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Emerging Memory Technologies
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Limits of Charge Memory

 Difficult charge placement and control

 Flash: floating gate charge

 DRAM: capacitor charge, transistor leakage

 Reliable sensing becomes difficult as charge 
storage unit size reduces
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Solution 1: New Memory Architectures

 Overcome memory shortcomings with

 Memory-centric system design

 Novel memory architectures, interfaces, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Enable reliability at low cost  high capacity

 Reduce energy

 Reduce latency 

 Improve bandwidth

 Reduce waste (capacity, bandwidth, latency)

 Enable computation close to data
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Solution 1: New Memory Architectures
 Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

 Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

 Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

 Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

 Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

 Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

 Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.

 Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.

 Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

 Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

 Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

 Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.

 Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.

 Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.

 Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.

 Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.

 Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.

 Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.

 Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.

 Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.

 Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.

 Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.

 Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.

 Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.

 Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.

 Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.

 Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.

 Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.

 Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.

 Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.

 Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.

 Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.

 Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.

 Kim+, “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics 2018.

 Kim+, “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices,” HPCA 2018.

 Boroumand+, “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018.

 Das+, “VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency,” DAC 2018.

 Ghose+, “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study,” SIGMETRICS 2018.

 Kim+, “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines,” ICCD 2018.

 Wang+, “Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration,” MICRO 2018.

 Avoid DRAM:

 Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

 Seshadri+, “The Dirty-Block Index,” ISCA 2014.

 Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

 Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.

 Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.
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Solution 2: Emerging Memory Technologies

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material 

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS 2009])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?
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Solution 2: Emerging Memory Technologies

 Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.

 Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

 Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

 Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

 Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

 Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.

 Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.

 Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

 Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

 Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

 Tavakkol+, “MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,” FAST 2018.

 Tavakkol+, “FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives,” ISCA 2018.

 Sadrosadati+. “LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Software Cooperative Register 
Prefetching,” ASPLOS 2018.
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Charge vs. Resistive Memories

 Charge Memory (e.g., DRAM, Flash)

 Write data by capturing charge Q

 Read data by detecting voltage V

 Resistive Memory (e.g., PCM, STT-MRAM, memristors)

 Write data by pulsing current dQ/dt

 Read data by detecting resistance R 
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Promising Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors/RRAM/ReRAM

 Inject current to change atomic structure

 Resistance determined by atom distance
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What is Phase Change Memory?

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

10

PCM is resistive memory:  High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly



How Does PCM Work?

 Write: change phase via current injection

 SET: sustained current to heat cell above Tcryst

 RESET: cell heated above Tmelt and quenched

 Read: detect phase via material resistance 

 amorphous/crystalline
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Opportunity: PCM Advantages

 Scales better than DRAM, Flash

 Requires current pulses, which scale linearly with feature size

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Can be denser than DRAM

 Can store multiple bits per cell due to large resistance range

 Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

 Non-volatile

 Retain data for >10 years at 85C

 No refresh needed, low idle power
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PCM Resistance → Value

Cell resistance

1 0Cell 
value:
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Multi-Level Cell PCM

 Multi-level cell: more than 1 bit per cell

 Further increases density by 2 to 4x [Lee+,ISCA'09]

 But MLC-PCM also has drawbacks

 Higher latency and energy than single-level cell PCM
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MLC-PCM Resistance → Value

Cell resistance

11 000110Cell 
value:

Bit 1 Bit 0
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MLC-PCM Resistance → Value

Cell resistance

11 000110Cell 
value:

Less margin between values
→ need more precise sensing/modification of cell contents
→ higher latency/energy (~2x for reads and 4x for writes)



Phase Change Memory Properties

 Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC)

 Derived PCM parameters for F=90nm

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Lee et al., “Phase Change Technology and the Future of 
Main Memory,” IEEE Micro Top Picks 2010.
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Phase Change Memory Properties: Latency

 Latency comparable to, but slower than DRAM

 Read Latency

 50ns: 4x DRAM, 10-3x NAND Flash

 Write Latency

 150ns: 12x DRAM

 Write Bandwidth

 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.



