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Readings
n Please study Slides 102-120 from Lecture 6 on your own

n This week
q Sequential Logic 

n P&P Chapter 3.4 until end   +       H&H Chapter 3 in full
q Hardware Description Languages and Verilog 

n H&H Chapter 4 in full
q Timing and Verification

n H&H Chapters 2.9 and 3.5 + Chapter 5

n Next week
q Von Neumann Model, LC3, and MIPS

n P&P Chapter  4-5  +         H&H Chapter 6
q Digital Building Blocks

n H&H Chapter 5
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What We Will Learn Today
n Circuits that can store information

q R-S Latch
q Gated D Latch
q D Flip-Flop
q Register

n Finite State Machines (FSM)
q Moore Machine
q Mealy Machine

n Verilog implementations of sequential circuits
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Circuits that Can 
Store Information
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Introduction
n Combinational circuit output depends only on current input
n We want circuits that produce output depending on 

current and past input values – circuits with memory
n How can we design a circuit that stores information?
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Basic Storage Element:
The R-S Latch
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The R-S (Reset-Set) Latch
n The simplest implementation of the R-S Latch

q Two NAND gates with outputs feeding into each other’s input
q Data is stored at Q (inverse at Q’)
q S and R inputs are held at 1 in quiescent (idle) state

n S (set): drive S to 0 (keeping R at 1) to change Q to 1
n R (reset): drive R to 0 (keeping S at 1) to change Q to 0

n S and R should never both be 0 at the same time
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S

R Q’

Q Input Output
R S Q
1 1 Qprev

1 0 1
0 1 0
0 0 Invalid
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Why not R=S=0?

1. If R=S=0, Q and Q’ will both settle to 1, which breaks
our invariant that Q = !Q’

2. If S and R transition back to 1 at the same time, Q and Q’
begin to oscillate between 1 and 0 because their final 
values depend on each other (metastability)

q This eventually settles depending on variation in the 
circuits (more metastability to come in Lecture 8)
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The Gated D Latch
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The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?
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The Gated D Latch
n How do we guarantee correct operation of an R-S Latch?

q Add two more NAND gates!

q Q takes the value of D, when write enable (WE) is set to 1 
q S and R can never be 0 at the same time!
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The Gated D Latch

12

S

R Q’

Q

Write 
Enable

D

Input Output
WE D Q
0 0 Qprev

0 1 Qprev

1 0 0
1 1 1



The Register
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The Register
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D

Q

How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

D2

Q2

D1

Q1

D0

Q0

3

3

Write 
Enable

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]



The Register
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How can we use D latches to store more data?
• Use more D latches!
• A single WE signal for all latches for
simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a 
register, or a 
structure that 
stores more than 
one bit and can be 
read from and 
written to

This register holds 
4 bits, and its data 
is referenced as 
Q[3:0]



Memory
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Memory
n Memory is comprised of locations that can be written to or 

read from. An example memory array with 4 locations:

n Every unique location in memory is indexed with a unique 
address. 4 locations require 2 address bits 
(log[#locations]).

n Addressability: the number of bits of information stored 
in each location. This example: addressability is 8 bits.

n The full set of unique locations in memory is referred to as 
the address space.

n Typical memory is MUCH larger (billions of locations)
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Addr(00):

Addr(10):

Addr(01):

Addr(11):

0100  1001

0010  0010

0100  1011

1100  1001



Addressing Memory
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Let’s implement a simple memory array with: 
• 3-bit addressability & address space size of 2 (total of 6 bits)

D Q
WE

1 Bit

Bit2 Bit1 Bit0

Bit2 Bit1 Bit0

Addr(0)

Addr(1)

6-Bit Memory Array



Reading from Memory
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How can we select the address to read?
• Because there are 2 addresses, address size is log(2)=1 bit



Reading from Memory
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How can we select the address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline



Address Decoder

Reading from Memory
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How can we select the address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Wordline



Address Decoder

Reading from Memory
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How can we select the address to read?
• Because there are 2 addresses, address size is log(2)=1 bit

D[2] D[1] D[0]

Addr[0]

Multiplexer

Wordline



Writing to Memory
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How can we select the address and write to it?



