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High-Level Summary of Last Lecture 
n  Memory Latency Continued 

q  Understanding and exploiting DRAM Latency Variation 

n  Memory Latency-Voltage-Reliability Relationship 

n  Processing In Memory 
q  In-DRAM COPY, INIT, MAJORITY, AND, OR, NOT 
q  Computation in logic layer of 3D-stacked memory 
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Agenda for Today 
n  Finish processing in memory 

q  Simple approaches 
q  Other issues 

n  Emerging memory technologies 

n  Hybrid memory systems 
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Challenge and Opportunity for Future 

Fundamentally 
Low-Latency 

& Low-Energy 
Computing Architectures 
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Processing In Memory 
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Observation and Opportunity 

n  High latency (and high energy) caused by data movement 
q  Long, energy-hungry interconnects 
q  Energy-hungry electrical interfaces 
q  Movement of large amounts of data 

n  Opportunity: Minimize data movement by performing 
computation directly where the data resides 
q  Processing in memory (PIM) 
q  In-memory computation/processing 
q  Near-data processing (NDP) 
q  General concept applicable to any data storage unit (caches, 

SSDs, main memory) 
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Data Movement vs. Computation Energy 
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Dally, HiPEAC 2015 



Data Movement vs. Computation Energy 
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Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



Goal: Processing Inside Memory 

 

n  Many questions … How do we design the: 
q  compute-capable memory & controllers? 
q  processor chip? 
q  software and hardware interfaces? 
q  system software and languages? 
q  algorithms? 
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Why In-Memory Computation Today? 

n  Push from Technology 
q  DRAM Scaling at jeopardy  
   à Controllers close to DRAM 
   à Industry open to new memory architectures 

n  Pull from Systems and Applications 
q  Data access is a major system and application bottleneck 
q  Systems are energy limited 
q  Data movement much more energy-hungry than computation 
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Dally, HiPEAC 2015 



Two Approaches to In-Memory Processing  
n  1. Minimally change DRAM to enable simple yet powerful   

computation primitives 
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) 

 
n  2. Exploit the control logic in 3D-stacked memory to enable 

more comprehensive computation near memory 
q  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 
q  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 

(Ahn et al., ISCA 2015) 
q  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 

Mechanisms, Evaluation  (Hsieh et al., ICCD 2016) 
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Opportunity: 3D-Stacked Logic+Memory 
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DRAM Landscape (circa 2015) 
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Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015. 



Two Key Questions in 3D Stacked PIM 

n  What is the minimal processing-in-memory support we can 
provide ? 
q  without changing the system significantly 
q  while achieving significant benefits of processing in 3D-

stacked memory 

n  How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator? 
q  what is the architecture and programming model? 
q  what are the mechanisms for acceleration? 

14 



Tesseract System for Graph Processing 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 
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Communications In Tesseract (I) 
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Communications In Tesseract (II) 
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Communications In Tesseract (III) 
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Remote Function Call (Non-Blocking) 
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Evaluated Systems 
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Tesseract Graph Processing Performance 
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On five graph processing algorithms 



Tesseract Graph Processing Performance 

24 

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	Consump;on	



Effect of Bandwidth & Programming Model 
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Tesseract Graph Processing System Energy 
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Tesseract: Advantages & Disadvantages 

n  Advantages 
   + Specialized graph processing accelerator using PIM 
   + Large system performance and energy benefits 
   + Takes advantage of 3D stacking for an important workload 
  
n  Disadvantages 
    - Changes a lot in the system 

 - New programming model 
 - Specialized Tesseract cores for graph processing 

    - Cost 
    - Scalability limited by off-chip links or graph partitioning 
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More on Tesseract 
n  Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi, 
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)] 
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Two Key Questions in 3D Stacked PIM 

n  What is the minimal processing-in-memory support we can 
provide ? 
q  without changing the system significantly 
q  while achieving significant benefits of processing in 3D-

stacked memory 

n  How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator? 
q  what is the architecture and programming model? 
q  what are the mechanisms for acceleration? 
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PEI: PIM-Enabled Instructions (Ideas) 
n  Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model 

n  Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block 
q  e.g., __pim_add(&w.next_rank,	value)	à	pim.add	r1,	(r2)�
q  No changes sequential execution/programming model 
q  No changes to virtual memory 
q  Minimal changes to cache coherence 
q  No need for data mapping: Each PEI restricted to a single memory module 

n  Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors 
q  Execute each operation at the location that provides the best performance 
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Simple PIM Operations as ISA Extensions (II) 
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Simple PIM Operations as ISA Extensions (III) 
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Main	Memory�
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for	(v:	graph.verDces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	

pim.add	r1,	(r2)�



Always Executing in Memory? Not A Good Idea 
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PEI: PIM-Enabled Instructions (Example) 
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n  Executed either in memory or in the processor: dynamic decision 
q  Low-cost locality monitoring for a single instruction 

