
Computer Architecture

Lecture 3b: Memory Hierarchy

and Caches

Prof. Onur Mutlu

ETH Zürich

Fall 2018

26 September 2018

Review Cache Lectures (from Spring 2018)

 Memory Organization and Technology (Lecture 23b)

 https://www.youtube.com/watch?v=rvBdJ1ZLo2M

 Memory Hierarchy and Caches (Lecture 24)

 https://www.youtube.com/watch?v=sweCA3836C0

 More Caches (Lecture 25a)

 https://www.youtube.com/watch?v=kMUZKjaPNWo

 Virtual Memory (Lecture 25b)

 https://www.youtube.com/watch?v=na-JL1nVTSU

2

https://www.youtube.com/watch?v=rvBdJ1ZLo2M
https://www.youtube.com/watch?v=sweCA3836C0
https://www.youtube.com/watch?v=kMUZKjaPNWo
https://www.youtube.com/watch?v=na-JL1nVTSU

Optional Readings for Today

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3

 Memory/cache chapters from Hamacher+: 8.1-8.7

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 We already covered these in Digital Circuits so we will go
through them quickly and get to advanced topics

3

Memory (Programmer’s View)

4

Abstraction: Virtual vs. Physical Memory

 Programmer sees virtual memory

 Can assume the memory is “infinite”

 Reality: Physical memory size is much smaller than what
the programmer assumes

 The system (system software + hardware, cooperatively)
maps virtual memory addresses to physical memory

 The system automatically manages the physical memory
space transparently to the programmer

+ Programmer does not need to know the physical size of memory
nor manage it A small physical memory can appear as a huge
one to the programmer Life is easier for the programmer

-- More complex system software and architecture

A classic example of the programmer/(micro)architect tradeoff

5

(Physical) Memory System

 You need a larger level of storage to manage a small
amount of physical memory automatically

 Physical memory has a backing store: disk

 We will first start with the physical memory system

 For now, ignore the virtualphysical indirection

 We will get back to it when the needs of virtual memory
start complicating the design of physical memory…

6

Idealism

7

Instruction

Supply

Pipeline

(Instruction

execution)

Data

Supply

- Zero latency access

- Infinite capacity

- Zero cost

- Perfect control flow

- No pipeline stalls

-Perfect data flow

(reg/memory dependencies)

- Zero-cycle interconnect

(operand communication)

- Enough functional units

- Zero latency compute

- Zero latency access

- Infinite capacity

- Infinite bandwidth

- Zero cost

The Memory Hierarchy

Memory in a Modern System

9

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY

CONTROLLER

Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)

10

The Problem

 Ideal memory’s requirements oppose each other

 Bigger is slower

 Bigger Takes longer to determine the location

 Faster is more expensive

 Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

 Higher bandwidth is more expensive

 Need more banks, more ports, higher frequency, or faster
technology

11

Memory Technology: DRAM

 Dynamic random access memory

 Capacitor charge state indicates stored value

 Whether the capacitor is charged or discharged indicates
storage of 1 or 0

 1 capacitor

 1 access transistor

 Capacitor leaks through the RC path

 DRAM cell loses charge over time

 DRAM cell needs to be refreshed

 Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM
Refresh,” ISCA 2012.

12

row enable

_
b
it
lin

e

 Static random access memory

 Two cross coupled inverters store a single bit

 Feedback path enables the stored value to persist in the “cell”

 4 transistors for storage

 2 transistors for access

Memory Technology: SRAM

13

row select

b
it
lin

e

_
b
it
lin

e

An Aside: Phase Change Memory

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

14

PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.

Reading: PCM As Main Memory

 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

15

http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf

Reading: More on PCM As Main Memory

 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

16

https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

Memory Bank: A Fundamental Concept

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 An issue: How do you map data to different banks? (i.e., how
do you interleave data across banks?)

17

Memory Bank Organization and Operation

 Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines

• For next access

18

SRAM (Static Random Access Memory)

19

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m diff pairs

2n
n

m

1

row select

b
it
lin

e

_
b
it
lin

e

n+m

Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines

(entire row is read together)

4. differential sensing and column select

(data is ready)

5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3

Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

DRAM (Dynamic Random Access Memory)

20

row enable
_
b
it
lin

e

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m

2n
n

m

1

RAS

CAS

A DRAM die comprises
of multiple such arrays

Bits stored as charges on node

capacitance (non-restorative)

- bit cell loses charge when read

- bit cell loses charge over time

Read Sequence

1~3 same as SRAM

4. a “flip-flopping” sense amp
amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads

Charge loss over time

Refresh: A DRAM controller must

periodically read each row within

the allowed refresh time (10s of

ms) such that charge is restored

DRAM vs. SRAM

 DRAM

 Slower access (capacitor)

 Higher density (1T 1C cell)

 Lower cost

 Requires refresh (power, performance, circuitry)

 Manufacturing requires putting capacitor and logic together

 SRAM

 Faster access (no capacitor)

 Lower density (6T cell)

 Higher cost

 No need for refresh

 Manufacturing compatible with logic process (no capacitor)

21

The Problem

 Bigger is slower

 SRAM, 512 Bytes, sub-nanosec

 SRAM, KByte~MByte, ~nanosec

 DRAM, Gigabyte, ~50 nanosec

 Hard Disk, Terabyte, ~10 millisec

 Faster is more expensive (dollars and chip area)

 SRAM, < 10$ per Megabyte

 DRAM, < 1$ per Megabyte

 Hard Disk < 1$ per Gigabyte

 These sample values (circa ~2011) scale with time

 Other technologies have their place as well

 Flash memory, PC-RAM, MRAM, RRAM (not mature yet)

22

Why Memory Hierarchy?

 We want both fast and large

 But we cannot achieve both with a single level of memory

 Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

23

Memory Hierarchy

 Fundamental tradeoff

 Fast memory: small

 Large memory: slow

 Idea: Memory hierarchy

 Latency, cost, size,

bandwidth

24

CPU

Main

Memory

(DRAM)RF

Cache

Hard Disk

Locality

 One’s recent past is a very good predictor of his/her near
future.

 Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon

 since you are here today, there is a good chance you will be
here again and again regularly

 Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)

 every time I find you in this room, you are probably sitting
close to the same people

25

Memory Locality

 A “typical” program has a lot of locality in memory
references

 typical programs are composed of “loops”

 Temporal: A program tends to reference the same memory
location many times and all within a small window of time

 Spatial: A program tends to reference a cluster of memory
locations at a time

 most notable examples:

 1. instruction memory references

 2. array/data structure references

26

Caching Basics: Exploit Temporal Locality

 Idea: Store recently accessed data in automatically
managed fast memory (called cache)

 Anticipation: the data will be accessed again soon

 Temporal locality principle

 Recently accessed data will be again accessed in the near
future

 This is what Maurice Wilkes had in mind:

 Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

 “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

27

Caching Basics: Exploit Spatial Locality

 Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory

 Logically divide memory into equal size blocks

 Fetch to cache the accessed block in its entirety

 Anticipation: nearby data will be accessed soon

 Spatial locality principle

 Nearby data in memory will be accessed in the near future

 E.g., sequential instruction access, array traversal

 This is what IBM 360/85 implemented

 16 Kbyte cache with 64 byte blocks

 Liptay, “Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.

28

A Note on Manual vs. Automatic Management

 Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

 “core” vs “drum” memory in the 50’s

 still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)

 Automatic: Hardware manages data movement across levels,
transparently to the programmer

++ programmer’s life is easier

 simple heuristic: keep most recently used items in cache

 the average programmer doesn’t need to know about it

 You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

29

Automatic Management in Memory Hierarchy

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

30

Historical Aside: Other Cache Papers

 Fotheringham, “Dynamic Storage Allocation in the Atlas
Computer, Including an Automatic Use of a Backing Store,”
CACM 1961.

 http://dl.acm.org/citation.cfm?id=366800

 Bloom, Cohen, Porter, “Considerations in the Design of a
Computer with High Logic-to-Memory Speed Ratio,” AIEE
Gigacycle Computing Systems Winter Meeting, Jan. 1962.

31

http://dl.acm.org/citation.cfm?id=366800

Cache in 1962 (Bloom, Cohen, Porter)

32

A Modern Memory Hierarchy

33

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

Review: Hierarchical Latency Analysis

 For a given memory hierarchy level i it has a technology-intrinsic
access time of ti, The perceived access time Ti is longer than ti

 Except for the outer-most hierarchy, when looking for a given
address there is

 a chance (hit-rate hi) you “hit” and access time is ti
 a chance (miss-rate mi) you “miss” and access time ti +Ti+1

 hi + mi = 1

 Thus

Ti = hi·ti + mi·(ti + Ti+1)

Ti = ti + mi ·Ti+1

hi and mi are defined to be the hit-rate

and miss-rate of just the references that missed at Li-1

34

Review: Hierarchy Design Considerations

 Recursive latency equation

Ti = ti + mi ·Ti+1

 The goal: achieve desired T1 within allowed cost

 Ti ti is desirable

 Keep mi low

 increasing capacity Ci lowers mi, but beware of increasing ti
 lower mi by smarter management (replacement::anticipate what you

don’t need, prefetching::anticipate what you will need)

 Keep Ti+1 low

 faster lower hierarchies, but beware of increasing cost

 introduce intermediate hierarchies as a compromise

35

 90nm P4, 3.6 GHz

 L1 D-cache

 C1 = 16K

 t1 = 4 cyc int / 9 cycle fp

 L2 D-cache

 C2 =1024 KB

 t2 = 18 cyc int / 18 cyc fp

 Main memory

 t3 = ~ 50ns or 180 cyc

 Notice

 best case latency is not 1

 worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Review: Intel Pentium 4 Example

Cache Basics and Operation

Cache

 Generically, any structure that “memoizes” frequently used
results to avoid repeating the long-latency operations
required to reproduce the results from scratch, e.g. a web
cache

 Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM

 memoize in SRAM the most frequently accessed DRAM
memory locations to avoid repeatedly paying for the DRAM
access latency

38

Caching Basics

 Block (line): Unit of storage in the cache

 Memory is logically divided into cache blocks that map to
locations in the cache

 On a reference:

 HIT: If in cache, use cached data instead of accessing memory

 MISS: If not in cache, bring block into cache

 Maybe have to kick something else out to do it

 Some important cache design decisions

 Placement: where and how to place/find a block in cache?

 Replacement: what data to remove to make room in cache?

 Granularity of management: large or small blocks? Subblocks?

 Write policy: what do we do about writes?

 Instructions/data: do we treat them separately?
39

Cache Abstraction and Metrics

 Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Aside: Can reducing AMAT reduce performance?

40

Address
Tag Store

(is the address

in the cache?

+ bookkeeping)

Data Store

(stores

memory

blocks)

Hit/miss? Data

A Basic Hardware Cache Design

 We will start with a basic hardware cache design

 Then, we will examine a multitude of ideas to make it
better

41

Blocks and Addressing the Cache

 Memory is logically divided into fixed-size blocks

 Each block maps to a location in the cache, determined by
the index bits in the address

 used to index into the tag and data stores

 Cache access:

1) index into the tag and data stores with index bits in address

2) check valid bit in tag store

3) compare tag bits in address with the stored tag in tag store

 If a block is in the cache (cache hit), the stored tag should be
valid and match the tag of the block

42

8-bit address

tag index byte in block

3 bits3 bits2b

Direct-Mapped Cache: Placement and Access

 Assume byte-addressable memory:
256 bytes, 8-byte blocks 32 blocks

 Assume cache: 64 bytes, 8 blocks

 Direct-mapped: A block can go to only one location

 Addresses with same index contend for the same location

 Cause conflict misses
43

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Block: 00000
Block: 00001
Block: 00010
Block: 00011
Block: 00100
Block: 00101

Block: 00110
Block: 00111
Block: 01000
Block: 01001
Block: 01010
Block: 01011
Block: 01100
Block: 01101

Block: 01110
Block: 01111
Block: 10000
Block: 10001
Block: 10010
Block: 10011
Block: 10100
Block: 10101

Block: 10110
Block: 10111
Block: 11000
Block: 11001
Block: 11010
Block: 11011
Block: 11100
Block: 11101

Block: 11110
Block: 11111

Main memory

Direct-Mapped Caches

 Direct-mapped cache: Two blocks in memory that map to
the same index in the cache cannot be present in the cache
at the same time

 One index one entry

 Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index

 Assume addresses A and B have the same index bits but
different tag bits

 A, B, A, B, A, B, A, B, … conflict in the cache index

 All accesses are conflict misses

44

 Addresses 0 and 8 always conflict in direct mapped cache

 Instead of having one column of 8, have 2 columns of 4 blocks

Set Associativity

45

Tag store Data store

V tag

=?

V tag

=?

Address

tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

Key idea: Associative memory within the set

+ Accommodates conflicts better (fewer conflict misses)

-- More complex, slower access, larger tag store

SET

Hit?

Higher Associativity

 4-way

+ Likelihood of conflict misses even lower

-- More tag comparators and wider data mux; larger tags
46

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?