Writing to Memory
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How can we select the address and write to it?
• Input is indicated with Di

Di[2] Di[1] Di[0]
Addr[0]

WE



Putting it all Together
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Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[0]

WE

Enable reading and writing to a memory array



A Bigger Memory Array
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Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE



A Bigger Memory Array
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Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer



Sequential Logic Circuits
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Sequential Logic Circuits
n We have looked at designs of circuit elements that can 

store information
n Now, we will use these elements to build circuits that 

remember past inputs

29https://www.easykeys.com/228_ESP_Combination_Lock.aspx
https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo

Sequential
Opens depending on past inputs

Combinational
Only depends on current inputs



State
n In order for this lock to work, it has to keep track 

(remember) of the past events!
n If passcode is R13-L22-R3, sequence of states to unlock:

A. The lock is not open (locked), and no relevant operations have 
been performed

B. Locked but user has completed R13
C. Locked but user has completed L22
D. Locked but user has completed R3
E. The lock can now be opened 

n The state of a system is a snapshot of all relevant 
elements of the system at the moment of the snapshot

q To open the lock, states A-E must be completed in order
q If anything else happens (e.g., L5), lock returns to state A
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Another Simple Example of State
n A standard Swiss traffic light has 4 states

A. Green
B. Yellow
C. Red
D. Red and Yellow

n The sequence of these states are always as follows
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A B C D



Changing State: The Notion of Clock (I)

n When should the light change from one state to another?
n We need a clock to dictate when to change state

q Clock signal alternates between 0 & 1

n At the start of a clock cycle (        ), system state changes
q During a clock cycle, the state stays constant
q In this traffic light example, we are assuming the traffic light stays in 

each state an equal amount of time
32

A B C D

CLK: 0
1



Changing State: The Notion of Clock (II)
n Clock is a general mechanism that triggers transition from 

one state to another in a sequential circuit

n Clock synchronizes state changes across many sequential 
circuit elements

n Combinational logic evaluates for the length of the clock 
cycle

n Clock cycle should be chosen to accommodate maximum 
combinational circuit delay
q More on this later, when we discuss timing
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Finite State Machines
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Finite State Machines
n What is a Finite State Machine (FSM)?

q A discrete-time model of a stateful system
q Each state represents a snapshot of the system at a given time

n An FSM pictorially shows
q the set of all possible states that a system can be in 
q how the system transitions from one state to another

n An FSM can model 
q A traffic light, an elevator, fan speed, a microprocessor, etc.

n An FSM enables us to pictorially think of a stateful
system using simple diagrams
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Finite State Machines (FSMs) Consist of:
n Five elements:

1. A finite number of states 
n State: snapshot of all relevant elements of the 

system at the time of the snapshot
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions

n How to get from one state to another
5. An explicit specification of what determines 

each external output value
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Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic
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CLK
M Nk knext

state
logic

output
logic

inputs outputsstate
next
state

state register

At the beginning of the clock cycle, next state is latched into the state register



Finite State Machines (FSMs) Consist of:
n Sequential circuits

q State register(s)
n Store the current state and 
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs

38
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Next State
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Finite State Machines (FSMs) Consist of:
n Sequential circuits

q State register(s)
n Store the current state and 
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs
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State Register Implementation
n How can we implement a state register? Two properties:

1. We need to store data at the beginning of every clock cycle

2. The data must be available during the entire clock cycle

40

CLK: 0
1

Input:

Output:



The Problem with Latches

n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high, Q will not take on D’s value AND
q When the clock is low, the latch will propagate D to Q

41

D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the 
Gated D Latch



The Problem with Latches
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D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the 
Gated D Latch

n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high, Q will not take on D’s value AND
q When the clock is low, the latch will propagate D to Q



n Currently, we cannot simply wire a clock to WE of a latch
q When the clock is high Q will not take on D’s value AND
q When the clock is low the latch will propagate D to Q

The Problem with Latches
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D Q
CLK = WE

CLK: 0
1

Input:

Output:

Recall the 
Gated D Latch

How can we change the latch, so that 

1) D (input) is observable at Q (output) 
only at the beginning of next clock cycle?

