvement 
q  Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 

Using Commodity DRAM Technology,” MICRO 2017. 

n  New memory technologies enable even more opportunities 
q  Memristors, resistive RAM, phase change mem, STT-MRAM, … 
q  Can operate on data with minimal movement 
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In-DRAM AND/OR: Triple Row Activation 
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Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 



In-DRAM Bulk Bitwise AND/OR Operation 

n  BULKAND A, B à C  
n  Semantics: Perform a bitwise AND of two rows A and B and 

store the result in row C 

n  R0 – reserved zero row, R1 – reserved one row 
n  D1, D2, D3 – Designated rows for triple activation 

1. RowClone  A  into  D1    
2. RowClone  B  into  D2    
3. RowClone  R0  into  D3    
4. ACTIVATE  D1,D2,D3    
5. RowClone  Result  into  C 
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More on In-DRAM Bulk AND/OR 

n  Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry, 
"Fast Bulk Bitwise AND and OR in DRAM" 
IEEE Computer Architecture Letters (CAL), April 2015.  
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In-DRAM NOT: Dual Contact Cell 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 

Idea:  
Feed the  

negated value  
in the sense amplifier 

into a special row 



In-DRAM NOT Operation 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Performance: In-DRAM Bitwise Operations 
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Energy of In-DRAM Bitwise Operations 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Example Data Structure: Bitmap Index 

n  Alternative to B-tree and its variants 
n  Efficient for performing range queries and joins 
n  Many bitwise operations to perform a query 
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Performance: Bitmap Index on Ambit 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Performance: BitWeaving on Ambit 
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 



Required Reading: Ambit 

n  Vivek Seshadri et al., “
Ambit: In-Memory Accelerator for Bulk Bitwise 
Operations Using Commodity DRAM Technology,” 
MICRO 2017. 
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Two Approaches to In-Memory Processing  
n  1. Minimally change DRAM to enable simple yet powerful   

computation primitives 
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) 

 
n  2. Exploit the control logic in 3D-stacked memory to enable 

more comprehensive computation near memory 
q  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 
q  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 

(Ahn et al., ISCA 2015) 
q  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 

Mechanisms, Evaluation  (Hsieh et al., ICCD 2016) 
127 



Opportunity: 3D-Stacked Logic+Memory 
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Logic 

Memory 



DRAM Landscape (circa 2015) 
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Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015. 



Two Key Questions in 3D Stacked PIM 

n  What is the minimal processing-in-memory support we can 
provide ? 
q  without changing the system significantly 
q  while achieving significant benefits of processing in 3D-

stacked memory 

n  How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator? 
q  what is the architecture and programming model? 
q  what are the mechanisms for acceleration? 
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Graph Processing 

131 

n  Large graphs are everywhere (circa 2015) 

 

n  Scalable large-scale graph processing is challenging	
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Key Bottlenecks in Graph Processing 
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for	(v:	graph.ver;ces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank 

v�

w�

&w�

1. Frequent random memory accesses 

2. Little amount of computation 

w.rank	

w.next_rank	

w.edges	

…	



Tesseract System for Graph Processing 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 
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Tesseract System for Graph Processing 
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Tesseract System for Graph Processing 
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Evaluated Systems 

HMC-MC 

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s 640GB/s 640GB/s 8TB/s 

HMC-OoO 

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO Tesseract 

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Tesseract Graph Processing Performance 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 

On five graph processing algorithms 



Tesseract Graph Processing Performance 
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Tesseract Graph Processing System Energy 

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction 

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



More on Tesseract 
n  Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi, 
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)] 
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Two Key Questions in 3D Stacked PIM 

n  What is the minimal processing-in-memory support we can 
provide ? 
q  without changing the system significantly 
q  while achieving significant benefits of processing in 3D-

stacked memory 

n  How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator? 
q  what is the architecture and programming model? 
q  what are the mechanisms for acceleration? 
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PEI: PIM-Enabled Instructions (Ideas) 
n  Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model 

n  Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block 
q  e.g., __pim_add(&w.next_rank,	value)	à	pim.add	r1,	(r2)�
q  No changes sequential execution/programming model 
q  No changes to virtual memory 
q  Minimal changes to cache coherence 
q  No need for data mapping: Each PEI restricted to a single memory module 

