=

Frequent Value Compression in Data Caches *

Jun Yang

Youtao Zhang

Rajiv Gupta

Department of Computer Science
The University of Arizona, Tucson, AZ 85721

Abstract

Since the area occupied by cache memories on pro-
cessor chips continues to grow, am increasing percent-
age of power is consumed by memory. We present the
design and evaluation of the compression cache (CC)
which is a first level cache that has been designed so
that each cache line can either hold one uncompressed
line or two cache lines which have been compressed to
at least half their lengths. We use a novel data com-
pression scheme based upon encoding of a small num-
ber of values that appear frequently during memory ac-
cesses. This compression scheme preserves the ability
to randomly access individual data items. We observed
that the contents of 40%, 52% and 51% of the mem-
ory blocks of size 4, 8, and 16 words respectively in
SPECint95 benchmarks can be compressed to at least
half their sizes by encoding the top 2, 4, and 8 fre-
quent values respectively. Compression allows greater
amounts of data to be stored leading to substantial Te-
ductions in miss rates (0-36.4%), off-chip traffic (3.9-
48.1%), and energy consumed (1-27%). Traffic and en-
ergy reductions are in part derived by transferring data
over external buses in compressed form.

1 Introduction

The portable computing devices being designed to-
day are typically battery powered. Thus in addition
to meeting the performance goals, the designs for such
devices must also be power efficient. One significant
source of power consumption is the cache memory on
processor chips which continue to occupy increasing
amounts of chip area. Reducing the sizes of on-chip
caches is not the answer because higher miss rates re-
sult in performance loss and an increase in power con-
sumed by external buses.

*Supported by DARPA award no. F29601-00-1-0183 and NSF
grants CCR-0096122 and EIA-9806525 to the Univ. of Arizona.

0-7695-0924-X/2000/$10.00 © 2000 |EEE

By storing code and data in compressed form,
smaller caches can provide lower miss rates and reduce
power consumption. The power consumed by exter-
nal buses can be further reduced by transferring code
or data that is fetched across the buses in compressed
form. Code compression is being widely studied to-
day by researchers for the purpose of reducing power
consumption [9, 11]. Recently techniques for packing
of narrow width data operands in multimedia applica-
tions have been explored [4, 15, 16]. However, little
work has been done on compression of data in caches
for general purpose applications.

The memory compression techniques proposed in
[2, 3] are applicable to data in main memory — the
data is uncompressed when it is brought into any of
cache levels in the memory hierarchy. In [8] authors
proposed the use of the X-RL [7] data compression al-
gorithm to achieve compression of data. The X-RL al-
gorithm does not preserve random access of individual
data elements. Therefore in [8] compressed data can-
not be stored at the top level L1 cache; only at the
lower levels of the memory system (L2 cache) can it be
kept in compressed form. We present a compression
scheme applicable to L1 caches in this paper. The only
other technique which meets this requirement has been
developed independently by Larin and Conte [12].

In order to achieve higher performance and lower
power consumption, data compression should be ap-
plied at the first level cache. The higher performance
results because by storing data in compressed form we
can store greater amounts of it and therefore maximize
the hits to this fast cache. Optimizing the performance
of L1 cache has the most reduction in power consump-
tion because the power consumed by L1 cache is over
three times of that consumed by the L2 cache [5]. This
is because L1 cache services far more memory refer-
ences than the L2 cache.

In this paper we present the design and evaluation
of the compression cache (CC) which not only stores
data in compressed form, but it can also be used as
the top level cache. This is because CC employs a

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

novel compression scheme which allows random access
of data elements in the cache. The CC has been de-
signed to improve the performance of on-chip Direct-
Mapped write-back data Caches (DMCs). We only con-
sider write-back caches because write-through caches
generate much greater degrees of off-chip traffic and
are therefore not power efficient. In a direct-mapped
CC each line of 2] words is also capable of storing two
compressed lines as long as each of the lines can be
compressed to size [. Since two compressed lines can
potentially reside in a cache line simultaneously, more
data can be held by the cache and reduced miss rates
are observed in comparison to a conventional DMC.
The compression scheme we have developed exploits
frequent value locality [18] observed in programs. It
preserves random access of data, it is applicable to all
data (not just narrow width data), and is therefore use-
ful in context of general purpose applications (not just
multimedia applications).