n  Cache-coherent, virtually-addressed, single cache block only 
n  Atomic between different PEIs 
n  Not atomic with normal instructions (use pfence for ordering) 

for	(v:	graph.verDces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	
pfence();	

pim.add	r1,	(r2)�

pfence�



PIM-Enabled Instructions	

n  Key to practicality: single-cache-block restriction 
q  Each PEI can access at most one last-level cache block 
q  Similar restrictions exist in atomic instructions 

n  Benefits 
q  Localization: each PEI is bounded to one memory module 
q  Interoperability: easier support for cache coherence and 

virtual memory 
q  Simplified locality monitoring: data locality of PEIs can be 

identified simply by the cache control logic 



Example PEI Microarchitecture 
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PEI: Initial Evaluation Results 
n  Initial evaluations with 10 emerging data-intensive workloads 

q  Large-scale graph processing 
q  In-memory data analytics 
q  Machine learning and data mining 
q  Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality 

n  Pin-based cycle-level x86-64 simulation	

 
n  Performance Improvement and Energy Reduction:  

n  47% average speedup with large input data sets 
n  32% speedup with small input data sets 
n  25% avg. energy reduction in a single node with large input data sets 
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Evaluated Data-Intensive Applications	

n  Ten emerging data-intensive workloads 
q  Large-scale graph processing 

n  Average teenage follower, BFS, PageRank, single-source shortest 
path, weakly connected components 

q  In-memory data analytics 
n  Hash join, histogram, radix partitioning 

q  Machine learning and data mining 
n  Streamcluster, SVM-RFE 

n  Three input sets (small, medium, large) for each workload 
to show the impact of data locality	



PEI Performance Delta: Large Data Sets 
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PEI Performance: Large Data Sets 
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PEI Performance Delta: Small Data Sets 
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PEI Performance: Small Data Sets 
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PEI Performance Delta: Medium Data Sets 

43 

-10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	 GM	

PIM-Only	 Locality-Aware	

(Medium Inputs, Baseline: Host-Only) 



PEI Energy Consumption 
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PEI: Advantages & Disadvantages 

n  Advantages 
   + Simple and low cost approach to PIM 
   + No changes to programming model, virtual memory 
   + Dynamically decides where to execute an instruction 
  
n  Disadvantages 
    - Does not take full advantage of PIM potential 

 - Single cache block restriction is limiting 
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More on PIM-Enabled Instructions 
n  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, 

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)]   



More on PIM Design: 3D-Stacked GPU I 
n  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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Key Challenge 1	
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• Challenge 1: Which operations should be executed 
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Key Challenge 2 

Logic layer 
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• Challenge 2: How should data be mapped to 
different 3D memory stacks?  

SM (Streaming Multiprocessor) 



More on PIM Design: 3D-Stacked GPU II 
n  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, 
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities" 
Proceedings of the 
25th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Haifa, Israel, September 2016. 
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More on PIM: Linked Data Structures 
n  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu, 
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation" 
Proceedings of the 
34th IEEE International Conference on Computer Design (ICCD), 
Phoenix, AZ, USA, October 2016.  
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Executive Summary 
• Our Goal: Accelerating pointer chasing inside            

main memory 

• Challenges: Parallelism challenge and Address 
translation challenge 

 

• Our Solution: In-Memory PoInter Chasing 
Accelerator (IMPICA) 

•  Address-access decoupling: enabling parallelism in the 
accelerator with low cost 

•  IMPICA page table: low cost page table in logic layer 

• Key Results:  
•  1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput 
•  6% - 41% reduction in energy consumption 
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Linked Data Structures 

• Linked data structures are widely used 
in many important applications 
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The Problem: Pointer Chasing 

• Traversing linked data structures 
requires chasing pointers 
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DRAM layers 

Our Goal 
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Parallelism Challenge 
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Parallelism Challenge and Opportunity 

• A simple in-memory accelerator can 
still be slower than multiple CPU cores 

• Opportunity: a pointer-chasing 
accelerator spends a long time     
waiting for memory 
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Our Solution:  
Address-Access Decoupling 
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DRAM Dies 

IMPICA Core Architecture 
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Address Translation Challenge 
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Our Solution: IMPICA Page Table 

• Completely decouple the page table of 
IMPICA from the page table of the 
CPUs 
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IMPICA Page Table: Mechanism 

Bit	[47:41]	 Bit	[40:21]	 Bit	[20:12]	 Bit	[11:0]	
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Flat Page Table 
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Small Page Table 
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+
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Evaluation Methodology 