n  Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors 
q  Execute each operation at the location that provides the best performance 
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PEI: PIM-Enabled Instructions (Example) 
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n  Executed either in memory or in the processor: dynamic decision 
q  Low-cost locality monitoring for a single instruction 

n  Cache-coherent, virtually-addressed, single cache block only 
n  Atomic between different PEIs 
n  Not atomic with normal instructions (use pfence for ordering) 

for	(v:	graph.ver;ces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	
pfence();	

pim.add	r1,	(r2)�

pfence�



Example (Abstract) PEI uArchitecture 
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PEI: Initial Evaluation Results 
n  Initial evaluations with 10 emerging data-intensive workloads 

q  Large-scale graph processing 
q  In-memory data analytics 
q  Machine learning and data mining 
q  Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality 

n  Pin-based cycle-level x86-64 simulation	
 

n  Performance Improvement and Energy Reduction:  
n  47% average speedup with large input data sets 
n  32% speedup with small input data sets 
n  25% avg. energy reduction in a single node with large input data sets 
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More on PIM-Enabled Instructions 
n  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, 

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)]   



More on PIM Design: 3D-Stacked GPU I 
n  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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Key Challenge 1	
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on the logic layer SMs? 
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Key Challenge 2 

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 2: How should data be mapped to 
different 3D memory stacks?  

SM (Streaming Multiprocessor) 



More on PIM Design: 3D-Stacked GPU II 
n  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, 
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities" 
Proceedings of the 
25th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Haifa, Israel, September 2016. 
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More on PIM: Linked Data Structures 
n  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu, 
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation" 
Proceedings of the 
34th IEEE International Conference on Computer Design (ICCD), 
Phoenix, AZ, USA, October 2016.  
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Executive Summary 
• Our Goal: Accelerating pointer chasing inside            

main memory 

• Challenges: Parallelism challenge and Address 
translation challenge 

 

• Our Solution: In-Memory PoInter Chasing 
Accelerator (IMPICA) 

•  Address-access decoupling: enabling parallelism in the 
accelerator with low cost 

•  IMPICA page table: low cost page table structure 

• Key Results:  
•  1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput 
•  6% - 41% reduction in energy consumption 
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More on PIM Design: Dependent Misses 
n  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, 

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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More on PIM Design: Coherence 

n  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu, 
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory" 
IEEE Computer Architecture Letters (CAL), June 2016. 
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Traditional Coherence Approaches Do Not Work 
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Traditional 
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More on PIM Design: Data Structures 

n  Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu, 
"Concurrent Data Structures for Near-Memory Computing" 
Proceedings of the 
29th ACM Symposium on Parallelism in Algorithms and 
Architectures (SPAA), Washington, DC, USA, July 2017.  
[Slides (pptx) (pdf)]  
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Simulation Infrastructures for PIM 

n  Ramulator extended for PIM 
q  Flexible and extensible DRAM simulator 
q  Can model many different memory standards and proposals 
q  Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015. 
q  https://github.com/CMU-SAFARI/ramulator  
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An FPGA-based Test-bed for PIM? 

n  Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017. 

 
 
n  Flexible 
n  Easy to Use (C++ API) 
n  Open-source  
    github.com/CMU-SAFARI/SoftMC  
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Challenge and Opportunity for Future 

Fundamentally 
Energy-Efficient 
(Data-Centric) 

Computing Architectures 
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Challenge and Opportunity for Future 

Fundamentally 
Low-Latency 

(Data-Centric) 
Computing Architectures 
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Barriers to Adoption of PIM 

1. Functionality of and applications for PIM 
 
2. Ease of programming (interfaces and compiler/HW support) 
 
3. System support: coherence & virtual memory 
 
4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control 
 
5. Infrastructures to assess benefits and feasibility 
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Accelerating Pointer Chasing in  
3D-Stacked Memory: 

Challenges, Mechanisms, Evaluation 

Kevin Hsieh 
Samira Khan, Nandita Vijaykumar, Kevin K. Chang,  
Amirali Boroumand, Saugata Ghose, Onur Mutlu 



Executive Summary 
• Our Goal: Accelerating pointer chasing inside            

main memory 

• Challenges: Parallelism challenge and Address 
translation challenge 

 

