Design of Digital Circuits

Lecture 7: Sequential Logic Design

Prof. Onur Mutlu

ETH Zurich

Spring 2018

15 March 2018

Readings

- Please study Slides 102-120 from Lecture 6 on your own
- This week
 - Sequential Logic
 - P&P Chapter 3.4 until end + H&H Chapter 3 in full
 - Hardware Description Languages and Verilog
 - H&H Chapter 4 in full
 - Timing and Verification
 - H&H Chapters 2.9 and 3.5 + Chapter 5
- Next week
 - Von Neumann Model, LC3, and MIPS
 - P&P Chapter 4-5 + H&H Chapter 6
 - Digital Building Blocks
 - H&H Chapter 5

What We Will Learn Today

- Circuits that can store information
 - R-S Latch
 - Gated D Latch
 - D Flip-Flop
 - Register
- Finite State Machines (FSM)
 - Moore Machine
 - Mealy Machine
- Verilog implementations of sequential circuits

Circuits that Can Store Information

Introduction

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values – circuits with memory
- How can we design a circuit that stores information?

Basic Storage Element: The R-S Latch

The R-S (Reset-Set) Latch

- The simplest implementation of the R-S Latch
 - Two NAND gates with outputs feeding into each other's input
 - Data is stored at Q (inverse at Q')
 - S and R inputs are held at 1 in quiescent (idle) state
 - S (set): drive S to 0 (keeping R at 1) to change Q to 1
 - R (reset): drive R to 0 (keeping S at 1) to change Q to 0
- S and R should never both be 0 at the same time

Input		Output
R	S	Q
1	1	Q_{prev}
1	0	1
0	1	0
0	0	Invalid

Why not R=S=0?

Input		Output
R	S	Q
1	1	Q_{prev}
1	0	1
0	1	0
0	0	Invalid

- 1. If **R=S=0**, **Q** and **Q'** will both settle to 1, which **breaks** our invariant that **Q** = !**Q'**
- 2. If **S** and **R** transition back to 1 at the same time, **Q** and **Q'** begin to oscillate between 1 and 0 because their final values depend on each other (**metastability**)
 - □ This eventually settles depending on variation in the circuits (more metastability to come in Lecture 8)

How do we guarantee correct operation of an R-S Latch?

- How do we guarantee correct operation of an R-S Latch?
 - Add two more NAND gates!

- Q takes the value of D, when write enable (WE) is set to 1
- S and R can never be 0 at the same time!

Input		Output
WE	D	Q
0	0	Q_{prev}
0	1	Q_{prev}
1	0	0
1	1	1

The Register

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

The Register

How can we use D latches to store **more** data?

- Use more D latches!
- A single WE signal for all latches for simultaneous writes

Here we have a register, or a structure that stores more than one bit and can be read from and written to

This **register** holds 4 bits, and its data is referenced as Q[3:0]

Memory

Memory

Memory is comprised of locations that can be written to or read from. An example memory array with 4 locations:

Addr (00):	0100 1001	Addr (01):	0100 1011
Addr (10):	0010 0010	Addr (11):	1100 1001

- Every unique location in memory is indexed with a unique address. 4 locations require 2 address bits (log[#locations]).
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits.
- The full set of unique locations in memory is referred to as the address space.
- Typical memory is MUCH larger (billions of locations)

Addressing Memory

Let's implement a simple memory array with:

• 3-bit addressability & address space size of 2 (total of 6 bits)

6-Bit Memory Array

Addr(0)	Bit ₂	Bit ₁	Bit ₀
Addr(1)	Bit ₂	Bit ₁	Bit ₀

How can we select the address to read?

How can we select the address to read?

How can we select the address to read?

How can we select the address to read?

Writing to Memory

How can we select the address and write to it?

Writing to Memory

How can we select the address and write to it?