2) Q is available for the full clock cycle



n 1) state change on clock edge, 2) data available for full cycle

D Latch (Slave)
D Latch (Master)

The D Flip-Flop
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D
Q

CLK

n When the clock is low, master propagates D to the input of slave (Q unchanged)
n Only when the clock is high, slave latches D (Q stores D)

q At the rising edge of clock (clock going from 0->1), Q gets assigned D

CLK:
0
1



The D Flip-Flop
n 1) state change on clock edge, 2) data available for full cycle
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n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop



The D Flip-Flop
n How do we implement this?
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n At the rising edge of clock (clock going from 0->1), Q gets assigned D
n At all other times, Q is unchanged

CLK:
0
1

CLKD Q

Q
__

D Flip-Flop
We can use these Flip-Flops

to implement the state register!



Rising-Edge Triggered Flip-Flop
n Two inputs: CLK, D

n Function
q The flip-flop “samples” D on the rising edge
of CLK (positive edge)

q When CLK rises from 0 to 1, D passes 
through to Q
q Otherwise, Q holds its previous value
q Q changes only on the rising edge of CLK

n A flip-flop is called an edge-triggered device because it 
is activated on the clock edge

47

D Flip-Flop
Symbols

D Q
Q

CLK



Register
n Multiple parallel flip-flops, each of which store 1 bit
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CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires



Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output 

logic:
q Moore FSM: outputs depend only on the current state
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Finite State Machines (FSMs)
n Next state is determined by the current state and the inputs
n Two types of finite state machines differ in the output 

logic:
q Moore FSM: outputs depend only on the current state
q Mealy FSM: outputs depend on the current state and the 

inputs
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Finite State Machine Example
n “Smart” traffic light controller

q 2 inputs: 
n Traffic sensors: TA , TB (TRUE when there’s traffic)

q 2 outputs: 
n Lights: LA , LB  (Red, Yellow, Green)
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TA
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TA
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Finite State Machine Black Box
n Inputs: CLK, Reset, TA , TB
n Outputs: LA , LB
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TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller



Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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S0
LA: green
LB: red

Reset

TA

LA

TA

LB

TB

TB

LA

LB
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Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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TA
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LB

TB
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LA

LB

Academic Ave.

Bravado
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Fields
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S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset



Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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Dorms

Fields

Dining
Hall

Labs

S0
LA: green
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Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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Finite State Machine Transition Diagram
n Moore FSM: outputs labeled in each state

q States: Circles
q Transitions: Arcs
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TA

LA
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TB
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LA
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Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
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Reset



Finite State Machines
State Transition Table
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FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X
S0 1 X
S1 X X
S2 X 0
S2 X 1
S3 X X

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

59



FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset
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FSM State Transition Table
Current	State Inputs Next	State

S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

62



FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	?
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

S’0 =	?
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	(S1 ∙	S0)	+	(S1 ∙	S0 ∙	TB)	+	(S1 ∙	S0 ∙	TB)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
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FSM State Transition Table
Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1 =	S1 xor S0									(Simplified)

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
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Finite State Machines
Output Table

68



FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00

yellow 01

red 10
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
LA0 =	S1 ∙	S0
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
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FSM Output Table

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0
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Finite State Machines
Schematic
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FSM Schematic: State Register
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FSM Schematic: State Register

S1

S0

S'1

S'0

CLK

state register

Reset
r
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FSM Schematic: Next State Logic

