
Drammer: Deterministic Rowhammer Attacks
on Mobile Platforms

Victor van der Veen
Vrije Universiteit Amsterdam

vvdveen@cs.vu.nl

Yanick Fratantonio
UC Santa Barbara

yanick@cs.ucsb.edu

Martina Lindorfer
UC Santa Barbara

martina@iseclab.org

Daniel Gruss
Graz University of Technology

gruss@tugraz.at

Clémentine Maurice
Graz University of Technology

cmaurice@tugraz.at

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Kaveh Razavi
Vrije Universiteit Amsterdam

kaveh@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

ABSTRACT
Recent work shows that the Rowhammer hardware bug can
be used to craft powerful attacks and completely subvert a
system. However, existing efforts either describe probabilis-
tic (and thus unreliable) attacks or rely on special (and often
unavailable) memory management features to place victim
objects in vulnerable physical memory locations. Moreover,
prior work only targets x86 and researchers have openly won-
dered whether Rowhammer attacks on other architectures,
such as ARM, are even possible.

We show that deterministic Rowhammer attacks are feasi-
ble on commodity mobile platforms and that they cannot be
mitigated by current defenses. Rather than assuming special
memory management features, our attack, Drammer, solely
relies on the predictable memory reuse patterns of standard
physical memory allocators. We implement Drammer on
Android/ARM, demonstrating the practicability of our at-
tack, but also discuss a generalization of our approach to
other Linux-based platforms. Furthermore, we show that
traditional x86-based Rowhammer exploitation techniques
no longer work on mobile platforms and address the resulting
challenges towards practical mobile Rowhammer attacks.

To support our claims, we present the first Rowhammer-
based Android root exploit relying on no software vulner-
ability, and requiring no user permissions. In addition, we
present an analysis of several popular smartphones and find
that many of them are susceptible to our Drammer attack.
We conclude by discussing potential mitigation strategies
and urging our community to address the concrete threat of
faulty DRAM chips in widespread commodity platforms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24–28, 2016, Vienna, Austria.
c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978406

1. INTRODUCTION
The Rowhammer hardware bug allows an attacker to mod-

ify memory without accessing it, simply by repeatedly ac-
cessing, i.e., “hammering”, a given physical memory loca-
tion until a bit in an adjacent location flips. Rowhammer
has been used to craft powerful attacks that bypass all cur-
rent defenses and completely subvert a system [16,32,35,47].
Until now, the proposed exploitation techniques are either
probabilistic [16,35] or rely on special memory management
features such as memory deduplication [32], MMU paravir-
tualization [47], or the pagemap interface [35]. Such features
are often unavailable on commodity platforms (e.g., all are
unavailable on the popular Amazon EC2 cloud, despite re-
cent work explicitly targeting a cloud setting [32,47]) or dis-
abled for security reasons [40, 46]. Recent JavaScript-based
attacks, in turn, have proven capable to reliably escape the
JavaScript sandbox [11], but still need to resort to proba-
bilistic exploitation to gain root privileges and to completely
subvert a system [16].

Probabilistic Rowhammer attacks [16,35] offer weak relia-
bility guarantees and have thus more limited impact in prac-
tice. First, they cannot reliably ensure the victim object,
typically a page table in kernel exploits [16], is surgically
placed in the target vulnerable physical memory location.
This may cause the Rowhammer-induced bit flip to corrupt
unintended data (rather than the victim page table) and
crash the whole system. Second, even when the victim page
table is corrupted as intended, they cannot reliably predict
the outcome of such an operation. Rather than mapping an
attacker-controlled page table page into the address space as
intended, this may cause the Rowhammer-induced bit flip to
map an unrelated page table, which, when modified by the
attacker, may also corrupt unintended data and crash the
whole system.

This paper makes two contributions. First, we present
a generic technique for deterministic Rowhammer exploita-
tion using commodity features offered by modern operating
systems. In particular, we only rely on the predictable be-
havior of the default physical memory allocator and its mem-
ory reuse patterns. Using this technique (which we term

1675

Phys Feng Shui), we can reliably control the layout of phys-
ical memory and deterministically place security-sensitive
data (e.g., a page table) in an attacker-chosen, vulnerable
physical memory location.

Second, we use the aforementioned technique to mount
a deterministic Rowhammer attack (or Drammer) on mo-
bile platforms, since they present different and unexplored
hardware and software characteristics compared to previ-
ous efforts, which focus only on x86 architectures, mainly in
desktop or server settings. Concerning the hardware, mo-
bile platforms mostly use ARM processors. However, all
known Rowhammer techniques target x86 and do not read-
ily translate to ARM. Moreover, researchers have questioned
whether memory chips on mobile devices are susceptible to
Rowhammer at all or whether the ARM memory controller
is fast enough to trigger bit flips [13, 35]. Concerning the
software, mobile platforms such as Android run different
and more limited operating systems that implement only
a subset of the features available in desktop and server en-
vironments. For example, unless explicitly specified by a
device vendor, the Android kernel does currently not sup-
port huge pages, memory deduplication, or MMU paravirtu-
alization, making it challenging to exploit the Rowhammer
bug and impossible to rely on state-of-the-art exploitation
techniques.

Drammer is an instance of the Flip Feng Shui (FFS) ex-
ploitation technique (abusing the physical memory alloca-
tor to surgically induce hardware bit flips in attacker-chosen
sensitive data) [32], which for the first time relies only on
always-on commodity features. For any Rowhammer-based
Flip Feng Shui attack to be successful, three primitives are
important. First, attackers need to be able to “hammer
sufficiently hard”—hitting the memory chips with high fre-
quency. For instance, no bits will flip if the memory con-
troller is too slow. Second, they need to find a way to mas-
sage physical memory so that the right, exploitable data is
located in the vulnerable physical page. Third, they need
to be able to target specific contiguous physical addresses to
achieve (i) double-sided Rowhammer [9,35], a technique that
yields more flips in less time than other approaches, and (ii)
more control when searching for vulnerable pages (impor-
tant when mounting deterministic attacks). We show that,
when attacking mobile platforms, none of these primitives
can be implemented by simply porting existing techniques.

In this paper, we present techniques to implement afore-
mentioned primitives when attacking mobile platforms. We
detail the challenges towards reliable exploitation on An-
droid/ARM and show how to overcome its limited feature
set by relying on DMA buffer management APIs provided
by the OS. To concretely demonstrate the effectiveness of
our Drammer attack on mobile platforms, we present the
first deterministic, Rowhammer-based Android root exploit.
Our exploit can be launched by any Android app with no
special permission and without relying on any software vul-
nerability.

Finally, we present an empirical study and assess how
widespread the Rowhammer bug is on mobile devices. We
investigate how fast we can exploit these bugs in popular
smartphones and identify multiple phones that suffer from
faulty DRAM: 17 out of 21 of our tested 32-bit ARMv7
devices—still the most dominant platform with a market
share of over 97% [44]—and 1 out of our 6 tested 64-bit
ARMv8 phones are susceptible to Rowhammer. We con-

clude by discussing how state-of-the-art Rowhammer de-
fenses are ineffective against our Drammer attack and de-
scribe new mitigation techniques.

In summary, we make the following contributions:

• We present the first technique to perform determin-
istic Rowhammer exploitation using only commodity
features implemented by modern operating systems.

• We demonstrate the effectiveness of our technique on
mobile platforms, which present significant hardware
and software differences with respect to prior efforts.
We implement our Drammer attack on Android/ARM
and present the first deterministic, Rowhammer-based
Android root exploit. Our exploit cannot be mitigated
by state-of-the-art Rowhammer defenses.

• We evaluate the effectiveness of Drammer and our
Android root exploit and complement our evaluation
with an empirical Rowhammer study on multiple An-
droid devices. We identify multiple ARMv7/ARMv8
smartphones that suffer from faulty DRAM.

• To support future research on mobile Rowhammer, we
release our codebase as an open source project and
aim to build a public database of known vulnerable
devices.1

2. THREAT MODEL
We assume that an attacker has control over an unpriv-

ileged Android app on an ARM-based device and wants to
perform a privilege escalation attack to acquire root priv-
ileges. We do not impose any constraints on the attacker-
controlled app or the underlying environment. In particular,
we assume the attacker-controlled app has no permissions
and the device runs the latest stock version of the Android
OS with all updates installed, all security measures acti-
vated, and no special features enabled.

3. ROWHAMMER EXPLOITATION
Rowhammer is a software-induced hardware fault that af-

fects dynamic random-access memory (DRAM) chips. In
practice, this has the net effect that a piece of software can
flip some bits in physical memory by solely performing mem-
ory read operations. It is important to note that triggering
the Rowhammer bug is different than using (i.e., exploiting)
it in a security-relevant manner. In fact, an exploit usually
needs to trick a victim component (e.g., another process, the
OS, or another VM hosted on the same physical node) to
use a vulnerable physical memory location to store security-
sensitive content. In the general case, software exploitation
of this kind proved to be challenging.

In this section, we first provide general background in-
formation on memory hardware and the Rowhammer bug.
Then, we summarize existing exploitation techniques and
describe the three distinct primitives that Rowhammer ex-
ploits need to implement.

1https://www.vusec.net/projects/drammer/

1676

3.1 Memory Hardware
In order to understand the root cause of the Rowhammer

bug, it is important to understand the architecture and com-
ponents of DRAM chips. DRAM works by storing charges
in an array of cells, each of which consists of a capacitor
and an access transistor. A cell represents a binary value
depending on whether it is charged or not. Cells are fur-
ther organized in rows, which are the basic unit for memory
accesses. On each access, a row is “activated” by copying
the content of its memory cells to a row buffer (thereby dis-
charging them), and then copying the content back to the
memory cells (thereby charging them). A group of rows that
is serviced by one row buffer is called a bank. Finally, multi-
ple banks further form a rank, which spans across multiple
DRAM chips. A page frame is the smallest fixed-length con-
tiguous block of physical memory into which the OS maps a
memory page (a contiguous block of virtual memory). From
a DRAM perspective, a page frame is merely a contiguous
collection of memory cells, aligned on the page-size bound-
ary (typically 4 KB).