Input is indicated with D_i

Putting it all Together

Enable reading and writing to a memory array

A Bigger Memory Array

A Bigger Memory Array

Sequential Logic Circuits

Sequential Logic Circuits

- We have looked at designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

SequentialOpens depending on past inputs

State

- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
 - A. The lock is not open (locked), and no relevant operations have been performed
 - B. Locked but user has completed R13
 - C. Locked but user has completed L22
 - D. Locked but user has completed R3
 - E. The lock can now be opened
- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
 - □ To open the lock, **states A-E must be completed in order**
 - If anything else happens (e.g., L5), lock returns to state A

Another Simple Example of State

- A standard Swiss traffic light has 4 states
 - A. Green
 - B. Yellow
 - C. Red
 - D. Red and Yellow

The sequence of these states are always as follows

Changing State: The Notion of Clock (I)

- When should the light change from one state to another?
- We need a clock to dictate when to change state
 - Clock signal alternates between 0 & 1

CLK: 0 CLK: 0

- At the start of a clock cycle (), system state changes
 - During a clock cycle, the state stays constant
 - In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

Changing State: The Notion of Clock (II)

- Clock is a general mechanism that triggers transition from one state to another in a sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay
 - More on this later, when we discuss timing

Finite State Machines

Finite State Machines

- What is a Finite State Machine (FSM)?
 - A discrete-time model of a stateful system
 - Each state represents a snapshot of the system at a given time
- An FSM pictorially shows
 - the set of all possible states that a system can be in
 - how the system transitions from one state to another
- An FSM can model
 - A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams

Finite State Machines (FSMs) Consist of:

Five elements:

- 1. A finite number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
- 2. A finite number of external inputs
- 3. A finite number of external outputs
- 4. An explicit specification of all state transitions
 - How to get from one state to another
- 5. An explicit specification of what determines each external output value

Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

At the beginning of the clock cycle, next state is latched into the state register

Finite State Machines (FSMs) Consist of:

Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be

- Output logic
 - Generates the outputs

Finite State Machines (FSMs) Consist of:

Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be

- Output logic
 - Generates the outputs

State Register Implementation

- How can we implement a state register? Two properties:
 - 1. We need to store data at the **beginning** of every clock cycle

2. The data must be **available** during the entire clock cycle

The Problem with Latches

- Currently, we cannot simply wire a clock to WE of a latch
 - When the clock is high, Q will not take on D's value AND
 - When the clock is low, the latch will propagate D to Q

The Problem with Latches

- Currently, we cannot simply wire a clock to WE of a latch
 - When the clock is high, Q will not take on D's value AND
 - When the clock is low, the latch will propagate D to Q

The Problem with Latches

How can we change the latch, so that

- 1) D (input) is observable at Q (output) only at the beginning of next clock cycle?
 - 2) Q is available for the full clock cycle

The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- When the clock is low, master propagates D to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores D)
 - □ At the rising edge of clock (clock going from 0->1), Q gets assigned D

The D Flip-Flop

1) state change on clock edge, 2) data available for full cycle

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

The D Flip-Flop

How do we implement this?

We can use these Flip-Flops to implement the state register!

- At the rising edge of clock (clock going from 0->1), Q gets assigned D
- At all other times, Q is unchanged

Rising-Edge Triggered Flip-Flop

Two inputs: CLK, D

Function

- The flip-flop "samples" D on the rising edge
 of CLK (positive edge)
- When CLK rises from 0 to 1, **D** passes through to **Q**
- Otherwise, Q holds its previous value
- Q changes only on the rising edge of CLK
- A flip-flop is called an edge-triggered device because it is activated on the clock edge

Register

Multiple parallel flip-flops, each of which store 1 bit

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state

Moore FSM

Finite State Machines (FSMs)

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

 Moore FSM

Finite State Machine Example

- "Smart" traffic light controller
 - 2 inputs:
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - 2 outputs:

Finite State Machine Black Box

Inputs: CLK, Reset, T_A, T_B

Outputs: L_A, L_B

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Moore FSM: outputs labeled in each state

States: Circles

Finite State Machines State Transition Table

Current State	Inputs		Next State
S	T_A	T_{B}	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

Current State	Inputs		Next State
S	T_A	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Current State	Inputs		Next State
S	T_A	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Currer	it State	Inputs		Next Stat	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Currer	ıt State	Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

