

Computer Architecture

Lecture 7:
Emerging Memory Technologies

Prof. Onur Mutlu
ETH Zürich
Fall 2017

11 October 2017

High-Level Summary of Last Lecture
n  Memory Latency Continued

q  Understanding and exploiting DRAM Latency Variation

n  Memory Latency-Voltage-Reliability Relationship

n  Processing In Memory
q  In-DRAM COPY, INIT, MAJORITY, AND, OR, NOT
q  Computation in logic layer of 3D-stacked memory

2

Agenda for Today
n  Finish processing in memory

q  Simple approaches
q  Other issues

n  Emerging memory technologies

n  Hybrid memory systems

3

Challenge and Opportunity for Future

Fundamentally
Low-Latency

& Low-Energy
Computing Architectures

4

Processing In Memory

5

Observation and Opportunity

n  High latency (and high energy) caused by data movement
q  Long, energy-hungry interconnects
q  Energy-hungry electrical interfaces
q  Movement of large amounts of data

n  Opportunity: Minimize data movement by performing
computation directly where the data resides
q  Processing in memory (PIM)
q  In-memory computation/processing
q  Near-data processing (NDP)
q  General concept applicable to any data storage unit (caches,

SSDs, main memory)

6

Data Movement vs. Computation Energy

7

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

8

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Goal: Processing Inside Memory

n  Many questions … How do we design the:
q  compute-capable memory & controllers?
q  processor chip?
q  software and hardware interfaces?
q  system software and languages?
q  algorithms?

Cache

Processor
Core

 Interconnect

 Memory
Database

Graphs

Media

Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Why In-Memory Computation Today?

n  Push from Technology
q  DRAM Scaling at jeopardy
 à Controllers close to DRAM
 à Industry open to new memory architectures

n  Pull from Systems and Applications
q  Data access is a major system and application bottleneck
q  Systems are energy limited
q  Data movement much more energy-hungry than computation

10

Dally, HiPEAC 2015

Two Approaches to In-Memory Processing
n  1. Minimally change DRAM to enable simple yet powerful

computation primitives
q  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

n  2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory
q  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)
q  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

(Ahn et al., ISCA 2015)
q  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation (Hsieh et al., ICCD 2016)
11

Opportunity: 3D-Stacked Logic+Memory

12

Logic

Memory

DRAM Landscape (circa 2015)

13

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D Stacked PIM

n  What is the minimal processing-in-memory support we can
provide ?
q  without changing the system significantly
q  while achieving significant benefits of processing in 3D-

stacked memory

n  How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q  what is the architecture and programming model?
q  what are the mechanisms for acceleration?

14

Tesseract System for Graph Processing

Crossbar	Network�

…
…

…
…

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

16

Crossbar	Network�

…
…

…
…

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

CommunicaDons	via	
Remote	FuncDon	Calls�

Communications In Tesseract (I)

17

Communications In Tesseract (II)

18

Communications In Tesseract (III)

19

Remote Function Call (Non-Blocking)

20

Logic

Memory

Tesseract System for Graph Processing

21

Crossbar	Network�

…
…

…
…

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching�

Evaluated Systems

HMC-MC

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO Tesseract

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�
>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

24

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	Consump;on	

Effect of Bandwidth & Programming Model

25

2.3x	
3.0x	

6.5x	

0	

1	

2	

3	

4	

5	

6	

7	

HMC-MC	 HMC-MC	+	
PIM	BW	

Tesseract	+	
ConvenDonal	BW	

Tesseract	

Sp
ee
du

p	

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Tesseract Graph Processing System Energy

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract: Advantages & Disadvantages

n  Advantages
 + Specialized graph processing accelerator using PIM
 + Large system performance and energy benefits
 + Takes advantage of 3D stacking for an important workload

n  Disadvantages
 - Changes a lot in the system

 - New programming model
 - Specialized Tesseract cores for graph processing

 - Cost
 - Scalability limited by off-chip links or graph partitioning

27

More on Tesseract
n  Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the
42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

28

Two Key Questions in 3D Stacked PIM

n  What is the minimal processing-in-memory support we can
provide ?
q  without changing the system significantly
q  while achieving significant benefits of processing in 3D-

stacked memory

n  How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q  what is the architecture and programming model?
q  what are the mechanisms for acceleration?

29

PEI: PIM-Enabled Instructions (Ideas)
n  Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

n  Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
q  e.g., __pim_add(&w.next_rank,	value)	à	pim.add	r1,	(r2)�
q  No changes sequential execution/programming model
q  No changes to virtual memory
q  Minimal changes to cache coherence
q  No need for data mapping: Each PEI restricted to a single memory module

n  Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
q  Execute each operation at the location that provides the best performance

30

Simple PIM Operations as ISA Extensions (II)

31

Main	Memory�

w.next_rank�w.next_rank�

for	(v:	graph.verDces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								w.next_rank	+=	value;	
				}	
}	

Host	Processor�

w.next_rank�w.next_rank�
64	bytes	in	
64	bytes	out�

Conven;onal	Architecture�

Simple PIM Operations as ISA Extensions (III)

