Computer Architecture
Lecture 14a: Emerging Memory
Technologies 11

Prof. Onur Mutlu
ETH Zurich
Fall 2018
1 November 2018

Emerging Memory Technologies

Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 3

Unitied Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager
Processor
and caches

Load/Store Feedback

Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 4
SAFARI Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

; e E i e
“‘ 'ﬁ f { | ,,(,’r..l.if,lqur AL TR ""”i'“ ‘I ‘

~
s 3
wn
<&
O -
2z
<5

Provides an opportunity to manipulate
persistent data directly

The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData[n] = value; // value is persistent

O 00 1 ON DN = Wi =~

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

| DRAM |(Fiash |(NvM |[HOD |

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

On Persistent Memory Benetits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza* Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University 'Pennsylvania State University ¥Intel Labs SAMD Research

SAFARI !

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage

SAFARI

Challenge and Opportunity

A Unified Interface to
All Data

SAFARI

One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 10

CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

iInconsistent memory state

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-HeapS [ASPLOS'11], BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

12

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-HeapS [ASPLOS'11], BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

-
Example Code

update a node In a persistent hash table

—

vold hashtable update (hashtable t* ht,
~volid *key, void *data)
{

list t* chain = get chain(ht, key);
palr t* pailr; -
palir t updatePalr,

updaEePalr first = key;
pailr = (palr t*) 1list find(chain,
&updatePair) ;

palir—->second = data;

CURRENT SOLUTIONS

vold TMhashtable update (TMARCGDECL
hashtable t* ht, void *key,
void*data) {

list t* chain = get chain (ht, key);

palr t* pair; -

palr t updatePair;

updatePair.first = key;

pair = (pair t*) TMLIST FIND (chain,

supdatePair) ;

palr—->second = data;

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

15

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

get chain (ht, key)

Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers

OUR APPROACH: ThyNVM

Goal: | |
Software transparent consistency in
persistent memory systems

~ Keyldea:
Periodically checkpoint state;
recover to previous checkpt on crash

19

ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency

OUTLINE

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

iInconsistent memory state

OUTLINE
Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-HeapS [ASPLOS'11], BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

- T
Example Code

update a node In a persistent hash table

e

vold hashtable update (hashtable t* ht,
~volid *key, void *data)
{

list t* chain = get chain(ht, key);
palr t* pailr; -
palir t updatePalr,

updaEePalr first = key;
pailr = (palr t*) 1list find(chain,
&updatePair) ;

palir—->second = data;

CURRENT SOLUTIONS

vold TMhashtable update (TMARCGDECL
hashtable t* ht, void *key,
void*data) {

list t* chain = get chain (ht, key);

palr t* pair; -

palr t updatePair;

updatePair.first = key;

pair = (pair t*) TMLIST FIND (chain,

supdatePair) ;

palr—->second = data;

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

26

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

get chain (ht, key)
Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers

OUTLINE

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

OUR GOAL

Software transparent consistency

INn persistent memory systems

 Execute legacy applications
 Reduce burden on programmers

* Enable easier integration of NVM

NO MODIFICATION
IN THE CODE

void hashtable update(hashtable t* ht,
{ void *key, void *data)

Ist_t* chain = get_chain(ht, key);

pair_t* pair; _

pair_t updatePair;

updatePair.first = key; |

pair = (pair_t*) list_find(chain, |
&updatePair);

pair->second = data;
s

RUN THE EXACT SAME CODE...

void hashtable update (hashtable t* ht,
void *ke y, v01d *data) {

o *) list_find(chain,

&updatePair) ;
econd = data;

.......

Persistent emory System

Software transparent

memory crash consistency

ThyNVM APPROACH

Periodic checkpointing of data
| managed by hardware |

time
Running Checkpointing
—_

‘ Epoch 0 ‘ Epoch 1 \

Transparent to application and system

CHECKPOINTING OVERHEAD

1. Metadata overhead
Metadata Table

Working location Checkpoint location
X

Y
)

2. Checkpointing latency

1. METADATA AND
CHECKPOINTING GRANULARITY

Working location Checkpoint location
X X’

Y Y

B
B PAGE] CACHE BLOCK
HE

PAGE BLOCK
GRANULARITY GRANULARITY

One Entry Per Page One Entry Per Block
Small Metadata Huge Metadata

)36

2. LATENCY AND LOCATION
DRAM-BASED WRITEBACK

metadata table
from DRAM

Long Iatency of writing back data to NVM

2. LATENCY AND LOCATION
NVM-BASED REMAPPING

metadata table

Short latency in NVM-based remapping

ThyNVM KEY MECHANISMS

Checkpointing granularity
* Small granularity: large metadata
 Large granularity: small metadata

Latency and location
 Writeback from DRAM: long latency
* Remap in NVM: short latency

Based on these, we propose two key

mechanisms

1. Dual granularity checkpointing
2. Overlap of execution and checkpointing

1. DUAL GRANULARITY CHECKPOINTING

Page Writeback Block Remapping
in DRAM in NVM
m l
GOOD FOR GOOD FOR
STREAMING WRITES RANDOM WRITES

High write locality pages in DRAM,

low write locality pages in NVM

TRADEOFF SPACE

Checkpointing granularity

Small (cache block) Large (page)

DRAM | @ Inefficient @ rartially efficient
(based on | x Large metadata overhead v Small metadata overhead
writeback) | ¥ Long checkpointing latency | ¥ Long checkpointing latency

9 Partially efficient e Inefficient

x Large metadata overhead v Small metadata overhead

v Short checkpointing latency | v Short checkpointing latency
v Fast remapping x Slow remapping

(on the critical path)

NVM
(based on
remapping)

Location of
working copy

Table 1: Tradeoff space of options combining checkpointing
granularity choice and location choice of the working copy
of data. The table shows four options and their pros and
cons. Boldfaced text indicates the most critical pro or con
that determines the efficiency of an option.