• Simulator: gem5 
• System Configuration 

• CPU 
•  4 OoO cores, 2GHz 
• Cache: 32KB L1, 1MB L2 

• IMPICA 
• 1 core, 500MHz, 32KB Cache 

• Memory Bandwidth 
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA 

• Our simulator code is open source 
• https://github.com/CMU-SAFARI/IMPICA  
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Result – Microbenchmark Performance 
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Result – Database Performance 
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System Energy Consumption 
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Area and Power Overhead 

• Power overhead: average power 
increases by 5.6% 
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More on PIM Design: Dependent Misses 
n  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, 

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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More on PIM Design: Coherence 

n  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu, 
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory" 
IEEE Computer Architecture Letters (CAL), June 2016. 
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Traditional Coherence Approaches Do Not Work 
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Traditional 
coherence 

No coherence 
overhead 



More on PIM Design: Data Structures 

n  Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu, 
"Concurrent Data Structures for Near-Memory Computing" 
Proceedings of the 
29th ACM Symposium on Parallelism in Algorithms and 
Architectures (SPAA), Washington, DC, USA, July 2017.  
[Slides (pptx) (pdf)]  
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Simulation Infrastructures for PIM 

n  Ramulator extended for PIM 
q  Flexible and extensible DRAM simulator 
q  Can model many different memory standards and proposals 
q  Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015. 
q  https://github.com/CMU-SAFARI/ramulator  
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An FPGA-based Test-bed for PIM 

n  Hasan Hassan et al., 
SoftMC: A Flexible and 
Practical Open-Source 
Infrastructure for Enabling 
Experimental DRAM Studies 
HPCA 2017. 

 
 
n  Flexible 
n  Easy to Use (C++ API) 
n  Open-source  
    github.com/CMU-SAFARI/SoftMC  
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Challenge and Opportunity for Future 

Fundamentally 
Energy-Efficient 
(Data-Centric) 

Computing Architectures 
75 



Challenge and Opportunity for Future 

Fundamentally 
Low-Latency 

(Data-Centric) 
Computing Architectures 
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Barriers to Adoption of PIM 

1. Functionality of and applications for PIM 
 
2. Ease of programming (interfaces and compiler/HW support) 
 
3. System support: coherence & virtual memory 
 
4. Runtime systems for adaptive scheduling, data mapping, 
access/sharing control 
 
5. Infrastructures to assess benefits and feasibility 
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Emerging Memory Technologies 
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Limits of Charge Memory 
n  Difficult charge placement and control 

q  Flash: floating gate charge 
q  DRAM: capacitor charge, transistor leakage 

n  Reliable sensing becomes difficult as charge 
storage unit size reduces 
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Solution 1: New Memory Architectures 

n  Overcome memory shortcomings with 
q  Memory-centric system design 
q  Novel memory architectures, interfaces, functions 
q  Better waste management (efficient utilization) 

n  Key issues to tackle 
q  Enable reliability at low cost à high capacity 
q  Reduce energy 
q  Reduce latency  
q  Improve bandwidth 
q  Reduce waste (capacity, bandwidth, latency) 
q  Enable computation close to data 
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Solution 1: New Memory Architectures 
n  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
n  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013. 
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013. 
n  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013. 
n  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 
n  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014. 
n  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014. 
n  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 
n  Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015. 
n  Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015. 
n  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015. 
n  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015. 
n  Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015. 
n  Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015. 
n  Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015. 
n  Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015. 
n  Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015. 
n  Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016. 
n  Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016. 
n  Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016. 
n  Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016. 
n  Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016. 
n  Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016. 
n  Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016. 
n  Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016. 
n  Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016. 
n  Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016. 
n  Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016. 
n  Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016. 
n  Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017. 
n  Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017. 
n  Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017. 
n  Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017. 
n  Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017. 
n  Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017. 
n  Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017. 
n  Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017. 
n  Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017. 
n  Avoid DRAM: 

q  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012. 
q  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012. 
q  Seshadri+, “The Dirty-Block Index,” ISCA 2014. 
q  Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015. 
q  Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015. 
q  Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016. 
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Solution 2: Emerging Memory Technologies 
n  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 

n  Example: Phase Change Memory 
q  Data stored by changing phase of material  
q  Data read by detecting material’s resistance 
q  Expected to scale to 9nm (2022 [ITRS 2009]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have (many) shortcomings 
q  Can they be enabled to replace/augment/surpass DRAM? 
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Solution 2: Emerging Memory Technologies 
n  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10. 
n  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012. 
n  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012. 
n  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.  
n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013. 
n  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014. 
n  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014. 
n  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014. 
n  Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015. 
n  Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016. 
n  Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017. 
n  Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017. 
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Charge vs. Resistive Memories 

n  Charge Memory (e.g., DRAM, Flash) 
q  Write data by capturing charge Q 
q  Read data by detecting voltage V 

n  Resistive Memory (e.g., PCM, STT-MRAM, memristors) 
q  Write data by pulsing current dQ/dt 
q  Read data by detecting resistance R  
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Promising Resistive Memory Technologies 
n  PCM 

q  Inject current to change material phase 
q  Resistance determined by phase 

n  STT-MRAM 
q  Inject current to change magnet polarity 
q  Resistance determined by polarity 

n  Memristors/RRAM/ReRAM 
q  Inject current to change atomic structure 
q  Resistance determined by atom distance 
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What is Phase Change Memory? 
n  Phase change material (chalcogenide glass) exists in two states: 

q  Amorphous: Low optical reflexivity and high electrical resistivity 
q  Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 
PCM cell can be switched between states reliably and quickly 