The CC provides substantial reductions in off-chip
traffic. The reduction in off-chip traffic is only in part
due to reduced miss rates. There is an additional
source of traffic reduction. Since cache lines can be
stored into the CC in compressed form, they are com-
pressed off-chip before they are brought into the on-
chip cache. Also evicted cache lines are transmitted
off-chip in compressed form where they are decom-
pressed before being stored into memory or another
off-chip cache. CC provides substantial reductions in
miss rates (0-36.4%), off-chip traffic (3.9-48.1%), and
energy consumed (1-27%) over a DMC.

Section 2 evaluates the potential for compressing
cache lines to half their sizes by encoding frequently
accessed values for SPECint95 suite. In section 3 we
describe the design of CC. Section 4 presents an evalu-
ation of CC. Related work is discussed in section 5.

2 Frequent Value Compression

In our prior work we studied the behavior of pro-
grams in the SPECint95 suite and found that six out of
eight benchmarks exhibit frequent value locality [18]. In
these six programs ten distinct values occupy over 50%
of all memory locations and on an average account for
nearly 50% of all memory accesses during program ex-
ecution. The two benchmarks that do not exhibit high
degree of frequently value locality are 129.compress
and 132.ijpeg. In this paper we develop a data com-
pression scheme for use in a first level cache which ex-
ploits frequently accessed values. Profiling techniques
for identifying frequent values are described in [18].

Compression of the data in a cache line can be
achieved by storing selected values in encoded form,

as opposed to their original form which takes up a full
word. The values that should be selected for encoding
should be the frequently accessed values to maximize
the compression that can be achieved. In particular,
our goal is to exploit the instances in which 2/ words of
data can be compressed into ! words. This would allow
a cache line that holds 2] words of uncompressed data,
to be able to hold two cache lines of compressed data.

In order to evaluate the potential of the above com-
pression strategy, we studied the distribution of the top
n frequently accessed values in individual cache lines.
We pick n as power of 2 for efficient encoding. We ran
the six benchmarks with frequent value locality and
examined the memory contents midway through their
executions. We divided the memory into blocks of 4,
8 and 16 words each to mimic cache line sizes of 4, 8
and 16 words. The number of frequent values chosen
are 2, 4 and 8. In order to estimate the likelihood that
a cache line could be compressed to half of its size we
plotted the percentage of lines in which at least half of
the values are frequently accessed values (see Figure 1).
On an average nearly 40%, 52% and 51% of cache lines
of sizes 4, 8 and 16 respectively can be compressed to
at least half their size by exploiting top 2, 4, and 8
frequent values respectively.

777777777777 4wpl-2values | |
8wpl-4values
16wpl-8values

100

80

60

% of total lines

40

20

SLILIIS

«© 28 © A\ © N e
<(@g\@‘ m_\,o“e X’LE"QC \}o&e 0999‘ A a\“a‘&
B %
AL

Figure 1. Lines that can be compressed to at
least half of their sizes.

3 The Compression Cache

The basic idea behind the compression cache (CC)
is to store cache lines in a compressed form so a greater
number of cache lines can reside in the data cache at
any given time and thus lower miss rates would result.
Since we are also interested in reducing off-chip traffic,
to reduce the power consumed by external buses, we
compress the data in a cache line before it is brought
into the on-chip cache. Also when a compressed cache

line is evicted from the data cache, it is transmitted off-
chip in compressed form and then uncompressed before
being stored in off-chip memory (see Figure 2).

Direct

Mapped

Compression

Figure 2. Compression cache.