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs

S1 S0

r

S’1 =	S1 xor S0

S’0 =	(S1 ∙	S0 ∙	TA)	+	(S1 ∙	S0 ∙		TB)
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FSM Schematic: Output Logic

S1

S0

S'1

S'0

CLK

next state logic output logicstate register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs

S1 S0

r

LA1 =	S1
LA0 =	S1 ∙	S0
LB1 =	S1
LB0 =	S1 ∙	S0
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FSM Timing Diagram

CLK

Reset

TA
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S'1:0
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FSM Timing Diagram
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CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: yellow

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA

TA
__

__
TB

TB



84

FSM Timing Diagram
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FSM State Encoding
n 3 common state binary encodings with different tradeoffs

1. Fully Encoded
2. 1-Hot Encoded
3. Output Encoded

n Let’s see an example Swiss traffic light with 4 states
q Green, Yellow, Red, Yellow+Red
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FSM State Encoding
1. Fully Encoded:

q Minimizes # flip-flops, but not necessarily output logic 
or next state logic

q Use log2(num_states) bits to represent the states
q Example states: 00, 01, 10, 11

2. 1-Hot Encoded:
q Maximizes # flip-flops, minimizes next state logic
q Simplest design process – very automatable
q Use num_states bits to represent the states
q Example states: 0001, 0010, 0100, 1000
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FSM State Encoding
3. Output Encoded:

q Minimizes output logic 
q Only works for Moore Machines
q Each state has to be encoded uniquely, but the outputs 

must be directly accessible in the state encoding
q For example, since we have 3 outputs (light color), 

encode state with 3 bits, where each bit represents a 
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output, 
n Bit1 encodes yellow light output
n Bit2 encodes red light output
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FSM State Encoding
3. Output Encoded:

q Minimizes output logic 
q Only works for Moore Machines
q Each state has to be encoded uniquely, but the outputs 

must be directly accessible in the state encoding
q For example, since we have 3 outputs (light color), 

encode state with 3 bits, where each bit represents a 
color

q Example states: 001, 010, 100, 110
n Bit0 encodes green light output, 
n Bit1 encodes yellow light output
n Bit2 encodes red light output
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The designer must carefully choose
an encoding scheme to optimize the design 

under given constraints



Moore vs. Mealy Machines
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Moore vs. Mealy FSM
n Alyssa P. Hacker has a snail that crawls down a paper tape with 

1’s and 0’s on it. 
n The snail smiles whenever the last four digits it has crawled over 

are 1101.  
n Design Moore and Mealy FSMs of the snail’s brain.
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Moore vs. Mealy FSM
n Alyssa P. Hacker has a snail that crawls down a paper tape with 
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State Transition Diagrams
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FSM Design Procedure
n Determine all possible states of your machine
n Develop a state transition diagram

q Generally this is done from a textual description
q You need to 1) determine the inputs and outputs for each state and      

2) figure out how to get from one state to another
n Approach

q Start by defining the reset state and what happens from it – this is 
typically an easy point to start from

q Then continue to add transitions and states
q Picking good state names is very important
q Building an FSM is like programming (but it is not programming!)

n An FSM has a sequential “control-flow” like a program with conditionals and goto’s
n The if-then-else construct is controlled by one or more inputs
n The outputs are controlled by the state or the inputs

q In hardware, we typically have many concurrent FSMs
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Implementing Sequential Logic 
Using Verilog
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Verilog: Last Week vs. This Week
n We have seen an overview of Verilog

n Discussed structural and behavioral modeling

n Showed combinational logic constructs

This week
n Sequential logic constructs in Verilog

n Developing testbenches for simulation
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Combinational + Memory = Sequential
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Sequential Logic in Verilog
n Define blocks that have memory

q Flip-Flops, Latches, Finite State Machines

n Sequential Logic state transition is triggered by a ‘CLOCK’ 
event
q Latches are sensitive to level of the signal
q Flip-flops are sensitive to the transitioning of clock

n Combinational constructs are not sufficient
q We need new constructs:

n always
n posedge/negedge
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The “always” Block

always @ (sensitivity list)
statement;