S' ₁	=	?
U 1		•

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inputs		Next	State
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inputs		Next Stat	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = ?$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding		
S0	00		
S1	01		
S2	10		
S3	11		

Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

 $S'_1 = S_1 \times S_0$ (Simplified)

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S 3	11

Finite State Machines Output Table

Currer	it State	Outputs		
S_1	S_0	L_{A}	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Currer	it State	Outputs		
S_1	S_0	L_{A}	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1
-HI		

Output	Encoding
green	00
yellow	01
red	10

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1		
L_{A0}	=	$\overline{S_1}$	•	S_0

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$ ·	S_0
$L_{B1} =$	$\overline{S_1}$	

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Curren	it State		Out	puts	
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1	
$L_{A0} =$	$\overline{S_1}$ ·	S_0
$L_{B1} =$	$\overline{S_1}$	
$L_{B0} =$	S_1 ·	S_0

Output	Encoding
green	00
yellow	01
red	10

Finite State Machines Schematic

FSM Schematic: State Register

FSM Schematic: State Register

state register

FSM Schematic: Next State Logic

$$S'_1 = S_1 \text{ xor } S_0$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

FSM Schematic: Output Logic

$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \underline{S_1} \cdot S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1 \cdot S_0$$

CLK_

Reset

 T_A_-

 T_B _

 $\mathrm{S'}_{1:0}^{-}_{-}$

1.0 =

 $S_{1:0} \stackrel{-}{_-}$

 $L_{\rm A1:0}$ $_{-}$

L_{B1:0} _

- 3 common state binary encodings with different tradeoffs
 - 1. Fully Encoded
 - 2. 1-Hot Encoded
 - 3. Output Encoded
- Let's see an example Swiss traffic light with 4 states
 - Green, Yellow, Red, Yellow+Red

1. Fully Encoded:

- Minimizes # flip-flops, but not necessarily output logic or next state logic
- □ Use log₂(num_states) bits to represent the states
- Example states: 00, 01, 10, 11

2. 1-Hot Encoded:

- Maximizes # flip-flops, minimizes next state logic
- Simplest design process very automatable
- Use num_states bits to represent the states
- Example states: 0001, 0010, 0100, 1000

3. Output Encoded:

- Minimizes output logic
- Only works for Moore Machines
- Each state has to be encoded uniquely, but the outputs must be directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit₀ encodes green light output,
 - Bit₁ encodes **yellow** light output
 - Bit₂ encodes **red** light output

3. Output Encoded:

- Minimizes output logic
- Only works for Moore Machines
- Fach state has to be encoded uniquely, but the outputs

The designer must carefully choose an encoding scheme to optimize the design under given constraints

- Bit₁ encodes **yellow** light output
- Bit₂ encodes red light output

Moore vs. Mealy Machines

Moore vs. Mealy FSM

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Moore vs. Mealy FSM

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.

Moore FSM

Design Moore and Mealy FSMs of the snail's brain.

CLK inputs + state state output state outputs logic logic Mealy FSM CLK next k state next output state state outputs logic logic

State Transition Diagrams

What are the tradeoffs?

Mealy FSM

FSM Design Procedure

- Determine all possible states of your machine
- Develop a state transition diagram
 - Generally this is done from a textual description
 - You need to 1) determine the inputs and outputs for each state and
 2) figure out how to get from one state to another

Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is **like** programming (but it is not programming!)
 - An FSM has a sequential "control-flow" like a program with conditionals and goto's
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

Implementing Sequential Logic Using Verilog

Verilog: Last Week vs. This Week

- We have seen an overview of Verilog
- Discussed structural and behavioral modeling
- Showed combinational logic constructs

This week

- Sequential logic constructs in Verilog
- Developing testbenches for simulation

Combinational + Memory = Sequential

Sequential Logic in Verilog

- Define blocks that have memory
 - Flip-Flops, Latches, Finite State Machines
- Sequential Logic state transition is triggered by a 'CLOCK' event
 - Latches are sensitive to level of the signal
 - Flip-flops are sensitive to the transitioning of clock
- Combinational constructs are **not** sufficient
 - We need **new constructs**:
 - always
 - posedge/negedge