We assume that each given cache line of 2/ words can
accommodate either one uncompressed cache line or
two compressed cache lines. If the line cannot be com-
pressed to [words we keep it in uncompressed form.
However, if two lines, each of which has been com-
pressed to [words, map to the same cache line, they
can reside in that line simultaneously. It should be
noted that by incorporating compression, we will al-
ways improve the hit rates of a direct-mapped cache.
This is because if no compression opportunities exist,
the behavior of the CC will simply be identical to that
of DMC. However, if compression opportunities exist,
some amount of cached data will be able to reside in
the cache for a longer duration and thus potentially
contribute to increased hit rate. It is possible to design
more general strategies which can compact a cache line
to any size less than 2l and thus we could allow vary-
ing number of cache lines to fit in 2/ words. How-
ever, such complex compression strategies would make
it more difficult to determine whether a hit or a miss
has occurred and will therefore slow down all cache
accesses.

Compression/decompression of already cached
data. Compression techniques have been used effec-
tively for instructions because typically code is not
modified by a running program. However, data com-
pression techniques have been hard to design because
data values change as the program executes. As de-
scribed above the data is transferred on-chip and off-
chip in compressed form. However, when already
cached data is modified, opportunities to compress cur-
rently uncompressed line may arise. Also if an infre-
quent value is written to a location in the compressed
line where previously a frequent value was stored, the
need to uncompress the line may arise.

We conducted experiments in which compression
and decompression of already cached data was allowed
to occur to see how often compression opportunities
for cached data arose. We measured the percentage of

total cache hits during which a compression opportu-
nity arose. We found that such opportunities are quite
infrequent for most benchmarks. As shown in Table 1,
the only case in which compression opportunities are
substantial is for 124 .m88ksim benchmark when a line
size of 8 words is used. Therefore we decided not to ex-
ploit these opportunities. Carrying out compression of
cached data is an expensive operation with associated
hardware and execution time costs. By sacrificing a
small number of compression opportunities we greatly
simplify the cache design.

Assuming that no compression of already cached
data will be carried out, we next determined how of-
ten a compressed cache line must be decompressed as
a result of writing an infrequent value to a location
in the compressed line. In Table 2 the percentage of
total cache hits during which a need for decompres-
sion arose is given. Although decompression operations
cannot be avoided, they are so infrequent (a maximum
of 0.367% of the hits was observed) that they will not
seriously effect cache performance. During decompres-
sion a compressed line can be read out of the cache in
a buffer, decompressed, and then written back to the
cache line. Alternatively we can also send it to memory
thereby evicting the decompressed line from the cache.
We opted for the former solution since it is faster to up-
date a cache line on-chip than transferring its contents
off-chip.

From the above experiments we can conclude that
if data is brought on-chip in compressed form, it gen-
erally continues to stay in compressed form. The re-
verse is also true, that is, in most benchmarks if data is
brought on-chip in uncompressed form it cannot often
be compressed later on.

CC design details. As shown in Figure 3, the cache
entries must be modified to indicate whether or not
they contain compressed lines. The C bit is used for
this purpose. We must also modify the entries so that
they can hold the relevant information for the two com-
pressed cache lines. Each of the lines has its own tag
(Tagl, Tag2) as well as valid (V1, V2) and dirty (D1,
D2) bits. In addition, the mask fields (maskl, mask2)
provide useful information for compressed lines. The
determination of a cache hit is straightforward. If there
is a match with any of the valid tags we have a hit. The
retrieval of the value requires examining the mask. If
the mask indicates that the value is one of the frequent
value, then the mask can provide the value as it stores
the value in encoded form. On the other hand if the
mask indicates that the value is not one of the fre-
quent values, then it identifies the word in the cache
line where it is stored. When compressed cache lines

