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High-Level Summary of Last Lecture

Memory Latency Continued
o Understanding and exploiting DRAM Latency Variation

Memory Latency-Voltage-Reliability Relationship

Processing In Memory
o In-DRAM COPY, INIT, MAJORITY, AND, OR, NOT

o Computation in logic layer of 3D-stacked memory



Agenda for Today

Finish processing in memory
a Simple approaches
o Other issues

Emerging memory technologies

Hybrid memory systems



Challenge and Opportunity tor Future

Fundamentally
Low-Latency
& Low-Energy
Computing Architectures
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Processing In Memory




Observation and Opportunity

High latency (and high energy) caused by data movement
o Long, energy-hungry interconnects

o Energy-hungry electrical interfaces

o Movement of large amounts of data

Opportunity: Minimize data movement by performing
computation directly where the data resides

o Processing in memory (PIM)

o In-memory computation/processing
o Near-data processing (NDP)
Q

General concept applicable to any data storage unit (caches,
SSDs, main memory)
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Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

-
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Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

—
256pJ | 16 nd F Sl

Efficient
>00p. off-chip link
256-bit access
8 kB SRAM
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Goal: Processing Inside Memory

Processor 1 Database

Core

Graphs

{ Media

Interconnect
Results Problem

= Many questions ... How do we design the: B [

o compute-capable memory & controllers? System Software
processor chip? SW/HW Interface
software and hardware interfaces?
system software and languages?
algorithms?

o o o0 o




Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation
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Two Approaches to In-Memory Processing

= 1. Minimally change DRAM to enable simple yet powerful
computation primitives
o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)
o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

=| 2. Exploit the control logic in 3D-stacked memory to enable
more comprehensive computation near memor
o PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

o A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

o Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation (Hsieh et al., ICCD 2016)
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Opportunity: 3D-Stacked Logic+Memory

Hybrid Memory Cube

Memory

Logic
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [15]

Low-Power  LPDDR3 (2012) [!7]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]
Performance eDRAM [2%], [32]; RLDRAMS3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions in 3D Stacked PIM

What is the minimal processing-in-memory support we can
provide ?
o without changing the system significantly

o while achieving significant benefits of processing in 3D-
stacked memory

3D-stacked memory as a coarse-grained accelerator?
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

SAFARI 14



Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped - i P | ogic

Accelerator Interface Q&8 ju I LIS
Noncacheable, Physically Addressed) ! | )

@ | " In-Order Core %

II L I z

O

e

LP * PFBuffer -~ 2

Crossbar Network o

©

O VA MTP
(‘5/ Message Queue NI

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via
Remote Function Calls

Message Queue




Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;
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Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

SAFARI

w.next_rank += weight * v.rank;

Vault #1
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—

— —»

-
—_— -
——]

18



Communications In Tesseract (111)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y &w
«———"" // \\
put \\\
S~ put
e Jw
put |
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

’

Local
Core

NI

&func, &w, value

SAFARI
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Remote
Core b
MQ -

put(w.id, function() { w.next_rank += value; })
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 | HMC-000 = HMC-MC | Tesseract

I | | | | | |
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
17 11.6x
o 10 9.0x
>
3 8
&
6
4
5 +56%  +259%
, == BN e
DDR3-000 HMC-Oo0O HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
—  m

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Efttect of Bandwidth & Programming Model

| HMC-MC Bandwidth (640GB/s) [ ] Tesseract Bandwidth (8TB/s)
7 6.5x

3.0x

Speedup

- 1
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

E Memory Layers H Logic Layers [JCores
1.2

0.8
0.6

0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM
+ Large system performance and energy benefits
+ Takes advantage of 3D stacking for an important workload

Disadvantages
- Changes a lot in the system
- New programming model

- Specialized Tesseract cores for graph processing
- Cost

- Scalability limited by off-chip links or graph partitioning

SAFARI 27



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the

42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University Oracle Labs fCarnegie Mellon University
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Two Key Questions in 3D Stacked PIM

What is the minimal processing-in-memory support we can
provide ?

o without changing the system significantly

o while achieving significant benefits of processing in 3D-
stacked memory

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

SAFARI 29



PEIL: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

o e.d., _ pim_add(&w.next_rank, value) 2 pim.add r1, (r2)

o No changes sequential execution/programming model

o No changes to virtual memory

o Minimal changes to cache coherence

o No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 30



Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Host Processor Main Memory

64 bytes in s Sm—
64 bytesout L e Ll

Conventional Architecture

w.next_rank

SAFARI
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Simple PIM Operations as ISA Extensions (I11)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

}
}
Host Processor Main Memory
8 byteS in z = "'_,—Ifli'- e ey %
In-Memory Addition

SAFARI 32



Always Executing in Memory? Not A Good Idea

60%
50%
o)
0% Increased
30%  Memory Bandwidth
_g' 20% Consumption
o Caching very effective
Y 10%
Vp)
0% — T
-10% Reduced Memory Bandwidth
-20% Consumption due to

2 oo , 2 g oo In-Memory Computation

LDMEOO'QLE N O — e L
L2 9o ¢t 88 ER T %L T 5%
N8 80 S EAN a 0o O
a S o n © an 9 =