32

Main	Memory�

w.next_rank�w.next_rank�

Host	Processor�

value�
8	bytes	in	
0	bytes	out�

In-Memory	Addi;on�

for	(v:	graph.verDces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	

pim.add	r1,	(r2)�

Always Executing in Memory? Not A Good Idea

33

-20%	
-10%	
0%	
10%	
20%	
30%	
40%	
50%	
60%	

p2
p-
Gn

u	
te
lla
31
	

so
c-
Sl
as
h	

do
t0
81
1	

w
eb

-	
St
an
fo
rd
	

am
az
on

-	
20
08
	

fr
w
ik
i-	

20
13
	

w
ik
i-	

Ta
lk
	

ci
t-
	

Pa
te
nt
s	

so
c-
Li
ve
	

Jo
ur
na
l1
	

ljo
ur
na
l-	

20
08
	

Sp
ee
du

p�

More	VerDces�

Increased	
Memory	Bandwidth	

Consump;on		
Caching	very	effecDve�

Reduced	Memory	Bandwidth		
Consump;on	due	to	
In-Memory	ComputaDon�

PEI: PIM-Enabled Instructions (Example)

34

n  Executed either in memory or in the processor: dynamic decision
q  Low-cost locality monitoring for a single instruction

n  Cache-coherent, virtually-addressed, single cache block only
n  Atomic between different PEIs
n  Not atomic with normal instructions (use pfence for ordering)

for	(v:	graph.verDces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	
pfence();	

pim.add	r1,	(r2)�

pfence�

PIM-Enabled Instructions	

n  Key to practicality: single-cache-block restriction
q  Each PEI can access at most one last-level cache block
q  Similar restrictions exist in atomic instructions

n  Benefits
q  Localization: each PEI is bounded to one memory module
q  Interoperability: easier support for cache coherence and

virtual memory
q  Simplified locality monitoring: data locality of PEIs can be

identified simply by the cache control logic

Example PEI Microarchitecture

36

Out-Of-Order	
Core�

L1
	C
ac
he
�

L2
	C
ac
he
�

La
st
-L
ev
el
	

Ca
ch
e�

HM
C	
Co

nt
ro
lle
r�

N
et
w
or
k�

DRAM	
Controller�

DRAM	
Controller�

DRAM	
Controller�

Host Processor 3D-stacked Memory
…

PCU	(PEI	
ComputaDon	Unit)�

PCU�

PCU�

PCU�

PIM	
Directory�

Locality	
Monitor�

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

PEI: Initial Evaluation Results
n  Initial evaluations with 10 emerging data-intensive workloads

q  Large-scale graph processing
q  In-memory data analytics
q  Machine learning and data mining
q  Three input sets (small, medium, large)

for each workload to analyze the impact
of data locality

n  Pin-based cycle-level x86-64 simulation	

n  Performance Improvement and Energy Reduction:

n  47% average speedup with large input data sets
n  32% speedup with small input data sets
n  25% avg. energy reduction in a single node with large input data sets

37

Evaluated Data-Intensive Applications	

n  Ten emerging data-intensive workloads
q  Large-scale graph processing

n  Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

q  In-memory data analytics
n  Hash join, histogram, radix partitioning

q  Machine learning and data mining
n  Streamcluster, SVM-RFE

n  Three input sets (small, medium, large) for each workload
to show the impact of data locality	

PEI Performance Delta: Large Data Sets

39

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	 GM	

PIM-Only	 Locality-Aware	

(Large Inputs, Baseline: Host-Only)

PEI Performance: Large Data Sets

40

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	 GM	

PIM-Only	 Locality-Aware	

(Large Inputs, Baseline: Host-Only)

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	

Normalized	Amount	of	Off-chip	Transfer�

Host-Only	 PIM-Only	 Locality-Aware	

PEI Performance Delta: Small Data Sets

41

-60%	

-40%	

-20%	

0%	

20%	

40%	

60%	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	 GM	

PIM-Only	 Locality-Aware	

(Small Inputs, Baseline: Host-Only)

PEI Performance: Small Data Sets

42

-60%	

-40%	

-20%	

0%	

20%	

40%	

60%	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	 GM	

PIM-Only	 Locality-Aware	

(Small Inputs, Baseline: Host-Only)

0	

1	

2	

3	

4	

5	

6	

7	

8	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	

Normalized	Amount	of	Off-chip	Transfer�

Host-Only	 PIM-Only	 Locality-Aware	

PEI Performance Delta: Medium Data Sets

43

-10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

ATF	 BFS	 PR	 SP	 WCC	 HJ	 HG	 RP	 SC	 SVM	 GM	

PIM-Only	 Locality-Aware	

(Medium Inputs, Baseline: Host-Only)

PEI Energy Consumption

44

0	

0.5	

1	

1.5	

Small	 Medium	 Large	

Cache	 HMC	Link	 DRAM	
Host-side	PCU	 Memory-side	PCU	 PMU	

Host-Only
PIM-Only
Locality-Aware

PEI: Advantages & Disadvantages

n  Advantages
 + Simple and low cost approach to PIM
 + No changes to programming model, virtual memory
 + Dynamically decides where to execute an instruction

n  Disadvantages
 - Does not take full advantage of PIM potential

 - Single cache block restriction is limiting

45

More on PIM-Enabled Instructions
n  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the
42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

More on PIM Design: 3D-Stacked GPU I
n  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

47

Key Challenge 1	

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Key Challenge 1	

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?	

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
on the logic layer SMs?