Full Associativity

 Fully associative cache

 A block can be placed in any cache location

47

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity (and Tradeoffs)

 Degree of associativity: How many blocks can map to the
same index (or set)?

 Higher associativity

++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)

-- More expensive hardware (more comparators)

 Diminishing returns from higher

associativity

48
associativity

hit rate

Issues in Set-Associative Caches

 Think of each block in a set having a “priority”

 Indicating how important it is to keep the block in the cache

 Key issue: How do you determine/adjust block priorities?

 There are three key decisions in a set:

 Insertion, promotion, eviction (replacement)

 Insertion: What happens to priorities on a cache fill?

 Where to insert the incoming block, whether or not to insert the block

 Promotion: What happens to priorities on a cache hit?

 Whether and how to change block priority

 Eviction/replacement: What happens to priorities on a cache
miss?

 Which block to evict and how to adjust priorities

49

Eviction/Replacement Policy

 Which block in the set to replace on a cache miss?

 Any invalid block first

 If all are valid, consult the replacement policy

 Random

 FIFO

 Least recently used (how to implement?)

 Not most recently used

 Least frequently used?

 Least costly to re-fetch?

 Why would memory accesses have different cost?

 Hybrid replacement policies

 Optimal replacement policy?

50

Implementing LRU

 Idea: Evict the least recently accessed block

 Problem: Need to keep track of access ordering of blocks

 Question: 2-way set associative cache:

 What do you need to implement LRU perfectly?

 Question: 4-way set associative cache:

 What do you need to implement LRU perfectly?

 How many different orderings possible for the 4 blocks in the
set?

 How many bits needed to encode the LRU order of a block?

 What is the logic needed to determine the LRU victim?

51

Approximations of LRU

 Most modern processors do not implement “true LRU” (also
called “perfect LRU”) in highly-associative caches

 Why?

 True LRU is complex

 LRU is an approximation to predict locality anyway (i.e., not
the best possible cache management policy)

 Examples:

 Not MRU (not most recently used)

 Hierarchical LRU: divide the N-way set into M “groups”, track
the MRU group and the MRU way in each group

 Victim-NextVictim Replacement: Only keep track of the victim
and the next victim

52

Cache Replacement Policy: LRU or Random

 LRU vs. Random: Which one is better?

 Example: 4-way cache, cyclic references to A, B, C, D, E

 0% hit rate with LRU policy

 Set thrashing: When the “program working set” in a set is
larger than set associativity

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Best of both Worlds: Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

53

What Is the Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

54

Reading

 Key observation: Some misses more costly than others as their latency is
exposed as stall time. Reducing miss rate is not always good for
performance. Cache replacement should take into account MLP of misses.

 Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"
Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

55

https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
https://people.inf.ethz.ch/omutlu/pub/qureshi_isca06_talk.ppt

Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Required speed of access to cache vs. physical memory

 Number of blocks in a cache vs. physical memory

 “Tolerable” amount of time to find a replacement candidate
(disk versus memory access latency)

 Role of hardware versus software

56

What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches

57

Handling Writes (I)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can combine multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “dirty/modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence because
no need to check close-to-processor caches’ tag stores for presence

-- More bandwidth intensive; no combining of writes

58

Computer Architecture

Lecture 3b: Memory Hierarchy

and Caches

Prof. Onur Mutlu

ETH Zürich

Fall 2018

26 September 2018

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Handling Writes (II)

 What if the processor writes to an entire block over a small
amount of time?

 Is there any need to bring the block into the cache from
memory in the first place?

 Ditto for a portion of the block, i.e., subblock

 E.g., 4 bytes out of 64 bytes

61

Sectored Caches

 Idea: Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

(How many subblocks do you transfer on a read?)

-- More complex design

-- May not exploit spatial locality fully when used for reads

62

tagsubblockvsubblockv subblockvd d d

Instruction vs. Data Caches

 Separate or Unified?

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that
might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

 First level caches are almost always split

 Mainly for the last reason above

 Second and higher levels are almost always unified
63

Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter (filters some temporal and spatial locality)

 Management policies are therefore different
64

Cache Performance

(for Your Review)

See Lecture 25a (More Caches) from Digital Circuits Spring 2018

http://www.youtube.com/watch?v=kMUZKjaPNWo

http://www.youtube.com/watch?v=kMUZKjaPNWo

Cache Parameters vs. Miss/Hit Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy

66

Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data
the executing application references

 Within a time interval

67

hit rate

cache size

“working set”
size

Block Size

 Block size is the data that is associated with an address tag

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each w/ V/D bits)

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks less

temporal locality exploitation

 waste of cache space and bandwidth/energy

if spatial locality is not high

68

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth

 divide a block into subblocks

 associate separate valid and dirty bits for each subblock

 Recall: When is this useful?

69

tagsubblockvsubblockv subblockvd d d

Associativity

 How many blocks can be present in the same index (i.e., set)?

 Larger associativity

 lower miss rate (reduced conflicts)

 higher hit latency and area cost (plus diminishing returns)

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Is power of 2 associativity required?

70

associativity

hit rate

End of Cache Performance

(for Your Review)

See Lecture 25a (More Caches) from Digital Circuits Spring 2018

http://www.youtube.com/watch?v=kMUZKjaPNWo

http://www.youtube.com/watch?v=kMUZKjaPNWo

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a
capacity miss

72

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching can: Anticipate which blocks will be needed soon

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Better, randomized indexing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set and computation
such that each “computation phase” fits in cache

73

How to Improve Cache Performance

 Three fundamental goals

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency or miss cost

 Reducing hit latency or hit cost

 The above three together affect performance

74

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a capacity
miss

75

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching can

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Better, randomized indexing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each
“phase” fits in cache

76

How to Improve Cache Performance

 Three fundamental goals

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency or miss cost

 Reducing hit latency or hit cost

 The above three together affect performance

77

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
78

Cheap Ways of Reducing Conflict Misses

 Instead of building highly-associative caches:

 Victim Caches

 Hashed/randomized Index Functions

 Pseudo Associativity

 Skewed Associative Caches

 …

79

Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully-associative buffer (victim cache) to
store recently evicted blocks
+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

80

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity

 Hashing: Use better “randomizing” index functions

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example of conflicting accesses: strided access pattern where
stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

+ Less complex than N-way; -- Longer cache hit/miss latency
81

Skewed Associative Caches

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Seznec, “A Case for Two-Way Skewed-Associative Caches,”
ISCA 1993.

82

Skewed Associative Caches (I)

 Basic 2-way associative cache structure

83

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function

84

Way 0 Way 1

tag index byte in block

f0

same index
same set

same index
redistributed to

different sets

=? =?

Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Benefit: indices are more randomized (memory blocks are
better distributed across sets)

 Less likely two blocks have same index (esp. with strided access)

 Reduced conflict misses

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

85

Software Approaches for Higher Hit Rate

 Restructuring data access patterns

 Restructuring data layout

 Loop interchange

 Data structure separation/merging

 Blocking

 …

86

Restructuring Data Access Patterns (I)

 Idea: Restructure data layout or data access patterns

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
87

Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

Restructuring Data Access Patterns (II)

 Blocking

 Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of
computation

 Essentially: Divide the working set so that each piece fits in
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

88

Restructuring Data Layout (I)

 Pointer based traversal
(e.g., of a linked list)

 Assume a huge linked
list (1B nodes) and
unique keys

 Why does the code on
the left have poor cache
hit rate?

 “Other fields” occupy
most of the cache line
even though rarely
accessed!

89

struct Node {

struct Node* next;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}

Restructuring Data Layout (II)

 Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

 Who should do this?

 Programmer

 Compiler

 Profiling vs. dynamic

 Hardware?

 Who can determine what
is frequently used?

90

struct Node {

struct Node* next;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
91

Miss Latency/Cost

 What is miss latency or miss cost affected by?

 Where does the miss get serviced from?

 Local vs. remote memory

 What level of cache in the hierarchy?

 Row hit versus row miss in DRAM

 Queueing delays in the memory controller and the interconnect

 …

 How much does the miss stall the processor?

 Is it overlapped with other latencies?

 Is the data immediately needed?

 …

92

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

94

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

P3 P2 P1 P4

H H H H M H H H MHit/Miss

Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Reading for review

97

Other Recommended Cache Papers (I)

 Qureshi et al., “Adaptive Insertion Policies for High
Performance Caching,” ISCA 2007.

98

Other Recommended Cache Papers (II)

 Seshadri et al., “The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and
Thrashing,” PACT 2012.

99

Other Recommended Cache Papers (III)

 Pekhimenko et al., “Base-Delta-Immediate Compression:
Practical Data Compression for On-Chip Caches,” PACT
2012.

100

Hybrid Cache Replacement

(Selecting Between

Multiple Replacement Policies)

Hybrid Cache Replacement

 Problem: Not a single policy provides the highest performance

 For any given set

 For the entire cache overall

 Idea: Implement both policies and pick the one that is
expected to perform best at runtime

 On a per-set basis or for the entire cache

+ Higher performance

-- Higher cost, complexity; Need selection mechanism

 How do you determine the best policy?

 Implement multiple tag stores, each following a particular policy

 Find the best and have the main tag store follow the best policy

102

Terminology

 Tag Store is also called Tag Directory

 Main Tag Store/Directory (MTD)

 Tag Store that is actually used to keep track of the block
addresses present in the cache

 Auxiliary Tag Store/Directory (ATD-PolicyX)

 Tag Store that is used to emulate a policy X

 Not used for tracking the block addresses present in the cache

 Used for tracking what the block addresses in the cache would
have been if the cache were following Policy X

103

104

Tournament Selection (TSEL) of
Replacement Policies for a Single Set

ATD-Policy1 ATD-Policy2 Saturating Counter (SCTR)

HIT HIT Unchanged

MISS MISS Unchanged

HIT MISS += Cost of Miss in ATD-Policy2

MISS HIT -= Cost of Miss in ATD-Policy1

SET A SET A+
SCTR

If MSB of SCTR is 1, MTD uses
Policy1, else MTD uses Policy2

ATD-Policy1 ATD-Policy2

SET A

MTD

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

105

Extending TSEL to All Sets

Implementing TSEL on a per-set basis is expensive

Counter overhead can be reduced by using a global counter

+

SCTR

Policy for All

Sets In MTD

Set A

ATD-Policy1

Set B

Set C

Set D

Set E

Set F

Set G

Set H

Set A

ATD-Policy2

Set B

Set C

Set D

Set E

Set F

Set G

Set H

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

106

Dynamic Set Sampling (DSS)

+

SCTR

Policy for All

Sets In MTD

ATD-Policy1

Set B

Set E

Set G

Set B

Set E

Set G

ATD-Policy2
Set ASet A

Set C
Set D

Set F

Set H

Set C
Set D

Set F

Set H

Not all sets are required to decide the best policy
Have the ATD entries only for few sets.

Sets that have ATD entries (B, E, G) are called leader sets

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

107

Dynamic Set Sampling (DSS)

 Bounds using analytical model and simulation (in paper)

 DSS with 32 leader sets performs similar to having all sets

 Last-level cache typically contains 1000s of sets, thus ATD
entries are required for only 2%-3% of the sets

How many sets are required to choose best performing policy?

ATD overhead can further be reduced by using MTD to
always simulate one of the policies (say Policy1)

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

108

Decide policy only for
follower sets

+

Sampling Based Adaptive Replacement (SBAR)

The storage overhead of SBAR is less than 2KB

(0.2% of the baseline 1MB cache)

SCTR

MTD

Set B

Set E

Set G

Set G

ATD-Policy2
Set A

Set C
Set D

Set F

Set H

Set B
Set E

Leader sets

Follower sets

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

109

Results for SBAR

Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2006.

110

SBAR adaptation to phases

SBAR selects the best policy for each phase of this application

LIN is better LRU is better

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses

 Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?

 Goal: Enable cache access when there is a pending miss

 Goal: Enable multiple misses in parallel

 Memory-level parallelism (MLP)

 Solution: Non-blocking or lockup-free caches

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

112

Handling Multiple Outstanding Accesses

 Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRs)

 A cache access checks MSHRs to see if a miss to the same
block is already pending.

 If pending, a new request is not generated

 If pending and the needed data available, data forwarded to later
load

 Requires buffering of outstanding miss requests

113

Miss Status Handling Register

 Also called “miss buffer”

 Keeps track of

 Outstanding cache misses

 Pending load/store accesses that refer to the missing cache
block

 Fields of a single MSHR entry

 Valid bit

 Cache block address (to match incoming accesses)

 Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

 Data for each subblock

 For each pending load/store

 Valid, type, data size, byte in block, destination register or store
buffer entry address

114

Miss Status Handling Register Entry

115

MSHR Operation

 On a cache miss:

 Search MSHRs for a pending access to the same block

 Found: Allocate a load/store entry in the same MSHR entry

 Not found: Allocate a new MSHR

 No free entry: stall

 When a subblock returns from the next level in memory

 Check which loads/stores waiting for it

 Forward data to the load/store unit

 Deallocate load/store entry in the MSHR entry

 Write subblock in cache or MSHR

 If last subblock, deallocate MSHR (after writing the block in
cache)

116

Non-Blocking Cache Implementation

 When to access the MSHRs?