More Vertices
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PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add rl, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Applications
pfence 8-byte integer increment O O  0bytes AT
fe nce ( ) . 8-byte integer min O O 8bytes BFS, SP, WCC
p Y Floating-point add O O 8bytes PR
Hash table probing O X 8bytes HJ
Histogram bin index O X 1byte HG, RP
Euclidean distance O X 64bytes SC
Dot product O X 32bytes SVM

Executed either in memory or in the processor: dynamic decision

o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI
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PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
a Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI



Example PEI Microarchitecture

Host Processor 3D-stacked Memory

I
|
1
|
I
Out-Of-Order I © T | ! DRAM
Core S S 3 < ; PCU Controller
o |3 o :
— ~ -
PCU (Pl - . 3 % | DRAM
Computation Unit) s ! -
= E g PCU Controller
Q I +0
PMU (PEI[— e
. S| |
Mgmt Umt) Directory T |
1
Locality : DRAM
Monitor ! PCU Controller
|
1

Example PEI uArchitecture
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PEI: Initial Evaluation Results

Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

Q In-memory data ana |yt|CS Table 2: Baseline Simulation Configuration
o Machine learning and data mining Component _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
i 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
Q Th ree In pUt Sets (Sma | I’ med I u m’ |a rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na |yze the Im paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
1 Main Memory 32 GB, 8 HMC:s, daisy-chain (80 GB/s full-duplex)
Of data |Oca I Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

Pin-based cycle-level x86-64 simulation

Performance Improvement and Energy Reduction:
47% average speedup with large input data sets
32% speedup with small input data sets
25% avg. energy reduction in a single node with large input data sets
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Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads
o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality
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PEI Pertormance Delta: Large Data Sets

70%

60%

50%

40%

30%

20%

10%

0%

(Large Inputs, Baseline: Host-Only)

WCC

E PIM-Only [ Locality-Aware

SVM  GM

SAFARI
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Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
E Host-Only EPIM-Only [ lLocality-Aware




PEI Performance Delta: Small Data Sets

60%

40%

20%

0%

-20%

-40%

-60%

—

ATF

(Small Inputs, Baseline: Host-Only)

Il | [[[f

BFS

PR

SP WCC HIJ HG
E PIM-Only [ Locality-Aware

RP

SC

SVM  GM
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Normalized Amount of Off-chip Transfer

8
7
6
5
4
3
2
1
0

1d1iil

P WCC HIJ HG RP SC
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PEI Performance Delta: Medium Data Sets

70%

60%

50%

40%

30%

20%

-10%

~ A AN Wh
0% - —
ATF  BFS PR SP

WCC HJ H

(Medium Inputs, Baseline: Host-Only)

|

RP

E PIM-Only [ Locality-Aware

|

SC SVM GM

SAFARI
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PEI Energy Consumption

1.5 HOSt'Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
M Cache B HMC Link © DRAM
[ Host-side PCU I Memory-side PCU LIPMU

SAFARI
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PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI +



More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture”
Proceedings of the

42nd International Symposium on Computer Architecture
(ISCA ), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’  Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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More on PIM Design: 3D-Stacked GPU I

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi' Gwangsun Kim*  Niladrish ChatterjeeT Mike O’Connor'
Nandita Vij aykumar;t Onur Mutlu’? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich



Key Challenge 1

__global__

void applyScaleFactorsKernel( uint8_T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx blockIdx.x * blockDim.x + threadIdx.x;
const int colldx blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3D'StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

\
\

\

<+ Logic layer

Logic layer
SM

I

Crossbar switch
[ I

Vault| .... |Vault
Ctrl Ctrl

Main GPU




Key Challenge 1

* Challenge 1: Which operations should be executed
on the logic layer SMs!?

3D-stacked memory

(memory stack)

?

<4............

Main GPU

__global__
void applyScaleFactorsKernel( uint8_T * const out,

{

SM (Streaming Multiprocessor)

uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y;

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element
size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

J
V /|

?

< Logic layer ,

¥

Logic layer
SM
I

Crossbar switch
[ I

Vault Vault
Ctrl Ctrl




Key Challenge 2

* Challenge 2: How should data be mapped to
different 3D memory stacks?

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)
o TN N

SM

Logic layer

I

Crossbar switch

[
Vault
Ctrl

Vault
Ctrl




More on PIM Design: 3D-Stacked GPU 11

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the

25th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Haifa, Israel, September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt ~ Onur Mutlu®¢  Chita R. Das!