benchmark line size = 4 words = 16 bytes line size = 8 words = 32 bytes line size = 16 words = 64 bytes
4Kb [8Kb [16Kb | 32Kb 4Kb [8Kb | 16Kb [32Kb 4Kb | 8Kb [16Kb [32Kb
124.m88ksim || 0.897 | 0.901 | 0.965 | 0.983 || 8.249 | 8.194 | 16.060 | 16.077 || 0.341 | 0.379 | 8.243 | 8.297
147.vortex 5.746 | 5.974 | 6.358 | 6.591 2.566 | 2.650 2.833 2.923 1.147 | 1.241 1.336 1.410
126.gcc 2.630 | 2.859 | 3.095 | 3.340 || 1.656 | 1.787 | 1.944 2.072 0.890 | 0.970 | 1.051 | 1.091
134.perl 7.152 | 8.423 | 7.039 | 7.048 4.303 | 2.283 4.963 4.964 2.112 | 1.219 | 2.907 2.907
099.go 2.042 | 2.323 | 2.718 | 2.778 || 0.941 | 1.093 | 1.261 1.319 0.816 | 0.890 | 1.147 | 1.798
130.1i 4.031 | 4.083 | 4.472 | 5.123 2.523 | 2.514 2.591 2.868 0.384 | 0.381 | 0.393 0.536
Table 1. % of cache hits creating compression opportunities.
benchmark line size = 4 words = 16 bytes line size = 8 words = 32 bytes line size = 16 words = 64 bytes
4Kb | 8Kb [16Kb | 32Kb 4Kb | 8Kb [16Kb [32Kb 4Kb | 8Kb | 16Kb [32Kb
124.m88ksim 0.284 | 0.282 | 0.277 | 0.277 0.207 | 0.208 | 0.204 | 0.205 0.015 | 0.006 | 0.003 0.003
147 .vortex 0.304 | 0.232 | 0.123 | 0.087 || 0.143 | 0.110 | 0.063 | 0.044 || 0.075 | 0.058 | 0.037 | 0.023
126.gcc 0.242 | 0.197 | 0.167 | 0.153 || 0.151 | 0.132 | 0.109 | 0.102 || 0.071 | 0.058 | 0.051 | 0.048
134.perl 0.183 | 0.009 | 0.179 | 0.178 || 0.093 | 0.005 | 0.005 | 0.004 || 0.266 | 0.003 | 0.003 | 0.003
099.go 0.203 | 0.136 | 0.081 | 0.058 || 0.136 | 0.093 | 0.056 | 0.039 || 0.154 | 0.110 | 0.062 | 0.038
130.1i 0.404 | 0.367 | 0.284 | 0.118 || 0.136 | 0.128 | 0.112 | 0.045 || 0.064 | 0.063 | 0.059 | 0.022

Table 2. % of cache hits requiring decompression.

are transmitted across the chip boundary, the contents
of the masks must also be transmitted along with the
frequent values. Figure 3 depicts the logic for retrieving
a value from a cache line size of four words.

Next let us consider the encoding scheme in greater
detail. When a cache line has been compressed to at
least half its size, access to data requires consulting the
mask corresponding to the compressed line. The mask
contains as many fields as the original line size. Each
field provides us with the necessary information regard-
ing the data value at the corresponding location in the
cache line. Each field is logal bits long where [is the
line size. The first bit in a field is 0 if the correspond-
ing location contains a frequent value; otherwise it is 1.
The remainder of the bits serve a dual purpose. If the
value at the corresponding location is a frequent value,
the remaining bits of the field provide an encoding of
this frequent value. Since log»(l/2) bits are available
for encoding frequent values, at most [/2 frequent val-
ues can be exploited by the above design. On the other
hand if the corresponding value is an infrequent value,
then the remaining bits in the field indicate the posi-
tion in the compressed data line at which that value is
stored. Notice that the increase in cache line lengths
due to additional information we store is quite modest.
For cache line size of 32 bytes or 8 words, the increase
is 6 bytes.