Memory cells naturally have a limited retention time and
leak their charge over time. Therefore, they have to be re-
freshed regularly in order to keep their data. Thus, the
DDR3 standard [19] specifies that the charge of each row
has to be refreshed at least every 64 ms. This memory re-
fresh interval is a trade-off between memory integrity on the
one hand, and energy consumption and system performance
on the other. Refreshing more often consumes more power
and also competes with legitimate memory accesses, since a
specific memory region is unavailable during the refresh [10].

3.2 The Rowhammer Bug
In a quest to meet increasing memory requirements, hard-

ware manufacturers squeeze more and more cells into the
same space. Unfortunately, Kim et al. [23] observed that
the increasing density of current memory chips also makes
them prone to disturbance errors due to charge leaking into
adjacent cells on every memory access. They show that, by
repeatedly accessing, i.e., “hammering,” the same memory
row (the aggressor row) over and over again, an attacker
can cause enough of a disturbance in a neighboring row (the
victim row) to cause bits to flip. Thus, triggering bit flips
through Rowhammer is essentially a race against the DRAM
internal memory refresh in performing enough memory ac-
cesses to cause sufficient disturbance to adjacent rows. Rely-
ing on activations of just one aggressor row to attack an adja-
cent row is called single-sided Rowhammer, while the more
efficient double-sided Rowhammer attack accesses the two
rows that are directly above and below the victim row [35].

3.3 Exploitation Primitives
While it was originally considered mostly a reliability is-

sue, Rowhammer becomes a serious security threat when an
attacker coerces the OS into storing security-sensitive data
in a vulnerable memory page (a virtual page that maps to a
page frame consisting of at least one cell that is subject to
the Rowhammer bug). Depending on the underlying hard-
ware platform, OS, and already-deployed countermeasures,
prior efforts developed different techniques to perform a suc-
cessful end-to-end Rowhammer attack. This section sum-
marizes prior techniques and describes the three required
primitives to exploit the Rowhammer bug.

P1. Fast Uncached Memory Access. This primitive
is the prerequisite to flip bits in memory and refers to the
ability of activating rows in each bank fast enough to trigger
the Rowhammer bug. In practice, this can be non-trivial for
two reasons. First, the CPU memory controller might not
be able to issue memory read commands to the memory
chip fast enough. However, most often the challenge relates
to the presence of several layers of caches, which effectively
mask out all the CPU memory reads (after the first one).
Thus, all known exploitation techniques need to implement
a mechanism to bypass (or nullify) the cache.

P2. Physical Memory Massaging. This primitive con-
sists of being able to trick the victim component to use—
in a predictable or, in a weaker form, probabilistic way—a
memory cell that is subject to the Rowhammer bug. More
importantly, the attacker needs to be able to massage the
memory precisely enough to push the victim to use the vul-
nerable cell to store security-sensitive data, such as a bit
from a page table entry. This primitive is critical for an at-
tacker to mount a privilege escalation attack, and it is also
the most challenging one to implement in a fully determin-
istic way.

P3. Physical Memory Addressing. This last primitive
relates to understanding how physical memory addresses are
used in the virtual address space of an unprivileged process.
While this primitive is not a hard requirement for Rowham-
mer exploitation in general, it is crucial to perform double-
sided Rowhammer: to access memory from two aggressor
rows, an attacker must know which virtual addresses map
to the physical addresses of these rows.

4. THE FIRST FLIP
This section documents our efforts to perform Rowham-

mer on memory chips of mobile devices. In the first part, we
focus on testing the hardware without attempting to mount
any exploit. In the second part, we discuss how going from
“flipping bits” to mounting a root privilege escalation at-
tack is challenging, since there are several aspects that make
successful exploitation on mobile devices fundamentally dif-
ferent compared to previous efforts on desktop and server
settings. To support our claims, we compare all known
techniques to implement the three primitives discussed in
the previous section and we discuss why these techniques do
not apply to commodity mobile platforms.

4.1 RowhARMer
Researchers have speculated that Rowhammer on ARM

could be impossible, one of the main reasons being that the
ARM memory controller might be too slow to trigger the
Rowhammer bug [13,35]. Not surprisingly, no existing work
from academia or industry currently documents any success
in reproducing the Rowhammer bug on mobile devices.

We set up an experiment to test whether memory chips
used in mobile devices are subject to bit flips induced by
Rowhammer and whether the ARM memory controller can
issue memory read operations fast enough. Since this is a
preliminary feasibility analysis, we perform the Rowhammer
attack from a kernel module (i.e., with full privileges), which
allows us to cultivate optimal conditions for finding bit flips:
we disable CPU caching and perform double-sided Rowham-
mer by using the pagemap interface to find aggressor rows
for each victim address.

1677

We hammer rows by performing one million read opera-
tions on their two aggressors. To determine the minimum
memory access time that still results in bit flips, we repeat-
edly hammer the same 5 MB of physical memory while arti-
ficially increasing the time between two read operations by
inserting NOP instructions. We measure the time it takes
to complete a single read operation and report the median
over all hammered pages. We initiate all bytes in the victim
row to 0xff (all bits are set) and once the hammering phase
finishes, we scan the victim row for bit flips—i.e., any byte
that has a value different than 0xff. Since we only per-
form read operations, any such modification to the memory
content can be directly attributed to Rowhammer.

For this experiment, we used an LG Nexus 5 device run-
ning Android 6.0.1 (the latest version at the time of writing).
The results of this experiment are encouraging: not only do
bits flip, but it is also relatively simple to obtain them. In
fact, we triggered flips in a matter of seconds, and observed
up to 150 flips per minute. Figure 1 depicts the results of
our experiment. It shows the dependency between the ac-
cess time and the number of bit flips found when scanning a
5 MB memory chunk. Moreover, it shows that access times
of 300 ns or higher are unlikely to trigger bit flips and that,
surprisingly, the “sweet spot” for triggering the most flips on
this particular DRAM chip is not reading at full speed (70 ns
per read), but throttling to 100 ns per read. However, note
that throttling does not necessarily result in a lower rate of
actual accesses to DRAM cells: the memory controller may
reorder accesses internally.

4.2 Exploitation on the x86 Architecture
Even when a memory chip is vulnerable to Rowhammer

attacks, it is challenging to perform a successful end-to-
end exploitation—we need to implement the three primi-
tives described earlier. We now review how currently known
Rowhammer exploitation techniques, which all target the
x86 architecture, implement those primitives.

4.2.1 P1. Fast Uncached Memory Access
First and foremost an attacker needs the capability to

activate alternating rows in each bank fast enough to trigger
the Rowhammer bug. The main challenge here is to bypass
the CPU cache. For this purpose, state-of-the-art attacks
rely on one of the following techniques:

Explicit cache flush. This technique is based on using
the clflush instruction, which flushes the cache entry asso-
ciated to a given address. One can execute this instruction
after accessing a particular memory address, so that sub-
sequent read operations on that same address also trigger
DRAM accesses. On x86 architectures, the clflush instruc-
tion is particularly useful because it can be executed even
by a non-privileged process. This technique is used, for ex-
ample, by Seaborn et al. [35,36] and is based on the findings
from Kim et al. [23].

Cache eviction sets. This technique relies on repeatedly
accessing memory addresses that belong to the same cache
eviction set [9, 11, 16]. A cache eviction set is defined as a
set of congruent addresses, where two addresses are congru-
ent if and only if they map to the same cache line. Thus,
accesses to a memory address belonging to the same con-
gruent set will automatically flush the cache while reading
(because the associated cache line contains the content of

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

#
O

b
se

rv
ed

b
it

fl
ip

s

m
ed

ia
n

a
cc

es
s

ti
m

e
p

er
re

a
d

(n
s)

NOP instructions

bit flips time per read

Figure 1: Dependency between observed bit flips
(y1) and memory access time (y2) when repeatedly
hammering the same 5 MB memory chunk, while in-
creasing the number of NOP instructions (x) to sim-
ulate slower access times. The spike in access time
around 60 to 80 NOP instructions may be caused by
a background process during our analysis. The spike
in observed bit flips around 20 NOP instructions in-
dicates a “sweet spot” of memory access time.

the previously-read memory address). This observation is
the basis for the several access patterns described by Gruss
et al. [16] and is particularly useful when the clflush in-
struction is not available (e.g., when triggering Rowhammer
from JavaScript).

Non-temporal access instructions. This technique re-
lies on accessing memory using CPU instructions or APIs
that, by design, do not use the cache. Previous efforts rely
on non-temporal write instructions (e.g., MOVNTI, MOVNTDQA),
which are also used in some memset() and memcopy() imple-
mentations [31]. In this context, non-temporal means that
the data will not likely be reused soon and thus does not
have to be cached. As a result, these operations cause the
CPU to directly write the content to memory, thus bypass-
ing the cache.