 In parallel with the cache?

 After cache access is complete?

 MSHRs need not be on the critical path of hit requests

 Which one below is the common case?

 Cache miss, MSHR hit

 Cache hit

117

Enabling High Bandwidth Memories

Multiple Instructions per Cycle

 Processors can generate multiple cache/memory accesses
per cycle

 How do we ensure the cache/memory can handle multiple
accesses in the same clock cycle?

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)

119

Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts on read accesses)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same
time?

 Peripheral logic needs to handle this

120

Peripheral Logic for True Multiporting

121

Peripheral Logic for True Multiporting

122

Handling Multiple Accesses per Cycle (II)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?

123

Cache
Copy 1

Handling Multiple Accesses per Cycle (III)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations cause a
bottleneck

 Area proportional to “ports”

124

Port 1

Load

Store

Port 1

Data

Cache
Copy 2Port 2

Load

Port 2

Data

Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Address space partitioned into separate banks

 Bits in address determines which bank an address maps to

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses

to the same bank in parallel

-- Crossbar interconnect in input/output

 Bank conflicts

 Concurrent requests to the same bank

 How can these be reduced?

 Hardware? Software?

125

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Access latencies to different banks can be overlapped

 A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

126

Further Readings on Caching and MLP

 Required: Qureshi et al., “A Case for MLP-Aware Cache
Replacement,” ISCA 2006.

 One Pager: Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy
Ideas Session, 1998.

 Mutlu et al., “Runahead Execution: An Effective Alternative to
Large Instruction Windows,” IEEE Micro 2003.

 Li et al., “Utility-based Hybrid Memory Management,”
CLUSTER 2017.

 Mutlu et al., “Parallelism-Aware Batch Scheduling,” ISCA 2008
127

Computer Architecture

Lecture 3b: Memory Hierarchy

and Caches

Prof. Onur Mutlu

ETH Zürich

Fall 2018

26 September 2018

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Efficient Cache Utilization

 Critical for performance, especially in multi-core systems

 Many works in this area

 Three sample works

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA
2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

130

MLP-Aware Cache Replacement

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"

Proceedings of the 33rd International Symposium on Computer Architecture
(ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

131

http://users.ece.cmu.edu/~omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
http://users.ece.cmu.edu/~omutlu/pub/qureshi_isca06_talk.ppt

132

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution,

runahead execution)

 MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

133

134

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated misses (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

135

P3 P2 P1 P4

H H H H M H H H MHit/Miss

Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

136

Motivation

 MLP varies. Some misses more costly than others

 MLP-aware replacement can improve performance by
reducing costly misses

137

Outline

 Introduction

 MLP-Aware Cache Replacement
 Model for Computing Cost

 Repeatability of Cost

 A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
 Tournament Selection

 Dynamic Set Sampling

 Sampling Based Adaptive Replacement

 Summary

138

Computing MLP-Based Cost

 Cost of miss is number of cycles the miss stalls the processor

 Easy to compute for isolated miss

 Divide each stall cycle equally among all parallel misses

A

B

C

t0 t1 t4 t5 time

1

½

1 ½

½

t2 t3

½

1

139

 Miss Status Holding Register (MSHR) tracks all in flight

misses

 Add a field mlp-cost to each MSHR entry

 Every cycle for each demand entry in MSHR

mlp-cost += (1/N)

N = Number of demand misses in MSHR

A First-Order Model

140

Machine Configuration

 Processor

 aggressive, out-of-order, 128-entry instruction window

 L2 Cache

 1MB, 16-way, LRU replacement, 32 entry MSHR

 Memory

 400 cycle bank access, 32 banks

 Bus

 Roundtrip delay of 11 bus cycles (44 processor cycles)

141

Distribution of MLP-Based Cost

Cost varies. Does it repeat for a given cache block?MLP-Based Cost

%
 o

f
A

ll
L

2
 M

is
s
e

s

142

Repeatability of Cost

 An isolated miss can be parallel miss next time

 Can current cost be used to estimate future cost ?

 Let d = difference in cost for successive miss to a block

 Small d cost repeats

 Large d cost varies significantly

143

 In general d is small repeatable cost
When d is large (e.g. parser, mgrid) performance loss

Repeatability of Cost
d < 60

59 < d < 120

d > 120

144

The Framework

MSHR

L2 CACHE

MEMORY

Quantization of Cost

Computed mlp-based
cost is quantized to a
3-bit value

CCL
C
A
R
ECost-Aware

Repl Engine

Cost
Calculation
Logic

PROCESSOR

ICACHE DCACHE

145

 A Linear (LIN) function that considers recency and cost

Victim-LIN = min { Recency (i) + S*cost (i) }

S = significance of cost. Recency(i) = position in LRU stack
cost(i) = quantized cost

Design of MLP-Aware Replacement policy

 LRU considers only recency and no cost

Victim-LRU = min { Recency (i) }

 Decisions based only on cost and no recency hurt
performance. Cache stores useless high cost blocks

146

Results for the LIN policy

Performance loss for parser and mgrid due to large d
.

147

Effect of LIN policy on Cost

Miss += 4%

IPC += 4%

Miss += 30%

IPC -= 33%

Miss -= 11%

IPC += 22%

148

Outline

 Introduction

 MLP-Aware Cache Replacement
 Model for Computing Cost

 Repeatability of Cost

 A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
 Tournament Selection

 Dynamic Set Sampling

 Sampling Based Adaptive Replacement

 Summary

149

Tournament Selection (TSEL) of
Replacement Policies for a Single Set

ATD-LIN ATD-LRU Saturating Counter (SCTR)

HIT HIT Unchanged

MISS MISS Unchanged

HIT MISS += Cost of Miss in ATD-LRU

MISS HIT -= Cost of Miss in ATD-LIN

SET A SET A+
SCTR

If MSB of SCTR is 1, MTD
uses LIN else MTD use LRU

ATD-LIN ATD-LRU

SET A

MTD

150

Extending TSEL to All Sets

Implementing TSEL on a per-set basis is expensive

Counter overhead can be reduced by using a global counter

+

SCTR

Policy for All

Sets In MTD

Set A

ATD-LIN

Set B

Set C

Set D

Set E

Set F

Set G

Set H

Set A

ATD-LRU

Set B

Set C

Set D

Set E

Set F

Set G

Set H

151

Dynamic Set Sampling

+

SCTR

Policy for All

Sets In MTD

ATD-LIN

Set B

Set E

Set G

Set B

Set E

Set G

ATD-LRU
Set ASet A

Set C
Set D

Set F

Set H

Set C
Set D

Set F

Set H

Not all sets are required to decide the best policy
Have the ATD entries only for few sets.