'Pennsylvania State University =~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich °Carnegie Mellon University
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More on PIM: Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the
34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar'
Kevin K. Chang' Amirali Boroumand' Saugata Ghose Onur Mutlu®'

TCarnegie Mellon University — *University of Virginia SETH Ziirich
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Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table in logic layer

* Key Results:

* 1.2X — 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
53



Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value
Data Storana 1

Linked data structures are
connected by pointers

— o
ey Ir——_
,ﬁ"ﬂ?z% Key2>——/§:—4 e
Ty Ty e keys——
B-Tree Hash Table
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The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

CPU

Serialized and irregular access pattern
6X cycles per instruction in real workloads

95



Our Goal

Accelerating pointer chasing
inside main memory

LTI

Logic layer 56



Parallelism Challenge

> Time

dCCesSsS

CPU core {CompI Memory IcompJ

CPU core {Compl Memory ICoi'np}

dCCessS

] M M |
In-Memory {Com 1 emory ICOmpICOmpI emory I Omp]
Accelerator S erEes access I

slower for two operations
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Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

g

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{Compl Memory access (10-15X of Comp) ICompJ

58



Our Solution:
Address-Access Decoupling

> Time

CPU core Lcompl Memory Icomp}

dCCesSsS

CPU core ( nmnT Memarwv Y N

Address-access decoupling enables

cost
Adar ar allehsm in both englnes with low
\{ Memory J/ é é
Access access 5 :
Engine Viemor I‘—'I

aCCessS
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IMPICA Core Architecture
DRAM

|
DRAM Layers

Logic Layer

Memory
IMPICA Controller

/ Cache
Access Queue t

Request Queue — —
’_, Address ‘ Access
Engine |, \ «— Engine
Traversal
I Response Queve
Tc Travzersal CPU




Address Translation Challenge

e walk requires

tabl
The pag® aCcCcesses

multiple memory

>
e “
------------------------------------

-----------------------------------------------------------------------------------------------------------------------------
.

* *
* *

Virtual Address
1 __#pPMId_|___#PDPT

No TLB/MMU on the memory side
Duplicating it is costly and creates
compatibility issue

29

PDPT PGD PGT

.
”””
---------------------------------------------------------------------------------------------------------------------------



Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
INEPOP Rezdabilele

IMPICA regions

ucture into .
nked data st¥ _to-any mapping

Map li ble is a partial

IMPICA page ta

Virtual Page Physical Page

Virtual Address Space ~ Physical Address Space
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IMPICA Page Table: Mechanism

Virtual Address
Bit [47:4 Flat page table

L saves one€ memory access

Bit [11:0]

ble is almost!
he cache | ™

e age |dDIe Small Page Table
(ZMB) (4KB)

0. *
---------------------------

Tiny region ta
always in t

Physical Address



Evaluation Methodology

* Simulator: gemb5

* System Configuration

e CPU
°* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2
* IMPICA
* 1 core, 500MHz, 32KB Cache
* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
* https://github.com/CMU-SAFARI/IMPICA
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Result = Microbenchmark Performance

E Baseline + extra 128KB L2 O IMPICA

1.9X

2.0
215 I 1.3X 1.2X
y ol
Q10 —— ——— — -
Q
o

0.0

Linked List Hash Table B-Tree
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Result — Database Performance

20 +16%

Database
Throughput

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

1.00 ™ —
0.95
0.90
0.85
0.80

Database
Latency

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2
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System Energy Consumption

[ Baseline + extra 128KB L2 B IMPICA

—
o

Normalized Energy
o

o
o

Linked Hash B-Tree DBx1000
List Table
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Area and Power Overhead

CPU (Cortex-A57) 5.85 mm? per core
L2 Cache 5 mm? per MB
Memory Controller 10 mm?

IMPICA (+32KB cache) |0.45 mm?

* Power overhead: average power
increases by 5.6%




More on PIM Design: Dependent Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller™
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA 3ETH Ziirich & Carnegie Mellon University
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More on PIM Design: Coherence

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghosef, Minesh Patel’, Hasan Hassan'$, Brandon Lucia,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu#T

T Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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Traditional Coherence Approaches Do Not Work

Traditional

coherence
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More on PIM Design: Data Structures

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang'?  Onur Mutlu®
1Carnegie Mellon University 2peking University

SAFARI 3



An FPGA-based Test-bed for PIM

= Hasan Hassan et al.,
SoftMC: A Flexible and
Practical Open-Source
Infrastructure for Enabling
Experimental DRAM Studies

h —

HPCA 2017. SR ed Host
il el Machme
_ . TSI O @
= Flexible , Co"ltroller ’
= Easy to Use (C++ API) Heater B ¥

(o) A\ /
= Open-source = N

github.com/CMU-SAFARI/SoftMC
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Challenge and Opportunity tor Future

Fundamentally
Energy-Efficient

(Data-Centric)
Computing Architectures

SAFARI



Challenge and Opportunity tor Future

Fundamentally
Low-Latency
(Data-Centric)

Computing Architectures
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Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

SAFARI 7



Emerging Memory Technologies




Limits of Charge Memory

Difficult charge placement and control
o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

GATE
=3 | —— FLOATING GATE

I L]
= !SENSE

SAFARI 7

[ ==

SOURCE —




Solution 1: New Memory Architectures

= Overcome memory shortcomings with

Q

a

a

Memory-centric system design
Novel memory architectures, interfaces, functions
Better waste management (efficient utilization)

= Key issues to tackle

Q

o 0O O O O

Enable reliability at low cost = high capacity
Reduce energy

Reduce latency

Improve bandwidth

Reduce waste (capacity, bandwidth, latency)
Enable computation close to data
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Solution 1: New Memory Architectures

] Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
. Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
] Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
. Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
. Seshadri+, “"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
. Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
. Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
. Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
. Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
M Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
. Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
M Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
. Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
] Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
. Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
. Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
] Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
. Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
. Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
. Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
. Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
. Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
. Khan+, "PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
M Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
. Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
M Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
. Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
] Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
. Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
. Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
. Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
. Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
. Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.
. Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
. Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
M Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
. Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
M Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.
. Avoid DRAM:
o Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
a Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
o Seshadri+, “The Dirty-Block Index,” ISCA 2014.
a Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
a Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
a Pekhimenko+,-"Toggle-Aware.Bandwidth.-Compression.for.GPUs,” HPCA.2016.
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory oL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS 2009]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) M vV
Expected to be denser than DRAM: can store multiple bits/cell

PCM

o o O o

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?
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Solution 2: Emerging Memory Technologies

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA'09, CACM’10, IEEE Micro'10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

Zhao+, “"FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Charge vs. Resisttve Memorties

Charge Memory (e.g., DRAM, Flash)
o Write data by capturing charge Q
o Read data by detecting voltage V

Resistive Memory (e.g., PCM, STT-MRAM, memristors)
o Write data by pulsing current dQ/dt
o Read data by detecting resistance R
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Promising Resisttve Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM

o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance
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What 1s Phase Change Memory?

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity

BITLINE

METAL (bitline) |

(T 2T

CHALCOGENIDE : :
|

|

|

I

/

STORAGE :

HEATER ~ _J -
METAL (access) WORDLINE
ACCESS DEV

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly
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How Does PCM Work?

s
= Write: change phase via current injection o | RESET
o SET: sustained current to heat cell above Tcryst 5
o RESET: cell heated above Tmelt and quenched s Tmen
. . . Q. SET
= Read: detect phase via material resistance £ o
. 2 Teryst
o amorphous/crystalline
>
Time [ns]

Large Small
Current Current
!

Memory
4 | |
SET (cryst) Access RESET (amorph)
Low resistance Device High resistance

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 87




Opportunity: PCM Advantages

Scales better than DRAM, Flash

o Requires current pulses, which scale linearly with feature size
o Expected to scale to 9nm (2022 [ITRS])

o Prototyped at 20nm (Raoux+, IBM JRD 2008)

Can be denser than DRAM

o Can store multiple bits per cell due to large resistance range
o Prototypes with 2 bits/cell in ISSCC’ 08, 4 bits/cell by 2012

Non-volatile
o Retain data for >10 years at 85C

No refresh needed, low idle power

38



PCM Resistance = Value

Cell 1 0

value:

—
Cell resistance
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Multi-Level Cell PCM

o Multi-level cell: more than 1 bit per cell
- Further increases density by 2 to 4x [Lee+,ISCA'09]

o But MLC-PCM also has drawbacks
- Higher latency and energy than single-level cell PCM
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MLC-PCM Resistance - Value

Bitl BitO |

[
Cell : \
value: |
[
[

Cell resistance
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MLC-PCM Resistance = Value

Less margin between values
— need more precise sensing/modification of cell contents
— higher latency/energy (~2x for reads and 4x for writes)

Cell
value:

Cell resistance
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Phase Change Memory Properties

Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

Derived PCM parameters for F=90nm

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

Lee et al., "Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.
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Table 1. Technology survey.

Published prototype

Parameter* Horri® Ahn'® Bedeschi'® Oh'* Pellizer'® Chen® Kang™ Bedeschi® Lee'® Lee®
Year 2003 2004 2004 2005 2006 2006 2006 2008 2008 -
Process, F(nm) - 120 180 120 a0 o 100 a0 a0 a0
Array size (Mbyles)  ** 64 8 64 - o 256 256 512 o
Material GST,Nd GST,Nd  GST GST GST GS,Nd GST GST GST GST, Nd
Cell size (pm°) - 0.290 0290 - 0097 60rm°  0.166 0097 0047 0.085 1o

0097
Cell size, F? B 201 a0 == 12.0 . 166 12.0 58 9.0t

12.0
Accass device - w BJT FET BJT o FET BIT Diode BJT
Read time (ns) - 70 48 68 - . 62 - 55 43
Hesd curat (n8) -- 40 -- = - = - - 40
Read voltage (V) i 3.0 10 18 16 o 18 - 18 1.0
Read power (W)  ** -- 40 -- B - - - - 40
Hedewnyin) -- 20 -- - - - - - 20
Set fime (ns) 100 150 150 180 - 80 300 - 400 150
Set current (pA) 200 = 300 200 - 55 - - - 150
Set voitage (V) - w 20 o - 125 o - - 1.2
Set power (uW) i = 300 - - 344 o - — a0
Set enargy (pJ) - - 45 o - 28 o - - 135
Reset time (ns) % 10 40 10 - 60 50 - 50 40
Resstcurent (uA) 600 800 600 600 400 90 800 300 600 300
Resat voltage (V) = w 27 o 18 16 o 16 - 1.6
Resotpower (WW)  ** o 1620 o - 804 o - - 480
Reset energy (pJ)  ** w 648 - - 48 - - - 192
Write endurance 107 10° 10° = 10° 10* - 10° 10° 108

* BJT: bipolar junction transistor; FET: field-effect transistor; GST: GeaShyTes; MLC: muliilevel cells; N-d: nitrogen doped.