The example in Figure 4 illustrates the above en-
coding scheme. We assume that the line size is eight
words and therefore four frequent values can be ex-
ploited. The frequent values and their encodings are
given in the figure. Note that the leading bit is zero

for all four frequent value codes. The size of an un-
compressed line is 256 bits (= 8 x 32) while the size of
a compressed line is 152 bits(= 8 x 3 + 4 x 32). We
show the contents of corresponding uncompressed and
compressed cache lines and describe how the contents
to the latter change with changes to the former.

In its initial state the uncompressed line contains
four frequent and four infrequent values and therefore
it can be compressed as shown in the figure. The lead-
ing bit is zero for the fields at positions 1, 3, 5, and 8
because they correspond to frequent values, 0 and -1,
which are appropriately encoded by the remaining two
bits. The fields at positions 2, 4, 6, and 7 have their
leading bits as one to indicate the presence of four in-
frequent values which are stored in uncompressed form
in the first half of the cache line. The last two bits of
the mask encodes the positions in the first half of the
cache line where the infrequent values are stored.

Next we illustrate how the changes in the contents
of an uncompressed line are reflected by changes in
the corresponding compressed line. The example il-
lustrates the following cases: (a) the overwriting of a
frequent value (0) by a different frequent value (1) re-
sults only in a change in the appropriate field of the
mask; (b) the overwriting of an infrequent value (1000)
by a different infrequent value (2000) results only in a
change in the location in the cache line indicated by the
appropriate field of the mask; (c) increase in the num-
ber of frequent values, due to overwriting of 99999 by
-1, changes the mask; (d) decrease in the number of fre-
quent values, due to overwriting of -1 by 6a8d, changes
the mask and the cache line; and (e) finally the over-

PC
‘Tag ‘ Index ‘ offset ‘

Vi D1 Tagl V2 D2 Tag2 maskl mak2 C Data

%parator Fotag Comparator

= Vadid

Selector
Frequent Values Output

Figure 3. Compression cache design details.

Frequent
Value(32bits) 0 101 2
Encoding(3bit) 000 001 010 011
Uncompressed CachelLine mask Compressed CC line
(1000 | o [o9999] -1 [a7es [5963 | 0 | [ooofro0ood 104 00119117 000] 1000 [99999 | f17cs| 5963 [
(1000 [0 [o9999] -1 [r17c8 [s963 [o | [orofr00/ood 101 00f11d 111 00d| 1000 [ogeee | r17c8] 5063 [
‘ ;
(2000 [0 [99999] -1 [r17c [s963 [0 | |ooo[r00/ooq 101 0of11d 119 00d| 2000 [ggsse | r17ca] 5963 [

i

oo | o [4 [1 Jiwes [soes [0 | poohcloodonfoodsad s oo oo NN 7 | e [N

¥ ¥ ¥
(1000 | o [99999] asd | f17cs] se63] o | \ooo\loo\oodloiloiudniooﬂ 1000 [6a8d [1173 | 5063 [

i
(1000 | o [o9999] -1 [fa7cs [5063 |4avs1 | _\ 0 J1000] o [eseeo] -1 [r7cs | 5963 \43b51\

Figure 4. Compressed encoded datain CC.

writing of the frequent value (0) by an infrequent value
(43b51) causes the line to be decompressed.

4 Experimental Evaluation

The goal of the experimentation was to determine
by how much can the CC enhance the performance of
DMCs of varying configurations. We considered DMCs
of sizes 4, 8, 16, and 32 Kbytes for line sizes of 4, 8,
and 16 words in our experiments. The correspond-
ing CC therefore could potentially hold two lines each
compressed down to a size of 2, 4, and 8 words respec-
tively. Moreover these caches could exploit 2, 4, and 8
frequent values respectively. All programs were com-
piled using the gcc 2.7.2 compiler with the -03 level
of optimization, the instruction set used was MIPS-I,
and the programs were executed using simulators gen-
erated using the FAST system [13].

Miss rate reductions. The cache miss rates of the
DMC and CC data caches for the six integer bench-
marks are shown in Table 3. In every single case the
miss rate of CC is lower than that of DMC which shows
that CC only improves performance. The percentage
reduction in miss rate given by the column IMP varies
from 0% to 36.4%.

