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Abstract

Computer systems are rapidly changing. Over the next few years,
we will see wide-scale deployment of dynamically-scheduled

processors that can issue multiple instructions every clock cycle,

execute instructions out of order, and overlap computation and

cache misses. We also expect clock-rates to increase, caches to
grow, and multiprocessors to replace uniprocessors. Using SimOS,

a complete machine simulation environment, this paper explores

the impact of the above architectural trends on operating system
performance. We present results based on the execution of large

and realistic workloads (program development, transaction
processing, and engineering compute-server) running on the IRIX

5.3 operating system from Silicon Graphics Inc.

Looking at uniprocessor trends, we find that disk 1/0 is the

first-order bottleneck for workloads such as program development
and transaction processing. Its importance continues to grow over
time. Ignoring 1/0, we find that the memory system is the key bot-

tleneck, stalling the CPU for over 50% of the execution time. Sur-
prisingly, however, our results show that this stall fraction is

unlikely to increase on future machines due to increased cache

sizes and new latency hiding techniques in processors. We also

find that the benefits of these architectural trends spread broadly

across a majority of the important services provided by the operat-
ing system. We find the situation to be much worse for multipro-

cessors. Most operating systems services consume 3f)-i’0~0 more
time than their uniprocessor counterparts. A large fraction of the

stalls are due to coherence misses caused by communication

between processors. Because larger caches do not reduce coher-

ence misses, the performance gap between uniprocessor and multi-
processor performance will increase unless operating system

developers focus on kernel restructuring to reduce unnecessary
communication. The paper presents a detailed decomposition of

execution time (e.g., instruction execution time, memory stall time

separately for instructions and data, synchronization time) for
important kernel services in the three workloads.

1 Introduction

Users of modern computer systems expect the operating system to
manage system resources and provide useful services with
minimal overhead. In reality, however, modern operating systems

are large and complex programs with memory and CPU
requirements that dwarf many of the application programs that run
on them. Consequently, complaints from users and application

developers about operating system overheads have become

commonplace.

The operating system developer’s response to these complaints
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has been an attempt to tune the system to reduce the overheads.
The key to this task is to identify the performance problems and to

direct the tuning effort to correct them; a modern operating system
is far too large to aggressively optimize each component, and mis-

placed optimizations can increase the complexity of the system
without improving end-user performance. The optimization task is

further complicated by the fact that the underlying hardware is

constantly changing. As a result, optimizations that make sense on

today’s machines may be ineffective on tomorrow’s machines.

In this paper we present a detailed characterization of a mod-

ern Unix operating system (Silicon Graphics IRIX 5.3), clearly

identifying the areas that present key performance challenges. Our
characterization has several unique aspects: (i) we present results
based on the execution of large and realistic workloads (program
development, transaction processing, and engineering compute-

server), some with code and data segments larger than the operat-
ing system itselfi (ii) we present results for multiple generations of

computer systems, including machines that will likely become

available two to three years from now; (iii) we present results for

both uniprocessor and multiprocessor configurations, comparing

their relative performance; and finally (iv) we present detailed per-

formance data of specific operating system services (e.g. file 1/0,

process creation, page fault handling, etc.)

The technology used to gather these results is SimOS [1 1], a

comprehensive machine and operating system simulation environ-
ment. SimOS simulates the hardware of modern uniprocessor and
multiprocessor computer systems in enough detai 1 to boot and run

a commercial operating system. Si mOS also contains features

which enable non-intrusive yet highly detailed study of kernel exe-

cution, When running IRIX, SimOS supports application binaries

that run on Silicon Graphics’ machines, We exploit this capability

to construct large, realistic workloads.

Focusing first on uniprocessor results, our data show that for

both current and future systems the storage hierarchy (disk and

memory system) is the key determinant of overall system perfor-
mance. Given technology trends, we find that 1/0 is the first-order
bottleneck for workloads such as program development and trans-

action processing. Consequently, any changes in the operating sys-

tem which result in more efficient use of the 1/0 capacity would
offer the most performance benefits.

After 1/0, it is the memory system which has the most signifi-

cant performance impact on the kernel. Contrary to expectations,
we find that future memory systems will not be more of a bottle-
neck than they are today. Although memory speeds will not grow

as rapidly as instruction-processing rates, the use of larger caches
and dynamically-scheduled processors will compensate.