How Does PCM Work? 
n  Write: change phase via current injection 

q  SET: sustained current to heat cell above Tcryst  
q  RESET: cell heated above Tmelt and quenched 

n  Read: detect phase via material resistance  
q  amorphous/crystalline 
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Opportunity: PCM Advantages 
n  Scales better than DRAM, Flash 

q  Requires current pulses, which scale linearly with feature size 
q  Expected to scale to 9nm (2022 [ITRS]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 

n  Can be denser than DRAM 
q  Can store multiple bits per cell due to large resistance range 
q  Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012 

n  Non-volatile 
q  Retain data for >10 years at 85C 

n  No refresh needed, low idle power 
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PCM	Resistance	→	Value	

Cell	resistance	

1 0Cell	
value:	
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Mul;-Level	Cell	PCM	
l  MulD-level	cell:	more	than	1	bit	per	cell	

-  Further	increases	density	by	2	to	4x	[Lee+,ISCA'09]	
	
l  But	MLC-PCM	also	has	drawbacks	

- Higher	latency	and	energy	than	single-level	cell	PCM	



91 

MLC-PCM	Resistance	→	Value	

Cell	resistance	

11 000110Cell	
value:	

Bit	1	 Bit	0	
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MLC-PCM	Resistance	→	Value	

Cell	resistance	

11 000110Cell	
value:	

Less	margin	between	values	
→	need	more	precise	sensing/modificaDon	of	cell	contents	
→	higher	latency/energy	(~2x	for	reads	and	4x	for	writes)	



Phase Change Memory Properties 

n  Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC) 

n  Derived PCM parameters for F=90nm 

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 

n  Lee et al., “Phase Change Technology and the Future of 
Main Memory,” IEEE Micro Top Picks 2010. 
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Phase Change Memory Properties: Latency 
n  Latency comparable to, but slower than DRAM 

 
n  Read Latency 

q  50ns: 4x DRAM, 10-3x NAND Flash 
n  Write Latency 

q  150ns: 12x DRAM 

n  Write Bandwidth 
q  5-10 MB/s: 0.1x DRAM, 1x NAND Flash 

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 



Phase Change Memory Properties 
n  Dynamic Energy 

q  40 uA Rd, 150 uA Wr 
q  2-43x DRAM, 1x NAND Flash 

n  Endurance 
q  Writes induce phase change at 650C 
q  Contacts degrade from thermal expansion/contraction 
q  108 writes per cell 
q  10-8x DRAM, 103x NAND Flash 

n  Cell Size 
q  9-12F2 using BJT, single-level cells 
q  1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC) 
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Phase Change Memory: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling (capacity and cost) 
q  Non volatile à Persistent 
q  Low idle power (no refresh) 

n  Cons 
q  Higher latencies: ~4-15x DRAM (especially write) 
q  Higher active energy: ~2-50x DRAM (especially write) 
q  Lower endurance (a cell dies after ~108 writes) 
q  Reliability issues (resistance drift) 

n  Challenges in enabling PCM as DRAM replacement/helper: 
q  Mitigate PCM shortcomings 
q  Find the right way to place PCM in the system 
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PCM-based Main Memory (I) 
n  How should PCM-based (main) memory be organized? 

 

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  
q  How to partition/migrate data between PCM and DRAM 
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PCM-based Main Memory (II) 
n  How should PCM-based (main) memory be organized? 

 
n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

q  How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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An Initial Study: Replace DRAM with PCM 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 
q  Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 
n  Replace DRAM with PCM in a 4-core, 4MB L2 system 
n  PCM organized the same as DRAM: row buffers, banks, peripherals 
n  1.6x delay, 2.2x energy, 500-hour average lifetime 

 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 

Scalable DRAM Alternative,” ISCA 2009. 
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Architecting PCM to Mitigate Shortcomings 
n  Idea 1: Use multiple narrow row buffers in each PCM chip 

à Reduces array reads/writes à better endurance, latency, energy 

n  Idea 2: Write into array at 
    cache block or word  
    granularity 

 à Reduces unnecessary wear    
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DRAM PCM 



Results: Architected PCM as Main Memory  
n  1.2x delay, 1.0x energy, 5.6-year average lifetime 
n  Scaling improves energy, endurance, density 