** This information & not available in the publication cited.




Phase Change Memory Properties: Latency

= Latency comparable to, but slower than DRAM

MAIN MEMORY SYSTEM HIGH PERFORMANCE DISK SYSTEM
L1 CACHE LAST LEVEL CACHE | :
SRAM EDRAM ' FLASH HARD DRIVE !

. . l l
2‘ 23 25 2?’ E 29 211 E 213 2‘55 21? 219 221 2235

------------------------------------------------------------------

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)
= Read Latenc
= Write Latenc
a 150ns:
= Write Bandwidth

o 5-10 MB/s:}0.1x DRAM, 1x NAND Flash

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.



Phase Change Memory Properties

= Dynamic Energy
o 40 uA Rd, 150 uA Wr

ol 2-43x DRAM, 1x NAND Flash

= Endurance
o Writes induce phase change at 650C
o Contacts degrade from thermal expansion/contraction

o 108 writes per cell
o 10-8x DRAM, 103x NAND Flash

= Cell Size
o 9-12F2 using BIJT, single-level cells

a| 1.5x DRAM, 2-3x NAND| (will scale with feature size, MLC)
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
o Low idle power (no refresh)

= Cons
a Higher latencies: ~4-15x DRAM (especially write)
o Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
a Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings

o Find the right way to place PCM in the system
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PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
Icipdicikgicl
GGQ-—ad | -G | @@
- - c- &G G- @&

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM

SAFARI o8



PCM-based Main Memory (1I)

= How should PCM-based (main) memory be organized?

=)~ (5]~

- - Cc-
- -acdd c-

@D
— @D

CPU

| PCV
| PCV

— @D
— @D

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:
o How to redesign entire hierarchy (and cores) to overcome

PCM shortcomings

SAFARI
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density \ Latency
> 9 -12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM . |> 4x,12x DRAM
Endurance | Energy
- 40,/A Rd, 1504A W

> 1E-08x DRAM | |> 2x, 43x DRAM
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Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

§4 I Delay

PCM Performance .. 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer
I EnergyMem
2.8

0.16
26
g 24
e 0.12
w
- T 0.1
N >
. 0.08
' 0.06
: 0.04
: 0.02
0

cg IS mg rad oce art equ swi avg cg Is mg rad oce art equ swu avg

Normalized to
o - e
oo—n N -h 0’)@ N

o oo
N Ao

o

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 20009.
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Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes = better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity
- Reduces unnecessary wear

SAFARI

DRAM

data array

!

sense amplifiers
(buffer)

To

\*

|

PCM

data array J

!

sense amplifiers

!

latches
(buffer)

T
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance ;. 512Bx4 Buffer

I T I 16
I Delay
1.6 | M@ EnergyMem

PCM Endurance :: 512Bx4 Buffer
1.8

- DiffLine (648)

14 12

14 J B DiffWord (4B)

0
cg Is mg rad oce art equ swi avg

Normalized to DRAM

o o o o -

() [ o)) w® =y ()
Years

o

cg is mg rad oce art equ sw1 avg

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)

= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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Required Reading: PCM As Main Memory

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM
Alternative”
Proceedings of the
36th International Symposium on Computer Architecture (ISCA),
pages 2-13, Austin, TX, June 2009. Slides (pdf)

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Lee; Engin Ipeki Onur Mutlus Doug Burgert

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu
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More on PCM As Main Memory (1)

= Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

PHASE-CHANGE TECHNOLOGY AND THE
FUTURE OF MAIN MEMORY
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STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “"Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

SAFARI
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STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
a Low idle power (no refresh)

= Cons
a Higher write latency
a Higher write energy
a Poor density (currently)
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MT)J)
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Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base)  ESTT-RAM (opt)

98%

Q
() z 96% -
% § 949% -
& o 9% -
5 B 905 - —I—
E g 880/0 1 T T T T T T T T T T T
SUEFSEPSUBFSUEPSEIPSUEPOIPSUBPOIPSUIFNIE S
B ACT+PRE DTWB HRB
100%
S 80%
§§ 60%
40%
Q
29 o HHEFHHHHHHHE
Ll 7)) 0/ -
> 0%

 H» o QLD
. ...\...\...\...\...\...\.
ST ML
SFFLSFSFFSITSSESLN

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
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More on STT-MRAM as Main Memory

= Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the
2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Austin, TX,
April 2013. Slides (pptx) (pdf)

Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative

Emre Kiiltiirsay*, Mahmut Kandemir*, Anand Sivasubramaniam*, and Onur Mutluf
*The Pennsylvania State University and TCarnegie Mellon University
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A More Viable Approach: Hybrid Memory Systems

CPU

DRAM PCM
Ct_rI Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI




Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies

SAFARI



Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable

Memory Systems
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Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?
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One Option: DRAM as a Cache tor PCM

PCM is main memory; DRAM caches memory rows/blocks
o Benefits: Reduced latency on DRAM cache hit; write filtering
Memory controller hardware manages the DRAM cache

o Benefit: Eliminates system software overhead

Three issues:

o What data should be placed in DRAM versus kept in PCM?
o What is the granularity of data movement?

o How to design a low-cost hardware-managed DRAM cache?