4.2.2 P2. Physical Memory Massaging
This primitive is essential to trick the victim component

into storing security-sensitive data (e.g., a page table) in an
attacker-chosen, vulnerable physical memory page. Existing
efforts have mainly relied on the following techniques for this
purpose:

Page-table spraying. Previous work exploits the Rowham-
mer bug to achieve root privilege escalation by flipping bits
in page table entries (PTEs) [35, 36]. This attack suggests
a probabilistic exploitation strategy that sprays the memory
with page tables, hoping that at least one of them lands on a
physical memory page vulnerable to Rowhammer. The next
step is then to flip a bit in the vulnerable physical mem-
ory page, so that the victim page table points to an arbi-
trary physical memory location. Given the sprayed physical
memory layout, such location should probabilistically con-
tain one of the attacker-controlled page table pages (PTPs)
which allows attackers to map their own page tables in the

1678

controlling address space. At that point, they can overwrite
their own PTEs and access arbitrary (e.g., kernel) pages in
physical memory to escalate privileges.

Memory deduplication. Razavi et al. [32] abuse mem-
ory deduplication to perform deterministic Rowhammer ex-
ploitation [11,32]. They show that an attacker can use mem-
ory deduplication to trick the OS into mapping two pages,
an attacker-controlled virtual memory page and a victim-
owned virtual memory page, to the same attacker-chosen
vulnerable physical memory page. While such an exploita-
tion strategy is powerful and has been successfully demon-
strated in a cross-VM setting, it relies on memory dedupli-
cation, which is not an always-on feature, even in modern
operating systems (e.g., off by default on Linux).

MMU paravirtualization. Xiao et al. [47] leverage Xen
MMU paravirtualization to perform deterministic Rowham-
mer exploitation from a guest VM. This exploits the prop-
erty that Xen allows a guest VM to specify the physical
location of a (read-only) PTP, allowing a malicious VM to
trick the VM monitor into mapping a page table into a vul-
nerable location to “hammer.” Similar to memory dedupli-
cation, this is not an always-on feature and only available
inside Xen MMU paravirtualized VMs. In addition, MMU
paravirtualization is no longer the common case in popu-
lar cloud settings, with MMU virtualization becoming much
more practical and efficient.

4.2.3 P3. Physical Memory Addressing
Processes have direct access only to virtual memory which

is then mapped to physical memory. While the virtual mem-
ory layout is known to processes in userland, the physical
memory layout is not. As discussed in the previous section,
to perform double-sided Rowhammer, an attacker needs to
repeatedly access specific physical memory pages. For this
purpose, previous efforts suggest the following techniques:

Pagemap interface. This technique relies on accessing
the /proc/self/pagemap file which contains complete infor-
mation about the mapping of virtual to physical addresses.
Clearly, having access to this information is sufficient to re-
peatedly access specific rows in physical memory.

Huge pages. Another option is to use huge (virtual) pages
that are backed by physically contiguous physical pages. In
particular, a huge page covers 2 MB of contiguous physical
addresses. Although this is not as fine-grained as know-
ing absolute physical addresses, one can use relative offsets
to access specific physical memory pages for double-sided
Rowhammer. In fact, it guarantees that two rows that are
contiguous in virtual memory are also contiguous in physical
memory.

4.3 Challenges on Mobile Devices
When assessing whether one can exploit Rowhammer bugs

on mobile devices, we attempted, as a first step, to reuse
known exploitation techniques described above. We found,
however, that none of the primitives are applicable to mobile
devices. Table 1 presents an overview of our analysis.

Explicit cache flush (P1). On ARMv7, the cache flush
instruction is privileged and thus only executable by the
kernel. Since our threat model assumes an unprivileged app,
we cannot use this instruction to implement P1. Although
the Android kernel exposes a cacheflush() system call to

Table 1: Techniques previously used for x86-based
Rowhammer attacks and their availability on ARM-
based mobile devices in unprivileged mode (), priv-
ileged mode (#), or not at all (–). Some techniques
are available in unprivileged mode, but are not prac-
tical enough to use in our setting (G#). Note how
none of these techniques can be generally applied
on all modern versions of mobile devices.

Primitive x86
Platforms

Mobile
Devices

Fast Uncached Memory Access ARMv7/ARMv8

Explicit cache flush #/G#
Cache eviction sets –/–
Non-temporal access instructions –/G#

Physical Memory Massaging
Page-table spraying G#
Memory deduplication –
MMU paravirtualization –

Physical Memory Addressing
Pagemap interface #
Huge pages –

userland, this system call flushes only up to the Level 2 cache
and thus fails to force repetitive DRAM accesses for a single
address. Interestingly, ARMv8 does provide unprivileged
cache flush instructions, but they may be disabled by the
kernel.

Cache eviction sets (P1). In principle, it is possible to
use cache eviction sets to flush addresses from the cache.
Unfortunately, this technique proved to be too slow in prac-
tice to trigger bit flips on both ARMv7 and ARMv8.

Non-temporal access instructions (P1). ARMv8 of-
fers non-temporal load and store instructions, but they only
serve as a hint to the CPU that caching is not useful [8]. In
practice, we found that memory still remains cached, mak-
ing these instructions not usable for our exploitation goals.

Page-table spraying (P2). As documented by Seaborn et
al. [36], the page-table spraying mechanism is probabilistic
and may crash the OS. We aim to implement a deterministic
Rowhammer exploit and thus cannot rely on this technique.

Special memory management features (P2). Although
device vendors may enable memory deduplication for Low
RAM configurations [1], it is not enabled by default on stock
Android. Moreover, MMU paravirtualization is not avail-
able and we can thus not rely on existing special memory
management features.

Pagemap interface (P3). The Linux Kernel no longer al-
lows unprivileged access to /proc/self/pagemap since ver-
sion 4.0 [40]. This change was (back)ported to the Android
Linux kernel in November 2015 [34], making it impossible
for us to use this interface for double-side Rowhammer.

Huge pages (P3). Although some vendors ship their mo-
bile devices with huge page support (Motorola Moto G, 2013
model, for example), stock Android has this feature disabled
by default. We thus cannot rely on huge pages to perform
double-sided Rowhammer in our setting.

1679

Additional challenges. In addition, there are further
characteristics that are specific to mobile devices and that
affect mobile Rowhammer attacks. First, the ARM speci-
fications [7, 8] do not provide memory details and, for ex-
ample, it is not clear what the size of a row is. Second,
mobile devices do not have any swap space. Consequently,
the OS—the Low Memory Killer in particular on Android—
starts killing processes if the memory pressure is too high.

5. THE DRAMMER ATTACK
We now describe how we overcome the limited availability

of known techniques on mobile devices and how we mount
our Drammer attack in a deterministic fashion. In contrast
to most primitives discussed in the previous section, Dram-
mer relies on general memory management behavior of the
OS to perform deterministic Rowhammer attacks. For sim-
plicity, we first describe our attack for Android/ARM (fo-
cusing on the more widespread ARMv7 platform) and later
discuss its applicability to other platforms in Section 7.

5.1 Mobile Device Memory
One prerequisite to implement useful exploitation prim-

itives is to understand the memory model of the chip we
are targeting. One of the key properties to determine is the
row size. Previous x86-based efforts ascertain the row size
either by consulting the appropriate documentation or by
running the decode-dimms program. Unfortunately, ARM
does not document row sizes, nor does its platform provide
instructions for fingerprinting DRAM modules. As such, we
propose a timing-based side channel to determine a DRAM
chip’s row size.

Our technique is generic and can be applied independently
from the chosen target architecture. It relies on the observa-
tion that accessing two memory pages from the same bank
is slower than reading from different banks: for same-bank
accesses, the controller has to refill the bank’s row buffer
for each read operation. In particular, by accessing physical
pages n and n+ i while increasing i from 0 to x, our timing
side channel shows a slower access time when page n + i
lands in the same bank as page n. Such increase in access
time indicates that we walked over all the pages in a row and
that n + i now points to the first page in the second row,
falling in the same bank. By setting x large enough (e.g.,
to 64 pages, which would indicate a row size of 256 KB), we
ensure that we always observe the side channel, as it is not
expected that the row size is 256 KB or larger. We evaluate
our side channel in more detail in Section 8.

5.2 DMA Buffer Management
Modern (mobile) computing platforms consist of several

different hardware components: besides the CPU or System-
on-Chip (SoC) itself, devices include a GPU, display con-
troller, camera, encoders, and sensors. To support efficient
memory sharing between these devices as well as between
devices and userland services, an OS needs to provide direct
memory access (DMA) memory management mechanisms.
Since processing pipelines that involve DMA buffers bypass
the CPU and its caches, the OS must facilitate explicit cache
management to ensure that subparts of the pipeline have a
coherent view of the underlying memory. Moreover, since
most devices perform DMA operations to physically contigu-
ous memory pages only, the OS must also provide allocators
that support this type of memory.

We refer to the OS interface that provides all these mecha-
nisms as a DMA Buffer Management API which essentially
exports “DMA-able” memory to userland. By construction,
userland-accessible DMA buffers implement two of our at-
tack primitives: (P1) providing uncached memory access
and (P3) (relative) physical memory addressing.

5.3 Physical Memory Massaging
For the remaining and most crucial primitive (P2), we

need to arrange the physical memory in such a way that
we can control the content of a vulnerable physical mem-
ory page and deterministically land security-sensitive data
therein. For this purpose, we propose Phys Feng Shui, a
novel technique to operate physical memory massaging that
is solely based on the predictable memory reuse patterns
of standard physical memory allocators. In addition to be-
ing deterministic, this strategy does not incur the risk of
accidentally crashing the system by causing bit flips in un-
intended parts of physical memory.

On a high level, our technique works by exhausting avail-
able memory chunks of different sizes to drive the physical
memory allocator into a state in which it has to start serv-
ing memory from regions that we can reliably predict. We
then force the allocator to place the target security-sensitive
data, i.e., a page table, at a position in physical memory
which is vulnerable to bit flips and which we can hammer
from adjacent parts of memory under our control.