Whenever the event in the sensitivity list occurs, 
the statement is executed
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Example: D Flip-Flop
module flop(input clk, 

input [3:0] d, 
output reg [3:0] q);

always @ (posedge clk)
q <= d;                // pronounced “q gets d”

endmodule

n posedge defines a rising edge (transition from 0 to 1). 

n Statement executed when the clk signal rises (posedge of clk)

n Once the clk signal rises: the value of d is copied to q
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Example: D Flip-Flop

module flop(input clk, 
input [3:0] d, 
output reg [3:0] q);

always @ (posedge clk)
q <= d;                // pronounced “q gets d”

endmodule

n assign statement is not used within an always block
n <= describes a non-blocking assignment

q We will see the difference between blocking assignment and 
non-blocking assignment soon
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Example: D Flip-Flop

module flop(input clk, 
input [3:0] d, 
output reg [3:0] q);

always @ (posedge clk)
q <= d;                // pronounced “q gets d”

endmodule

n Assigned variables need to be declared as reg
n The name reg does not necessarily mean that the value is a 

register (It could be, but it does not have to be)
n We will see examples later



Asynchronous and Synchronous Reset
n Reset signals are used to initialize the hardware to a known 

state
q Usually activated at system start (on power up)

n Asynchronous Reset
q The reset signal is sampled independent of the clock
q Reset gets the highest priority
q Sensitive to glitches, may have metastability issues

n Will be discussed in Lecture 8

n Synchronous Reset
q The reset signal is sampled with respect to the clock
q The reset should be active long enough to get sampled at the 

clock edge
q Results in completely synchronous circuit
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D Flip-Flop with Asynchronous Reset

module flop_ar (input            clk,
input            reset, 
input      [3:0] d, 
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == 0) q <= 0;   // when reset
else              q <= d;   // when clk

end
endmodule

n In this example: two events can trigger the process:
q A rising edge on clk
q A falling edge on reset
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D Flip-Flop with Asynchronous Reset

module flop_ar (input            clk,
input            reset, 
input      [3:0] d, 
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == 0) q <= 0;   // when reset
else              q <= d;   // when clk

end
endmodule

n For longer statements, a begin-end pair can be used
q To improve readability
q In this example, it was not necessary, but it is a good idea
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D Flip-Flop with Asynchronous Reset

module flop_ar (input            clk,
input            reset, 
input      [3:0] d, 
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == 0) q <= 0;   // when reset
else              q <= d;   // when clk

end
endmodule

n First reset is checked: if reset is 0, q is set to 0.
q This is an asynchronous reset as the reset can happen 

independently of the clock (on the negative edge of reset signal)
n If there is no reset, then regular assignment takes effect
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D Flip-Flop with Synchronous Reset

module flop_sr (input            clk,
input            reset, 
input      [3:0] d, 
output reg [3:0] q);

always @ (posedge clk)
begin

if (reset == ‘0’) q <= 0;   // when reset
else              q <= d;   // when clk

end
endmodule

n The process is only sensitive to clock
q Reset happens only when the clock rises. This is a 

synchronous reset
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D Flip-Flop with Enable and Reset

module flop_en_ar (input            clk,
input            reset,
input            en,
input      [3:0] d, 
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0;   // when reset
else if (en)      q <= d;   // when en AND clk

end
endmodule

n A flip-flop with enable and reset
q Note that the en signal is not in the sensitivity list

n q gets d only when clk is rising and en is 1
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Example: D Latch

module latch (input            clk, 
input      [3:0] d, 
output reg [3:0] q);

always @ (clk, d)
if (clk) q <= d;      // latch is transparent when

// clock is 1
endmodule



Summary: Sequential Statements So Far
n Sequential statements are within an always block