Phase Change Memory Properties

 Dynamic Energy

 40 uA Rd, 150 uA Wr

 2-43x DRAM, 1x NAND Flash

 Endurance

 Writes induce phase change at 650C

 Contacts degrade from thermal expansion/contraction

 108 writes per cell

 10-8x DRAM, 103x NAND Flash

 Cell Size

 9-12F2 using BJT, single-level cells

 1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC)
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Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatile  Persistent

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Reliability issues (resistance drift)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system
21



PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 

 How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings
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An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm
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Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes  better endurance, latency, energy

 Idea 2: Write into array at

cache block or word 

granularity

 Reduces unnecessary wear

26
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Results: Architected PCM as Main Memory 

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
27



Required Reading: PCM As Main Memory

 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)

28

http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf


More on PCM As Main Memory (II)

 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010. 
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https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/


STT-MRAM as Main Memory

 Magnetic Tunnel Junction (MTJ) device

 Reference layer: Fixed magnetic orientation

 Free layer: Parallel or anti-parallel

 Magnetic orientation of the free layer 
determines logical state of device

 High vs. low resistance

 Write: Push large current through MTJ to 
change orientation of free layer

 Read: Sense current flow

 Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line



STT-MRAM: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatile  Persistent

 Low idle power (no refresh)

 Cons

 Higher write latency

 Higher write energy

 Poor density (currently)

 Reliability?

 Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by 
reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory

 4-core, 4GB main memory, multiprogrammed workloads

 ~6% performance loss, ~60% energy savings vs. DRAM
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.



More on STT-MRAM as Main Memory

 Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS), 
Austin, TX, April 2013. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/sttram_ispass13.pdf
http://www.ispass.org/ispass2013/
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pdf


A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



Challenge and Opportunity

Providing the Best of

Multiple Metrics

with

Multiple Memory Technologies
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Challenge and Opportunity

36

Heterogeneous,

Configurable,

Programmable 

Memory Systems



Hybrid Memory Systems: Issues

 Cache vs. Main Memory

 Granularity of Data Move/Manage-ment: Fine or Coarse

 Hardware vs. Software vs. HW/SW Cooperative 

 When to migrate data?

 How to design a scalable and efficient large cache?

 …
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One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM as a Cache for PCM

 Goal: Achieve the best of both DRAM and PCM/NVM

 Minimize amount of DRAM w/o sacrificing performance, endurance

 DRAM as cache to tolerate PCM latency and write bandwidth

 PCM as main memory to provide large capacity at good cost and power

39
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Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 



Write Filtering Techniques

 Lazy Write: Pages from disk installed only in DRAM, not PCM

 Partial Writes:  Only dirty lines from DRAM page written back

 Page Bypass: Discard pages with poor reuse on DRAM eviction

 Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009. 
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Results: DRAM as PCM Cache (I)

 Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles, 
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

 Assumption: PCM 4x denser, 4x slower than DRAM 

 DRAM block size = PCM page size (4kB) 
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Results: DRAM as PCM Cache (II)

 PCM-DRAM Hybrid performs similarly to similar-size DRAM

 Significant energy savings with PCM-DRAM Hybrid

 Average lifetime: 9.7 years (no guarantees)
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More on DRAM-PCM Hybrid Memory

 Scalable High-Performance Main Memory System 
Using Phase-Change Memory Technology. 
Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers 
Appears in the International Symposium on Computer 
Architecture (ISCA) 2009. 
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http://dl.acm.org/citation.cfm?id=1555760


Data Placement in Hybrid Memory

 Memory A is fast, but small

 Load should be balanced on both channels?

 Page migrations have performance and energy overhead 
44

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in, 
to maximize system performance?
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Data Placement Between DRAM and PCM

 Idea: Characterize data access patterns and guide data 
placement in hybrid memory

 Streaming accesses: As fast in PCM as in DRAM

 Random accesses: Much faster in DRAM

 Idea: Place random access data with some reuse in DRAM; 
streaming data in PCM

 Yoon+, “Row Buffer Locality-Aware Data Placement in 
Hybrid Memories,” ICCD 2012 Best Paper Award.
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Key Observation & Idea

• Row buffers exist in both DRAM and PCM

– Row hit latency similar in DRAM & PCM [Lee+ ISCA’09]

– Row miss latency small in DRAM, large in PCM

• Place data in DRAM which

– is likely to miss in the row buffer (low row buffer 
locality)miss penalty is smaller in DRAM

AND

– is reused many times cache only the data 
worth the movement cost and DRAM space
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More on Hybrid Memory Data Placement

 HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, 
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for 
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on 
Computer Design (ICCD), Montreal, Quebec, Canada, 
September 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/yoon_iccd12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/yoon_iccd12_talk.pdf


Weaknesses of Existing Solutions

 They are all heuristics that consider only a limited part of 
memory access behavior