5.3.1 Memory Templating
Since our attack requires knowledge about which exact

memory locations are susceptible to Rowhammer, we first
need to probe physical memory for flippable bits—although
the number and location of vulnerable memory regions natu-
rally differs per DRAM chip, once found, the large majority
of flips is reproducible [23]. We refer to this process as mem-
ory templating [32]. A successful templating session results
in a list of templates that contain the location of vulnerable
bits, as well as the direction of the flip, i.e., whether it is a
0-to-1 or 1-to-0 flip.

5.3.2 Physical Memory Allocator
Linux platforms manage physical memory via the buddy

allocator [15]. Its goal is to minimize external fragmenta-
tion by efficiently splitting and merging available memory
in power-of-2 sized blocks. On each allocation request, it
iteratively splits larger blocks in half as necessary until it
finds a block matching the requested size. It is important to
note that the buddy allocator always prioritizes the smallest
fitting block when splitting—e.g., it will not attempt to split
a block of 16 KB if a fitting one of 8 KB is also available. As
a result, the largest contiguous chunks remain unused for as
long as possible.

On each deallocation request, the buddy allocator exam-
ines neighboring blocks of the same size to merge them again
if they are free. To minimize the internal fragmentation pro-
duced by the buddy allocator for small objects, Linux imple-
ments a slab allocator abstraction on top of it. The default
SLUB allocator implementation organizes small objects in a
number of pools (or slabs) of commonly used sizes to quickly
serve allocation and deallocation requests. Each slab is ex-
panded on demand as necessary using physically contiguous
chunks of a predetermined per-slab size allocated through
the buddy allocator.

1680

5.3.3 Phys Feng Shui

Phys Feng Shui lures the buddy allocator into reusing and
partitioning memory in a predictable way. For this purpose,
we use three different types of physically contiguous chunks:
large chunks (L), medium-sized chunks (M), and small chunks
(S). The size of small chunks is fixed at 4 KB (the page size).
Although other values are possible (see also Section 6), for
simplicity, we set the size of M to the row size and use the
size of the largest possible contiguous chunk of memory that
the allocator provides for L. As illustrated in Figure 2, our
attack then includes the following steps:

Preparation and templating. We first exhaust (i.e., allo-
cate until no longer possible) all available physically contigu-
ous chunks of size L (step 1) and probe them for vulnerable
templates which we later can exploit. We then exhaust all
chunks of size M (step 2), leaving the allocator in a state
where blocks of size M and larger are no longer available (un-
til existing ones are released).

Selective memory reuse. Next, we select one of the tem-
plates generated in the previous step as the target for our
exploit and refer to its corresponding L block as L*. We then
release L* (step 3), and immediately exhaust all M chunks
again (step 4). Since we depleted all the free chunks of size
M or larger in the previous step, this forces the allocator to
place them in the region we just released (i.e., predictably
reuse the physical memory region of the released L* chunk).
We refer to the M chunk that now holds the exploitable tem-
plate as M*.

Finally, in preparation of landing the page table (PT) in
the vulnerable page of M*, in the next step we release M* (step
5). Note that we restrict our choice of M* to chunks that are
not at the edge of L*, since we need access to its surrounding
memory in order to perform double-sided Rowhammer later.

Our technique naturally increases memory pressure. In
practice, the OS handles low memory or out of memory
(OOM) conditions by freeing up unused memory when the
available memory falls under a certain threshold. This is es-
pecially critical on mobile devices, which do not utilize swap
space. In preparation of the next steps, which need to allo-
cate several S chunks and would risk bumping the amount
of available memory below the threshold, we now free the
remaining L chunks to avoid triggering memory cleanup by
the OS (or worse: a system crash).

Landing the first page table in the vulnerable re-
gion. We now steer the memory allocator to place a S

chunk in the vulnerable chunk M* that was released. For
this purpose, we deplete the allocator of available blocks of
size S...M/2 by repeatedly allocating S chunks. This guaran-
tees that subsequent S allocations land in M* (step 6). We
allocate S chunks by forcing (4 KB) page table allocations:
we repeatedly map memory at fixed virtual addresses that
mark page table boundaries (i.e., every 2 MB of the virtual
address space on ARMv7). Since the maximum number of
page tables per process is 1024, we spawn a number of worker
processes to allocate as many as we need. Once all smaller
chunk sizes are depleted, our next S allocation predictably
lands in the vulnerable region (no other smaller block is
available).

Determining when allocations reach the vulnerable region
is trivial on Linux: the proc filesystem provides /proc/zone-
info and /proc/pagetypeinfo. These special files are world-
readable and detail information on the number of available

free

L chunk
M chunk

S chunk

STEP 3
Free(L*)

STEP 1
Exhaust(L) + Template(L)

allocated

STEP 2
Exhaust(M)

P padding
PT page table

STEP 4
Exhaust(M)

STEP 5
Free(M*) + FreeAll(L)

STEP 6
Land(S)

STEP 7
Padding(S)

STEP 8
Map(M)

PT

0-to-1 1-to-0

P PP P

UNINITIALIZED MEMORY

Figure 2: Physical memory layout before and after
each step of Phys Feng Shui. Depending on the di-
rection of the targeted bit flip, we map either the
chunk before or after the vulnerable one in the last
step.

and allocated memory pages and zones. In case these files
are not available, we can exploit a timing or instruction-
count (via the Performance Monitoring Unit) side-channel
to detect when S lands in M*: depending on whether the al-
locator can serve a request from a pool of available chunks
of a matching size, or whether it has to start splitting larger
blocks, the operation takes more time and instructions. We
can use this observation by measuring the time between an
allocation and deallocation of an M chunk every time we force
the allocation of a new S chunk. Once this time falls below

1681

a certain (adaptively computed) threshold, we know that
we are filling the vulnerable region with S, since the alloca-
tor could no longer place a new M chunk there and had to
start breaking down blocks previously occupied by one of
the former L chunks.

Aligning the victim page table. Finally, we map a page
p in the former L* chunk that neighbors M* on the left (in
case of a 0-to-1 flip), or on the right (in case of a 1-to-0 flip),
at a fixed location in the virtual memory address space to
force a new PTP allocation (step 8). Depending on the
virtual address we pick, the page table entry (PTE) that
points to p is located at a different offset within the PTP—
essentially allowing us to align the victim PTE according to
the vulnerable template.

We can similarly align the victim PTP according to the
vulnerable page to make sure that we can flip selected bits in
the victim PTE. For this purpose, we force the allocation of a
number of padding PTPs as needed before or after allocating
the victim PTP (step 7).

We further need to ensure that the vulnerable PTP allo-
cated in M* and the location of p are 2n pages apart: flip-
ping the n lowest bit of the physical page address in the
victim PTE deterministically changes the PTE to point to
the vulnerable PTP itself, mapping the latter into our ad-
dress space. To achieve this, we select any page p in the M

chunk adjacent to M* to map in the victim PTP, based on
whether it satisfies this property.

Exploitation. Once we selected and aligned the victim
PTP, PTE, and n according the vulnerable template, we
perform double-sided Rowhammer and replicate the bit flip
found in the templating phase. Once we trigger the de-
sired flip, we gain write access to the page table as it is now
mapped into our address space. We can then modify one
of our own PTPs and gain access to any page in physical
memory, including kernel memory.

Note that the exploit is fully reliable and may only fail
if the flip discovered in the templating phase is not repro-
ducible (e.g., if a 0-to-1 flip is now applied to a 1-bit con-
tent). Since the buddy allocator provides chunk alignment
by design, however, we can address this issue. By exploiting
knowledge about relative offsets inside the L* chunk, we can
predict the lower bits of physical addresses in the vulnera-
ble PTE. For example, if L* is of size 4 MB, meaning that it
must start at a physical address that is a multiple of 222, we
can predict the lower 222/4096 = 210 = 10 bits of all 1024
page frames that fall in L*. Thus, if our templating phase
on ARMv7 reports a 0-to-1 flip in page 426, at bit offset 13
of a 32-bit word—a potential PTE, where offsets 1–12 are
part of its properties field—we can immediately conclude
that this flip is not exploitable: if, after Rowhammer, bit
13 is 1, the PTE may never point to its own page 426 (in
fact, it could only point to uneven pages). In contrast, a
1-to-0 flip in page 389, at bit offset 16 of a 32-bit word is
exploitable if we ensure that a PTE at this location points
to page 397: ____ ____ __01 1000 1101|ppro pert iess flips
to ____ ____ __01 1000 0101|ppro pert iess (= 389).

5.4 Exploitable Templates
The number of templates that an attacker can use for ex-

ploitation is determined by a combination of (i) the number
of flips found in potential PTEs, and (ii) the relative location
of each flip in L*.

As discussed earlier, a bit flip in a PTE is exploitable if it
flips one of the lower bits of the address part. For ARMv7,
this means that flips found in the lowest 12 bits of each
32-bit aligned word are not exploitable as these fall into
the properties field of a PTE. Moreover, a flip in one of the
higher bits of a PTE is also not exploitable in a deterministic
matter: a 0-to-1 flip in the highest bit would require the PTE
to point to a page that is, physically, 2 GB to the right of its
PTP. Without access to absolute physical addresses, we can
only support bit flips that trigger a page offset shift of at
most the size of L− 1. For example, if L is 4 MB (512 page
frames), a 0-to-1 flip in bit 9 of a possible 32-bit word in the
first page of L, is exploitable: the exploit requires a PTE
that points to a page that is 29 = 256 pages away from the
vulnerable page. The same flip in page 300 of L, however,
is not exploitable, as it would require an entry pointing to a
page outside of L.

In addition, ARMv7’s page tables are, unlike x86’s ones,
of size 1 KB. Linux, however, expects page tables to fill an
entire page of 4 KB and solves this by storing two 1 KB ARM
hardware page tables, followed by two shadow pages (used
to hold extra properties that are not available in the hard-
ware page tables), in a single 4 KB page. This design further
reduces the number of exploitable flips by a factor two: only
flips that fall in the first half of a page may enclose a hard-
ware PTE.