n The sequential block is triggered with a change in the 
sensitivity list

n Signals assigned within an always must be declared as reg

n We use <= for (non-blocking) assignments and do not use 
assign within the always block.
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Basics of always Blocks
module example (input            clk, 

input      [3:0] d, 
output reg [3:0] q);

wire [3:0] normal;         // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d;            // first FF array

assign normal = ~ special; // simple assignment

always @ (posedge clk)
q <= normal;             // second FF array

endmodule

You can have as many always blocks as needed
Assignment to the same signal in different always blocks is not allowed!



116

Why Does an always Block Memorize?

module flop (input            clk,
input      [3:0] d, 
output reg [3:0] q);

always @ (posedge clk)
begin

q <= d; // when clk rises copy d to q
end

endmodule

n This statement describes what happens to signal q
n … but what happens when the clock is not rising?
n The value of q is preserved (memorized)
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An always Block Does NOT Always Memorize

module comb (input            inv,
input      [3:0] data, 
output reg [3:0] result);

always @ (inv, data)       // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data

endmodule

n This statement describes what happens to signal result
q When inv is 1, result is ~data
q When inv is not 1, result is data

n The circuit is combinational (no memory)
q result is assigned a value in all cases of the if .. else block, always



always Blocks for Combinational Circuits
n An always block defines combinational logic if:

q All outputs are always (continuously) updated
1. All right-hand side signals are in the sensitivity list

n You can use always @* for short
2. All left-hand side signals get assigned in every possible condition 
of if .. else and case blocks

n It is easy to make mistakes and unintentionally describe 
memorizing elements (latches)
q Vivado will most likely warn you. Make sure you check the 

warning messages

n Always blocks allow powerful combinational logic statements
q if .. else
q case
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Sequential or Combinational?

wire enable, data;
reg out_a, out_b;

always @ (*) begin
out_a = 1’b0;
if(enable) begin

out_a = data;
out_b = data;

end
end

Sequential

wire enable, data;
reg out_a, out_b;

always @ (data) begin
out_a = 1’b0;
out_b = 1’b0;
if(enable) begin

out_a = data;
out_b = data;

end
end

Sequential

No assignment for ~enable Not in the sensitivity list
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The always Block is NOT Always Practical/Nice

reg [31:0] result;
wire [31:0] a, b, comb;
wire sel,

always @ (a, b, sel)    // trigger with a, b, sel
if (sel) result <= a; // result is a
else result <= b; // result is b

assign comb = sel ? a : b;

n Both statements describe the same multiplexer

n In this case, the always block is more work
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always Block for Case Statements (Handy!)
module sevensegment (input [3:0] data, 

output reg [6:0] segments);

always @ ( * )                  // * is short for all signals
case (data)                   // case statement 

4'd0: segments = 7'b111_1110;  // when data is 0
4'd1: segments = 7'b011_0000;  // when data is 1 
4'd2: segments = 7'b110_1101;
4'd3: segments = 7'b111_1001;
4'd4: segments = 7'b011_0011;
4'd5: segments = 7'b101_1011;
// etc etc
default: segments = 7'b000_0000; // required

endcase

endmodule



Summary: always Block
n If .. else can only be used in always blocks

n The always block is combinational only if all regs within the 
block are always assigned to a signal
q Use the default case to make sure you do not forget an 

unimplemented case, which may otherwise result in a latch

n Use casex statement to be able to check for don’t cares

122



123

Non-Blocking and Blocking Assignments

always @ (a)
begin

a <= 2’b01;
b <= a;

