
The Effect of Speculatively Updating Branch History

on Branch Prediction Accuracy, Revisited

Eric Hao, Po-Yung Chang, and Yale N. Patt

Department of Electrical Engineering and computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

Abstract

Recent research [6] has suggested that the branch his-

tory register need not contain the outcomes of the most

recent branches in order for the Two-Level Adaptive

Branch Predictor to work well. From this result, it is

tempting to conclude that the branch history register

need not be speculatively updated. This paper revis-

its this work and explains when the most recent branch

outcomes can be omitted without significantly affecting

performance. It also explains why this result does not

imply that speculative update is not important. This

paper shows that because the number of unresolved

branches present in the machine varies during program

execution, branch predictors without speculative update

perform significantly worse than branch predictors with

speculative update.

Keywords: Two-Leuel Adaptive Branch Prediction,

dynamic branch prediction, speculative execution, super-

scalar processors, out-of-order execution

1 Introduction

Very accurate branch prediction is a critical require-

ment for high performance wide-issue, deeply pipelined

processors. To address this need, many different branch

prediction algorithms have been developed [2, 3]. In this

paper, we will be examining the global variation of the

Two-Level Adaptive Branch Predictor [7, 8, 4]. Its pre-

dictions are based on the outcomes of previously issued

branches which are stored in the branch history regis-

ter. Because the processor may be speculatively issuing

instructions from a point far ahead of where it is exe-

cuting in the dynamic instruction stream, the predictor

may be basing its predictions on branch outcomes that

have yet to be resolved. Past research [8] has stated

that because the outcomes of the most recent branches

are crucial for accurate branch prediction, the predictor

should be speculatively updated with their predicted

outcomes whether they are resolved or not.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
MICRO 27- 11/94 San Jose CA USA
@ 1994 ACM 0-89791 -707-3/94/001 1..$3.50

Recent research [6] has questioned the importance of

including such branches in the branch history register.

They examined the performance of a version of the Two-

Level Adaptive Branch Predictor (the skipped model)

which excluded a fixed number of the most recently is-

sued branches from the branch history register. As the

number of branches excluded was increased, the predic-

tion accuracy of the skipped model remained fairly con-

stant. Based on this result, they concluded that branch

prediction accuracy is not significantly affected when

unresolved branches are excluded from the branch his-

tory register (i.e. speculative update does not signifi-

cantly improve performance). In addition, they showed

that in the presence of unresolved branches, specula-

tively updating the branch history register actually low-

ers prediction accuracy.

In this paper, we revisit the previous study [6]. In sec-

tion 2, we present the results of further experiments that

provide an explanation for when excluding the most re-

cent branches from the branch history register does not

significantly affect prediction accuracy. In section 3, we

reexamine the usefulness of speculatively updating the

branch history register. We show that the prediction

accuracies of predictors with speculative update do not

degrade in the presence of unresolved branches. Fur-

thermore, we show that because the number of unre-

solved branches present in the machine varies, branch

predictors that omit unresolved branches from their his-

tory registers perform significantly worse than branch

predictors that speculatively update their history regis-

ters. Section 4 provides some concluding remarks.

2 Branch Prediction Based on Older

Histories

In this section, we revisit the results of the skipped

model experiment [6]. The skipped model predictor is

a speculatively updated predictor that bases its predic-

tions on branch histories that are older than the ones

used by the standard predictor. It exchanges some fixed

number of the most recently issued branches from its

branch history register for an equal number of older

branches (see figure 1). The original results of the

skipped model experiment found that varying the num-

ber of recent branches omitted from one to four has little

affect on the prediction accuracy.

228

Sr.cirtober%rricted ~ ,

bm+n bm bn+t
i

bli

t, :,.:.,:,.,..,.,.,,, ;..,5... :,. ,.............

Standard Model ~ ~
,.,,,..~....,...................................,,...,....,,.,,...,..,..