?	
SM (Streaming Multiprocessor)

Key Challenge 2

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

More on PIM Design: 3D-Stacked GPU II
n  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the
25th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Haifa, Israel, September 2016.

51

More on PIM: Linked Data Structures
n  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the
34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

52

Executive Summary
• Our Goal: Accelerating pointer chasing inside

main memory

• Challenges: Parallelism challenge and Address
translation challenge

• Our Solution: In-Memory PoInter Chasing
Accelerator (IMPICA)

•  Address-access decoupling: enabling parallelism in the
accelerator with low cost

•  IMPICA page table: low cost page table in logic layer

• Key Results:
•  1.2X – 1.9X speedup for pointer chasing operations, +16%

database throughput
•  6% - 41% reduction in energy consumption

53

Linked Data Structures

• Linked data structures are widely used
in many important applications

54

Database

B-Tree Hash Table

Key-value stores Linked	data	structures
	are		

connected	by	pointers
	

The Problem: Pointer Chasing

• Traversing linked data structures
requires chasing pointers

55

MEM	

H

E

A F

Q

M

Find(A)

Addr	
(H)	

Data	
(H)	

Addr	
(E)	

Data	
(E)	

Addr	
(A)	

Data	
(A)	

Serialized and irregular access pattern
6X cycles per instruction in real workloads

DRAM layers

Our Goal

56

Accelerating pointer chasing
inside main memory

H

E

A F

Q

M

Find(A)

MEM	

Data	
(A)	

Logic layer

Find	
(A)	

Parallelism Challenge

57

Time
Memory		
access	CPU core

In-Memory
Accelerator

Comp	 Memory	
access	

CPU core

Comp	

Comp	 Comp	

Memory		
access	Comp	 Comp	

Comp	 Memory	
access	 Comp	

Faster	for	one	opera;o
n	Slower	for	two	opera;
ons	

Parallelism Challenge and Opportunity

• A simple in-memory accelerator can
still be slower than multiple CPU cores

• Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

58

CPU	core	

Accelerator	

CPU	core	 CPU	core	

Comp	 Memory	access	(10-15X	of	Comp)	 Comp	

Our Solution:
Address-Access Decoupling

59

Time

Comp	

Memory	
access	

Comp	 Comp	
Address
Engine

Access
Engine

Comp	

Memory	
access	

Memory		
access	CPU core

CPU core

Comp	 Comp	

Memory		
access	Comp	 Comp	

Address-access	decoup
ling	enables	

parallelism	in	both	engines	with	lo
w	cost	

DRAM Dies

IMPICA Core Architecture

60

Address
Engine

Access
Engine

Memory
Controller

DRAM

Logic Layer

DRAM Layers

Request Queue

To/From CPU

Access Queue

Response Queue

IMPICA
Cache

Traversal
1	

Traversal
2	

Address Translation Challenge

61

TLB/MMU

Pointer (VA)

Pointer (PA)

Page table walk

PTW

PTW

PTW
PTW

PTW
No TLB/MMU on the memory side

Duplicating it is costly and creates

compatibility issue

The page table walk requires

multiple memory accesses

Our Solution: IMPICA Page Table

• Completely decouple the page table of
IMPICA from the page table of the
CPUs

62

IMPICA
Region

Physical Address Space

Virtual	Page	

Physical	Page	

Physical	Page	

Virtual	Page	

CPU Page Table

Virtual Address Space

IMPICA Page Table

Map linked data structure into IMPICA regions

IMPICA page table is a partial-to-any mapping

IMPICA Page Table: Mechanism

Bit	[47:41]	 Bit	[40:21]	 Bit	[20:12]	 Bit	[11:0]	

Region Table

Flat Page Table
(2MB)

Small Page Table
(4KB)

+

+

Virtual Address

+

Physical Address

Tiny region table is almost

always in the cache

Flat page table

saves one memory access

Evaluation Methodology

• Simulator: gem5
• System Configuration

• CPU
•  4 OoO cores, 2GHz
• Cache: 32KB L1, 1MB L2

• IMPICA
• 1 core, 500MHz, 32KB Cache

• Memory Bandwidth
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

• Our simulator code is open source
• https://github.com/CMU-SAFARI/IMPICA

64

Result – Microbenchmark Performance

65

0.0	

0.5	

1.0	

1.5	

2.0	

Linked	List	 Hash	Table	 B-Tree	

Sp
ee
du

p	
Baseline	+	extra	128KB	L2	 IMPICA	

1.9X	

1.3X	 1.2X	

Result – Database Performance

66

0.90	

1.00	

1.10	

1.20	

Baseline	+	extra	
128KB	L2	

Baseline	+	extra	
1MB	L2	

IMPICA	

Da
ta
ba
se
	

Th
ro
ug
hp

ut
	

+2%	
+5%	

+16%	

0.80	
0.85	
0.90	
0.95	
1.00	

Baseline	+	extra	
128KB	L2	

Baseline	+	extra	
1MB	L2	

IMPICA	

Da
ta
ba
se
	

La
te
nc
y	 -4%	

-13%	

-0%	

System Energy Consumption

67

0.0	

0.5	

1.0	

Linked	
List	

Hash	
Table	

B-Tree	 DBx1000	

N
or
m
al
ize

d	
En

er
gy
		 Baseline	+	extra	128KB	L2	 IMPICA	

-41%	
-24%	

-6%	
-10%	

Area and Power Overhead

• Power overhead: average power
increases by 5.6%

68

CPU	(Cortex-A57)	 5.85	mm2	per	core	

L2	Cache	 5	mm2	per	MB	

Memory	Controller	 10	mm2	

IMPICA	(+32KB	cache)	 0.45	mm2	

More on PIM Design: Dependent Misses
n  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