The "always" Block

```
always @ (sensitivity list)
    statement;
```

Whenever the event in the sensitivity list occurs, the statement is executed

Example: D Flip-Flop

- posedge defines a rising edge (transition from 0 to 1).
- Statement executed when the clk signal rises (posedge of clk)
- Once the clk signal rises: the value of d is copied to q

Example: D Flip-Flop

- assign statement is **not** used within an always block
- <= describes a non-blocking assignment</p>
 - We will see the difference between blocking assignment and non-blocking assignment soon

Example: D Flip-Flop

- Assigned variables need to be declared as reg
- The name reg does not necessarily mean that the value is a register (It could be, but it does not have to be)
- We will see examples later

Asynchronous and Synchronous Reset

- Reset signals are used to initialize the hardware to a known state
 - Usually activated at system start (on power up)

Asynchronous Reset

- The reset signal is sampled independent of the clock
- Reset gets the highest priority
- Sensitive to glitches, may have metastability issues
 - Will be discussed in Lecture 8

Synchronous Reset

- The reset signal is sampled with respect to the clock
- The reset should be active long enough to get sampled at the clock edge
- Results in completely synchronous circuit

D Flip-Flop with Asynchronous Reset

- In this example: two events can trigger the process:
 - A *rising edge* on clk
 - A falling edge on reset

D Flip-Flop with Asynchronous Reset

- For longer statements, a begin-end pair can be used
 - To improve readability
 - In this example, it was not necessary, but it is a good idea

D Flip-Flop with Asynchronous Reset

- First reset is checked: if reset is 0, q is set to 0.
 - This is an asynchronous reset as the reset can happen independently of the clock (on the negative edge of reset signal)
- If there is no reset, then regular assignment takes effect

D Flip-Flop with Synchronous Reset

- The process is only sensitive to clock
 - Reset *happens only* when the *clock rises*. This is a synchronous reset

D Flip-Flop with Enable and Reset

- A flip-flop with enable and reset
 - Note that the en signal is not in the sensitivity list
- q gets d only when clk is rising and en is 1

Example: D Latch

Summary: Sequential Statements So Far

- Sequential statements are within an always block
- The sequential block is triggered with a change in the sensitivity list
- Signals assigned within an always must be declared as reg
- We use <= for (non-blocking) assignments and do not use assign within the always block.

Basics of always Blocks

```
module example (input
                               clk,
               input [3:0] d,
               output reg [3:0] q);
 wire [3:0] normal;  // standard wire
  reg [3:0] special;  // assigned in always
  always @ (posedge clk)
                 // first FF array
   special <= d;</pre>
  assign normal = ~ special; // simple assignment
  always @ (posedge clk)
   q <= normal;</pre>
                     // second FF array
endmodule
```

You can have as many always blocks as needed

Assignment to the same signal in different always blocks is not allowed!

Why Does an always Block Memorize?

- This statement describes what happens to signal q
- ... but what happens when the clock is not rising?
- The value of q is preserved (memorized)

An always Block Does NOT Always Memorize

- This statement describes what happens to signal result
 - When inv is 1, result is ~data
 - When inv is not 1, result is data
- The circuit is combinational (no memory)
 - result is assigned a value in all cases of the if .. else block, always

always Blocks for Combinational Circuits

- An always block defines combinational logic if:
 - All outputs are always (continuously) updated
 - 1. All right-hand side signals are in the sensitivity list
 - You can use always @* for short
 - 2. All left-hand side signals get assigned in every possible condition of if .. else and case blocks
- It is easy to make mistakes and unintentionally describe memorizing elements (latches)
 - Vivado will most likely warn you. Make sure you check the warning messages
- Always blocks allow powerful combinational logic statements
 - □ if .. else
 - case