;; , I:, ,
:: :: :: I
.,,*,......+,,;.,;.+..,.,:~:.,.;..,.,:.,..,.,,,:,,,.,..,.:.,.,.~,:,.,,.~,,.:.,..
:.:,.y,f:,.r+,%}:,.),.,%,.,,,:..$,,.,..,.,.:..,;..,:,........Skipped Model

i
:
I

- Tii

Figurel: m-bit branch history registers forthe standard

and skipped models with n unresolved branches.

We repeated the skipped model experiment using a

trace-driven simulator that modeled the global variation

of the Two-Level Adaptive Branch Predictor. The pre-

dictor devoted one pattern history table to each static

branch in the program. This eliminated from our ex-

periment any branch mispredictions due to pattern his-

tory table conflicts. This way, any mispredictions that

occurred in the skipped model predictor that did not

occur in the standard predictor would only be due to

the difference in recorded branch histories. The pat-

tern history tables were updated immediately after the

prediction. For each predictor configuration, we mea-

sured prediction accuracy for five of the six SPEC92

integer benchmarks: espresso, xlisp, eqntott, compress,

and gcc 2. Each benchmark was simulated for 10 million

conditional branch instructions. Our results confirmed

those of the original experiment [6]: prediction accu-

racy remains fairly constant as the number of skipped

branches is increased. The results are omitted from this

paper due to space considerations.

The results of the skipped model experiment indi-

cate that the the outcomes of recently issued branches

are not significantly more useful for predicting branches

than the outcomes of older branches. For a given branch

prediction, the outcomes of the most recently issued

branches either provide useful information for the pre-

diction or do not provide useful information. If they

do not provide useful information, excluding them from

the branch history register should not affect prediction

accuracy which is consistent with the experimental re-

sults. If they do provide useful information, excluding

them should lower prediction accuracy which is not con-

sistent with the experimental results.

To resolve this contradiction, we reran the skipped

model experiments using the same predictor configu-

rations and recorded the recently issued branch out-

1A .e~ ~rey,ct~. WOUIA ~~~b=bly ~.&t until after th. branch

was retired to update the pattern history tables. A previous

st udy[9] has shown that updating the tables immediately provides
no appreciable gain in prediction accuracy.

2Sc was omitted due to problems with the simulator.

~ 0.94

$ 0.92

g 0.90

“~ 0.88

L

: 13,~6 0--0
X......x

> 0.84 ❑ ❑---
2
~ 0.82 + -.-+
% ~ ----- ~
& 0.80

0.78

\
~..

GAp(16,int) b“-------
GAp(12,inf) ‘-”%4-..

-%.-..
GAp(8,inf) ..*
GAp(4,inQ
GAp(2,irlr3

-.
0 1 2 3 4 >

Number of Skipped Branches

Figure 2: The fraction of branch predictions in which a

dominant skipped sequence occurred — espresso.

o l.oo — ~“:::-===*’:2=---2 a2a:-:::~~~~~
2
~ 0,98 — “-. -.+.-,
W -----

.+. -
$ 0.96 — A ---- .-. +... ..
g 0.94 – -..

*..+

$ 0.92-—
A..

-%..
g 0.90 – -“%.

-’%.
‘~ 0.88 –

d 0.86 –
~..

0 .-..-0 GAp(16,i@ ●..
% ~..

xx GAp(12,ir@ * .*
h 0.84 —
E 0-- -• GAp(8,inf)
$j 0.82 — + -.-+ GAp(4,inf)

~ 0.80 — A ----- A GAp(2,i@

0.78 ~ I I I I I
o 1 2 3 4 5

Number of Skipped Branche8

Figure 3: The fraction of branch predictions in which a

dominant skipped sequence occurred — xlisp.

comes that were omitted for each branch prediction. For

each prediction of a given static branch instruction, we

recorded the contents of the branch history register and

the sequence of omitted branch outcomes. If the pre-

dictor was skipping n branches, then for a given static

branch and history register pattern, there would be 2n

possible sequences of omitted branch outcomes. The re-

sults showed that for most pairs of static branches and

history register patterns, a single sequence would OC-

cur an overwhelmingly large majority of the time. We

call this sequence the dominant skipped sequence. Fig-

ures 2— 6 plot for each predictor configuration the frac-

tion of branch predictions in which a dominant skipped

sequence occurred. If we only consider predictor config-

urations with branch history register lengths of at least

eight, this fraction never dropped below 9370.