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees) 
n  Caveat 2: Intensive applications see large performance and energy hits 
n  Caveat 3: Optimistic PCM parameters? 
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Required Reading: PCM As Main Memory 
n  Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger, 

"Architecting Phase Change Memory as a Scalable DRAM 
Alternative" 
Proceedings of the 
36th International Symposium on Computer Architecture (ISCA), 
pages 2-13, Austin, TX, June 2009. Slides (pdf) 

104 



More on PCM As Main Memory (II) 
n  Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 

Engin Ipek, Onur Mutlu, and Doug Burger, 
"Phase Change Technology and the Future of Main Memory" 
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010.  
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STT-MRAM as Main Memory 
n  Magnetic Tunnel Junction (MTJ) device 

q  Reference layer: Fixed magnetic orientation 
q  Free layer: Parallel or anti-parallel 

n  Magnetic orientation of the free layer 
determines logical state of device 
q  High vs. low resistance 

n  Write: Push large current through MTJ to 
change orientation of free layer 

n  Read: Sense current flow 

n  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013. 

Reference Layer 

Free Layer 

Barrier 

Reference Layer 

Free Layer 

Barrier 

Logical 0 

Logical 1 

Word Line 

Bit Line 

Access 
Transistor 

MTJ 

Sense Line 



STT-MRAM: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling (capacity and cost) 
q  Non volatile à Persistent 
q  Low idle power (no refresh) 

n  Cons 
q  Higher write latency 
q  Higher write energy 
q  Poor density (currently) 
q  Reliability? 

n  Another level of freedom 
q  Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ) 
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Architected STT-MRAM as Main Memory 
n  4-core, 4GB main memory, multiprogrammed workloads 
n  ~6% performance loss, ~60% energy savings vs. DRAM 
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 



More on STT-MRAM as Main Memory 
n  Emre Kultursay, Mahmut Kandemir, Anand 

Sivasubramaniam, and Onur Mutlu, 
"Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative"  
Proceedings of the 
2013 IEEE International Symposium on Performance 
Analysis of Systems and Software (ISPASS), Austin, TX, 
April 2013. Slides (pptx) (pdf) 
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A More Viable Approach: Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



Challenge and Opportunity 

Providing the Best of 
Multiple Metrics 

with 
Multiple Memory Technologies 
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Challenge and Opportunity 
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Heterogeneous, 
Configurable, 

Programmable  
Memory Systems 



Hybrid Memory Systems: Issues 
n  Cache vs. Main Memory 

n  Granularity of Data Move/Manage-ment: Fine or Coarse 

n  Hardware vs. Software vs. HW/SW Cooperative  

n  When to migrate data? 

n  How to design a scalable and efficient large cache? 

n  … 
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One Option: DRAM as a Cache for PCM 
n  PCM is main memory; DRAM caches memory rows/blocks 

q  Benefits: Reduced latency on DRAM cache hit; write filtering 

n  Memory controller hardware manages the DRAM cache 
q  Benefit: Eliminates system software overhead 

n  Three issues: 
q  What data should be placed in DRAM versus kept in PCM? 
q  What is the granularity of data movement? 
q  How to design a low-cost hardware-managed DRAM cache? 

n  Two idea directions: 
q  Locality-aware data placement [Yoon+ , ICCD 2012] 

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM as a Cache for PCM 
n  Goal: Achieve the best of both DRAM and PCM/NVM 

q  Minimize amount of DRAM w/o sacrificing performance, endurance 
q  DRAM as cache to tolerate PCM latency and write bandwidth 
q  PCM as main memory to provide large capacity at good cost and power 
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Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.  
 



Write Filtering Techniques 
n  Lazy Write: Pages from disk installed only in DRAM, not PCM 
n  Partial Writes:  Only dirty lines from DRAM page written back 
n  Page Bypass: Discard pages with poor reuse on DRAM eviction 

n  Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009.  
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Results: DRAM as PCM Cache (I) 
n  Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles, 

HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99% 
n  Assumption: PCM 4x denser, 4x slower than DRAM  
n  DRAM block size = PCM page size (4kB)  
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Results: DRAM as PCM Cache (II) 
n  PCM-DRAM Hybrid performs similarly to similar-size DRAM 
n  Significant energy savings with PCM-DRAM Hybrid 
n  Average lifetime: 9.7 years (no guarantees) 
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More on DRAM-PCM Hybrid Memory 
n  Scalable High-Performance Main Memory System 