Two idea directions:
o Locality-aware data placement [Yoon+, ICCD 2012]
o Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM as a Cache for PCM

Goal: Achieve the best of both DRAM and PCM/NVM

o Minimize amount of DRAM w/o sacrificing performance, endurance
o DRAM as cache to tolerate PCM latency and write bandwidth
o PCM as main memory to provide large capacity at good cost and power

PCM Main Memory

DATA
Processor DRAM Buffer

F = —

T DATA Flash

> < < > Or

HDD

S—
T=Tag-Store “
> D ———
PCM Write Queue

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 115



Write Filtering Techniques

Lazy Write: Pages from disk installed only in DRAM, not PCM
Partial Writes: Only dirty lines from DRAM page written back
Page Bypass: Discard pages with poor reuse on DRAM eviction

PCM Main Memory
DATA

Processor DRAM Buffer
a DATA] | Flash

HDD

Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.
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Results: DRAM as PCM Cache (I)

= Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles,
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

= Assumption: PCM 4x denser, 4x slower than DRAM
= DRAM block size = PCM page size (4kB)

1.1
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F 0.8
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g 067 i m 32GB DRAM
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el | B o
el A Ta 'l | B -
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db1 db2 gsort bsearch kmeans gauss daxpy  vdotp gmean
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Results: DRAM as PCM Cache (1)

PCM-DRAM Hybrid performs similarly to similar-size DRAM
Significant energy savings with PCM-DRAM Hybrid
Average lifetime: 9.7 years (no guarantees)
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More on DRAM-PCM Hybrid Memory

= Scalable High-Performance Main Memory System

Using Phase-Change Memory Technology.
Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers

Appears in the International Symposium on Computer
Architecture (ISCA) 2009.

Scalable High Performance Main Memory System Using
Phase-Change Memory Technology

Moinuddin K. Qureshi Vijayalakshmi Srinivasan Jude A. Rivers
IBM Research
T. J. Watson Research Center, Yorktown Heights NY 10598

{mkquresh, viji, jarivers}@us.iobm.com
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Data Placement in Hybrid Memory

Memory Controllers

Channel A IDLE|Channel B

Memory A
(Fast, Small)

Memory B
(Large, Slow)

Which memory do we place each page in,
to maximize system performance?

= Memory A is fast, but small
= Load should be balanced on both channels?

= Page migrations have performance and energy overhead
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Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.
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Key Observation & Idea

e Row buffers exist in both DRAM and PCM

— Row hit latency similar in DRAM & PCM [Lee+ ISCA’09]
— Row miss latency small in DRAM, large in PCM

 Place data in DRAM which

— is likely to miss in the row buffer (low row buffer
locality)—> miss penalty is smaller in DRAM

AND

— is reused many times = cache only the data

worth the movement cost and DRAM space
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Hybrid vs. All-PCM/DRAM [iccp12]

B16GB PCM HBRBLA-Dyn 016GB DRAM
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within 29% of all DRAM performance

R N B
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More on Hybrid Memory Data Placement

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories”
Proceedings of the
30th IEEE International Conference on Computer Design
(ICCD), Montreal, Quebec, Canada, September 2012.
Slides (pptx) (pdf)

Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur } @cmu.edu, rhardin@mit.edu
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Weaknesses of Existing Solutions

= They are all heuristics that consider only a limited part of
memory access behavior

= Do not directly capture the overall system
performance impact of data placement decisions

= Example: None capture memory-level parallelism (MLP)

o Number of concurrent memory requests from the same
application when a page is accessed

o Affects how much page migration helps performance
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Importance ot Memory-Level Parallelism

Before migration:

Before migration:

requests to Page 1( Mem. B )

requests to Page 2( Mem. B )

requests to Page 3( Mem. B j
|

_________________ T S S S S G G S G G WD G W W b G G5 G G
After migration: : : | After migration: : :
I I , I I
requests to Page 1 : : requests to Page 2 :
I I : I I
. ) | 1 requests to Page 3( Mem. B j
— ! —
fime Migrating one page i time Must migrate two pages
reduces stall time by T . to reduce stall time by T:

migrating one page alone
does not help

Page migration decisions need to consider MLP




Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory
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Utility-Based Hybrid Memory Management

A memory managder that works for any hybrid memory
o e.g., DRAM-NVM, DRAM-RLDRAM

Key Idea

o For each page, use comprehensive characteristics to

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the

system

o Migrate only pages with the highest utility
(i.e., pages that improve system performance the most

when migrated)

Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
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Key Mechanisms ot UH-MEM

For each page, estimate utility using a performance model
o Application stall time reduction

How much would migrating a page benefit the performance of the
application that the page belongs to?

o Application performance sensitivity

How much does the improvement of a single application’s
performance increase the overall system performance?