2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

— —_—
Epoch O Epoch 1 ‘

Epoch 0
Epoch 1
Epoch 2

Hides the long latency of Page Writeback

OUTLINE pashenr

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

SYSTEM ARCHITECTURE

DRAM

1

CPU CPU |[eo CPU
Core Core Core
| | |
Shared LLC
i
Address Translation Tables| Memory
BTT PTT | Controller
DRAM Read Queue NVM Read Queue
DRAM Write Queue NVM Write Queue

Figure 2: Architecture overview of ThyNVM.

MEMORY ADDRESS SPACE

Hardware address space

I Working Data
/
/ Region } DRAM

/S EEBTTPTTICRU)

/ Checkpoint
Physical address space // Region A

Oxf...f Oxf...f

~ NVM

Home Region
(Checkpoint
Region B)
0x0 0x0 P

Processor’s view Memory controller’s view
(software visible)

Physical pages
and blocks

Working Data Region: W 7% 'WhIock (when creating Cjqq;)

Ckpt Regions A and B: Ciusr, Cpenuie, WE2EK

Figure 4: ThyNVM address space layout.

METHODOLOGY

Cycle accurate x86 simulator Gem5

Comparison Points:
Ideal DRAM: DRAM-based, no cost for consistency
— Lowest latency system

Ideal NVM: NVM-based, no cost for consistency
— NVM has higher latency than DRAM

Journaling: Hybrid, commit dirty cache blocks
— Leverages DRAM to buffer dirty blocks

Shadow Paging: Hybrid, copy-on-write pages
— Leverages DRAM to buffer dirty pages

ADAPTIVITY TO ACCESS PATTERN
RANDOM SEQUENTIAL

w

w

N

N

W

S
S

Oow

L
LO

ormalized Write
[EN

Traffic To NVM
Traffic To NVM

LOW
Normalized Write

o
|

Journal Shadow ThyNVM Journal Shadow ThyNVM

Journaling is better for Random and
Shadow paging is better for Sequential

ThyNVM adapts to both access patterns

OVERLAPPING
CHECKPOINTING AND EXECUTION

RANDOM SEQUENTIAL

Hal

Journal Shadow ThyNVM Journal Shadow ThyNVM

(o))
(@)

I
o
I
o

N
o

N
o

Percentage of
Execution Time
Percentage of
Execution Time

o
|
o

Can spend 35-45% of the execution
on checkpointing

Stalls the application for a negligible time

PERFORMANCE OF LEGACY CODE

B Ideal DRAM ¥ |deal NVM B ThyNVM

1

o o o O
o N M O ©®©

Normalized IPC

gcc bwaves milc leslie. soplex Gems Ibm omnet

Within -4.9%/+2.7% of an
idealized DRAM/NVM system

Provides consistency without

significant performance overhead

KEY-VALUE STORE TX THROUGHPUT

350 |

7 . Ideal DRAM - -
c 300 - gw-m;;:_;:l-_ Ildeal NVM =]|
2x 250 | i SJr(])ucrinal xe
S 200 adow -
53 150 | e R ThyNVM |
TS ' R
=2 100+ x : :

(@]

g 50 7| | L | L L L |

16 64 256 1024 4096
Request size (B)
(a) Hash table based key-value store

i 160 ‘ ' ' ' ' ' ' ‘ 1

P ldeal DRAM -=-
cfk 140 B Ideal NVM ~&- |
2x 120 Journal —=-— A
S= 100 - . Shadow -x- A
g_é. 80 | LT e % ThyNVM =]
E g) 60 L el Sy, a
To 40t .

..;_. 20 C. | , | , | , , T

16 64 256 1024 4096

Request size (B)
(b) Red-black tree based key-value store

Figure 9: Transaction throughput for two key-value stores:
(a) hash table based, (b) red-black tree based.

Storage throughput close to Ideal DRAM

OUTLINE

Crash Consistency Problem

Current Solutions

ThyNVM

Evaluation

Conclusion

ThyNVM

A new hardware-based
checkpointing mechanism,
with no programming effort

 Checkpoints at multiple granularities to
minimize both latency and metadata

* Overlaps checkpointing and execution

 Adapts to DRAM and NVM characteristics
Can enable widespread adoption

of persistent memory

Source Code and More Available at
http://persper.com/thynvm

ThyNVM

Enabling Software-transparent
Crash Consistency
In Persistent Memory Systems

More About ThyNVM

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,

"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"

Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]

[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*’ Jishen Zhao* Samira Khan Jongmoo Choi*" Yongwei Wu* Onur Mutlu®

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia TDankook University

SAFARI >

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI

Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the 4th Workshop on Interactions of NVIM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware

SAFARI 20

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

The Future of |

“merging Technologies 1s Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Problem

Program/Language

System Software

SW/HW Interface

Yet, we have to
- Think across the stack

- Design enabling systems

SAFARI

57

If In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
a for at least two decades

% FAPER Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Ca1, Savcarta GHosg, EricH F. HaraTtsch, YixiN Luo, aND ONUR MuTLU

today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

ABSTRACT | nano flash memory is ubiquitous in everyday life KEYWORDS | Data storage systems; error recovery; fault

SAFARI https://arxiv.org/pdf/1706.08642

58

https://arxiv.org/pdf/1706.08642

Computer Architecture
Lecture 14a: Emerging Memory
Technologies 11

Prof. Onur Mutlu
ETH Zurich
Fall 2018
1 November 2018