Sets that have ATD entries (B, E, G) are called leader sets

152

Dynamic Set Sampling

 Bounds using analytical model and simulation (in paper)

 DSS with 32 leader sets performs similar to having all sets

 Last-level cache typically contains 1000s of sets, thus ATD
entries are required for only 2%-3% of the sets

How many sets are required to choose best performing policy?

ATD overhead can further be reduced by using MTD to
always simulate one of the policies (say LIN)

153

Decide policy only for
follower sets

+

Sampling Based Adaptive Replacement (SBAR)

The storage overhead of SBAR is less than 2KB

(0.2% of the baseline 1MB cache)

SCTR

MTD

Set B

Set E

Set G

Set G

ATD-LRU
Set A

Set C
Set D

Set F

Set H

Set B
Set E

Leader sets

Follower sets

154

Results for SBAR

155

SBAR adaptation to phases

SBAR selects the best policy for each phase of ammp

LIN is better LRU is better

156

Outline

 Introduction

 MLP-Aware Cache Replacement
 Model for Computing Cost

 Repeatability of Cost

 A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
 Tournament Selection

 Dynamic Set Sampling

 Sampling Based Adaptive Replacement

 Summary

157

Summary

 MLP varies. Some misses are more costly than others

 MLP-aware cache replacement can reduce costly misses

 Proposed a runtime mechanism to compute MLP-Based
cost and the LIN policy for MLP-aware cache replacement

 SBAR allows dynamic selection between LIN and LRU with
low hardware overhead

 Dynamic set sampling used in SBAR also enables other
cache related optimizations

The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel

Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx)

158

http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/seshadri_pact12_talk.pptx

Executive Summary

• Two problems degrade cache performance

– Pollution and thrashing

– Prior works don’t address both problems concurrently

• Goal: A mechanism to address both problems

• EAF-Cache

– Keep track of recently evicted block addresses in EAF

– Insert low reuse with low priority to mitigate pollution

– Clear EAF periodically to mitigate thrashing

– Low complexity implementation using Bloom filter

• EAF-Cache outperforms five prior approaches that
address pollution or thrashing 159

Cache Utilization is Important

Core
Last-Level

Cache
Memory

Core Core

Core Core

Increasing contention

Effective cache utilization is important

Large latency

160

Reuse Behavior of Cache Blocks

A B C A B C S T U V W X Y A B C

Different blocks have different reuse behavior

Access Sequence:

High-reuse block Low-reuse block

Z

Ideal Cache A B C

161

Cache Pollution

H G F E D C B AS H G F E D C BT S H G F E D CU T S H G F E D

MRU LRU

LRU Policy

Prior work: Predict reuse behavior of missed blocks.
Insert low-reuse blocks at LRU position.

H G F E D C B ASTU

MRU LRU

AB AC B A

AS AT S A

Cache

Problem: Low-reuse blocks evict high-reuse blocks

162

Cache Thrashing

H G F E D C B AI H G F E D C BJ I H G F E D CK J I H G F E D

MRU LRU

LRU Policy A B C D E F G H I J KAB AC B A

Prior work: Insert at MRU position with a very low
probability (Bimodal insertion policy)

Cache

H G F E D C B AIJK

MRU LRU

AI AJ I A
A fraction of
working set
stays in cache

Cache

Problem: High-reuse blocks evict each other

163

Shortcomings of Prior Works

Prior works do not address both pollution and
thrashing concurrently

Prior Work on Cache Pollution

No control on the number of blocks inserted with high
priority into the cache

Prior Work on Cache Thrashing

No mechanism to distinguish high-reuse blocks
from low-reuse blocks

Our goal: Design a mechanism to address both
pollution and thrashing concurrently

164

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

165

Reuse Prediction

Miss Missed-block

High reuse

Low reuse

?

Keep track of the reuse behavior of every cache
block in the system

Impractical
1. High storage overhead
2. Look-up latency

166

Prior Work on Reuse Prediction

Use program counter or memory region information.

BA TS

PC 1 PC 2

BA TS

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks
2. Learn group

behavior
3. Predict reuse

1. Same group → same reuse behavior
2. No control over number of high-reuse blocks

167

Our Approach: Per-block Prediction

Use recency of eviction to predict reuse

A

Time

Time of eviction

A

Accessed soon
after eviction

S

Time

S

Accessed long time
after eviction

168

Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?
Yes No

MRU LRU

High Reuse Low Reuse

169

Naïve Implementation: Full Address Tags

EAF

1. Large storage overhead

2. Associative lookups – High energy

Recently
evicted address

Need not be
100% accurate

?

170

Low-Cost Implementation: Bloom Filter

EAF

Implement EAF using a Bloom Filter
Low storage overhead + energy

Need not be
100% accurate

?

171

Y

Bloom Filter

Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

1. Bit vector

2. Set of hash functions

H1 H2

H1 H2

X

1 11

InsertTest

ZW

Remove

X Y

May remove
multiple addressesClear False positive

172

Inserted Elements: X Y

EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block
address

Remove
FIFO address

Missed-block address

Bloom Filter

Remove
If present

when full

Clear

1

2
when full

Bloom-filter EAF: 4x reduction in storage overhead,
1.47% compared to cache size 173

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

174

Large Working Set: 2 Cases

Cache EAF

AEK J I H G FL C BD

Cache EAF

R Q P O N M LS J I H G F E DK C B A

1

2

Cache < Working set < Cache + EAF

Cache + EAF < Working Set

175

Large Working Set: Case 1

Cache EAF

AEK J I H G FL C BD

BFL K J I H GA D CE CGA L K J I HB E DF

A L K J I H GB E DFC

ASequence: B C D E F G H I J K L A B C

EAF Naive:

D

A B C

Cache < Working set < Cache + EAF

176

Large Working Set: Case 1

Cache EAF

E AK J I H G FL C BD

ASequence: B C D E F G H I J K L A B CA B

EAF BF:

A

EAF Naive:

A L K J I H G BE D C ABFA L K J I H G BE DF C AB

D

H G BE DF C AA L K J IBCD

D

Not removed

Not present in the EAF

Bloom-filter based EAF mitigates thrashing

H

G F E I

Cache < Working set < Cache + EAF

177

Large Working Set: Case 2

Cache EAF

R Q P O N M LS J I H G F E DK C B A

Problem: All blocks are predicted to have low reuse

Use Bimodal Insertion Policy for low reuse
blocks. Insert few of them at the MRU position

Allow a fraction of the working set to stay in the
cache

Cache + EAF < Working Set

178

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

179

EAF-Cache: Final Design

Cache
Bloom Filter

Counter

1

2

3

Cache eviction

Cache miss

Counter reaches max

Insert address into filter
Increment counter

Test if address is present in filter
Yes, insert at MRU. No, insert with BIP

Clear filter and counter

180

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

181

EAF: Advantages

Cache
Bloom Filter

Counter

1. Simple to implement

2. Easy to design and verify

3. Works with other techniques (replacement policy)

Cache eviction

Cache miss

182

EAF: Disadvantage

Cache

A First access

AA

A Second accessMiss

Problem: For an LRU-friendly application, EAF
incurs one additional miss for most blocks

Dueling-EAF: set dueling between EAF and LRU

In EAF?