In the above comparisons due to the additional in-
formation in the CC’s cache lines, actually the sizes of
the CC’s are somewhat larger than that of correspond-
ing DMC’s. In fact the CC cache lines are longer by 1 to
2 words depending upon the configuration. However,
this does not mean that the same improvements could
have been obtained by simply constructing a larger
DMC. For example, if we look at the miss rates shown
in Table 3, we notice that for the 124 .m88ksim bench-
mark the performance of the 8Kb CC is very close to
the performance of a 16Kb DMC. In contrast the in-
crease in size of the CC due to additional information
stored in each cache line is quite modest (15% - 36%).

Traffic reduction. The reductions in traffic are sub-
stantial for most benchmarks and cache sizes as shown
in Figure 5. They vary from 3.9% to 48.1%. The per-
centage reductions in the traffic are higher than the
miss rate reductions because only part of the traffic re-
ductions are derived from miss rate reductions. The
remaining traffic reduction is due to transmission of
data across the processor chip boundary in compressed
form.

The relative improvements provided by CC do not
necessarily correspond to the relative degree of com-
pressibility observed in the data presented in Figure 1.
For example, in Figure 1 we observed that 134.perl

demonstrated much lower levels of compressibility than
099.go. However, CC provides greater performance
improvements for 134.perl than those achieved for
099.go. This is due to a number of reasons. First,
in the study the compressibility was measured at one
program point during program’s execution while the
performance of CC depends upon the compressibility
of cache lines over the entire execution of the pro-
gram. Second, in the study all memory lines are treated
equally while CC will benefit most from the compress-
ibility of the most frequently referenced cache lines. Fi-
nally, compressibility of a cache line is only beneficial
to CC if other conflicting cache lines are also compress-
ible.

Energy savings. The energy savings were computed
using an energy model for 0.8 micron technology used
in the Simplepower tool [17]. This model computes the
energy consumed by cache memory cells, address and
data buses, address and data pads, and main memory.
The savings in energy consumed by using CC instead
of DMC are shown in Figure 6. The energy savings are
also significant and vary from 1% to 27%.

Access times. The additional logic in CC should re-
sult in greater access time than the same sized DMC.
However, since the CC provides a more cost effective so-
lution for improving miss rates, than simply increasing
the size of the DMC, we expect that the access time
of a CC would be close to the access time of a DMC
which provides comparable miss rates. This is because
the access time of a cache typically depends upon the
size of the cache and larger caches have longer word
line lengths and bit line lengths which leads to greater
word line and bit line capacitances. Therefore a CC
should provide energy savings over a DMC with similar
access times and miss rates.

5 Related Work

Data Compression. Recently Larin and Conte [12]
have also proposed data compression schemes which
share an important characteristic with our compres-
sion scheme. Both preserve random access to data
since they encode individual values to achieve compres-
sion. They explore three different encoding schemes
(Rigid Huffman, Flexible Huffman, and Flexible Huff-
man with Long Memory) in their work. There are two
key differences between our approaches. First, while
we encode a very small number of frequently accessed
values, they encode a larger number of values. There-
fore while a simple encoding scheme suffices in our