Sequential or Combinational?

```
wire enable, data;
reg out_a, out_b;

always @ (*) begin
    out_a = 1'b0;
    if(enable) begin
    out a = data;
    out_b = data;
    end
end

No assignment for ~enable
```

```
wire enable, data;
reg out_a, out_b;

always @ (data) begin
    out_a = 1'b0;
    out_b = 1'b0;
    if enable begin
    out_a = data;
    out_b = data;
    end
end Not in the sensitivity list
```

Sequential

Sequential

The always Block is NOT Always Practical/Nice

- Both statements describe the same multiplexer
- In this case, the always block is more work

always Block for Case Statements (Handy!)

```
module sevensegment (input [3:0] data,
                    output reg [6:0] segments);
 always @ ( * )
                          // * is short for all signals
   case (data)
                                // case statement
     4'd0: segments = 7'b111_1110; // when data is 0
     4'd1: segments = 7'b011_0000; // when data is 1
     4'd2: segments = 7'b110_1101;
     4'd3: segments = 7'b111_1001;
     4'd4: segments = 7'b011_0011;
     4'd5: segments = 7'b101 1011;
     // etc etc
     default: segments = 7'b000_0000; // required
   endcase
endmodule
```

Summary: always Block

If .. else can only be used in always blocks

- The always block is combinational only if all regs within the block are always assigned to a signal
 - Use the default case to make sure you do not forget an unimplemented case, which may otherwise result in a latch

Use casex statement to be able to check for don't cares

Non-Blocking and Blocking Assignments

Non-blocking (<=)

```
always @ (a)
begin
    a <= 2'b01;
    b <= a;
// all assignments are made here
// b is not (yet) 2'b01
end</pre>
```

- All assignments are made at the end of the block
- All assignments are made in parallel, process flow is not-blocked

Blocking (=)

```
always @ (a)
begin
    a = 2'b01;
// a is 2'b01
    b = a;
// b is now 2'b01 as well
end
```

- Each assignment is made immediately
- Process waits until the first assignment is complete, it blocks progress

Why use (Non)-Blocking Statements

- There are technical reasons why both are required
 - It is out of the scope of this course to discuss these
- Blocking statements allow sequential descriptions
 - More like a programming language
- If the sensitivity list is correct, blocks with non-blocking statements will always evaluate to the same result
 - This may require some additional iterations

Example: Blocking Assignment

Assume all inputs are initially '0'

```
always @ ( * )
begin

p = a ^ b;  // p = 0 1

g = a & b;  // g = 0 0

s = p ^ cin;  // s = 0 1

cout = g | (p & cin); // cout = 0 0
end
```

- If a changes to '1'
 - All values are updated in order

The Same Example: Non-Blocking Assignment

Assume all inputs are initially '0'

- If a changes to '1'
 - All assignments are concurrent
 - When s is being assigned, p is still 0

The Same Example: Non-Blocking Assignment

After the first iteration, p has changed to '1' as well

- Since there is a change in p, the process triggers again
- This time s is calculated with p=1

Rules for Signal Assignment

 Use always @(posedge clk) and non-blocking assignments (<=) to model synchronous sequential logic

```
always @ (posedge clk)
  q <= d; // non-blocking</pre>
```

 Use continuous assignments (assign) to model simple combinational logic.

```
assign y = a & b;
```

Rules for Signal Assignment (Cont.)

 Use always @ (*) and blocking assignments (=) to model more complicated combinational logic.

 You cannot make assignments to the same signal in more than one always block or in a continuous assignment

Recall: Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

Recall: Finite State Machines (FSMs) Comprise

Sequential circuits

- State register(s)
 - Store the current state and
 - Load the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be

- Output logic
 - Generates the outputs

FSM Example 1: Divide the Clock Frequency by 3

The output Y is HIGH for **one clock cycle out of every** 3. In other words, the output **divides the frequency of the clock by** 3.