69

More on PIM Design: Coherence

n  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

70

Traditional Coherence Approaches Do Not Work

71

Traditional
coherence

No coherence
overhead

More on PIM Design: Data Structures

n  Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

72

Simulation Infrastructures for PIM

n  Ramulator extended for PIM
q  Flexible and extensible DRAM simulator
q  Can model many different memory standards and proposals
q  Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
q  https://github.com/CMU-SAFARI/ramulator

73

An FPGA-based Test-bed for PIM

n  Hasan Hassan et al.,
SoftMC: A Flexible and
Practical Open-Source
Infrastructure for Enabling
Experimental DRAM Studies
HPCA 2017.

n  Flexible
n  Easy to Use (C++ API)
n  Open-source
 github.com/CMU-SAFARI/SoftMC

74

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
75

Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures

76

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

77

Emerging Memory Technologies

78

Limits of Charge Memory
n  Difficult charge placement and control

q  Flash: floating gate charge
q  DRAM: capacitor charge, transistor leakage

n  Reliable sensing becomes difficult as charge
storage unit size reduces

79

Solution 1: New Memory Architectures

n  Overcome memory shortcomings with
q  Memory-centric system design
q  Novel memory architectures, interfaces, functions
q  Better waste management (efficient utilization)

n  Key issues to tackle
q  Enable reliability at low cost à high capacity
q  Reduce energy
q  Reduce latency
q  Improve bandwidth
q  Reduce waste (capacity, bandwidth, latency)
q  Enable computation close to data

80

Solution 1: New Memory Architectures
n  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
n  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
n  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
n  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
n  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
n  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
n  Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
n  Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
n  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
n  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
n  Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
n  Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
n  Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
n  Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
n  Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
n  Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
n  Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
n  Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
n  Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
n  Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
n  Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
n  Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
n  Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
n  Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
n  Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
n  Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
n  Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
n  Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
n  Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
n  Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
n  Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.
n  Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
n  Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
n  Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
n  Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
n  Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.
n  Avoid DRAM:

q  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
q  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
q  Seshadri+, “The Dirty-Block Index,” ISCA 2014.
q  Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
q  Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
q  Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.

81

Solution 2: Emerging Memory Technologies
n  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n  Example: Phase Change Memory
q  Data stored by changing phase of material
q  Data read by detecting material’s resistance
q  Expected to scale to 9nm (2022 [ITRS 2009])
q  Prototyped at 20nm (Raoux+, IBM JRD 2008)
q  Expected to be denser than DRAM: can store multiple bits/cell

n  But, emerging technologies have (many) shortcomings
q  Can they be enabled to replace/augment/surpass DRAM?

82

Solution 2: Emerging Memory Technologies
n  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n  Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n  Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n  Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n  Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

83

Charge vs. Resistive Memories

n  Charge Memory (e.g., DRAM, Flash)
q  Write data by capturing charge Q
q  Read data by detecting voltage V

n  Resistive Memory (e.g., PCM, STT-MRAM, memristors)
q  Write data by pulsing current dQ/dt
q  Read data by detecting resistance R

84

Promising Resistive Memory Technologies
n  PCM

q  Inject current to change material phase
q  Resistance determined by phase

n  STT-MRAM
q  Inject current to change magnet polarity
q  Resistance determined by polarity

n  Memristors/RRAM/ReRAM
q  Inject current to change atomic structure
q  Resistance determined by atom distance

85

What is Phase Change Memory?
n  Phase change material (chalcogenide glass) exists in two states:

q  Amorphous: Low optical reflexivity and high electrical resistivity
q  Crystalline: High optical reflexivity and low electrical resistivity

86

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly

How Does PCM Work?
n  Write: change phase via current injection

q  SET: sustained current to heat cell above Tcryst
q  RESET: cell heated above Tmelt and quenched

n  Read: detect phase via material resistance
q  amorphous/crystalline

87

Large
Current

SET (cryst)
Low resistance

103-104 Ω

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 Ω

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages
n  Scales better than DRAM, Flash

q  Requires current pulses, which scale linearly with feature size
q  Expected to scale to 9nm (2022 [ITRS])
q  Prototyped at 20nm (Raoux+, IBM JRD 2008)

n  Can be denser than DRAM
q  Can store multiple bits per cell due to large resistance range
q  Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

n  Non-volatile
q  Retain data for >10 years at 85C

n  No refresh needed, low idle power
88

89

PCM	Resistance	→	Value	

Cell	resistance	

1 0Cell	
value:	

90

Mul;-Level	Cell	PCM	
l  MulD-level	cell:	more	than	1	bit	per	cell	

-  Further	increases	density	by	2	to	4x	[Lee+,ISCA'09]	
	
l  But	MLC-PCM	also	has	drawbacks	

- Higher	latency	and	energy	than	single-level	cell	PCM	

91

MLC-PCM	Resistance	→	Value	

Cell	resistance	

11 000110Cell	
value:	

Bit	1	 Bit	0	

92

MLC-PCM	Resistance	→	Value	

Cell	resistance	

11 000110Cell	
value:	

Less	margin	between	values	
→	need	more	precise	sensing/modificaDon	of	cell	contents	
→	higher	latency/energy	(~2x	for	reads	and	4x	for	writes)	

Phase Change Memory Properties

n  Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

n  Derived PCM parameters for F=90nm

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

n  Lee et al., “Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.