We find that on future machines, kernel performance will

improve as fast as application program performance resulting in

kernel overheads remaining relatively the same in the future. The
important services of the kernel tend to benefit equally from
improvements in execution speed so their relative importance
remains unchanged in the future.

Looking at small-scale shared-memory multiprocessors,
another likely architectural trend, we observe that the memory sys-
tem behavior becomes even more important for overall perfor-
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mance. We find that extra memory stall corresponding to

communication between the processors (coherency cache misses)

combined with synchronization overheads result in most multipro-

cessor operating system services consuming 30~0 to 70% more
computational resources than their uniprocessor counterparts.
Because larger caches do not reduce coherence misses, the perfor-

mance gap between uniprocessor and multiprocessor performance
will increase unless operating system developers focus on kernel

restructuring to reduce unnecessary communication.

The rest of the paper is organized as follows. Section 2 pre-

sents our experimental environment, including SimOS, workloads,

and data collection methodologies. Section 3 describes the current

and future machine models used in this study. Sections 4 and 5

present the experimental results for the uniprocessor and mukipro-
cessor models. Finally, Section 6 discusses related work and Sec-

tion 7 concludes.

2 Experimental Environment

In this section, we present the SimOS environment, describe our

data collection methodology, and present the workloads used

throughout this study.

2.1 The SimOS Simulation Environment

SimOS [11] is a machine simulation environment that simulates

the hardware of umprocessor and multiprocessor computer

systems in enough detail to boot, run, and study a commercial
operating system. Specifically, SimOS provides simulators of

CPUS, caches, memory systems, and a number of different 1/0
devices including SCSI disks, ethernet interfaces, and a console.

The version of SimOS used in this study models the hardware

of machines from Silicon Graphics. As a result, we use Silicon

Graphics’ IRIX 5.3 operating system, an enhanced version of

SVR4 Unix. This version of IRIX has been the subject of much
performance tuning on umprocessors and on multiprocessors with

as many as 36 processors. Although the exact characterization that
we provide is specific to IRIX 5.3, we believe that many of our

observations are applicable to other well-tuned operating systems.

Although many machine simulation environments have been

built and used to run complex workloads, there are a number of
unique features in SimOS that make detailed workload and kernel
studies possible:

Multiple CPU simulators. In addition to configurable cache and
memory system parameters typically found in simulation

environments, SimOS supports a range of compatible CPU
simulators. Each simulator has its own speed-detail trade-off. For
this study, we use an extremely fast binary-to-binary translation

simulator for booting the operating system, warming up the file
caches, and positioning a workload for detailed study. This fast

mode is capable of executing workloads less than 10 times slower

than the underlying host machine, The study presented in this
paper uses two more detailed CPU simulators that are orders of

magnitude slower than the fastest one. Without the fastest

simulator, positioning the workloads would have taken an
inordinate amount of time For example, booting and configuring
the commercial database system took several tens of billion of
instructions which would have taken several months of simulation
time on the slowest CPU simulator.

Checkpoints. SimOS can save the entire state of its simulated
hardware at any time during a simulation, This saved state, which

includes the contents of all registers, mam memory, and 1/0

devices, can then be restored at a later time. A single checkpoint
can be restored to several different machine configurations,
allowing the workload to be examined running on different cache
and CPU parameters. Checkpoints allow us to start each workload

at the point of interest without wasting time rebooting the
operating system and positioning the applications.

Annotations. To better observe workload execution, SimOS
supports a mechanism called armotaiions in which a user-specified
routine is invoked whenever a particular event occurs. Most
annotations are set like debugger breakpoints so they trigger when
the workload execution reaches a specified program counter

address. Annotations are non-intrusive. They do not effect

workload execution or timing, but have access to the entire

hardware state of the simulated machme.

2.1.1 Data Collection

Because SimOS simulates all the hardware of the system, a variety

of hardware-related statistics can be kept accurately and non-
intrusively. These statistics cover instruction execution, cache

misses, memory stall, interrupts, and exceptions. The simulator is
also aware of the current execution mode of the processors and the
current program counter, However, this does not provide

information on important aspects of the operating system such as

the current process id or the service currently being executed.