 Do not directly capture the overall system 
performance impact of data placement decisions 

 Example: None capture memory-level parallelism (MLP)

 Number of concurrent memory requests from the same 
application when a page is accessed

 Affects how much page migration helps performance
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Importance of Memory-Level Parallelism
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Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory
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Utility-Based Hybrid Memory Management

 A memory manager that works for any hybrid memory

 e.g., DRAM-NVM, DRAM-RLDRAM

 Key Idea

 For each page, use comprehensive characteristics to 
calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the 
system

 Migrate only pages with the highest utility
(i.e., pages that improve system performance the most 
when migrated)

 Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
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Key Mechanisms of UH-MEM

 For each page, estimate utility using a performance model

 Application stall time reduction

How much would migrating a page benefit the performance of the 
application that the page belongs to?

 Application performance sensitivity

How much does the improvement of a single application’s 
performance increase the overall system performance?

 Migrate only pages whose utility exceed the migration 
threshold from slow memory to fast memory

 Periodically adjust migration threshold
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Results: System Performance
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Results: Sensitivity to Slow Memory Latency

 We vary 𝑡𝑅𝐶𝐷 and 𝑡𝑊𝑅 of the slow memory

55

1.8

2.2

2.6

3.0

3.4

3.8

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Slow Memory Latency Multiplier

ALL FREQ RBLA UH-MEM

13%13%

8% 6%

14%

UH-MEM improves system performance
for a wide variety of hybrid memory systems

𝑡𝑅𝐶𝐷:
𝑡𝑊𝑅:



More on UH-MEM

 Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, 
and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER), 
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]
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Challenge and Opportunity

Enabling 

an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
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Another Challenge
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Designing Effective 

Large (DRAM) Caches



One Problem with Large DRAM Caches

 A large DRAM cache requires a large metadata (tag + 
block-based information) store

 How do we design an efficient DRAM cache?
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Idea 1: Tags in Memory

 Store tags in the same row as data in DRAM

 Store metadata in same row as their data

 Data and metadata can be accessed together

 Benefit: No on-chip tag storage overhead

 Downsides: 

 Cache hit determined only after a DRAM access

 Cache hit requires two DRAM accesses
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Idea 2: Cache Tags in SRAM

 Recall Idea 1: Store all metadata in DRAM 

 To reduce metadata storage overhead

 Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata

 Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transfer Granularity

 Some applications benefit from caching more data

 They have good spatial locality

 Others do not

 Large granularity wastes bandwidth and reduces cache utilization

 Idea 3: Simple dynamic caching granularity policy

 Cost-benefit analysis to determine best DRAM cache block size

 Group main memory into sets of rows

 Different sampled row sets follow different fixed caching 
granularities

 The rest of main memory follows the best granularity

 Cost–benefit analysis:  access latency versus number of cachings

 Performed every quantum
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TIMBER Performance

-6%

Reduced channel 
contention and 

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
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TIMBER Energy Efficiency

Fewer migrations reduce 
transmitted data and 
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.



On Large DRAM Cache Design

 Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan, 
"Enabling Efficient and Scalable Hybrid Memories 
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012. 
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DRAM Caches: Many Recent Options
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Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.



Banshee [MICRO 2017]

 Tracks presence in cache using TLB and Page Table

 No tag store needed for DRAM cache

 Enabled by a new lightweight lazy TLB coherence protocol

 New bandwidth-aware frequency-based replacement policy
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More on Banshee

 Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur 
Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via 
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
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https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
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Other Opportunities with Emerging Technologies

 Merging of memory and storage

 e.g., a single interface to manage all data

 New applications

 e.g., ultra-fast checkpoint and restore

 More robust system design

 e.g., reducing data loss

 Processing tightly-coupled with memory

 e.g., enabling efficient search and filtering
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PCM, STT-RAM

NVM

Non-volatile memories combine 
characteristics of memory and storage



Two-Level Memory/Storage Model
 The traditional two-level storage model is a bottleneck with NVM

 Volatile data in memory  a load/store interface

 Persistent data in storage  a file system interface

 Problem: Operating system (OS) and file system (FS) code to locate, translate, 
buffer data become performance and energy bottlenecks with fast NVM stores
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Unified Memory and Storage with NVM

 Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data

 Improves both energy and performance

 Simplifies programming model as well
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



PERSISTENT MEMORY
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The Persistent Memory Manager (PMM)
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PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices

Persistent objects



The Persistent Memory Manager (PMM)