9% Traffic reduction

9% Energy reduction
S
5

.
5

benchmark 4Kb 8Kb 16Kb 32Kb
DMC | CC | IMP DMC | CC [IMP || DMC [CC [IMP || DMC | CC | IMP
line size = 4 words = 16 bytes
124.m88ksim 2.1 1.4 33.3 1.4 0.9 35.7 1.1 0.7 36.4 1.0 0.7 30.0
147.vortex 5.2 4.6 11.5 3.7 3.1 16.2 1.7 1.6 5.9 1.1 1.0 9.1
126.gcc 6.0 5.5 8.3 4.1 3.8 7.3 2.9 2.7 6.9 2.2 2.0 9.1
134.perl 5.8 4.4 24.1 4.2 3.4 19.0 3.5 2.7 22.9 3.5 2.7 22.9
099.go 14.4 14.1 2.1 9.4 9.3 1.1 5.7 5.6 1.8 3.3 3.2 3.0
130.1i 4.8 4.5 6.2 3.2 3.1 3.1 2.2 2.2 0.0 1.3 1.3 0.0
line size = 8 words = 32 bytes
124.m88ksim 1.9 1.6 15.8 1.3 1.0 23.1 0.9 0.7 | 22.2 0.9 0.6 | 33.3
147.vortex 5.5 4.6 16.4 3.9 3.2 17.9 1.8 1.5 16.7 1.2 0.9 25.0
126.gcc 5.9 5.5 6.8 3.9 3.7 5.1 2.6 2.4 7.7 1.9 1.7 | 10.5
134.perl 6.5 5.8 10.8 4.5 4.0 11.1 3.9 3.3 15.4 3.8 3.3 13.2
099.go 17.3 16.6 4.0 11.2 10.7 4.5 6.4 6.1 4.7 3.5 3.2 8.6
130.1i 3.7 3.5 5.4 2.4 2.3 4.2 1.4 1.4 0.0 0.8 0.8 0.0
line size = 16 words = 64 bytes
124.m88ksim 2.4 1.7 29.2 1.2 0.9 25.0 0.8 0.6 | 25.0 0.8 0.5 | 37.5
147.vortex 6.0 5.0 16.7 4.3 3.7 14.0 2.0 1.5 25.0 1.4 0.9 35.7
126.gcc 6.2 5.8 6.5 4.0 3.7 7.5 2.6 2.3 11.5 1.8 1.6 11.1
134.perl 6.3 5.3 15.9 3.7 3.0 18.9 2.9 2.5 13.8 2.8 2.5 10.7
099.go 21.9 20.4 6.8 14.4 13.5 6.3 8.2 7.5 8.5 4.4 3.9 | 114
130.1i 3.4 3.2 5.9 2.0 2.0 0.0 1.0 1.0 0.0 0.5 0.5 0.0

Table 3. DMC vs CC

4 words per line

: % miss rates (DMC,CC) and % miss rate reduction (IMP).

8 words per line

16 words per line

50

4K ’:‘ 4K aK
8k K
— . 16k . 16k 16k
32k w0 32k w0 32
§ §
— £ 30 £ 30
L g 3
£ £
s s
| = 20 = 20 N
£ ES
— 10 10 ij—]:l_—[[:ib
A 3 ° A 3 0 A W
* o ° \ * o ©) * o N
Am%@@\m I e @ A0 Nw@m S e AR e Am@g\é\m e @
A A A

4 words per line

Figure 5. % Traffic reduction.

8 words per line

40

16 words per line

PR N
. e N W et e e
2

9
8

9% Energy reduction

9% Energy reduction
8

2 C A\ o A
" m@\é‘“\ o R S 420
pe

Figure 6. % Energy savings.

5

0

o A W
N o o I S A
A

case they require more sophisticated compression en-
codings. Second, while the list of frequent values is
kept fixed for the entire execution of the program in
our approach, they dynamically adapt the encodings
according to changing frequency distribution of data
values. Therefore the two designs of data compression
schemes represent two points in a spectrum of tech-
niques that are possible by trading off generality with
hardware and runtime costs.

Data cache. In [18] we proposed the frequent value
cache (FVC) which is a type of a victim cache designed
to exploit frequent value locality. FVC is a small direct-
mapped cache which is dedicated to holding only fre-
quent values. We conducted an experiment in which
we measured the improvements in traffic and miss rates
that can be obtained by a combination of CC and FVC.
We considered line size of 8 words with CC and FVC
configurations that exploit top four frequent values.
The results show that the combination of CC and FVC
can result in traffic reductions of 2-72% over a DMC and
miss reductions of 3-69.5%. Therefore a combination
of CC and FVC is highly effective. We are currently
exploring the impact of compression on other power
efficient cache organizations [1, 15, 14, 10, 5].