93

94

Phase Change Memory Properties: Latency
n  Latency comparable to, but slower than DRAM

n  Read Latency

q  50ns: 4x DRAM, 10-3x NAND Flash
n  Write Latency

q  150ns: 12x DRAM

n  Write Bandwidth
q  5-10 MB/s: 0.1x DRAM, 1x NAND Flash

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Phase Change Memory Properties
n  Dynamic Energy

q  40 uA Rd, 150 uA Wr
q  2-43x DRAM, 1x NAND Flash

n  Endurance
q  Writes induce phase change at 650C
q  Contacts degrade from thermal expansion/contraction
q  108 writes per cell
q  10-8x DRAM, 103x NAND Flash

n  Cell Size
q  9-12F2 using BJT, single-level cells
q  1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

96

Phase Change Memory: Pros and Cons
n  Pros over DRAM

q  Better technology scaling (capacity and cost)
q  Non volatile à Persistent
q  Low idle power (no refresh)

n  Cons
q  Higher latencies: ~4-15x DRAM (especially write)
q  Higher active energy: ~2-50x DRAM (especially write)
q  Lower endurance (a cell dies after ~108 writes)
q  Reliability issues (resistance drift)

n  Challenges in enabling PCM as DRAM replacement/helper:
q  Mitigate PCM shortcomings
q  Find the right way to place PCM in the system

97

PCM-based Main Memory (I)
n  How should PCM-based (main) memory be organized?

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q  How to partition/migrate data between PCM and DRAM

98

PCM-based Main Memory (II)
n  How should PCM-based (main) memory be organized?

n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

q  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

99

An Initial Study: Replace DRAM with PCM
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q  Derived “average” PCM parameters for F=90nm

100

Results: Naïve Replacement of DRAM with PCM
n  Replace DRAM with PCM in a 4-core, 4MB L2 system
n  PCM organized the same as DRAM: row buffers, banks, peripherals
n  1.6x delay, 2.2x energy, 500-hour average lifetime

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
101

Architecting PCM to Mitigate Shortcomings
n  Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n  Idea 2: Write into array at
 cache block or word
 granularity

 à Reduces unnecessary wear

102

DRAM PCM

Results: Architected PCM as Main Memory
n  1.2x delay, 1.0x energy, 5.6-year average lifetime
n  Scaling improves energy, endurance, density

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n  Caveat 2: Intensive applications see large performance and energy hits
n  Caveat 3: Optimistic PCM parameters?

103

Required Reading: PCM As Main Memory
n  Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the
36th International Symposium on Computer Architecture (ISCA),
pages 2-13, Austin, TX, June 2009. Slides (pdf)

104

More on PCM As Main Memory (II)
n  Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

105

STT-MRAM as Main Memory
n  Magnetic Tunnel Junction (MTJ) device

q  Reference layer: Fixed magnetic orientation
q  Free layer: Parallel or anti-parallel

n  Magnetic orientation of the free layer
determines logical state of device
q  High vs. low resistance

n  Write: Push large current through MTJ to
change orientation of free layer

n  Read: Sense current flow

n  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons
n  Pros over DRAM

q  Better technology scaling (capacity and cost)
q  Non volatile à Persistent
q  Low idle power (no refresh)

n  Cons
q  Higher write latency
q  Higher write energy
q  Poor density (currently)
q  Reliability?

n  Another level of freedom
q  Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)
107

Architected STT-MRAM as Main Memory
n  4-core, 4GB main memory, multiprogrammed workloads
n  ~6% performance loss, ~60% energy savings vs. DRAM

108

88%
90%
92%
94%
96%
98%

P
er

fo
rm

an
ce

vs

. D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%
20%
40%
60%
80%

100%

En
er

gy

vs
. D

R
A

M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

More on STT-MRAM as Main Memory
n  Emre Kultursay, Mahmut Kandemir, Anand

Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the
2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Austin, TX,
April 2013. Slides (pptx) (pdf)

109

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies

111

Challenge and Opportunity

112

Heterogeneous,
Configurable,

Programmable
Memory Systems

Hybrid Memory Systems: Issues
n  Cache vs. Main Memory

n  Granularity of Data Move/Manage-ment: Fine or Coarse

n  Hardware vs. Software vs. HW/SW Cooperative

n  When to migrate data?

n  How to design a scalable and efficient large cache?

n  …

113

One Option: DRAM as a Cache for PCM
n  PCM is main memory; DRAM caches memory rows/blocks

q  Benefits: Reduced latency on DRAM cache hit; write filtering

n  Memory controller hardware manages the DRAM cache
q  Benefit: Eliminates system software overhead

n  Three issues:
q  What data should be placed in DRAM versus kept in PCM?
q  What is the granularity of data movement?
q  How to design a low-cost hardware-managed DRAM cache?

n  Two idea directions:
q  Locality-aware data placement [Yoon+ , ICCD 2012]

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

114

DRAM as a Cache for PCM
n  Goal: Achieve the best of both DRAM and PCM/NVM

q  Minimize amount of DRAM w/o sacrificing performance, endurance
q  DRAM as cache to tolerate PCM latency and write bandwidth
q  PCM as main memory to provide large capacity at good cost and power

115

DATA

PCM Main Memory

DATA T

DRAM Buffer

PCM Write Queue

T=Tag-Store

Processor

Flash
Or

HDD

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Write Filtering Techniques
n  Lazy Write: Pages from disk installed only in DRAM, not PCM
n  Partial Writes: Only dirty lines from DRAM page written back
n  Page Bypass: Discard pages with poor reuse on DRAM eviction

n  Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.