 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion, 

translation, location overhead for persistent data 

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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Efficient Data Mapping among Heterogeneous Devices

 A persistent memory exposes a large, persistent address space

 But it may use many different devices to satisfy this goal

 From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

 And other NVM devices in between

 Performance and energy can benefit from good placement of 
data among these devices

 Utilizing the strengths of each device and avoiding their weaknesses, 
if possible

 For example, consider two important application characteristics:  
locality and persistence
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Efficient Data Mapping among Heterogeneous Devices
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Columns in a column store that are
scanned through only infrequently

 place on Flash

Efficient Data Mapping among Heterogeneous Devices
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X

Columns in a column store that are
scanned through only infrequently

 place on Flash

X

Frequently-updated index for a 
Content Delivery Network (CDN) 

 place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applications or system software can provide hints for data placement



Evaluated Systems
 HDD Baseline 

 Traditional system with volatile DRAM memory and persistent HDD storage

 Overheads of operating system and file system code and buffering

 NVM Baseline (NB)

 Same as HDD Baseline, but HDD is replaced with NVM

 Still has OS/FS overheads of the two-level storage model

 Persistent Memory (PM)

 Uses only NVM (no DRAM) to ensure full-system persistence

 All data accessed using loads and stores

 Does not waste time on system calls

 Data is manipulated directly on the NVM device
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Performance Benefits of a Single-Level Store
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~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store
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~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



On Persistent Memory Benefits & Challenges 

 Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan 
Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient 
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)
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Challenge and Opportunity

Combined 

Memory & Storage
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Challenge and Opportunity
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One Key Challenge in Persistent Memory

 How to ensure consistency of system/data if all 
memory is persistent? 

 Two extremes

 Programmer transparent: Let the system handle it

 Programmer only: Let the programmer handle it 

 Many alternatives in-between…
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We did not cover the remaining 

slides in lecture.
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CRASH CONSISTENCY PROBLEM

90

Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in 
inconsistent memory state



CURRENT SOLUTIONS
Explicit interfaces to manage consistency

– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition 
between volatile and non-volatile data

Burden on the programmers
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CURRENT SOLUTIONS
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void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain, 

&updatePair);
pair->second = data;

}

Example Code
update a node in a persistent hash table 

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;

pair = (pair_t*) TMLIST_FIND(chain, 
&updatePair);

pair->second = data;
}



CURRENT SOLUTIONS
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Need a new implementation



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;

pair = (pair_t*) TMLIST_FIND(chain, 
&updatePair);

pair->second = data;
}

Manual declaration of persistent components

Need a new implementation

Third party code 
can be inconsistent



CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;

pair = (pair_t*) TMLIST_FIND(chain, 
&updatePair);

pair->second = data;
}

Manual declaration of persistent components

Need a new implementation

Third party code 
can be inconsistent

Prohibited
Operation

Burden on the programmers



OUR APPROACH: ThyNVM
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Goal: 
Software transparent consistency in 

persistent memory systems

Key Idea: 
Periodically checkpoint state; 

recover to previous checkpt on crash



ThyNVM: Summary
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• Checkpoints at multiple granularities to 
reduce both checkpointing latency and 
metadata overhead

• Overlaps checkpointing and execution to 
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM 
with zero cost consistency

A new hardware-based 
checkpointing mechanism



OUTLINE
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Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion
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Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in 
inconsistent memory state
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Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion



CURRENT SOLUTIONS
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void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain, 

&updatePair);
pair->second = data;

}

Example Code
update a node in a persistent hash table 

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]



CURRENT SOLUTIONS
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void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
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&updatePair);

pair->second = data;
}
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Need a new implementation
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CURRENT SOLUTIONS
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void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key, 
void*data){
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OUR GOAL
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Software transparent consistency 
in persistent memory systems

• Execute legacy applications 

• Reduce burden on programmers 

• Enable easier integration of NVM



NO MODIFICATION 
IN THE CODE

void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain, 

&updatePair);
pair->second = data;
}



RUN THE EXACT SAME CODE…

Persistent Memory System

Software transparent 
memory crash consistency
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void hashtable_update(hashtable_t* ht,

void *key, void *data){

list_t* chain = get_chain(ht, key);

pair_t* pair;

pair_t updatePair;

updatePair.first = key;

pair = (pair_t*) list_find(chain, 

&updatePair);

pair->second = data;