229

l.rQ

0.98

0.96

0.94

0.92

0.90

0.88
I

0.86

[

0.-..-0 GAp(16,infl
—

0.84
xx GAp(12,ii
fJ- -- ❑ GAp(8,il@

0.82 + --- + GAp(4,inf)

0.80 A ----- A GAp(2jllf)

Number of Skipped Branches

Figure 4: The fraction of branch predictions in which a

dominant skipped sequence occurred — eqntott.

~ 1.(X3

~ 0.98

I

&..
.::.::: =”*B2’2F:.:yg.:: =:.:::,:,9

.-. + ---- .-*-- .,.
~ 0.96 a . ..-

; 0.94
~..

~.. “%. =
~..

“#s 0.92 ~,. ..
“+~..

{ 0.90 ~..
~..

“g 0.88 h

$ l-J.&5 0.-..-0 GAp(16;i
*..

*..
~.,

x .x GAp(12,iI@ *..& 0.84
D--- ❑ GAp(8,ir@ h

~ 0.82 + -.-+ GAp(4,ir@
F,K 0.80 A .-..-A GAp(2,inf)

Number of Skipped Branches

Figure 5: The fraction of branch predictions in which a

dominant skipped sequence occurred — compress.

‘h -E---
. ..-

4

. . . . -.
““. -cl

‘.. “-+.
“..., . . .

-.>.~.,
‘.. -.

‘A,, %..
-..

“... . ..%
% +

~.
“%0 .-..-0 GAp(16,inf) ‘\

xX GAp(12,~ “h,.
❑ --- ❑ GAp(8,irrf) $...
+ --- + GAp(4,ir@ ~..

~..
A .-.-A GAp(2Jnf) ~.‘,

h
“., ”

0 i i 3 4 5

Number of Skipped Branches

Figure 6: The fraction of branch predictions in which a

dominant skipped sequence occurred — gee.

Because the dominant skipped sequence occurs such a

large majority of the time, the value of the sequence can

be thought of as being implicitly represented by its as-

sociated static branch and history register pattern pair.

This implicit representation of the omitted branch out-

comes allows the skipped model predictor to achieve a

prediction accuracy comparable to that of the standard

predictor. As a result, the skipped model predictor does

not exchange information about recently issued branch

outcomes in return for information about older branch

outcomes for every branch prediction it makes. Such

exchanges are performed for the rare instances in which

the omitted branch outcomes do not match the dom-

inant skipped sequence. For the remaining instances,

the skipped model predictor receives the information

for free.

3 Speculative Update

In this section, we show the positive impact spec-

ulatively updating the branch history register makes

towards accurate branch prediction. We show that

the prediction accuracies of predictors with speculative

update are independent of the number of unresolved

branches present in the machine. Furthermore, we show

that because this number varies during program exe-

cution, the prediction accuracies of predictors without

speculative update are significantly lower than those of

predictors with speculative update.

Recent research [6] erroneously reported that the pre-

diction accuracy of speculatively updated predictors

dramatically decreased as the number of unresolved

branches present in the machine increased. The study’s

author reports that the incorrect result was due to an

error in their simulator[5]. The correct result shows that

the prediction accuracy is not affected by the number

of unresolved branches present. Because only branch

predictions made while the machine is speculatively ex-

ecuting down the correct path of the program affect the

execution time, only those predictions contribute to the

calculation of prediction accuracy [9]. For such predic-

tions, all the branch outcomes contained in the branch

history register are guaranteed to be correct, regardless

of whether they are resolved or not.

The skipped model experiment showed that omitting

a fixed number of branches from the branch history reg-

ister does not significantly affect prediction accuracy.

This result does not apply to a predictor that omits all

unresolved branches, because the number of unresolved

branches can vary during program execution. To deter-

mine the effect of omitting unresolved branches, we sim-

ulated such a predictor and compared its performance

to that of a predictor with speculative update.