116

Processor

DATA
PCM Main Memory

DATA T

DRAM Buffer
Flash

Or
HDD

Results: DRAM as PCM Cache (I)
n  Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles,

HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%
n  Assumption: PCM 4x denser, 4x slower than DRAM
n  DRAM block size = PCM page size (4kB)

117

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

db1 db2 qsort bsearch kmeans gauss daxpy vdotp gmean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

8GB DRAM
32GB PCM
32GB DRAM
32GB PCM + 1GB DRAM

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Results: DRAM as PCM Cache (II)
n  PCM-DRAM Hybrid performs similarly to similar-size DRAM
n  Significant energy savings with PCM-DRAM Hybrid
n  Average lifetime: 9.7 years (no guarantees)

118

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Power Energy Energy x Delay

Va
lu

e
N

or
m

al
iz

ed
 to

 8
G

B
 D

R
A

M 8GB DRAM
Hybrid (32GB PCM+ 1GB DRAM)
32GB DRAM

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

More on DRAM-PCM Hybrid Memory
n  Scalable High-Performance Main Memory System

Using Phase-Change Memory Technology.
Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers
Appears in the International Symposium on Computer
Architecture (ISCA) 2009.

119

Data Placement in Hybrid Memory

n  Memory A is fast, but small
n  Load should be balanced on both channels?
n  Page migrations have performance and energy overhead

 120

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in,
to maximize system performance?

Cores/Caches

Memory Controllers

Data Placement Between DRAM and PCM
n  Idea: Characterize data access patterns and guide data

placement in hybrid memory

n  Streaming accesses: As fast in PCM as in DRAM

n  Random accesses: Much faster in DRAM

n  Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

n  Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

121

Key Observation & Idea
•  Row	buffers	exist	in	both	DRAM	and	PCM	

– Row	hit	latency	similar	in	DRAM	&	PCM	[Lee+	ISCA’09]	
– Row	miss	latency	small	in	DRAM,	large	in	PCM	

•  Place	data	in	DRAM	which	
–  is	likely	to	miss	in	the	row	buffer	(low	row	buffer	
locality)à	miss	penalty	is	smaller	in	DRAM	

	AND	
–  is	reused	many	Dmes	à	cache	only	the	data	
worth	the	movement	cost	and	DRAM	space	

122	

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	be_er	performance	than	all	PCM,		
within	29%	of	all	DRAM	performance	

31%	

29%	

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.	

More on Hybrid Memory Data Placement

n  HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the
30th IEEE International Conference on Computer Design
(ICCD), Montreal, Quebec, Canada, September 2012.
Slides (pptx) (pdf)

124

Weaknesses of Existing Solutions
n  They are all heuristics that consider only a limited part of

memory access behavior

n  Do not directly capture the overall system
performance impact of data placement decisions

n  Example: None capture memory-level parallelism (MLP)
q  Number of concurrent memory requests from the same

application when a page is accessed
q  Affects how much page migration helps performance

125

Importance of Memory-Level Parallelism

126

requests to Page 1

requests to Page 3

requests to Page 1

requests to Page 3

time

Before migration:

After migration:

requests to Page 2

requests to Page 2

time

Before migration:

After migration:

Mem. B

Mem. B

Mem. A

Mem. A

Mem. B

Mem. A

T T

Migrating one page
reduces stall time by T

Must migrate two pages
to reduce stall time by T:
migrating one page alone

does not help

Mem. B

Page migration decisions need to consider MLP

Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory

127

Utility-Based Hybrid Memory Management
n  A memory manager that works for any hybrid memory

q  e.g., DRAM-NVM, DRAM-RLDRAM

n  Key Idea
q  For each page, use comprehensive characteristics to

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the
system

q  Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

n  Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
128

Key Mechanisms of UH-MEM
n  For each page, estimate utility using a performance model

q  Application stall time reduction
How much would migrating a page benefit the performance of the
application that the page belongs to?

q  Application performance sensitivity
How much does the improvement of a single application’s
performance increase the overall system performance?

n  Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

n  Periodically adjust migration threshold

129

𝑈𝑡𝑖𝑙𝑖𝑡𝑦= ∆𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒↓𝑖 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦↓𝑖 

Results: System Performance

130

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0% 25% 50% 75% 100%

N
or

m
al

iz
ed

W

ei
gh

te
d

Sp
ee

du
p

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

14%

5% 3%

9%

UH-MEM improves system performance
over the best state-of-the-art hybrid memory manager

Results: Sensitivity to Slow Memory Latency
n  We vary 𝑡↓𝑅𝐶𝐷  and 𝑡↓𝑊𝑅  of the slow memory

131

1.8

2.2

2.6

3.0

3.4

3.8

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
ei

gh
te

d
Sp

ee
du

p

Slow Memory Latency Multiplier

ALL FREQ RBLA UH-MEM

13% 13%

8% 6%

14%

UH-MEM improves system performance
for a wide variety of hybrid memory systems

𝑡↓𝑅𝐶𝐷 :
𝑡↓𝑊𝑅 :

More on UH-MEM
n  Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,

and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

132

Challenge and Opportunity

Enabling
an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
133

Another Challenge

134

Designing Effective
Large (DRAM) Caches

One Problem with Large DRAM Caches
n  A large DRAM cache requires a large metadata (tag +

block-based information) store
n  How do we design an efficient DRAM cache?