To further track operating system execution, we implement a

set of state machines (one per processor and one per process) and

one pushdown automaton per processor to keep track of interrupts.

These automata are driven by a total of 67 annotations For exam-

ple, annotations set at the beginning and end of the kernel idle loop

separate idle time from kernel execution time. Annotations in the

context switch, process creation, and process exit code keep track

of the current running process. Since they have access to all regis-
ters and memory of the machine, they can non-intrusively deter-

mine the current running process id and its name. Additional
annotations are set in the page fault routines, interrupt handlers,

disk driver, and at all hardware exceptions. These are used to
attribute kernel execution time to the service performed. Annota-

tions at the entry and exit points of the routines that acquire and
release spin locks determine the synchronization time for the sys-

tem, and for each individual spin lock.

Additionally, we maintain a state machine per line of memory

to track cache misses. These state machines allows us to report the
types of cache misses (i.e. cold, capacity, invalidation, etc.) and
whether the miss was due to interference between the kernel and

user applications. We also track cache misses and stall time by the
program counter generating the misses and by the virtual address

of the misses. This allows us to categorize memory stall both by

the routine and the data structure that caused it.

2.1.2 Simulator Validation

One concern that needs to be addressed by any simulation-based

study is the validity of the simulator. For an environment such as

SimOS, we must address two potential sources of error. First, we
must ensure that when moving the workloads into the simulation

environment we do not change their execution behavior.
Additionally, we must ensure that the timings and reported
stati sties are correct. Establishing that SimOS correct] y executes

the workload is fairly straightforward.

First, the code running on the real machine and SimOS are
basically identical. The few differences between the IRIX kernel
and its SimOS port are mostly due to the 1/0 device drivers that
communicate with SimOS’ timer chip, SCSI bus, and ethernet
interface. This code is not performance critical and tends to be dif-

ferent on each generation of computer anyway. All user-level code
is unmodified,

Because SimOS simulates the entire machine, it’s difficult to

imagine these complex workloads completing correct] y without
performing the same execution as on the real machine. As further
validation of correct execution, we compare workioads running on

a Silicon Graphics POWER Series multiprocessor and a similarly
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configured SimOS. At the level of the system call and other traps

recorded by IRIX, the counts were nearly identical, and the differ-

ences are easi 1y accounted for.

A second potential source of error is in the environment’s tim-

ing and the statistics collection. This kind of error is more difficult

to detect since it is likely the workload will continue to run cor-
rectly. To validate the timings and statistic reporting. we configure
SimOS to look like the one-cluster DASH multiprocessor used in a

previous operating system characterization study [2] and examine

the cache and profile statistics of a parallel compilation workload.

Statistics in [2] were obtained with a bus monitor, and are pre-

sented in Table 2.1. Although the sources of these statistics are
completely different, the system behavior is quite similar.

Execrmon protile Frsxoon of misses

Kernel user Idle m kernel mode

S1mOS .25% I 53% I 22% 52’%
I , ,

Bus monjtor [21 24% 48’%0 28% 49%

TABLE 2.1. SimOS validation results.

We compare several coarse statistics from SimOS to a published operating

system characterization Workload profiles match quite closely, and we
attribute the reduced idle time in SimOS to a slightly more aggressive disk
subs ystem

The absence of existing systems with dynamically-scheduled

processors makes validation of the next-generation machine model

difficult. However, the workloads do execute correctly, producing

the same results as the single-issue CPU model. While these vali-

dation exercises are not exhaustive. they provide confidence in the
simulation environment by showing that SimOS produces results
comparable to earlier experiments

2.2 Workloads

Workload selection plays a large part in exposing operating system

behavior. Our choice of workloads reflects a desire to investigate

realistic applications found in a variety of computing

environments. The three workloads that we use represent program

development, commercial data processing, and engineering

environments. Each workload has a uniprocessor and an eight-

CPU multiprocessor configuration.