To conclude, for ARMv7, with a maximum L size of 4 MB,
a template is not exploitable if (i) it falls in the second half
of a page (a shadow page) (ii) it falls in the lowest 12 bits
of a 32-bit word (the properties field of a PTE), or (iii) it
falls in the highest 11 bits of a 32-bit word. Consequently,
for each word, at most 9 bits are exploitable, and since there
are only 256 hardware PTEs per page, this means that, at
most, 2, 304 bits out of all possible 32, 768 bits of a single
page are exploitable (around 7.0%).

5.5 Root Privilege Escalation
Once we have control over one of our own PTPs, we can

perform the final part of the attack (i.e., escalate privileges
to obtain root access). For this purpose, we repeatedly map
different physical pages to scan kernel memory for the se-
curity context of our own process (struct cred), which we
identify by using a unique 24-byte signature based on our
unique (per-app) UID. We discuss more details and evaluate
the performance of our Android root exploit in Section 8.

6. IMPLEMENTATION
To demonstrate that deterministic Rowhammer attacks

are feasible on commodity mobile platforms, we implemented
our end-to-end Drammer attack on Android. Android pro-
vides DMA Buffer Management APIs through its main mem-
ory manager called ION, which allows userland apps to ac-
cess uncached, physically contiguous memory. Note, how-
ever, that Drammer extends beyond ION and we discuss
how to generalize our attack on other platforms in Section 7.

6.1 Android Memory Management
With the release of Android 4.0 (Ice Cream Sandwich),

Google introduced ION [50] to unify and replace the frag-
mented memory management interfaces previously provided
by each hardware manufacturer. ION organizes its memory
pools in at least four different in-kernel heaps, including the
SYSTEM_CONTIG heap, which allocates physically contiguous

1682

memory allocated via kmalloc() (slab allocator). Further-
more, ION supports buffer allocations with explicit cache
management, i.e., cache synchronization is left up to the
client and memory access is essentially direct, uncached.
Userland apps can interact with ION through /dev/ion—
allowing uncached, physically contiguous memory to be al-
located by any unprivileged app without any permissions.

Our implementation uses ION to allocate L and M chunks—
and maps such chunks to allocate S page table pages (4 KB
on Android/ARM). Given that SLUB’s kmalloc() resorts
directly to the buddy allocator for chunks larger than 8 KB,
we can use ION to reliably allocate 16 KB and larger chunks.
We set L to 4 MB, the largest size kmalloc() supports. This
gives us the most flexibility when templating and isolat-
ing vulnerable pages. Although more complex configura-
tions are possible, for simplicity we set M to the row size
(always larger than 16 KB). Intuitively, this allows us to
release a single vulnerable row for page table allocations,
while still controlling the aggressor rows to perform double-
sided Rowhammer. Supporting other M values yields more
exploitable templates, at the cost of additional complexity.

6.2 Noise Elimination
To ensure reliability, an attacker needs to eliminate inter-

ferences from other activity in the system (e.g., other run-
ning apps) during the Phys Feng Shui phase. The risk of in-
terferences is, however, minimal. First, our Phys Feng Shui
phase is designed to be extremely short-lived and naturally
rule out interferences. Second, interferences are only possi-
ble when the kernel independently allocates memory via the
buddy allocator in the low memory zone. Since most kernel
allocations are served directly from slabs, interferences are
hard to find in practice.

Nonetheless, the attacker can further minimize the risk
of noise by scheduling the attack during low system ac-
tivity, e.g., when no user is interacting with the device or
when the system enters low power mode with essentially
no background activity. Android provides notifications for
both scenarios through the intents ACTION_SCREEN_OFF and
ACTION_BATTERY_LOW.

7. GENERALIZATION
ION facilitates a Rowhammer attack on Android/ARM

by readily providing DMA buffer management APIs to user-
land, but it is not yet available on every Linux platform (al-
though there are plans to upstream it [39,42]). Nonetheless,
we describe how one can generalize our deterministic attack
to other (e.g., x86) platforms by replacing ION with other
standard capabilities found in server and desktop Linux en-
vironments. More specifically, the use of ION in Drammer
can be replaced with the following strategies:

(1) Uncached memory. Rather than having ION map un-
cached memory in userland, one can employ clflush or any
of the other cache eviction techniques that have previously
been used for Rowhammer [11,16,23,25,26,31,32,35,47].

(2) L chunks. Transparent hugepages (THP) [2] supported
by Linux (enabled by default on recent distributions for
better performance [6, 33] and available on some Android
devices) can replace the physically contiguous L chunks al-
located by ION. By selectively unmapping part of each L

chunk backed by a THP, one can also directly create a M*-
sized hole without filling it with M chunks first. To learn

when a THP allocation fails (i.e., when L chunks have been
exhausted), one can read statistics from /proc/vmstat [24].
To force the kernel to allocate THPs (normally allocated in
high memory) in low memory (normally reserved to kernel
pages, e.g., PTPs), one can deplete the ZONE_HIGHMEM zone
before starting the attack, as detailed in prior work [22].
Note that THPs contribute to the ability to mount deter-
ministic attacks, not just to operate double-sided Rowham-
mer [32,35,47], in our setting.

(3) M chunks. While using THPs to exhaust M chunk al-
locations is infeasible (they are larger), one can abuse the
SLUB allocator and force it to allocate chunks of a spe-
cific size through the buddy allocator. This can be done
by depleting a slab cache of a carefully selected size (e.g.,
depleting kmalloc-256 would force one 4 KB allocation) by
triggering multiple allocations via particular system calls,
e.g., sendmmsg(), as described by Xu et al. [48,49].

(4) Predictable PTE content. To ensure that our victim
PTE points to an attacker-controlled physical page at a pre-
dictable offset, we rely on mapping neighboring chunks (the
first and the last fragment of a THP in our generalized at-
tack) multiple times in userland (the first time at allocation
time, the second time when creating the victim page table).
To implement this strategy with THPs, one can create a
shared memory segment associated to the vulnerable THP
(shared memory support for THPs is being merged main-
line [41]) and attach it multiple times at fixed addresses to
force page table allocations with PTEs pointing to it. As an
alternative (until THP shared memory support is available
mainline), one can simply map a new anonymous (4 KB)
user page when forcing the allocation of the page table. As
the ZONE_HIGHMEM zone is depleted, such user page will also
end up in low memory right next to the PTP.

8. EVALUATION
In this section, we evaluate various aspects of Drammer.

We (i) evaluate our proposed side channel to detect the row
size on a given device. Using its results, we (ii) perform
an empirical study on a large set of Android smartphones
to investigate to what extent consumer devices are affected
by susceptible DRAM chips. Finally, we (iii) combine re-
sults from our study with the final exploitation step (i.e.,
from page table write access to root privilege escalation) and
compute how fast we can perform our end-to-end attack.

8.1 Mobile Row Sizes
We evaluate the row size detection side channel described

in Section 5 by constructing a heatmap for page-pair access
times. We set our upper limit in both directions to 64 pages,
and thus read from page pairs (1, 1), (1, 2), . . . , (1, 64), (2, 1),
(2, 2), . . . , (64, 64).

Figure 3 shows such a heatmap for a LG Nexus 5 phone.
We determined that the row size is 16 pages, which is 16 ×
4K = 64K. This is somewhat surprising, given that most
previous x86 efforts report a row size of 128K.

8.2 Empirical Study
For our empirical study, we acquired the following ARMv7-

based devices: 15 LG Nexus 5 phones, a Samsung Galaxy
S5, two One Plus Ones, two Motorola Moto G devices (the
2013 and 2014 model), and a LG Nexus 4. We further ana-
lyzed a number of ARMv8-based devices: a LG Nexus 5X,

1683

0 16 32 48 64

page 1

0

16

32

48

64

p
a
g
e

2

100

125

150

175

ti
m

e
p

er
re

a
d

(n
s)

Figure 3: Heatmap representing the time required
to access a given pair of pages on a LG Nexus 5.
The diagonal pattern clearly indicates that the row
size is 16 pages = 64K.

a Samsung Galaxy S6, a Lenovo K3 Note, a Xiaomi Mi 4i,
a HTC Desire 510, and a LG G4.

We subject each device to a Rowhammer test, which (i)
exhausts all the large ION chunks to allocate a maximum
amount of hammerable memory (starting at 4 MB chunks,
down to chunks that are 4 times the row size); (ii) performs
double-sided Rowhammer on each victim page for which ag-
gressor pages are available twice and checks the entire victim
row for flips (i.e., we hammer once with all victim bits set
to 1—searching for 1-to-0 flips—and once with all bits set
to 0); and (iii) for each induced flip, dumps its virtual (and
physical, if /proc/self/pagemap is available) address, the
time it took to find it (i.e., after n seconds), its direction (1-
to-0 or 0-to-1), and whether it is exploitable by our specific
Drammer attack, as discussed in Section 5.

To hammer a page, we perform 2x 1M read operations on
its aggressor pages. Although prior work shows that 2.5M
reads yields the optimal amount of flips, lowering the read
count allows us to finish our experiments faster, while still
inducing plenty of bit flips.

Our results (presented in Table 2) show that many tested
ARMv7 devices are susceptible to the Rowhammer bug,
while our ARMv8 devices seem somewhat more reliable (al-
though still vulnerable). However, due to our small current
ARMv8 sample size, we cannot conclude that ARMv8 de-
vices are more resilient by design. Moreover, it should be
noted that our Nexus 5 devices have been used extensively
in the past for a variety of research projects. This may in-
dicate a correlation between (heavy) use and the ability to
induce (more) bit flips. Future research is required, however,
to confirm whether DRAM wearing actually contributes to
more observable bit flips.