135

DRAM	 PCM	

CPU

(small, fast cache) (high capacity)

Mem	
Ctlr	

Mem	
Ctlr	

LOAD	X	

Access X

Metadata:	
X	à	DRAM	

X	

Idea 1: Tags in Memory
n  Store tags in the same row as data in DRAM

q  Store metadata in same row as their data
q  Data and metadata can be accessed together

n  Benefit: No on-chip tag storage overhead
n  Downsides:

q  Cache hit determined only after a DRAM access
q  Cache hit requires two DRAM accesses

136

Cache	block	2	Cache	block	0	 Cache	block	1	
DRAM row

Tag0	 Tag1	 Tag2	

Idea 2: Cache Tags in SRAM
n  Recall Idea 1: Store all metadata in DRAM

q  To reduce metadata storage overhead

n  Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q  Cache only a small amount to keep SRAM size small

137

Idea 3: Dynamic Data Transfer Granularity
n  Some applications benefit from caching more data

q  They have good spatial locality

n  Others do not
q  Large granularity wastes bandwidth and reduces cache utilization

n  Idea 3: Simple dynamic caching granularity policy
q  Cost-benefit analysis to determine best DRAM cache block size
q  Group main memory into sets of rows
q  Different sampled row sets follow different fixed caching

granularities
q  The rest of main memory follows the best granularity

n  Cost–benefit analysis: access latency versus number of cachings
n  Performed every quantum

138

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	 Region	 TIM	 TIMBER	 TIMBER-Dyn	

N
or
m
al
iz
ed

	W
ei
gh
te
d	
Sp
ee
du

p	

139

TIMBER	Performance	

-6%	

Reduced	channel	
contenDon	and	

improved	spaDal	locality	

Meza,	Chang,	Yoon,	Mutlu,	Ranganathan,	“Enabling	Efficient	and	
Scalable	Hybrid	Memories,”	IEEE	Comp.	Arch.	Lezers,	2012.	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

SRAM	 Region	 TIM	 TIMBER	 TIMBER-Dyn	

N
or
m
al
iz
ed

	P
er
fo
rm

an
ce
	p
er
	W

a_
	

(fo
r	M

em
or
y	
Sy
st
em

)	

140

TIMBER	Energy	Efficiency	

Fewer	migraDons	reduce	
transmized	data	and	
channel	contenDon	

18%	

Meza,	Chang,	Yoon,	Mutlu,	Ranganathan,	“Enabling	Efficient	and	
Scalable	Hybrid	Memories,”	IEEE	Comp.	Arch.	Lezers,	2012.	

On Large DRAM Cache Design

n  Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

141

DRAM Caches: Many Recent Options

142

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

Banshee [MICRO 2017]
n  Tracks presence in cache using TLB and Page Table

q  No tag store needed for DRAM cache
q  Enabled by a new lightweight lazy TLB coherence protocol

n  New bandwidth-aware frequency-based replacement policy

143

More on Banshee
n  Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the
50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.

144

Other Opportunities with Emerging Technologies

n  Merging of memory and storage
q  e.g., a single interface to manage all data

n  New applications
q  e.g., ultra-fast checkpoint and restore

n  More robust system design
q  e.g., reducing data loss

n  Processing tightly-coupled with memory
q  e.g., enabling efficient search and filtering

145

	
	
	
	
	
	
	
	
	
	

TWO-LEVEL	STORAGE	MODEL	

CP
U
	

M
EM

O
RY

	
ST
O
RA

G
E	

VOLATILE	
FAST	

BYTE	ADDR	
NONVOLATILE	

SLOW	
BLOCK	ADDR	

Ld/St	

FILE		
I/O	

DRAM	

146	

	
	
	
	
	
	
	
	
	
	

TWO-LEVEL	STORAGE	MODEL	

CP
U
	

M
EM

O
RY

	
ST
O
RA

G
E	

VOLATILE	
FAST	

BYTE	ADDR	
NONVOLATILE	

SLOW	
BLOCK	ADDR	

Ld/St	

FILE		
I/O	

DRAM	

147	

PCM, STT-RAM
NVM	

Non-vola;le	memories	combine	
characteris;cs	of	memory	and	storage	

Two-Level Memory/Storage Model
n  The traditional two-level storage model is a bottleneck with NVM

q  Volatile data in memory à a load/store interface
q  Persistent data in storage à a file system interface
q  Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

148

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM
n  Goal: Unify memory and storage management in a single unit to

eliminate wasted work to locate, transfer, and translate data
q  Improves both energy and performance
q  Simplifies programming model as well

149

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

	
	