Using Phase-Change Memory Technology.  
Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers  
Appears in the International Symposium on Computer 
Architecture (ISCA) 2009.  
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Data Placement in Hybrid Memory 

n  Memory A is fast, but small 
n  Load should be balanced on both channels? 
n  Page migrations have performance and energy overhead  
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Data Placement Between DRAM and PCM 
n  Idea: Characterize data access patterns and guide data 

placement in hybrid memory 

n  Streaming accesses: As fast in PCM as in DRAM 

n  Random accesses: Much faster in DRAM 

n  Idea: Place random access data with some reuse in DRAM; 
streaming data in PCM 

n  Yoon+, “Row Buffer Locality-Aware Data Placement in 
Hybrid Memories,” ICCD 2012 Best Paper Award. 
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Key Observation & Idea
•  Row	buffers	exist	in	both	DRAM	and	PCM	

– Row	hit	latency	similar	in	DRAM	&	PCM	[Lee+	ISCA’09]	
– Row	miss	latency	small	in	DRAM,	large	in	PCM	

•  Place	data	in	DRAM	which	
–  is	likely	to	miss	in	the	row	buffer	(low	row	buffer	
locality)à	miss	penalty	is	smaller	in	DRAM	

	AND	
–  is	reused	many	Dmes	à	cache	only	the	data	
worth	the	movement	cost	and	DRAM	space	
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Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.	



More on Hybrid Memory Data Placement 

n  HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, 
Rachael Harding, and Onur Mutlu, 
"Row Buffer Locality Aware Caching Policies for 
Hybrid Memories" 
Proceedings of the 
30th IEEE International Conference on Computer Design 
(ICCD), Montreal, Quebec, Canada, September 2012. 
Slides (pptx) (pdf) 
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Weaknesses of Existing Solutions 
n  They are all heuristics that consider only a limited part of 

memory access behavior 

n  Do not directly capture the overall system 
performance impact of data placement decisions  

n  Example: None capture memory-level parallelism (MLP) 
q  Number of concurrent memory requests from the same 

application when a page is accessed 
q  Affects how much page migration helps performance 
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Importance of Memory-Level Parallelism 
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requests to Page 3 

requests to Page 1 

requests to Page 3 

time 

Before migration: 

After migration: 

requests to Page 2 

requests to Page 2 

time 

Before migration: 

After migration: 

Mem. B 

Mem. B 

Mem. A 

Mem. A 

Mem. B 

Mem. A 

T T 

Migrating one page 
reduces stall time by T 

Must migrate two pages 
to reduce stall time by T: 
migrating one page alone 

does not help 

Mem. B 

Page migration decisions need to consider MLP 



Our Goal [CLUSTER 2017] 

A generalized mechanism that 
 

1. Directly estimates the performance benefit 
of migrating a page between 
any two types of memory 

2. Places only the performance-critical data 
in the fast memory 
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Utility-Based Hybrid Memory Management 
n  A memory manager that works for any hybrid memory 

q  e.g., DRAM-NVM, DRAM-RLDRAM 

n  Key Idea 
q  For each page, use comprehensive characteristics to 

calculate estimated utility (i.e., performance impact) 
of migrating page from one memory to the other in the 
system 

q  Migrate only pages with the highest utility 
(i.e., pages that improve system performance the most 
when migrated) 

n  Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017. 
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Key Mechanisms of UH-MEM 
n  For each page, estimate utility using a performance model 

q  Application stall time reduction 
How much would migrating a page benefit the performance of the 
application that the page belongs to? 

q  Application performance sensitivity 
How much does the improvement of a single application’s 
performance increase the overall system performance? 
 
 

n  Migrate only pages whose utility exceed the migration 
threshold from slow memory to fast memory 

n  Periodically adjust migration threshold 
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Results: System Performance 
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Results: Sensitivity to Slow Memory Latency 
n  We vary 𝑡↓𝑅𝐶𝐷  and 𝑡↓𝑊𝑅  of the slow memory 
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More on UH-MEM 
n  Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, 

and Onur Mutlu, 
"Utility-Based Hybrid Memory Management" 
Proceedings of the 19th IEEE Cluster Conference (CLUSTER), 
Honolulu, Hawaii, USA, September 2017.  
[Slides (pptx) (pdf)]  
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Challenge and Opportunity 

Enabling  
an Emerging Technology 

to Augment DRAM 
 

Managing Hybrid Memories 
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Another Challenge 
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Designing Effective  
Large (DRAM) Caches 

 
 



One Problem with Large DRAM Caches 
n  A large DRAM cache requires a large metadata (tag + 

block-based information) store 
n  How do we design an efficient DRAM cache? 
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DRAM	 PCM	

CPU 

(small, fast cache) (high capacity) 

Mem	
Ctlr	

Mem	
Ctlr	

LOAD	X	

Access X 

Metadata:	
X	à	DRAM	
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Idea 1: Tags in Memory 
n  Store tags in the same row as data in DRAM 

q  Store metadata in same row as their data 
q  Data and metadata can be accessed together 

n  Benefit: No on-chip tag storage overhead 
n  Downsides:  

q  Cache hit determined only after a DRAM access 
q  Cache hit requires two DRAM accesses 
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Cache	block	2	Cache	block	0	 Cache	block	1	
DRAM row 