A second key finding presented in Table 2 is that a de-
vice from 2013 (Moto G, 1st generation) is vulnerable to the
Rowhammer bug. This shows that ARM memory controllers
have been capable in performing Rowhammer attacks for
at least three years. Moreover, the MSM8226 SoC (Qual-
comm Snapdragon 400), which both Moto Gs are shipped
with, is still a popular SoC for smartwatches (e.g., Motorola
Moto 360 2nd generation or Huawei Watch), suggesting that
smartwatches may be susceptible to Rowhammer-based ex-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
li
p
s

D
is

co
v
er

ed

Bytes Hammered

Flips – Nexus 55

Flips – Moto G2013

Flips – OnePlus One2

Expl. – Nexus 55

Expl. – Moto G2013

Expl. – OnePlus One2

Figure 4: Template distribution over memory for
three cases—one with many flips (Nexus 55), one
with few flips (Moto G2013), one with a large memory
region without flips (OnePlus One2).

ploits as well. Additionally, while the majority of flips are in-
duced on LPDDR3-devices, the reported flips on the Nexus
4 show that even LPDDR2 is be vulnerable.

Third, when looking at the exploitability of observed flips
(exploitable and 1st columns of Table 2), we conclude that
once we see flips, we will eventually find exploitable flips. Al-
though only around 6% of all observed flips are exploitable,
we always find enough flips to also find those that we can
use in our end-to-end Android root exploit.

To get a better understanding of the template distribu-
tion over memory, we display a CDF for three interesting
devices in Figure 4: one with many flips (Nexus 55), one
with few flips (Moto G2013), and the OnePlus One2. For
most other devices, the distribution trend is similar as that
of the Nexus 5 and Moto G. For the OnePlus One, however,
it is interesting to notice that a large region of the DRAM
exposes no flips at all (from 5% to 60%).

8.3 Root Privilege Escalation
Armed with bit flips from the memory templating step,

we rely on Phys Feng Shui to place the victim page table
in a vulnerable template-matching location and proceed to
reproduce an exploitable bit flip. This step allows us to
control one of our own page tables, enabling root privilege
escalation. To complete our Android root exploit, we over-
write the controlled page table to probe kernel memory for
our own struct cred structure.

The struct cred structure represents a process’ security
context and holds, among others, its real, effective, and
saved user and group IDs (6 UIDs). Since Android provides
each app—and thus each running process—a unique UID, we
can fingerprint a security context by comparing 6 × 4 = 24
bytes. In our experiments on the latest kernel, the physical
page that stores a specific struct cred has 20 bits of en-
tropy, placed between 0x30000000 and 0x38000000. More-
over, the structure is always aligned to a 128 byte boundary,
that is there are 4096

128
= 32 possible locations within a page

on which a struct cred can be found. To successfully find
our own, we thus have to map and scan 220 different physi-

1684

Table 2: Empirical analysis results. For each device, the table shows Hardware Details, which include the
SoC (System on a Chip), available DRAM (LPDDR3, unless stated otherwise), and detected row size (RS),
and Analysis Results. For the latter, the MB column depicts the amount of hammered DRAM, ns shows
the median access time for a single read operation, flips holds the number of unique flips found, KB depicts
the average amount of KB that contain a single flip, 1-to-0 and 0-to-1 show the directions of the found flips,
exploitable shows the number of exploitable templates according our attack, and 1st shows after how many
seconds of hammering we found the first exploitable flip. For same model devices, we use a subscript number
to identify them individually. The top half of the table shows ARMv7-based (32-bit) smartphones, while the
lower rows are ARMv8 (64-bit).

Hardware Details Analysis Results

Device SoC DRAM RS MB ns #flips KB #1-to-0 #0-to-1 #exploitable 1st

A
R

M
v
7

Nexus 51 MSM8974† 2 GB 64 441 70 1,058 426 1,011 47 62 (5.86%) 116s
Nexus 52 MSM8974† 2 GB 64 472 69 284,428 2 261,232 23,196 14,852 (5.22%) 1s
Nexus 53 MSM8974† 2 GB 64 461 69 547,949 1 534,695 13,254 32,715 (5.97%) 1s
Nexus 54 MSM8974† 2 GB 64 616 71 0 – – – – –
Nexus 55 MSM8974† 2 GB 64 630 69 747,013 1 704,824 42,189 46,609 (6.24%) 1s
Nexus 56 MSM8974† 2 GB 64 512 69 215,233 3 207,856 7,377 13,365 (6.21%) 3s
Nexus 58 MSM8974† 2 GB 64 485 70 32,328 15 28,500 3,828 1,894 (5.86%) 4s
Nexus 59 MSM8974† 2 GB 64 569 69 476,170 2 434,086 42,084 30,190 (6.34%) 0s
Nexus 510 MSM8974† 2 GB 64 406 69 160,245 3 150,485 9,760 8,701 (5.43%) 1s
Nexus 511 MSM8974† 2 GB 64 613 70 0 – – – – –
Nexus 512 MSM8974† 2 GB 64 600 70 17,384 35 16,767 617 1,241 (7.14%) 16s
Nexus 513 MSM8974† 2 GB 64 575 69 161,514 4 160,473 1,041 10,378 (6.43%) 355s
Nexus 514 MSM8974† 2 GB 64 576 69 295,537 2 277,708 17,829 18,900 (6.40%) 1s
Nexus 515 MSM8974† 2 GB 64 573 69 38,969 15 35,515 3,454 2,775 (7,12%) 11s
Nexus 517 MSM8974† 2 GB 64 621 70 0 – – – – –
Galaxy S5 MSM8974‡ 2 GB 64 207 82 0 – – – – –
OnePlus One1 MSM8974‡ 3 GB 64 292 71 3,981 75 2,924 1,057 242 (6.08%) 942s
OnePlus One2 MSM8974‡ 3 GB 64 1189 69 1,992 611 942 1,050 94 (4.72%) 326s
Moto G2013 MSM8226 1 GB 32 134 127 429 275 419 10 30 (6.99%) 441s
Moto G2014 MSM8226 1 GB 32 151 127 1,577 98 1,523 54 71 (4.66%) 92s
Nexus 4 APQ8064 2 GB∗ 64 82 18 1,328 64 1,061 267 104 (7.83%) 7s

A
R

M
v
8

Nexus 5x MSM8992 2 GB 64 271 63 0 – – – – –
Galaxy S6 Exynos7420 3 GB◦ 128 234 82 0 – – – – –
K3 Note MT6752 2 GB 64 423 218 0 – – – – –
Mi 4i MSM8939 2 GB 64 327 159 0 – – – – –
Desire 510 MSM8916 1 GB 32 186 122 0 – – – – –
G4 MSM8992 3 GB 64 833 64 117,496 8 117,260 236 6,560 (5.58%) 5s

†MSM8974AA ‡MSM8974AC ∗LPDDR2 ◦LPDDR4

cal pages in the worst-case scenario, and for each page per-
form 32 different compare operations, resulting in, at most,
220 ∗32 = 33, 554, 432 calls to memcmp. Since we control only
a single page table—on ARMv7 capable of storing PTEs to
512 physical pages—we also need to flush the TLB every
512 tries. Thus, in order to read all possible pages that may

contain own our struct cred, we must perform 220

512
= 2, 048

TLB flushes.
We flush the TLB by reading from 8, 196 different pages in

a 32 MB memory region, which takes approximately 900µs.
Comparing 24 bytes using memcmp() takes at most 600 ns,
limiting the upper bound time of the final exploitation step
to 2, 048× 900µs+ 33, 554, 432× 600ns ∼ 22 seconds (mea-
sured on a Nexus 5). Note that having to break 20 bits of
entropy does not make our attack less deterministic: we will
always be able to find our own struct cred.

Based on the results from our empirical study, we find
that, for the most vulnerable phone, an end-to-end attack
(including the final exploitation step) takes less than 30 sec-

onds, while in the worst-case scenario, it takes a little over
15 minutes, where templating is obviously the most time-
consuming phase of the attack. To confirm that our exploit
is working, we successfully exploited our Nexus 58 in less
than 20 seconds.2

Finally, to support future research on mobile Rowhammer
and to expand our empirical study to a broader range of
devices, we release our codebase as an open source project
and aim to build a public database of known vulnerable
devices on our project website.

9. MITIGATION AND DISCUSSION
In this section, we investigate the effectiveness of current

Rowhammer defenses and discuss potential design improve-
ments of the memory management process that could miti-
gate our attack.

2See https://vusec.net/projects/drammer/ for a demo.

1685

9.1 Existing Rowhammer Defenses

Countermeasures against Rowhammer have already been
proposed, both in software and hardware, but very few are
applicable to the mobile domain or effective against a generic
attack such as the one we proposed.

Software-based. Instruction “blacklisting”, i.e., disallow-
ing or rewriting instructions such as CLFLUSH [35, 36] and
non-temporal instructions [31] has been proposed as a coun-
termeasure and is now deployed in Google Native Client
(NaCl). Similarly, access to the Linux pagemap interface is
now prohibited from userland [34,40]. However, these coun-
termeasures have already proven insufficient, since Rowham-
mer has been demonstrated in JavaScript [11,16], where nei-
ther these special instructions nor the pagemap interface are
present. As a more generic countermeasure, ANVIL [9] tries
to detect Rowhammer attacks by monitoring the last-level
cache miss rate and row accesses with high temporal local-
ity. Similarly, Herath et al. [17] propose to monitor the num-
ber of last-level cache misses during a given refresh interval.
Both approaches rely on CPU performance counters specific
to Intel/AMD. Furthermore, our attack bypasses the cache
completely, thus producing no cache misses that could raise
red flags.