// all assignments are made here
// b is not (yet) 2’b01
end

always @ (a)
begin

a = 2’b01;
// a is 2’b01

b = a;
// b is now 2’b01 as well
end

Non-blocking (<=) Blocking (=)

n All assignments are made 
at the end of the block

n All assignments are made 
in parallel, process flow is
not-blocked

n Each assignment is made 
immediately 

n Process waits until the first 
assignment is complete, it 
blocks progress



Why use (Non)-Blocking Statements
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n There are technical reasons why both are required
q It is out of the scope of this course to discuss these

n Blocking statements allow sequential descriptions
q More like a programming language

n If the sensitivity list is correct, blocks with non-blocking 
statements will always evaluate to the same result
q This may require some additional iterations 
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Example: Blocking Assignment

always @ ( * )
begin

p    = a ^ b ;         // p    = 0 
g    = a & b ;         // g    = 0
s    = p ^ cin ;       // s    = 0 
cout = g | (p & cin) ; // cout = 0

end

n Assume all inputs are initially ‘0’

n If a changes to ‘1’
q All values are updated in order

1
0
1
0
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The Same Example: Non-Blocking Assignment

always @ ( * )
begin

p    <= a ^ b ;         // p    = 0 
g    <= a & b ;         // g    = 0
s    <= p ^ cin ;       // s    = 0 
cout <= g | (p & cin) ; // cout = 0

end

n Assume all inputs are initially ‘0’

n If a changes to ‘1’
q All assignments are concurrent
q When s is being assigned, p is still 0

1
0
0
0
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The Same Example: Non-Blocking Assignment

always @ ( * )
begin

p    <= a ^ b ;         // p    = 1 
g    <= a & b ;         // g    = 0
s    <= p ^ cin ;       // s    = 0 
cout <= g | (p & cin) ; // cout = 0

end

n After the first iteration, p has changed to ‘1’ as well

n Since there is a change in p, the process triggers again
n This time s is calculated with p=1

1
0
1
0
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Rules for Signal Assignment

n Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

n Use continuous assignments (assign) to model simple 
combinational logic.

always @ (posedge clk)
q <= d; // non-blocking

assign y = a & b;



Rules for Signal Assignment (Cont.)

n Use always @ (*) and blocking assignments (=) to model 
more complicated combinational logic.

n You cannot make assignments to the same signal in more 
than one always block or in a continuous assignment
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always @ (*)
a = b;

always @ (*)
a = c;

always @ (*)
a = b;

assign a = c;



Recall: Finite State Machines (FSMs)
n Each FSM consists of three separate parts:

q next state logic
q state register
q output logic
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Recall: Finite State Machines (FSMs) Comprise
n Sequential circuits

q State register(s)
n Store the current state and 
n Load the next state at the clock edge

n Combinational Circuits
q Next state logic

n Determines what the next state will be

q Output logic
n Generates the outputs
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FSM Example 1: Divide the Clock Frequency by 3 

132

The	output	Y	is	HIGH	for	one	clock	cycle	out	of	every	3.	In	other	
words,	the	output	divides	the	frequency	of	the	clock	by	3.	
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Implementing FSM Example 1: Definitions

module divideby3FSM (input clk, 
input reset, 
output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;

n We define state and nextstate as 2-bit reg
n The parameter descriptions are optional, it makes reading 

easier
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Implementing FSM Example 1: State Register

// state register
always @ (posedge clk, posedge reset)

if (reset) state <= S0;
else       state <= nextstate;

n This part defines the state register (memorizing process)
n Sensitive to only clk, reset
n In this example, reset is active when it is ‘1’ (active-high)

Next
State

Current
State

S’ S

CLK
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Implementing FSM Example 1: Next State Logic

// next state logic
always @ (*)

case (state)
S0:      nextstate = S1;
S1:      nextstate = S2;
S2:      nextstate = S0;
default: nextstate = S0;

endcase
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logic

output
logic

inputs outputsstate
next
state
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Implementing FSM Example 1: Output Logic

// output logic
assign q = (state == S0);

n In this example, output depends only on state
q Moore type FSM
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Implementation of FSM Example 1
module divideby3FSM (input clk, input reset, output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10;

always @ (posedge clk, posedge reset) // state register
if (reset) state <= S0;
else       state <= nextstate;

always @ (*)                          // next state logic
case (state)