183

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

184

Methodology
• Simulated System

– In-order cores, single issue, 4 GHz

– 32 KB L1 cache, 256 KB L2 cache (private)

– Shared L3 cache (1MB to 16MB)

– Memory: 150 cycle row hit, 400 cycle row conflict

• Benchmarks
– SPEC 2000, SPEC 2006, TPC-C, 3 TPC-H, Apache

• Multi-programmed workloads
– Varying memory intensity and cache sensitivity

• Metrics
– 4 different metrics for performance and fairness

– Present weighted speedup
185

Comparison with Prior Works
Addressing Cache Pollution

- No control on number of blocks inserted with high
priority ⟹ Thrashing

Run-time Bypassing (RTB) – Johnson+ ISCA’97

- Memory region based reuse prediction

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07
Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11

- Program counter based reuse prediction

Miss Classification Table (MCT) – Collins+ MICRO’99

- One most recently evicted block

186

Comparison with Prior Works

Addressing Cache Thrashing

- No mechanism to filter low-reuse blocks ⟹ Pollution

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08
TA-DRRIP – Jaleel+ ISCA’10

- Use set dueling to determine thrashing applications

187

Results – Summary

0%

5%

10%

15%

20%

25%

1-Core 2-Core 4-Core

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U TA-DIP TA-DRRIP RTB MCT

SHIP EAF D-EAF

188

-10%

0%

10%

20%

30%

40%

50%

60%

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U

Workload Number (135 workloads)

LRU

EAF

SHIP

D-EAF

4-Core: Performance

189

Effect of Cache Size

0%

5%

10%

15%

20%

25%

1MB 2MB 4MB 8MB 2MB 4MB 8MB 16MB

2-Core 4-Core

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U

SHIP EAF D-EAF

190

Effect of EAF Size

0%

5%

10%

15%

20%

25%

30%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6W
e

ig
h

te
d

 S
p

e
e

d
u

p
 I

m
p

ro
ve

m
e

n
t

O
ve

r
LR

U

Addresses in EAF / # Blocks in Cache

1 Core 2 Core 4 Core

191

Other Results in Paper

• EAF orthogonal to replacement policies

– LRU, RRIP – Jaleel+ ISCA’10

• Performance improvement of EAF increases with
increasing memory latency

• EAF performs well on four different metrics

– Performance and fairness

• Alternative EAF-based designs perform comparably

– Segmented EAF

– Decoupled-clear EAF

192

Conclusion
• Cache utilization is critical for system performance

– Pollution and thrashing degrade cache performance

– Prior works don’t address both problems concurrently

• EAF-Cache
– Keep track of recently evicted block addresses in EAF

– Insert low reuse with low priority to mitigate pollution

– Clear EAF periodically and use BIP to mitigate thrashing

– Low complexity implementation using Bloom filter

• EAF-Cache outperforms five prior approaches that address
pollution or thrashing

193

Base-Delta-Immediate

Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael
A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches"

Proceedings of the 21st ACM International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,

September 2012. Slides (pptx)

194

http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org/
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx

Executive Summary
• Off-chip memory latency is high

– Large caches can help, but at significant cost

• Compressing data in cache enables larger cache at low
cost

• Problem: Decompression is on the execution critical path
• Goal: Design a new compression scheme that has

1. low decompression latency, 2. low cost, 3. high compression ratio

• Observation: Many cache lines have low dynamic range
data

• Key Idea: Encode cachelines as a base + multiple differences
• Solution: Base-Delta-Immediate compression with low

decompression latency and high compression ratio
– Outperforms three state-of-the-art compression mechanisms

195

Motivation for Cache Compression
Significant redundancy in data:

196

0x00000000

How can we exploit this redundancy?

– Cache compression helps

– Provides effect of a larger cache without
making it physically larger

0x0000000B 0x00000003 0x00000004 …

Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)

– Simple (avoid complex hardware changes)

– Effective (good compression ratio)

197

CPU
L2

Cache
Uncompressed

CompressedDecompressionUncompressed

L1
Cache

Hit

Shortcomings of Prior Work

198

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero

Shortcomings of Prior Work

199

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero

Frequent Value

Shortcomings of Prior Work

200

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero

Frequent Value

Frequent Pattern
 /

Shortcomings of Prior Work

201

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero

Frequent Value

Frequent Pattern
 /

Our proposal:
BΔI

Outline

• Motivation & Background

• Key Idea & Our Mechanism

• Evaluation

• Conclusion

202

Key Data Patterns in Real Applications

203

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

How Common Are These Patterns?

0%

20%

40%

60%

80%

100%

 l
ib

q
u

an
tu

m

 l
b

m

 m
cf

 t
p

ch
1

7

 s
je

n
g

 o
m

n
et

p
p

 t
p

ch
2

 s
p

h
in

x3

 x
al

an
cb

m
k

 b
zi

p
2

 t
p

ch
6

 l
es

lie
3

d

 a
p

ac
h

e

 g
ro

m
ac

s

 a
st

ar

 g
o

b
m

k

 s
o

p
le

x

 g
cc

 h
m

m
e

r

 w
rf

 h
2

6
4

re
f

 z
eu

sm
p

 c
ac

tu
sA

D
M

 G
e

m
sF

D
TD

A
ve

ra
ge

C
ac

h
e

 C
o

ve
ra

ge
 (

%
)

Zero

Repeated Values

Other Patterns

204

SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns

Key Data Patterns in Real Applications

205

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly
smaller than the values themselves

32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding

206

0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0

Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38 12-byte
Compressed Cache Line

20 bytes saved
 Fast Decompression:

vector addition

 Simple Hardware:
arithmetic and comparison

 Effective: good compression ratio

Can We Do Better?