}



ThyNVM APPROACH

Running

Epoch 0 Epoch 1

time

Checkpointing Running Checkpointing
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Periodic checkpointing of data 

managed by hardware

Transparent to application and system



CHECKPOINTING OVERHEAD

Running

Epoch 0 Epoch 1

time

Checkpointing Running Checkpointing
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1. Metadata overhead

Working location Checkpoint location

X X’

Y Y’

Metadata Table

2. Checkpointing latency



1. METADATA AND
CHECKPOINTING GRANULARITY

PAGE CACHE BLOCK

One Entry Per Page
Small Metadata

One Entry Per Block
Huge Metadata
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PAGE 
GRANULARITY

BLOCK 
GRANULARITY

Working location Checkpoint location

X X’

Y Y’



W

2. LATENCY AND LOCATION
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DRAM-BASED WRITEBACK

Long latency of writing back data to NVM

DRAM NVM

Working location Checkpoint location

X X’
1. Writeback data 

from DRAM

2. Update the 
metadata table



2. LATENCY AND LOCATION
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NVM-BASED REMAPPING

Short latency in NVM-based remapping

DRAM NVM

Working location Checkpoint location

Y X
1. No copying 

of data

2. Update the 
metadata table

3. Write in a 
new location 



ThyNVM KEY MECHANISMS
Checkpointing granularity

• Small granularity: large metadata
• Large granularity: small metadata

Latency and location
• Writeback from DRAM: long latency
• Remap in NVM: short latency

Based on these, we propose two key 
mechanisms

1. Dual granularity checkpointing
2. Overlap of execution and checkpointing



DRAM NVM

1. DUAL GRANULARITY CHECKPOINTING

High write locality pages in DRAM, 
low write locality pages in NVM

Page Writeback 
in DRAM

Block Remapping
in NVM
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GOOD FOR 
STREAMING WRITES

GOOD FOR 
RANDOM WRITES



TRADEOFF SPACE



Running

time

Checkpointing Running Checkpointing

time

Epoch 0

Epoch 1

Epoch 2

Epoch 0 Epoch 1
Running Checkpointing Running Checkpointing

Running Checkpointing

Epoch 0 Epoch 1

2. OVERLAPPING 
CHECKPOINTING AND EXECUTION

Hides the long latency of Page Writeback 



OUTLINE
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Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion



SYSTEM ARCHITECTURE



MEMORY ADDRESS SPACE



METHODOLOGY
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Cycle accurate x86 simulator Gem5
Comparison Points:
Ideal DRAM: DRAM-based, no cost for consistency

– Lowest latency system

Ideal NVM: NVM-based, no cost for consistency
– NVM has higher latency than DRAM

Journaling: Hybrid, commit dirty cache blocks
– Leverages DRAM to buffer dirty blocks 

Shadow Paging: Hybrid, copy-on-write pages
– Leverages DRAM to buffer dirty pages



ADAPTIVITY TO ACCESS PATTERN
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OVERLAPPING 
CHECKPOINTING AND EXECUTION
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Stalls the application for a negligible time

ThyNVM spends only 2.4%/5.5% of the 
execution time on checkpointing 

Can spend 35-45% of the execution 
on checkpointing
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PERFORMANCE OF LEGACY CODE
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Provides consistency without 
significant performance overhead

Within -4.9%/+2.7% of an 
idealized DRAM/NVM system



KEY-VALUE STORE TX THROUGHPUT

Storage throughput close to Ideal DRAM



OUTLINE
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Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion



ThyNVM
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• Checkpoints at multiple granularities to 
minimize both latency and metadata

• Overlaps checkpointing and execution

• Adapts to DRAM and NVM characteristics

Can enable widespread adoption
of persistent memory 

A new hardware-based 
checkpointing mechanism,

with no programming effort



ThyNVM
Enabling Software-transparent 

Crash Consistency 
In Persistent Memory Systems 

Source Code and More Available at 
http://persper.com/thynvm



More About ThyNVM
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 Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, 
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency 
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on 
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM


Another Key Challenge in Persistent Memory

Programming Ease

to Exploit Persistence
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Tools/Libraries to Help Programmers

 Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric 
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based 
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads (INFLOW), Savannah, 
GA, USA, November 2016.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf


The Future of Emerging Technologies is Bright

 Regardless of challenges 

 in underlying technology and overlying problems/requirements 
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Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



If In Doubt, Refer to Flash Memory

 A very “doubtful” emerging technology 

 for at least two decades
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