Utility= AStallTimeli X Sensitivityli

Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

Periodically adjust migration threshold
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Results: System Performance

BALL OFREQ ORBLA WUH-MEM

= =
U1 O
| |
=
B
x|
— =5

Normalized
Weighted Speedup

O = = = = =

0% 25% 50% 75% 100%
Workload Memory Intensity Category

UH-MEM improves system performance

over the best state-of-the-art hybrid memory manager
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Results: Sensitivity to Slow Memory Latency

= Wevary tlRCD and tiWR of the slow memory
ALL OFREQ ORBLA ®mUH-MEM

o 3.8
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HRCD: x3.0 x4.0 x4.5 x6.0 X7.5
HWR: y3.0 x4.0 x12 x16 x20

Slow Memory Latency Multiplier

UH-MEM improves system performance

for a wide variety of hybrid memory systems




More on UH-MEM

= Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutlu,
"Utility-Based Hybrid Memory Management”
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

Utility-Based Hybrid Memory Management

Yang Li Saugata Ghose! Jongmoo Choit Jin Sun! Hui Wang* Onur Mutlu™ 1
TCarnegie Mellon University f Dankook University *Beihang University TETH Ziirich
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Challenge and Opportunity

Enabling
an Emerging Technology
to Augment DRAM

Managing Hybrid Memories

SAFARI



Another Challenge

Designing Effective
Large (DRAM) Caches
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One Problem with LL.arge DRAM Caches

A large DRAM cache requires a large metadata (tag +
block-based information) store

How do we design an efficient DRAM cache?

CPU
LOAD X
Metadata:
X = DRAM
[ M
(smal; +uor<ache)
Access X
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Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

<€

DRAM row >

Cache block O

Cache block 1

Cache block 2 Tagd Tagl Tag2

Benefit: No on-chip tag storage overhead

Downsides:

o Cache hit determined only after a DRAM access
o Cache hit requires two DRAM accesses

SAFARI
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Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transfer Granularity

Some applications benefit from caching more data
o They have good spatial locality

Others do not
o Large granularity wastes bandwidth and reduces cache utilization

Idea 3: Simple dynamic caching granularity policy
o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Different sampled row sets follow different fixed caching
granularities

a The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum
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TIMBER Performance

Reduced channel
contention and
improved spatial locality

O | | |
SRAM Region TIM TIMBER  TIMBER-Dyn

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

139



TIMBER Energy Efficiency
1.2 18%

O
00

Fewer migrations reduce

Normalized Performance per Watt
(for Memory System)
o
(@)

0.4 transmitted data and
channel contention
0.2
0
SRAM Region TIM TIMBER TIMBER-Dyn
Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 140
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On Large DRAM Cache Design

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza* Jichuan Chang® HanBin Yoon™ Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University tHewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com
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DRAM Caches: Many Recent Options

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs - We assume perfect way
prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use
different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

| Scheme [] DRAM Cache Hit | DRAM CacheMiss || Replacement Traffic | Replacement Decision | Large Page Caching |
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec. data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,
frequency based

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

SAFARI
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Banshee [MICRO 2017]

= Tracks presence in cache using TLB and Page Table
o No tag store needed for DRAM cache
o Enabled by a new lightweight lazy TLB coherence protocol

= New bandwidth-aware frequency-based replacement policy

2.0
(@)= =@ 20 -
Q-—-—
A A A
o 1.5} a_f . = o 1.5} " _
© ©
()] . [}
8 i " 8 \‘\!
»n 1.0 » 1.0} .
£ o=@ Banshee £ o=@ Banshee
(2305_ o=t Alloy . (2305 A=p  Alloy
' m=m TDC “==m TDC
=3¢ Unison = Unison
0.0 0.0
1 00%| 66% 50% 8X 4X| 2X

DRAM Cache Latenc DRAM Cache Bandwidth
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More on Banshee

= Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”
Proceedings of the

50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu! Christopher J. Hughes® Nadathur Satish® Onur Mutlu®  Srinivas Devadas’
MIT “Intel Labs SETH Ziirich
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Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering
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TWO-LEVEL STORAGE MODEL

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

STORAGE g MEMORY CPU

BLOCK ADDR
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TWO-LEVEL STORAGE MODEL

CPU

= VOLATILE

: FAST

- I BYTE ADDR
5 ~ ..|/ O PCM, STTRA NONVOLATILE
=

BLOCK ADDR

Non-volatile memories combine

characteristics of memory and storage



Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

~ Two-Level Store
Load/Store fopgn, fread, fwrite, ...

Processor
and caches

------
.....
.....
......

........
--------
........

.......

Persistent (&5 Phase-Change)
Stdtege(SD/HDD)

Main Memory
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Unitied Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory

Manager
Processor
and caches
Load/Store H Feedback

Persistent (é.g., Phase-Change) Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 149
Storage and Memory,” WEED 2013.