Tag0	 Tag1	 Tag2	



Idea 2: Cache Tags in SRAM 
n  Recall Idea 1: Store all metadata in DRAM  

q  To reduce metadata storage overhead 

n  Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 
q  Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 
n  Some applications benefit from caching more data 

q  They have good spatial locality 

n  Others do not 
q  Large granularity wastes bandwidth and reduces cache utilization 

n  Idea 3: Simple dynamic caching granularity policy 
q  Cost-benefit analysis to determine best DRAM cache block size 
q  Group main memory into sets of rows 
q  Different sampled row sets follow different fixed caching 

granularities 
q  The rest of main memory follows the best granularity 

n  Cost–benefit analysis:  access latency versus number of cachings 
n  Performed every quantum 
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TIMBER	Performance	

-6%	

Reduced	channel	
contenDon	and	

improved	spaDal	locality	

Meza,	Chang,	Yoon,	Mutlu,	Ranganathan,	“Enabling	Efficient	and	
Scalable	Hybrid	Memories,”	IEEE	Comp.	Arch.	Lezers,	2012.	
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TIMBER	Energy	Efficiency	

Fewer	migraDons	reduce	
transmized	data	and	
channel	contenDon	

18%	

Meza,	Chang,	Yoon,	Mutlu,	Ranganathan,	“Enabling	Efficient	and	
Scalable	Hybrid	Memories,”	IEEE	Comp.	Arch.	Lezers,	2012.	



On Large DRAM Cache Design 

n  Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan,  
"Enabling Efficient and Scalable Hybrid Memories 
Using Fine-Granularity DRAM Cache Management" 
IEEE Computer Architecture Letters (CAL), February 2012.  
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DRAM Caches: Many Recent Options 
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Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017. 
 



Banshee [MICRO 2017] 
n  Tracks presence in cache using TLB and Page Table 

q  No tag store needed for DRAM cache 
q  Enabled by a new lightweight lazy TLB coherence protocol 

n  New bandwidth-aware frequency-based replacement policy 
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More on Banshee 
n  Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur 

Mutlu, and Srinivas Devadas, 
"Banshee: Bandwidth-Efficient DRAM Caching via 
Software/Hardware Cooperation" 
Proceedings of the 
50th International Symposium on Microarchitecture (MICRO), 
Boston, MA, USA, October 2017.  
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Other Opportunities with Emerging Technologies 

n  Merging of memory and storage 
q  e.g., a single interface to manage all data 

n  New applications 
q  e.g., ultra-fast checkpoint and restore 

n  More robust system design 
q  e.g., reducing data loss 

n  Processing tightly-coupled with memory 
q  e.g., enabling efficient search and filtering 
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PCM, STT-RAM 
NVM	

Non-vola;le	memories	combine	
characteris;cs	of	memory	and	storage	



Two-Level Memory/Storage Model 
n  The traditional two-level storage model is a bottleneck with NVM 

q  Volatile data in memory à a load/store interface 
q  Persistent data in storage à a file system interface 
q  Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores 
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Unified Memory and Storage with NVM 
n  Goal: Unify memory and storage management in a single unit to 

eliminate wasted work to locate, transfer, and translate data 
q  Improves both energy and performance 
q  Simplifies programming model as well 
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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The Persistent Memory Manager (PMM) 
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5
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The Persistent Memory Manager (PMM) 
n  Exposes a load/store interface to access persistent data 

q  Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data  

n  Manages data placement, location, persistence, security 
q  To get the best of multiple forms of storage 

n  Manages metadata storage and retrieval 
q  This can lead to overheads that need to be managed 

n  Exposes hooks and interfaces for system software 
q  To enable better data placement and management decisions 

n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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Efficient Data Mapping among Heterogeneous Devices 

n  A persistent memory exposes a large, persistent address space 
q  But it may use many different devices to satisfy this goal 
q  From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash 
q  And other NVM devices in between 

n  Performance and energy can benefit from good placement of 
data among these devices 
q  Utilizing the strengths of each device and avoiding their weaknesses, 

if possible 
q  For example, consider two important application characteristics:  

locality and persistence 
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Efficient Data Mapping among Heterogeneous Devices 
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X 

Columns in a column store that are 
scanned through only infrequently 

à place on Flash 

Efficient Data Mapping among Heterogeneous Devices 
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X 

Columns in a column store that are 
scanned through only infrequently 

à place on Flash 

X 

Frequently-updated index for a 
Content Delivery Network (CDN) 