Each predictor’s performance was measured using

a trace-driven simulator. The simulator modeled a

dynamically-scheduled machine that could issue up to

230

Branch to be Predicted

‘O’ntof’etiremen’+~ ~
bm ;b5 ~lj

1
Speculative Update

bm+3 ;b5
Resotved E?zlbl~

I
b/?l+4 i b5 bl ~

Resolved + Issue Order ~;

LVn+s ~b5 bl ~

Retired
~,

t
i

Redred Branch ❑ Resolved Branch~ I.hnesolved Branch ❑

Figure 7: m bit branch history registers for predictors
with speculative update and the three variations of pre-

dictors without speculative update.

eight instructions per cycle with at most one branch is-

sued per cycle. The machine had eight functional units

and a branch predictor with a 16 bit global branch his-

tory register and eight pattern history tables. The three

least significant bits of the branch’s word-aligned ad-

dress specified the pattern history table to be used for

the prediction. Branches were not resolved until after

all the instructions upon which they depended were ex-

ecuted and the branch instruction itself was executed.

Upon resolving a mispredicted branch, the machine was

able to recover immediately to the correct path via

checkpointing [1]. The same set of benchmarks used in

section 2 was used to measure each predictor’s perfor-

mance. Each benchmark was simulated for 100 million

instructions.

We considered three variations in which a predictor

without speculative update could be modeled: resolved,

resolved+ issue order, and retired. In the resolved vari-

ation, the branch history register is updated with the

outcome of a branch as soon as that branch is resolved.

In the resolved+ issue order variation, the branch his-

tory register is updated with the outcome of a branch

as soon as that branch is resolved and all the branches

issued before it are resolved. This variation is identical

to the skipped model with the exception that we allowed

the number of unresolved branches to vary during the

execution of a program. The retired variation updates

the branch history register with the results of a branch

as soon as the checkpoint associated with the branch

is retired (i.e. all the instructions issued before it have

been executed). Figure 7 illustrates the differences be-

tween the variations.

We measured the prediction accuracy and number of

instructions retired per cycle (IPC) for each benchmark.

The simulation results are shown in figures 8 and 9. All

-P II v T g.%
Seachmark

Figure 8: Branch prediction accuracies for the four

branch history update variations of the out-of-order

model.

3

2.5

}’

?s
4 1.5
a
.2

.!
1

0.5

0
esp 11 eqn w gcc

Benchmark

Figure 9: IPC’S for the four branch history update vari-

ations of the out-of-order model.

three variations of the predictor without speculative up-

date had significantly lower prediction accuracies than

the predictor with speculative update. The resolved, re-

solved+ issue order, and retired variations respectively

suffered average decreases of 19Y0, 21?10, and 36% in

prediction accuracy. They had corresponding average

decreases of 29%, 30%, and 41% in IPC.

The decrease in prediction accuracy was not due

to the exclusion of the most recently issued branches

from the branch history registers of the predictors with-

out speculative update; the skipped model experiment

showed that those branches were not needed for accu-

rate branch prediction. The decrease was due to the

number of unresolved branches present in the machine

varying from cycle to cycle. The branch predictor uses

the branch history register to identify what state the

program is in and bases its predictions on that state.

By allowing the number of unresolved branches to vary,

the branch history register can no longer be guaran-

teed to contain the same sequence of branches for ev-

ery dynamic occurrence of a particular program state,

thereby removing the predictor’s ability to identify dis-

tinct states in the program. Without this ability, the

predictor can no longer make accurate predictions.

Consider the example of the resolved variation mak-

ing predictions for different dynamic occurrences of the

‘??1

‘ranchtObepredic’ed=---+’+
bm+q bq+l bl;

-------- J

q---------

bm+r br+l bl;

.. ------------------ .
..,.............:.......".".".".".".".'."." ."."..".:".`..".".."."..".:".>"."..".."..".."...“.. .“.. .’. . .’.. .’.. .’
..