Implementing FSM Example 1: Definitions

- We define state and nextstate as 2-bit reg
- The parameter descriptions are optional, it makes reading easier

Implementing FSM Example 1: State Register

- This part defines the state register (memorizing process)
- Sensitive to only clk, reset
- In this example, reset is active when it is '1' (active-high)

Implementing FSM Example 1: Next State Logic

Implementing FSM Example 1: Output Logic

- In this example, output depends only on state
 - Moore type FSM

Implementation of FSM Example 1

```
module divideby3FSM (input clk, input reset, output q);
   reg [1:0] state, nextstate;
   parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10;
   always @ (posedge clk, posedge reset) // state register
     if (reset) state <= S0;</pre>
     else state <= nextstate;</pre>
   always @ (*)
                                       // next state logic
     case (state)
        S0: nextstate = S1;
        S1: nextstate = S2;
        S2: nextstate = S0;
        default: nextstate = S0;
     endcase
   assign q = (state == S0);  // output logic
endmodule
```

FSM Example 2: Smiling Snail

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

We did not cover the following. They are for your preparation.

Implementing FSM Example 2: Definitions

Implementing FSM Example 2: State Register

- This part defines the state register (memorizing process)
- Sensitive to only clk, reset
- In this example reset is active when '1' (active-high)

Implementing FSM Example 2: Next State Logic

```
// next state logic
 always @ (*)
    case (state)
       S0: if (number) nextstate = S1;
           else nextstate = S0;
       S1: if (number) nextstate = S2;
           else nextstate = S0;
       S2: if (number) nextstate = S2;
           else nextstate = S3;
       S3: if (number) nextstate = S1;
           else nextstate = S0;
       default: nextstate = S0;
    endcase
```


Implementing FSM Example 2: Output Logic

```
// output logic
assign smile = (number & state == S3);
```

- In this example, output depends on state and input
 - Mealy type FSM
- We used a simple combinational assignment

Implementation of FSM Example 2

```
module SmilingSnail (input clk,
                   input reset,
                    input number,
                   output smile);
  reg [1:0] state, nextstate;
   parameter S0 = 2'b00;
  parameter S1 = 2'b01;
   parameter S2 = 2'b10;
   parameter S3 = 2'b11;
  // state register
   always @ (posedge clk, posedge
reset)
     if (reset) state <= S0;</pre>
```

```
always @ (*) // next state logic
      case (state)
         S0: if (number)
                  nextstate = S1:
             else nextstate = S0;
         S1: if (number)
                  nextstate = S2;
             else nextstate = S0;
         S2: if (number)
                  nextstate = S2:
             else nextstate = S3;
         S3: if (number)
                  nextstate = S1;
             else nextstate = S0;
         default: nextstate = S0;
      endcase
   // output logic
assign smile = (number & state==S3);
endmodule
```

What Did We Learn?

- Basics of defining sequential circuits in Verilog
- The always statement
 - Needed for defining memorizing elements (flip-flops, latches)
 - Can also be used to define combinational circuits
- Blocking vs Non-blocking statements
 - = assigns the value immediately
 - <= assigns the value at the end of the block</p>
- Writing FSMs
 - Next state logic
 - State assignment
 - Output logic

Next Lecture: Timing and Verification

Design of Digital Circuits

Lecture 7: Sequential Logic Design

Prof. Onur Mutlu

ETH Zurich

Spring 2018

15 March 2018

Backup Slides

Different types of flip flops

The D Flip-Flop

Enabled Flip-Flops

- Inputs: CLK, D, EN
 - □ The enable input (EN) controls when new data (D) is stored
- Function:
 - □ **EN** = **1**: D passes through to Q on the clock edge
 - \blacksquare **EN** = **0**: the flip-flop retains its previous state

Internal

Resettable Flip-Flop

- **Inputs:** CLK, D, Reset
 - The Reset is used to set the output to 0.
- Function:
 - \blacksquare **Reset** = 1: Q is forced to 0
 - Reset = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - Asynchronous: resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop (see Exercise 3.10)
- Synchronously resettable flip-flop?

Settable Flip-Flop

- Inputs: CLK, D, Set
- Function:
 - □ **Set** = **1**: Q is set to 1
 - Set = 0: the flip-flop behaves like an ordinary D flip-flop

Symbols