Hardware-based. Memory with Error Correcting Codes
(ECC) corrects single bit flip errors, and reports other er-
rors. However, Lanteigne [26] studied Rowhammer on server
settings with ECC and reported surprising results, as some
server vendors implement ECC to report bit flip errors only
upon reaching a certain threshold—and one vendor even
failed to report any error. Likewise, ECC often does not
detect multiple flips in a single row. Doubling DRAM re-
fresh rates has been the response of most hardware vendors
via EFI or BIOS updates [5, 18, 27]. It severely limits most
attacks. However, Kim et al. [23] show that the refresh
rate would need to be increased up to eight times to com-
pletely mitigate the issue. Aweke et al. [9] mention that
both doubling the DRAM refresh rate and prohibiting the
CLFLUSH instruction defeat Rowhammer attacks, but no sys-
tem currently implements it. As increased refresh rates have
severe consequences for both power consumption and perfor-
mance [10], this countermeasure does not seem well-suited
for mobile devices. In addition, it aligns poorly with the di-
rection taken by the LPDDR4 standard [20], which requires
the refresh rate to drop at low temperatures to conserve
battery life.

Further mitigations rely on the Detection of Activation
Patterns to refresh targeted rows and need support from the
DRAM chip or the memory controller. The LPPDR4 stan-
dard proposes Target Row Refresh (TRR) [20], which seems
to be an effective countermeasure, but we need to expand
our study to more devices shipped with this type of mem-
ory. Probabilistic Adjacent Row Activation (PARA) [23]
refreshes neighboring rows on each activation with a low
probability (and thus very likely during repeated activations
in a Rowhammer attack), but requires modifications of the
memory controller to do so. ARMOR [14] introduces an
extra cache buffer for rows with frequent activations, i.e.,
hammered rows, but again needs to be implemented in the
memory controller.

9.2 Countermeasures Against Drammer

We now elaborate on countermeasures that are more spe-
cific to our Drammer attack on mobile platforms.

Restriction of userland interface. Since DMA plays an
important part in the deterministic Rowhammer attack on
mobile devices, the question arises whether userland apps
should be allowed unrestricted access to DMA-able memory.
On Android, the motivation for doing so via ION is device
fragmentation: vendors need to define custom heaps depend-
ing on the specific hardware requirements of each product,
and provide a mapping of use cases to heaps in their custom
implementation of gralloc(). It is Google’s policy to keep
the vendors’ product-specific code in user rather than in
kernel mode [43].3 Linux implements similar DMA-support
with the dma-buf buffer sharing API [37], but with a more
restricted interface. However, ION seems to fill a gap in this
regard [3] and efforts are underway to upstream it [39,42].

Concurrently to our work Google has adopted several de-
fenses from the Linux kernel in Android [21] concerning
memory protection and attack surface reduction. While the
majority of defenses do not affect our attack, Android now
provides mechanisms to enforce access restrictions to ioctl

commands and added seccomp to enable system call filers.
These mechanisms could be used to restrict the userland
interface of ION.

However, we note that simply disabling ION is not the
final solution to Rowhammer-based attacks: (i) as discussed
in Section 7, it is possible to generalize our attack to other
Linux-based platforms without ION; (ii) since a large num-
ber of DRAM chips are vulnerable to bit flips and an at-
tacker might still be able to exploit them through other
means. Nevertheless, improvements to the interface of ION
and memory management in general could significantly raise
the bar for an attacker. For example, a possible improve-
ment is to adopt constraint-based allocation [38], where the
(ION) allocator picks the type of memory for an allocation
based on constraints on the devices sharing a buffer and de-
fers the actual allocation of buffers until the first device at-
taches one (rather than upon request from a userland client).

Memory isolation and integrity. In the face of an OS in-
terface that provides user applications access to DMA-able
memory, stricter enforcement of memory isolation may be
useful. Specifically, it may be possible to completely iso-
late DMA-able memory from other regions. Currently, ION
readily breaks the isolation of memory zones by allowing
userland to allocate physically contiguous memory in low
memory regions usually reserved for the kernel and page
tables. One option is to isolate ION regions controlled by
userland from kernel memory. In principle, ION can al-
ready support isolated heaps (e.g., ION carveout), but such
heaps are statically preallocated and do not yet provide a
general buffer management primitive. Furthermore, even in
the absence of ION, an attacker can force the buddy allo-
cator to allocate memory (e.g., huge or regular pages) in
kernel memory zones by depleting all the memory available
to userland [22]. Thus, the design of isolation and integrity
measures for security-critical data such as page tables also
needs improvements.

3Full discussion at the Linux Plumbers Conference 2013:
https://www.youtube.com/watch?v=8okc75j5cKk

1686

For instance, the characteristics of the underlying DRAM
cells could be taken into account when allocating memory
regions for security-critical data. Flikker [29] proposes to
allocate critical data in memory regions with higher refresh
rates than non-critical data. RAPID [45] suggests that the
OS should prefer pages with longer retention times, i.e., that
are less vulnerable to bit flips. Even without a DRAM-aware
allocator, isolating security-critical data (e.g., page tables)
in zones that the system never uses for data that can be
directly (e.g., ION buffers) or indirectly (e.g., slab buffers)
controlled would force attackers to resort to a probabilistic
attack with low chances of success (no deterministic or prob-
abilistic memory reuse). However, enforcing strict isolation
policies is challenging as, when faced with high memory pres-
sure, the physical page allocator naturally encourages cross-
zone reuse to eliminate unnecessary OOM events—opening
up again opportunities for attacks [22]. In addition, even
strict isolation policies may prove insufficient to completely
shield security-sensitive data. For example, ION is also used
by the media server, which is running at a higher privilege
than normal apps. Hence, an attacker controlling a hypo-
thetically isolated ION region could still potentially corrupt
security-sensitive data, i.e., the media server’s state, rather
than, say, page tables.

Prevention of memory exhaustion. Per-process mem-
ory limits could make it harder for an attacker (i) to find
exploitable templates and (ii) exhaust all available memory
chunks of different sizes during Phys Feng Shui. Android
already enforces memory limits for each app, but only at
the Dalvik heap level. As a countermeasure, we could en-
force this limit at the OS level (accounting for both user and
kernel memory), and per-user ID (to prohibit collusion).

10. RELATED WORK
The Rowhammer bug has gathered the attention of the

scientific community for two years, beginning with the work
of Kim et al. [23], who studied the possibility and the preva-
lence of bit flips on DDR3 for x86 processors. Aichinger [4]
later analyzed the prevalence of the Rowhammer bug on
server systems with ECC memory and Lanteigne performed
an analysis on DDR4 memory [25]. In contrast to these ef-
forts, we are the first to study the prevalence of the Rowham-
mer bug on ARM-based devices. Several efforts focused on
finding new attack techniques [9,11,16,23,31,32]. However,
all these techniques only work on x86 architectures and, as
discussed in Section 4.3, are not applicable to our setting.

Drammer is an instance of the Flip Feng Shui (FFS) ex-
ploitation technique [32]. Rather than using memory dedu-
plication, Drammer relies on Phys Feng Shui for physical
memory massaging on Linux. This shows that FFS can be
implemented with always-on commodity features.

Lipp et al. [28] demonstrated cache eviction on ARM-
based mobile devices, but did not evaluate the possibility
of Rowhammer attacks based on cache eviction. Other at-
tack techniques focus on the DRAM itself. Lanteigne [25,26]
examined the influence of data and access patterns on bit
flip probabilities on DDR3 and DDR4 memory on Intel and
AMD CPUs. Pessl et al. [30] demonstrated that reverse en-
gineering the bank DRAM addressing can reduce the search
time for Rowhammer bit flips. These techniques are com-
plementary to our work.

Another line of related work uses the predictable mem-
ory allocation behavior of Linux for the exploitation of use-
after-free vulnerabilities. Kemerlis et al. [22] showed in their
ret2dir attack how kernel allocators can be forced to allo-
cate user memory in kernel zones. Xu et al. [48, 49] used
the recycling of slab caches by the SLUB allocator to craft
the PingPongRoot root exploit for Android. Finally, Lee
Campbell [12] relied on kernel object reuse to break out of
the Chrome sandbox on Android.

In concurrent work, Zhang et al. [51] perform a system-
atic analysis of the design and implementation of ION, al-
though without studying the topic of cache coherency. They
found similar security flaws as the ones we exploit for our
attack, but described different attack scenarios: (i) due to
the unlimited access to ION heaps, both concerning access
restrictions and memory quotas, an attacker can perform
a denial-of-service attack by exhaustively allocating all de-
vice memory; (ii) the recycling of kernel memory for user-
land apps—and in this case missing buffer zeroing logic in
between—makes ION vulnerable to sensitive information
leakage. Consequently, their proposed redesign of ION con-
tains some of the countermeasures we discussed in the pre-
vious section, e.g., enforcing memory quotas and restrict-
ing the userland interface. However, they observe that im-
plementing these changes is challenging, as they incur per-
formance penalties, break backward-compatibility, and add
complexity by introducing new security mechanisms specif-
ically for the access to ION heaps.

11. CONCLUSION
In this paper, we demonstrated that powerful determin-

istic Rowhammer attacks that grant an attacker root priv-
ileges on a given system are possible, even by only rely-
ing on always-on features provided by commodity operat-
ing systems. To concretely substantiate our claims, we pre-
sented an implementation of our Drammer attack on the
Android/ARM platform. Not only does our attack show
that practical, deterministic Rowhammer attacks are a real
threat for billions of mobile users, but it is also the first ef-
fort to show that Rowhammer is even possible at all (and
reliably exploitable) on any platform other than x86 and
with a much more limited software feature set than exist-
ing solutions. Moreover, we demonstrated that several de-
vices from different vendors are vulnerable to Rowhammer.
To conclude, our research shows that practical large-scale
Rowhammer attacks are a serious threat and while the re-
sponse to the Rowhammer bug has been relatively slow from
vendors, we hope our work will accelerate mitigation efforts
both in industry and academia.