• Uncompressible cache line (with a single base):

• Key idea:
Use more bases, e.g., two instead of one

• Pro:
– More cache lines can be compressed

• Cons:
– Unclear how to find these bases efficiently
– Higher overhead (due to additional bases)

207

0x00000000 0x09A40178 0x0000000B 0x09A4A838 …

B+Δ with Multiple Arbitrary Bases

208

1

1.2

1.4

1.6

1.8

2

2.2

GeoMean

C
o

m
p

re
ss

io
n

 R
at

io

1 2 3 4 8 10 16

 2 bases – the best option based on evaluations

How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:

– Better compression ratio

– Simpler compression logic

209

 Base+Delta part

 Immediate part

Base-Delta-Immediate (BΔI) Compression

B+Δ (with two arbitrary bases) vs. BΔI

210

1

1.2

1.4

1.6

1.8

2

2.2
 l

b
m

 w
rf

 h
m

m
er

 s
p

h
in

x3

 t
p

ch
1

7

 l
ib

q
u

an
tu

m

 l
es

lie
3

d

 g
ro

m
ac

s

 s
je

n
g

 m
cf

 h
2

6
4

re
f

 t
p

ch
2

 o
m

n
et

p
p

 a
p

ac
h

e

 b
zi

p
2

 x
al

an
cb

m
k

 a
st

ar

 t
p

ch
6

 c
ac

tu
sA

D
M

 g
cc

 s
o

p
le

x

 g
o

b
m

k

 z
eu

sm
p

 G
em

sF
D

TD

G
eo

M
ea

nC
o

m
p

re
ss

io
n

 R
at

io

B+Δ (2 bases) BΔI

Average compression ratio is close, but BΔI is simpler

BΔI Implementation

• Decompressor Design

– Low latency

• Compressor Design

– Low cost and complexity

• BΔI Cache Organization

– Modest complexity

211

Δ0B0

BΔI Decompressor Design

212

Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector addition

BΔI Compressor Design

213

32-byte Uncompressed Cache Line

8-byte B0

1-byte Δ
CU

8-byte B0

2-byte Δ
CU

8-byte B0

4-byte Δ
CU

4-byte B0

1-byte Δ
CU

4-byte B0

2-byte Δ
CU

2-byte B0

1-byte Δ
CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag
& Compressed

Cache Line

CFlag &
CCL

Compressed Cache Line

BΔI Compression Unit: 8-byte B0 1-byte Δ

214

32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=

V0

V0 B0 B0 B0 B0

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Is every element within 1-byte range?

Δ0B0 Δ1 Δ2 Δ3B0 Δ0 Δ1 Δ2 Δ3

Yes No

BΔI Cache Organization

215

Tag0 Tag1

… …

… …

Tag Storage:

Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytesData Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

Twice as many tags

C - Compr. encoding bitsC

Set0

Set1

… … … … … … … …

S0S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

Tags map to multiple adjacent segments2.3% overhead for 2 MB cache

Qualitative Comparison with Prior Work

• Zero-based designs
– ZCA [Dusser+, ICS’09]: zero-content augmented cache

– ZVC [Islam+, PACT’09]: zero-value cancelling

– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity

– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of
FPC-like algorithm

• High decompression latency (8 cycles)

216

Outline

• Motivation & Background

• Key Idea & Our Mechanism

• Evaluation

• Conclusion

217

Methodology
• Simulator

– x86 event-driven simulator based on Simics
[Magnusson+, Computer’02]

• Workloads
– SPEC2006 benchmarks, TPC, Apache web server

– 1 – 4 core simulations for 1 billion representative
instructions

• System Parameters
– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

– 4GHz, x86 in-order core, 512kB - 16MB L2, simple
memory model (300-cycle latency for row-misses)

218

Compression Ratio: BΔI vs. Prior Work

BΔI achieves the highest compression ratio

219

1

1.2

1.4

1.6

1.8

2

2.2
 l

b
m

 w
rf

 h
m

m
er

 s
p

h
in

x3

 t
p

ch
1

7

 l
ib

q
u

an
tu

m

 l
es

lie
3

d

 g
ro

m
ac

s

 s
je

n
g

 m
cf

 h
2

6
4

re
f

 t
p

ch
2

 o
m

n
et

p
p

 a
p

ac
h

e

 b
zi

p
2

 x
al

an
cb

m
k

 a
st

ar

 t
p

ch
6

 c
ac

tu
sA

D
M

 g
cc

 s
o

p
le

x

 g
o

b
m

k

 z
eu

sm
p

 G
em

sF
D

TD

G
eo

M
ea

nC
o

m
p

re
ss

io
n

 R
at

io

ZCA FVC FPC BΔI

1.53

SPEC2006, databases, web workloads, 2MB L2

Single-Core: IPC and MPKI

220

0.9
1

1.1
1.2
1.3
1.4
1.5

N
o

rm
al

iz
e

d
 IP

C

L2 cache size

Baseline (no compr.)
BΔI

8.1%
5.2%

5.1%
4.9%

5.6%
3.6%

0
0.2
0.4
0.6
0.8

1

N
o

rm
al

iz
e

d
 M

P
K

I
L2 cache size

Baseline (no compr.)
BΔI

16%

24%
21%

13%
19%

14%

BΔI achieves the performance of a 2X-size cache

Performance improves due to the decrease in MPKI

Multi-Core Workloads
• Application classification based on

Compressibility: effective cache size increase

(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache

(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:

– LCLS, HCLS, HCHS, no LCHS applications

• For 2-core - random mixes of each possible class pairs
(20 each, 120 total workloads)

221

Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)

4.5%
3.4%

4.3%

10.9%

16.5%
18.0%

9.5%

0.95

1.00

1.05

1.10

1.15

1.20

LCLS - LCLS LCLS - HCLS HCLS - HCLS LCLS - HCHS HCLS - HCHS HCHS - HCHS

Low Sensitivity High Sensitivity GeoMean

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p ZCA FVC FPC BΔI

If at least one application is sensitive, then the
performance improves 222

Other Results in Paper

• IPC comparison against upper bounds

– BΔI almost achieves performance of the 2X-size cache

• Sensitivity study of having more than 2X tags

– Up to 1.98 average compression ratio

• Effect on bandwidth consumption

– 2.31X decrease on average

• Detailed quantitative comparison with prior work

• Cost analysis of the proposed changes

– 2.3% L2 cache area increase

223

Conclusion
• A new Base-Delta-Immediate compression mechanism

• Key insight: many cache lines can be efficiently
represented using base + delta encoding

• Key properties:

– Low latency decompression

– Simple hardware implementation

– High compression ratio with high coverage

• Improves cache hit ratio and performance of both single-
core and multi-core workloads

– Outperforms state-of-the-art cache compression techniques:
FVC and FPC

224