à place in DRAM 

Efficient Data Mapping among Heterogeneous Devices 

Applica;ons	or	system	soeware	can	provide	hints	for	data	placement	



Evaluated Systems 
n  HDD Baseline  

q  Traditional system with volatile DRAM memory and persistent HDD storage 
q  Overheads of operating system and file system code and buffering 

n  NVM Baseline (NB) 
q  Same as HDD Baseline, but HDD is replaced with NVM 
q  Still has OS/FS overheads of the two-level storage model 

n  Persistent Memory (PM) 
q  Uses only NVM (no DRAM) to ensure full-system persistence 
q  All data accessed using loads and stores 
q  Does not waste time on system calls 
q  Data is manipulated directly on the NVM device 
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Performance Benefits of a Single-Level Store 
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Energy Benefits of a Single-Level Store 
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On Persistent Memory Benefits & Challenges  

n  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan 
Xie, and Onur Mutlu, 
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and Memory" 
Proceedings of the 
5th Workshop on Energy-Efficient Design (WEED), Tel-
Aviv, Israel, June 2013. Slides (pptx) Slides (pdf) 
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Challenge and Opportunity 

Combined  
Memory & Storage 
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Challenge and Opportunity 
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A Unified Interface to 
All Data 
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One Key Challenge in Persistent Memory 

n  How to ensure consistency of system/data if all 
memory is persistent?  

n  Two extremes 
q  Programmer transparent: Let the system handle it 
q  Programmer only: Let the programmer handle it  

n  Many alternatives in-between…   
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CRASH	CONSISTENCY	PROBLEM	

166	

Add a node to a linked list 

1.	Link	to	next	2.	Link	to	prev	

System	crash	can	result	in		
inconsistent	memory	state	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin { 
     Insert a new node; 
} AtomicEnd; 

Limits	adop;on	of	NVM	
Have	to	rewrite	code	with	clear	par;;on		
between	vola;le	and	non-vola;le	data	

Burden	on	the	programmers	
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CURRENT	SOLUTIONS	
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void hashtable_update(hashtable_t* ht, 
               void *key, void *data) 
{ 
   list_t* chain = get_chain(ht, key); 
   pair_t* pair; 
   pair_t updatePair; 
   updatePair.first = key; 
   pair = (pair_t*) list_find(chain,  
               &updatePair); 
   pair->second = data; 
} 

Example Code 
update a node in a persistent hash table  

Explicit	interfaces	to	manage	consistency	
– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara;on	of	persistent	components	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara;on	of	persistent	components	

Need	a	new	implementa;on	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara;on	of	persistent	components	

Need	a	new	implementa;on	

Third	party	code		
can	be	inconsistent	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, void*data)
{ 
  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 
  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual	declara;on	of	persistent	components	

Need	a	new	implementa;on	

Third	party	code		
can	be	inconsistent	

Prohibited	
Opera;on	

Burden	on	the	programmers	



	
	
	
	
	
	
	
	
	
	

OUR	APPROACH:	ThyNVM	
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Goal:  
Software transparent consistency in  

persistent memory systems 

Key Idea:  
Periodically checkpoint state;  

recover to previous checkpt on crash 



	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	

175 

•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoinDng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoinDng	latency	

•  Adapts	to	DRAM	and	NVM	characterisDcs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based  
checkpointing mechanism 
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time	

Epoch 0	

Epoch 1	
Epoch 2	

Epoch 0	 Epoch 1	
Running Checkpoin;ng Running Checkpoin;ng 

Running Checkpoin;ng 
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2.	OVERLAPPING		
CHECKPOINTING	AND	EXECUTION	



More About ThyNVM 

177 

n  Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, 
and Onur Mutlu, 
"ThyNVM: Enabling Software-Transparent Crash Consistency 
in Persistent Memory Systems" 
Proceedings of the 
48th International Symposium on Microarchitecture (MICRO), Waikiki, 
Hawaii, USA, December 2015.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [
Poster (pptx) (pdf)]  
[Source Code]  



Another Key Challenge in Persistent Memory 

Programming Ease 
to Exploit Persistence 
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Tools/Libraries to Help Programmers 
n  Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric 

Schkufza, Onur Mutlu, and Pratap Subrahmanyam, 
"NVMove: Helping Programmers Move to Byte-Based 
Persistence" 
Proceedings of the 
4th Workshop on Interactions of NVM/Flash with Operating 
Systems and Workloads (INFLOW), Savannah, GA, USA, 
November 2016.  
[Slides (pptx) (pdf)]  
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The Future of Emerging Technologies is Bright 

n  Regardless of challenges  
q  in underlying technology and overlying problems/requirements  
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Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 

Can enable: 
 
- Orders of magnitude  
improvements 
 
- New applications and  
computing systems 

Yet, we have to 
 
- Think across the stack 
 
- Design enabling systems 
 



If In Doubt, Refer to Flash Memory 
n  A very “doubtful” emerging technology  

q  for at least two decades 

181 https://arxiv.org/pdf/1706.08642   

Proceedings of the IEEE, Sept. 2017 