References

[1] D.H. Albonesi, “Selective Cache Ways: On Demand
Cache Resource Allocation,” 32nd Annual International
Conference on Microarchitecture, pages 248-259, 1999.

[2] B. Abali and H. Franke, “Operating System Support for
Fast Hardware Compression of Main Memory Contents,”
Workshop on Solving the Memory Wall Problem, June
2000.

[3] C.D. Benveniste, P.A. Franaszek, and J.T. Robinson,
“Cache-Memory Interfaces in Compressed Memory Sys-
tems,” Workshop on Solving the Memory Wall Problem,
June 2000.

[4] D. Brooks and M. Martonosi, “Dynamically Exploit-
ing Narrow Width Operands to Improve Processor
Power and Performance,” Fifth International Symposium
on High-Performance Computer Architecture, Orlando,
Florida, January 1999.

[6] K. Ghose, “Reducing Power in Superscalar Processor
Caches using Subbanking, Multiple Line Buffers, and Bit
Line Segmentation,” International Symposium on Low
Power Electronics and Design, pages 70-75, 1999.

[6] N.P. Jouppi, “Improving Direct-Mapped Cache Per-
formance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers,” 17th Annual International
Symposium on Computer Architecture, Seattle, pages
364-373, 1990.

[7] M. Kjelso, M. Gooch, and S. Jones, “Empirical Study
of Memory-data: Characteristics and Compressibility,”
IEE Computers and Digital Techniques, Vol. 145, No. 1,
pages 63-67, January 1998.

[8] J-S. Lee, W-K. Hong, and S-D. Kim, “Design and
Evaluation of a Selective Compressed Memory System,”
IEEE International Conference on Computer Design,
Austin, TX, pages 184-191, October 1999.

[9] C. Lefurgy, P. Bird, L.-C. Chen, and T. Mudge, “Im-
proving Code Density Using Compression Techniques,”
30th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 194-203, 1997.

[10] J. Kin, M. Gupta, and W.H. Mangione-Smith, “The
Filter Cache: An Energy Efficient Memory Structure,”
30th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 184-193, 1997.

[11] D. Kirovski, J. Kin, and W. H. Mangione-Smith,
“Procedure Based Program Compression,” 30th Annual
ACM/IEEE International Symposium on Microarchitec-
ture, pages 204-217, 1997.

[12] S. Y. Larin, “Exploiting Program Redundancy to Im-
prove Performance, Cost and Power Consumption in Em-
bedded Systems,” Ph.D. thesis, ECE Dept., North Car-
olina State Univ., Raleigh, North Carolina, August 2000.

[13] S. Onder and R. Gupta, “Automatic Generation of
Microarchitecture Simulators,” IEEE International Con-
ference on Computer Languages, pages 80-89, Chicago,
Illinois, May 1998.

[14] M.D. Powell, S-H. Yang, B. Falsafi, K. Roy, T.N.
Vijaykumar, “Gated Vdd: A Circuit Technique to
Reduce Leakage in Deep-submicron Cache Memories,”
ACM/IEEE International Symposium on Low Power
Electronics and Design, 2000.

[15] P. Ranganathan, S. Adve, and N. Jouppi, “Re-
configurable Caches and their Application to Media
Processing,” 27th Annual International Symposium on
Computer Architecture, Vancouver, British Columbia,
Canada, June 2000.

[16] M. Stephenson, J. Babb, and S. Amarasinghe,
“Bitwidth Analysis with Application to Silicon Com-
pilation,” ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Vancouver,
British Columbia, Canada, June 2000.

[17] W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J. Ir-
win, “The Design and Use of Simplepower: A Cycle-
accurate Energy Estimation Tool,” 87th Design Automa-
tion Conference, Los Angeles, CA, June 2000.

[18] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Lo-
cality and Value-centric Data Cache Design,” The Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Cam-
bridge, MA, November 2000.