..%...%..... ,. r
------------------ 1

‘Time ‘

Figure lO: The branch history register contents used by

the resolved variation for predicting different dynamic

instances ofbranch bo.

same branch (see figure 10). Suppose the unresolved

branches in the machine at the time of the first predic-

tion are such that the q most recently issued branches

must be omitted from the branch history register. Sup-

pose for the second prediction, the r most recently is-

sued branches must be omitted, where q and r are dif-

ferent. If the actual branch historiesof the program for

the twodynamic occurrences are thesame, then thepre-

dictor should be making the same prediction for both

of them, However, because the number of unresolved

branches present varied for the two predictions, the con-

tents of the branch history register used were different,

This causes the predictor to use a different pattern his-

tory table entry to make each prediction, potentially

making different predictions and lowering prediction ac-

curacy.

4 Conclusion

In this paper, we reexamined the skipped model ex-

periment and the use of speculative update in Two-

Level Adaptive Branch Prediction. We showed that the

outcomes of recently issued branches can be omitted

from the branch history register without significantly

affecting prediction accuracy provided that the num-

ber of outcomes omitted is fixed because the skipped

model can most often infer those outcomes from the

older branch history and the static branch instruction

to be predicted. We also showed that speculatively up-

dated branch predictors are not adversely affected by

the occurrence of unresolved branches. Their prediction

accuracies are independent of the number of unresolved

branches present in the machine. More importantly,

predictors with speculative update were shown to far

outperform predictors without speculative update, be-

cause branch history registers that are not speculatively

updated lose the ability to identify distinct program

states and hence the ability to make accurate predic-

tions.

Acknowledgments

This paper is one result of our ongoing research in

high performance computer implementation at the Uni-

versity of Michigan. The support of our industrial part-

ners: Intel, AT& T/GIS, Motorola, Hewlett-Packard,

and Scientific and Engineering Software is greatly ap-

preciated. We would also like to thank Adam Talcott

for the clear explanations he provided about his work

and the reviewers of this paper for their helpful sugges-

tions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

W.-M. ?V. Hwu and Y. N. Patt, “Checkpoint re-

pair for out-of-order execution machines,” in Pro-

ceedings of the Idth Annual International Sympo-

sium on Computer Architecture, pp. 18–26, 1987.

J. K. F. Lee and A. J. Smith, “Branch prediction

strategies and branch target buffer design,” IEEE

Computer, pp. 6-22, January 1984.

S. McFarling and J. Hennessy, “Reducing the cost of

branches, “ in Proceedings of the 13th Annual Inter-

national Symposium on Computer Architecture, pp.

396-403, 1986.

S.-T. Pan, K. So, and J. T. Rahmeh, “Improving

the accuracy of dynamic branch prediction using

branch correlation,” in Proceedings of the Fifth In-

ternational Conference on Architectural Support for

Programming Languages and Operating Systems, pp.

76-84, 1992.

A. R. Talcott, June 1994. Personal communication.

A. R. Talcott, W. Yamamoto, M. J. Serrano, R. C.

lVood, and M. Nemirovsky, “The impact of unre-

solved branches on branch prediction scheme per-

formance,” in Proceedings of the $Ist Annual Inter-

national Symposium on Computer Architecture, pp.

12-21, 1994.

T.-Y, Yeh and Y. N, Patt, “Two-level adaptive

branch prediction,” in Proceedings of the 24th An-

nual ACM/IEEE International Symposium on Com-

puter Microarchitecture, pp. 51-61, 1991.

T.-Y. Yeh and Y. N. Patt, “Alternative implemen-

tations of two-level adaptive branch prediction,” in

Proceedings of the 19ih Annual International Sym-

posium on Computer Architecture, pp. 124–134,

1992,

T.-Y. Yeh and Y. N. Pat t, “A comprehensive in-

struction fetch mechanism for a processor support-

ing speculative execution, ” in Proceedings of the

25th Annual ACM/IEEE International Symposium

on Computer Microarchitecture, pp. 129–139, 1!392.

232