Disclosure
We have reported our attack (and possible countermeasures)
to Google and cooperated with the National Cyber Security
Centre in the Netherlands to coordinate disclosure of the
vulnerabilities to relevant parties.

Acknowledgements
We would like to thank the anonymous reviewers for their
valuable comments and input to improve the paper, as well
as Ben Gras, Erik Bosman, Kevin Borgolte, Andrea Con-
tinella, Michael Schwarz, and Moritz Lipp for help with some

1687

experiments. This work was supported by the Netherlands
Organisation for Scientific Research through grants NWO
639.023.309 VICI“Dowsing”and NWO CSI-DHS 628.001.021,
and by the European Commission through project H2020
ICT-32-2014“SHARCS”under Grant Agreement No. 644571,
programme GA No. 644052 (HECTOR) and EU FP7 pro-
gramme GA No. 610436 (MATTHEW).

This material is also based upon work supported by the
ONR under Award No. N00014-15-1-2948, and by the NSF
under Award No. CNS-1408632. Any opinions, findings,
and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not necessarily reflect
the views of the ONR and the NSF.

12. REFERENCES
[1] Low RAM Configuration. https://source.android.com/

devices/tech/config/low-ram.html.

[2] Transparent Hugepage Support. https://www.kernel.
org/doc/Documentation/vm/transhuge.txt.

[3] L. Abbott. Lessons from Ion. Embedded Linux
Conference (ELC), April 2016.

[4] B. Aichinger. DDR Memory Errors caused by Row
Hammer. In Proceedings of the 19th IEEE High
Performance Extreme Computing Conference
(HPEC), 2015.

[5] Apple Inc. Mac EFI Security Update 2015-001.
https://support.apple.com/en-us/HT204934, June
2015.

[6] A. Arcangeli. Transparent Hugepage Support. http://
www.linux-kvm.org/images/9/9e/2010-forum-thp.pdf,
August 2010.

[7] ARM Limited. ARM Architecture Reference Manual.
ARMv7-A and ARMv7-R edition, 2012.

[8] ARM Limited. ARM Architecture Reference Manual.
ARMv8, for ARMv8-A architecture profile, 2013.

[9] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das,
M. Hicks, Y. Oren, and T. Austin. ANVIL:
Software-Based Protection Against Next-Generation
Rowhammer Attacks. In Proceedings of the 21st ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 2016.

[10] I. Bhati, M.-T. Chang, Z. Chishti, S.-L. Lu, and
B. Jacob. DRAM Refresh Mechanisms, Penalties, and
Trade-Offs. IEEE Transactions on Computers, 65(1),
2016.

[11] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida.
Dedup Est Machina: Memory Deduplication as an
Advanced Exploitation Vector. In Proceedings of the
37th IEEE Symposium on Security and Privacy
(S&P), 2016.

[12] L. Campbell. Exploiting NVMAP to escape the
Chrome sandbox - CVE-2014-5332.
http://googleprojectzero.blogspot.com/2015/01/
exploiting-nvmap-to-escape-chrome.html, January
2015.

[13] H. Flake. Three Things that Rowhammer Taught Me.
Null Singapore, March 2016.

[14] M. Ghasempour, M. Lujan, and J. Garside. ARMOR:
A Run-Time Memory Hot-Row Detector. http://apt.
cs.manchester.ac.uk/projects/ARMOR/RowHammer,
2015.

[15] M. Gorman. Understanding the Linux Virtual Memory
Manager. Prentice Hall PTR, 2007.

[16] D. Gruss, C. Maurice, and S. Mangard.
Rowhammer.js: A Remote Software-Induced Fault
Attack in JavaScript. In Proceedings of the 13th
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2016.

[17] N. Herath and A. Fogh. These are Not Your Grand
Daddy’s CPU Performance Counters - CPU Hardware
Performance Counters for Security. In Black Hat USA
(BH-US), 2015.

[18] Hewlett Packard. Moonshot Component Pack Version
2015.05.0 Release Notes.
http://h10032.www1.hp.com/ctg/Manual/c04676483,
May 2015.

[19] JEDEC Solid State Technology Association. DDR3
SDRAM Specification. JESD79-3F, 2012.

[20] JEDEC Solid State Technology Association. Low
Power Double Data 4 (LPDDR4). JESD209-4A, 2015.

[21] Jeff Vander Stoep. Protecting Android with more
Linux kernel defenses.
http://android-developers.blogspot.com/2016/07/
protecting-android-with-more-linux.html, July 2016.

[22] V. P. Kemerlis, M. Polychronakis, and A. D.
Keromytis. ret2dir: Rethinking Kernel Isolation. In
Proceedings of the 23rd USENIX Security Symposium,
2014.

[23] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping Bits in
Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In Proceedings of
the 41st International Symposium on Computer
Architecture (ISCA), 2014.

[24] C. Lameter. Light weight event counters V4.
https://lwn.net/Articles/188327, June 2006.

[25] M. Lanteigne. A Tale of Two Hammers: A Brief
Rowhammer Analysis of AMD vs. Intel.
http://www.thirdio.com/rowhammera1.pdf, May
2016.

[26] M. Lanteigne. How Rowhammer Could Be Used to
Exploit Weaknesses in Computer Hardware.
http://www.thirdio.com/rowhammer.pdf, March
2016.

[27] Lenovo. Row Hammer Privilege Escalation.
https://support.lenovo.com/us/en/product security/
row hammer, March 2015.

[28] M. Lipp, D. Gruss, R. Spreitzer, and S. Mangard.
ARMageddon: Cache Attacks on Mobile Devices. In
Proceedings of the 25th USENIX Security Symposium,
2016.

[29] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn.
Flikker: Saving DRAM Refresh-power through
Critical Data Partitioning. In Proceedings of the 16th
ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[30] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard. DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks. In Proceedings of the 25th
USENIX Security Symposium, 2016.

1688

[31] R. Qiao and M. Seaborn. A New Approach for
Rowhammer Attacks. In Proceedings of the 9th IEEE
International Symposium on Hardware Oriented
Security and Trust (HOST), 2016.

[32] K. Razavi, B. Gras, E. Bosman, B. Preneel,
C. Giuffrida, and H. Bos. Flip Feng Shui: Hammering
a Needle in the Software Stack. In Proceedings of the
25th USENIX Security Symposium, 2016.

[33] Red Hat. How to use, monitor, and disable
transparent hugepages in Red Hat Enterprise Linux 6?
https://access.redhat.com/solutions/46111, September
2015.

[34] M. Salyzyn. AOSP Commit 0549ddb9: ”UPSTREAM:
pagemap: do not leak physical addresses to
non-privileged userspace”. http://goo.gl/Qye2MN,
November 2015.

[35] M. Seaborn and T. Dullien. Exploiting the DRAM
Rowhammer Bug to Gain Kernel Privileges. In Black
Hat USA (BH-US), 2015.

[36] M. Seaborn and T. Dullien. Exploiting the DRAM
rowhammer bug to gain kernel privileges.
http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, March
2015.

[37] S. Semwal. DMA Buffer Sharing API Guide.
https://www.kernel.org/doc/Documentation/
dma-buf-sharing.txt.

[38] S. Semwal. dma-buf Constraints-Enabled Allocation
helpers. https://lwn.net/Articles/615892/, October
2014.

[39] S. Semwal. Upstreaming ION Features: Issues that
remain. Linux Plumbers Conference, August 2015.

[40] K. A. Shutemov. Linux commit ab676b7d: ”pagemap:
do not leak physical addresses to non-privileged
userspace”. http://goo.gl/Zvd0qf, March 2015.

[41] K. A. Shutemov. THP-enabled tmpfs/shmem using
compound pages. http://lwn.net/Articles/687352,
May 2016.

[42] J. Stultz. Integrating the ION memory allocator.
https://lwn.net/Articles/565469/, September 2013.

[43] J. Stultz. Summary of the Android Graphics
microconference. https://lwn.net/Articles/569704/,
October 2013.

[44] Unity. Mobile (Android) Hardware Stats.
http://hwstats.unity3d.com/mobile/cpu-android.html,
June 2016.

[45] R. K. Venkatesan, S. Herr, and E. Rotenberg.
Retention-aware placement in DRAM (RAPID):
Software methods for quasi-non-volatile DRAM. In
Proceedings of the 12th International Symposium on
High-Performance Computer Architecture (HPCA),
2006.

[46] VMware. Security considerations and disallowing
inter-Virtual Machine Transparent Page Sharing.
https://kb.vmware.com/kb/2080735, October 2014.

[47] Y. Xiao, X. Zhang, Y. Zhang, and M.-R. Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM Row
Hammer Attacks and Privilege Escalation. In
Proceedings of the 25th USENIX Security Symposium,
2016.

[48] W. Xu and Y. Fu. Own Your Android! Yet Another
Universal Root. In Proceedings of the 9th USENIX
Workshop on Offensive Technologies (WOOT), 2015.

[49] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and
D. Gu. From Collision To Exploitation: Unleashing
Use-After-Free Vulnerabilities in Linux Kernel. In
Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), 2015.

[50] T. M. Zeng. The Android ION memory allocator.
https://lwn.net/Articles/480055, February 2012.

[51] H. Zhang, D. She, and Z. Qian. Android ION Hazard:
the Curse of Customizable Memory Management
System. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS),
2016.

1689