S0:      nextstate = S1;
S1:      nextstate = S2;
S2:      nextstate = S0;
default: nextstate = S0;

endcase
assign q = (state == S0); // output logic

endmodule



FSM Example 2: Smiling Snail
n Alyssa P. Hacker has a snail that crawls down a paper tape 

with 1’s and 0’s on it. 
n The snail smiles whenever the last four digits it has crawled 

over are 1101.  
n Design Moore and Mealy FSMs of the snail’s brain.
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Moore

Mealy



We did not cover the following.
They are for your preparation.
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Implementing FSM Example 2: Definitions
module SmilingSnail (input clk, 

input reset,
input number,
output smile);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;
parameter S3 = 2’b11;

number/smile
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Implementing FSM Example 2: State Register

// state register
always @ (posedge clk, posedge reset)

if (reset) state <= S0;
else       state <= nextstate;

n This part defines the state register (memorizing process)

n Sensitive to only clk, reset

n In this example reset is active when ‘1’ (active-high)
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Implementing FSM Example 2: Next State Logic

// next state logic
always @ (*)

case (state)
S0: if (number) nextstate = S1;

else   nextstate = S0;
S1: if (number) nextstate = S2;

else   nextstate = S0;
S2: if (number) nextstate = S2;

else   nextstate = S3;
S3: if (number) nextstate = S1;

else   nextstate = S0;
default:   nextstate = S0;

endcase
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Implementing FSM Example 2: Output Logic

// output logic
assign smile = (number & state == S3);

n In this example, output depends on state and input
q Mealy type FSM

n We used a simple combinational assignment
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Implementation of FSM Example 2
module SmilingSnail (input clk, 

input reset,
input number,
output smile);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;
parameter S3 = 2’b11;

// state register
always @ (posedge clk, posedge

reset)
if (reset) state <= S0;
else      state <= nextstate;   

always @ (*) // next state logic
case (state)

S0: if (number)
nextstate = S1;

else nextstate = S0; 
S1: if (number)

nextstate = S2;
else nextstate = S0;

S2: if (number)
nextstate = S2;

else nextstate = S3;
S3: if (number)

nextstate = S1;
else nextstate = S0;

default: nextstate = S0;
endcase

// output logic
assign smile = (number & state==S3);

endmodule



What Did We Learn?
n Basics of defining sequential circuits in Verilog

n The always statement
q Needed for defining memorizing elements (flip-flops, latches)
q Can also be used to define combinational circuits

n Blocking vs Non-blocking statements
q = assigns the value immediately
q <= assigns the value at the end of the block

n Writing FSMs
q Next state logic
q State assignment
q Output logic
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Next Lecture: Timing and 
Verification
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Backup Slides
n Different types of flip flops
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The D Flip-Flop

149



Enabled Flip-Flops
n Inputs: CLK, D, EN

q The enable input (EN) controls when new data (D) is stored
n Function:

q EN = 1:  D passes through to Q on the clock edge 
q EN = 0:  the flip-flop retains its previous state
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Resettable Flip-Flop
n Inputs: CLK, D, Reset

q The Reset is used to set the output to 0.
n Function:

q Reset = 1: Q is forced to 0 
q Reset = 0: the flip-flop behaves like an ordinary D flip-flop
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Resettable Flip-Flops
n Two types:

q Synchronous: resets at the clock edge only
q Asynchronous: resets immediately when Reset = 1

n Asynchronously resettable flip-flop requires changing the 
internal circuitry of the flip-flop (see Exercise 3.10)

n Synchronously resettable flip-flop?
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Settable Flip-Flop
n Inputs: CLK, D, Set
n Function:

q Set = 1: Q is set to 1 
q Set = 0: the flip-flop behaves like an ordinary D flip-flop
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