PERSISTENT MEMORY

vvi

™
=53
W
<&
o m
2
<5

Provides an opportunity to manipulate
persistent data directly
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The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int [64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData[n] = value; // value is persistent

O 01N DN kW

}

| oad H Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRaM | Fiash | Nvm || HDD |

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




The Persistent Memory Manager (PMM)

= EXposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

= Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.
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Etticient Data Mapping among Heterogeneous Devices

A persistent memory exposes a large, persistent address space
o But it may use many different devices to satisfy this goal

o From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

o And other NVM devices in between

Performance and energy can benefit from good placement of
data among these devices

o Utilizing the strengths of each device and avoiding their weaknesses,
if possible

o For example, consider two important application characteristics:
locality and persistence
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Etticient Data Mapping among Heterogeneous Devices

A
Less Locality

More Locality

Ve >
Temporary Persistent
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Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

More Locality
Ve >
Temporary Persistent
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Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A -> place on Flash
Less Locality X

Frequently-updated index for a
Content Delivery Network (CDN)
- place in DRAM

More Locality X
Ve >
Temporary Persistent

Applications or system software can provide hints for data placement
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FEvaluated Systems
HDD Baseline

o Traditional system with volatile DRAM memory and persistent HDD storage
o Overheads of operating system and file system code and buffering

NVM Baseline (NB)
o Same as HDD Baseline, but HDD is replaced with NVM
o Still has OS/FS overheads of the two-level storage model

Persistent Memory (PM)

o Uses only NVM (no DRAM) to ensure full-system persistence
o All data accessed using loads and stores

o Does not waste time on system calls

o Data is manipulated directly on the NVM device
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Performance Benefits of a Single-Level Store

B User CPU [ User Memory B Syscall CPU [ Syscall I/O
1.0

~24X
£ 08 \
|_
\
§ 0.6
L
§ 0.4
\
s 0.2 ~
= 0.044
LT T 0.009
0 —
HDD 2-level NVM 2-level  Persistent Memory

SAFARI Meza+, "A Case for Efficient Hardware-Software Cooperative Management of 153
Storage and Memory,” WEED 2013.



Energy Benefits of a Single-lLevel Store

W User CPU [ Syscall CPFU W DRAM [ NVM @ HDD

o O o
~ o)) oo

Fraction of Total Energy

o
N

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 159
SAFARI Storage and Memory,” WEED 2013.



On Persistent Memory Benetits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,

"A Case for Efficient Hardware-Software

Cooperative Management of Storage and Memory"
Proceedings of the

5th Workshop on Energy-Efficient Design (WEED), Tel-
Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza*  Yixin Luo*  Samira Khan** JishenZhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University ~ 'Pennsylvania State University ~ *Intel Labs =~ SAMD Research
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Challenge and Opportunity

Combined
Memory & Storage

SAFARI



Challenge and Opportunity

A Unified Interface to
All Data

SAFARI



We did not cover the following slides in lecture.
These are for your preparation for the next lecture.
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Lecture 7/:
Emerging Memory Technologies
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One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes

o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...
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CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

inconsistent memory state




CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-HeapS mspros11], BPFS isospros), Mnemosyne [ASPLOS11]

AtomicBegin {

Insert a new node;
} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
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CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-HeapS ispros11], BPFS isospros), Mnemosyne [ASPLOS11]

...,
Example Code

update a node In a persistent hash table

volid hashtable update (hashtable t* ht,
~void *key, void *data)
{

list t* chain = get chain(ht, key);

palir t* pailr; -

palr t updatePalr,

updatePair.first = key;

pailr = (palr t*) 1list find(chain,
&updatePair) ;

palr—->second = data;
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CURRENT SOLUTIONS

vold TMhashtable update (TMARCGDECL
hashtable t* ht, void *key, void*data)
{

list t* chain = get chain(ht, key);

palir t* pair; -

palr t updatePair;

updatePair.first = key;

pair = (pair t*) TMLIST FIND (chain,

supdatePair) ;
palr—->second = data;



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
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CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation
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CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent
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CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

get chain (ht, key)
Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers




OUR APPROACH: ThyNVM

Goal:
Software transparent consistency in
persistent memory systems

Key ldea:
Periodically checkpoint state;
recover to previous checkpt on crash
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ThyNVM: Summary

—

A new hardware-based
checkpointing mechanism

* Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM

with zero cost consistency



2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

— —_
Epoch 0 Epoch 1 ‘

Checkpointing

Epoch O
Epoch 1
Epoch 2




More About ThyNVM

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,

"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"”
Proceedings of the

48th International Symposium on Microarchitecture (MICRO), Waikiki,
Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [
Poster (pptx) (pdf)]

[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*™ Jishen Zhao* Samira Khan Jongmoo Choit" Yongwei Wu* Onur Mutlu®

"Carnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia *Dankook University
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Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI



Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the
4th Workshop on Interactions of NVM/Flash with Operating
Systems and Workloads (INFLOW), Savannah, GA, USA,
November 2016.

[Slides (pptx) (pdf)]
NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware
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The Future of

“merging Technologies 1s Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Can enable:

- Orders of magnitude
Improvements

- New applications and
computing systems

Problem

Program/Language

System Software

SW/HW Interface

Yet, we have to
- Think across the stack

- Design enabling systems

SAFARI
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[f In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
a for at least two decades

% FAPER Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Car, Savcata GHosk, EricH F. HaraTtscH, Yixin Luo, aND ONUR MuTLU

ABSTRACT | wanp flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems; error recovery; fault
today because its capacity has continuously increased and tolerance: flash memory: reliability: solid-state drives

SAFARI https://arxiv.org/pdf/1706.08642 181