• Our Solution: In-Memory PoInter Chasing 
Accelerator (IMPICA) 

•  Address-access decoupling: enabling parallelism in the 
accelerator with low cost 

•  IMPICA page table: low cost page table structure 

• Key Results:  
•  1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput 
•  6% - 41% reduction in energy consumption 
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Linked Data Structures 

• Linked data structures are widely used 
in many important applications 
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Database 

B-Tree Hash Table 

Key-value stores Linked	data	structures
	are		

connected	by	pointers
	



The Problem: Pointer Chasing 

• Traversing linked data structures 
requires chasing pointers 
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DRAM layers 

Our Goal 
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Outline 

• Motivation and Our Approach 
• Parallelism Challenge 
• IMPICA Core Architecture 
• Address Translation Challenge 
• IMPICA Page Table 
• Evaluation 
• Conclusion 
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Parallelism Challenge 
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Parallelism Challenge and Opportunity 

• A simple in-memory accelerator can 
still be slower than multiple CPU cores 

• Opportunity: a pointer-chasing 
accelerator spends a long time     
waiting for memory 
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Our Solution:  
Address-Access Decoupling 
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DRAM Dies 

IMPICA Core Architecture 
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Outline 

• Motivation and Our Approach 
• Parallelism Challenge 
• IMPICA Core Architecture 
• Address Translation Challenge 
• IMPICA Page Table 
• Evaluation 
• Conclusion 
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Address Translation Challenge 
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Our Solution: IMPICA Page Table 

• Completely decouple the page table of 
IMPICA from the page table of the 
CPUs 
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IMPICA Page Table: Mechanism 

Bit	[47:41]	 Bit	[40:21]	 Bit	[20:12]	 Bit	[11:0]	
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Outline 

• Motivation and Our Approach 
• Parallelism Challenge 
• IMPICA Core Architecture 
• Address Translation Challenge 
• IMPICA Page Table 
• Evaluation 
• Conclusion 

180 



Evaluated Workloads 

• Microbenchmarks 
• Linked list (from Olden benchmark) 
• Hash table (from Memcached) 
• B-tree (from DBx1000) 

• Application 
• DBx1000 (with TPC-C benchmark) 
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Evaluation Methodology 

• Simulator: gem5 
• System Configuration 

• CPU 
•  4 OoO cores, 2GHz 
• Cache: 32KB L1, 1MB L2 

• IMPICA 
• 1 core, 500MHz, 32KB Cache 

• Memory Bandwidth 
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA 

• Our simulator code is open source 
• https://github.com/CMU-SAFARI/IMPICA  
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Result – Microbenchmark Performance 
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Result – Database Performance 
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System Energy Consumption 

185 

0.0	

0.5	

1.0	

Linked	
List	

Hash	
Table	

B-Tree	 DBx1000	

N
or
m
al
ize

d	
En

er
gy
		 Baseline	+	extra	128KB	L2	 IMPICA	

-41%	
-24%	

-6%	
-10%	



Area and Power Overhead 

• Power overhead: average power 
increases by 5.6% 
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CPU	(Cortex-A57)	 5.85	mm2	per	core	

L2	Cache	 5	mm2	per	MB	

Memory	Controller	 10	mm2	

IMPICA	(+32KB	cache)	 0.45	mm2	



More in the Paper 

• Interface and design considerations 
• CPU interface and programming model 
• Page table management 
• Cache coherence 

• Area and power overhead analysis 

• Sensitivity to IMPICA page table design 
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Conclusion 
•  Performing pointer-chasing inside main memory can greatly 

speed up the traversal of linked data structures 

• Challenges: Parallelism challenge and Address translation 
challenge 

 

• Our Solution: In-Memory PoInter Chasing Accelerator 
•  Address-access decoupling: enabling parallelism with low cost 
•  IMPICA page table: low cost page table structure 

• Key Results:  
•  1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput 
•  6% - 41% reduction in energy consumption 

 

• Our solution can be applied to a broad class of in-memory 
accelerators 188 



Current Investigations 
• More efficient address translation and protection 

mechanisms for PIM 

• More concurrent data structures for PIM 
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More Info on IMPICA (Current Status) 

•  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu, 
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 
Mechanisms, Evaluation" 
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), 
Phoenix, AZ, USA, October 2016.  
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