	
	
	
	
	
	
	
	

PERSISTENT	MEMORY	

CPU
	

PERSISTEN
T

M
EM

O
RY	

Provides	an	opportunity	to	manipulate	
persistent	data	directly	

Ld/St	

NVM	

150	

The Persistent Memory Manager (PMM)

151

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	informa;on	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices	

Persistent objects

The Persistent Memory Manager (PMM)
n  Exposes a load/store interface to access persistent data

q  Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n  Manages data placement, location, persistence, security
q  To get the best of multiple forms of storage

n  Manages metadata storage and retrieval
q  This can lead to overheads that need to be managed

n  Exposes hooks and interfaces for system software
q  To enable better data placement and management decisions

n  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

152

Efficient Data Mapping among Heterogeneous Devices

n  A persistent memory exposes a large, persistent address space
q  But it may use many different devices to satisfy this goal
q  From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash
q  And other NVM devices in between

n  Performance and energy can benefit from good placement of
data among these devices
q  Utilizing the strengths of each device and avoiding their weaknesses,

if possible
q  For example, consider two important application characteristics:

locality and persistence

153

154

Efficient Data Mapping among Heterogeneous Devices

155

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

Efficient Data Mapping among Heterogeneous Devices

156

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

à place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applica;ons	or	system	soeware	can	provide	hints	for	data	placement	

Evaluated Systems
n  HDD Baseline

q  Traditional system with volatile DRAM memory and persistent HDD storage
q  Overheads of operating system and file system code and buffering

n  NVM Baseline (NB)
q  Same as HDD Baseline, but HDD is replaced with NVM
q  Still has OS/FS overheads of the two-level storage model

n  Persistent Memory (PM)
q  Uses only NVM (no DRAM) to ensure full-system persistence
q  All data accessed using loads and stores
q  Does not waste time on system calls
q  Data is manipulated directly on the NVM device

157

Performance Benefits of a Single-Level Store

158

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

159

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy
User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges

n  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the
5th Workshop on Energy-Efficient Design (WEED), Tel-
Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

160

Challenge and Opportunity

Combined
Memory & Storage

161

Challenge and Opportunity

162

A Unified Interface to
All Data

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Computer Architecture

Lecture 7:
Emerging Memory Technologies

Prof. Onur Mutlu
ETH Zürich
Fall 2017

11 October 2017

One Key Challenge in Persistent Memory

n  How to ensure consistency of system/data if all
memory is persistent?

n  Two extremes
q  Programmer transparent: Let the system handle it
q  Programmer only: Let the programmer handle it

n  Many alternatives in-between…

165

	
	
	
	
	
	
	
	
	
	

CRASH	CONSISTENCY	PROBLEM	

166	

Add a node to a linked list

1.	Link	to	next	2.	Link	to	prev	

System	crash	can	result	in		
inconsistent	memory	state	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin {
 Insert a new node;
} AtomicEnd;

Limits	adop;on	of	NVM	
Have	to	rewrite	code	with	clear	par;;on		
between	vola;le	and	non-vola;le	data	

Burden	on	the	programmers	
167

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

168	

void hashtable_update(hashtable_t* ht,
 void *key, void *data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) list_find(chain,
 &updatePair);
 pair->second = data;
}

Example Code
update a node in a persistent hash table

Explicit	interfaces	to	manage	consistency	
– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

169	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

170	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara;on	of	persistent	components	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

171	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara;on	of	persistent	components	

Need	a	new	implementa;on	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

172	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara;on	of	persistent	components	

Need	a	new	implementa;on	

Third	party	code		
can	be	inconsistent	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	

173	

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, void*data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual	declara;on	of	persistent	components	

Need	a	new	implementa;on	

Third	party	code		
can	be	inconsistent	

Prohibited	
Opera;on	

Burden	on	the	programmers	

	
	
	
	
	
	
	
	
	
	

OUR	APPROACH:	ThyNVM	

174

Goal:
Software transparent consistency in

persistent memory systems

Key Idea:
Periodically checkpoint state;

recover to previous checkpt on crash

	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	

175

•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoinDng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoinDng	latency	

•  Adapts	to	DRAM	and	NVM	characterisDcs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based
checkpointing mechanism

	
	
	
	
	
	
	
	
	
	

Running

time	

Checkpoin;ng Running Checkpoin;ng

time	

Epoch 0	

Epoch 1	
Epoch 2	

Epoch 0	 Epoch 1	
Running Checkpoin;ng Running Checkpoin;ng

Running Checkpoin;ng

Epoch 0	 Epoch 1	

2.	OVERLAPPING		
CHECKPOINTING	AND	EXECUTION	

More About ThyNVM

177

n  Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the
48th International Symposium on Microarchitecture (MICRO), Waikiki,
Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [
Poster (pptx) (pdf)]
[Source Code]

Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence

178

Tools/Libraries to Help Programmers
n  Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the
4th Workshop on Interactions of NVM/Flash with Operating
Systems and Workloads (INFLOW), Savannah, GA, USA,
November 2016.
[Slides (pptx) (pdf)]

179

The Future of Emerging Technologies is Bright

n  Regardless of challenges
q  in underlying technology and overlying problems/requirements

180

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, Refer to Flash Memory
n  A very “doubtful” emerging technology

q  for at least two decades

181 https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