For each workload. we first boot the operating system and then

log onto the simulated machine. Because operating systems fre-

quently have significant internal state that accumulates over time,
running the workloads directly after booting would expose numer-

ous transient effects that do not occur in operating systems under
standard conditions. To avoid these transient effects, we ensure in
our experiments that kernel-resident data structures, such as the

file cache and file system name translation cache, are warmed up

and in a state typical of normal operation. We accomplish this

either by running the entire workload once, and then taking our

measurements on the second run, or by starting our measurements

once the workload had run long enough to initialize the kernel data
structures on its own.

Program Development Workload. A common use of today’s

machines is as a platform for program development, This type of
workload typically includes many small, short-lived processes that

rely significantly on operating system services. We use a variant of
the compile phase of the Modified Andrew Benchmark [10]. The

Modified Andrew Benchmark uses the gcc compiler to compile 17
files with an average length of 427 lines each. Our variant reduces

the final serial portion of the make to a single invocation of the
archival maintainer (we removed another invocation of ar- as well

as the cleanup phase where object files are deleted).

For the uniprocessor case, we use a parallel make utility con-

figured to allow at most two compilation processes to run at any

given time. For the eight-CPU multiprocessor case, we launch four

parallel makes, and each allows up to four concurrent compila-

tions. Each make performs the same task as the uniprocessor ver-

sion, and on the average, we still maintain two processes per
processor. To reduce the 1/0 bottleneck on the /tmp directory, we
assign separate temporary directories (each & a separate disk
device) to each make.

Database Workload. As our second workload, we examine the

performance impact of a Sybase SQL Server (version 10 for SGI
IRIX) supporting a transaction processing workload. This
workload is a banldcustomer transaction suite modeled after the

TPC-B transaction processing benchmark [4]. The database

consists of 63 Mbytes of data and 570 Kbytes of indexes. The data

and the transaction logs are stored on separate disk devices. This

workload makes heavy use of the operating system, specifically
inter-processor communication.

hr the uniprocessor version of this workload, we launch 20 cli-
ent processes that request a total of 1000 transactions from a single
server. For the multiprocessor workload, we increase the number

of server engines to 6 and drive these with 60 clients requesting a
total of 1000 transactions, The database log is kept on a separate

disk from the database itself. The multiprocessor database is

striped across 4 disks to improve throughput.

Engineering Workload. The final workload we use represents an

engineering development environment. Our workload combines

instances of a large memory system simulation (we simulate the
memory system of the Stanford FLASH machine [7] using the
FlashLite simulator) along with verilog simulation runs (we

simulate the verilog of the FLASH MAGIC chip using the

Chronologies VCS simulator). These applications are not

operating system intensive because they do few system calls and
require few disk accesses, but their large text segments and
working sets stress the virtual memory system of the machine.

This workload is extremely stable, and so we examine just over

four seconds of execution.

The uniprocessor version runs one copy of F1ashLite and one

copy of the VCS simulator. The multiprocessor version runs six

copies of each simulator.

3 Architectural Models

One of the primary advantages of running an operating system on
top of a machine simulator is that it is possible to examine the

effects of hardware changes. In this paper we use the capabilities
of SimOS to model several different hardware platforms. This
section describes three different configurations which correspond
to processor chips that first shipped in 1994, and chips that are

likely to ship in 1996 and 1998. Additionally, we describe the

parameters used in our multiprocessor investigations.

3.1 Common Machine Parameters.

While we vary several machine parameters, there are others that

remain constant. All simulated machines contain 128 Mbytes of
main memory, support multiple disks, and have a single console

device. The timing of the disk device is modeled using a validated
simulator of the HP 97560 disk) [6]. Data from the disk is

transferred to memory using cache-coherent DMA. No input is
given to the console and the ethernet controller during the

measurement runs. The CPU models support the MIPS-2

1. We found that the performance of the database workload was completely
f/O bound using the standard disk model incorporated into SimOS, Given
that these disks do not represent the latest technology, we scale them to be
four times faster in the database workload.
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Machine Model

1994 1996 1998
1

CPU Clock 200Mhz I 200Mhz 500Mhz

Pipeline MIPS R4400-hke MIPS R 10000-hke

Statically-scheduled Dynamically-scheduled

Blocking caches Non-blocking caches

Peak

Performance I 200 MIPS I 800 MIPS
1

2000 MIPS I
IL1 Cache I 16 KB, 2-way, I 32 KB, 2-way, I 64 KB, 2-way, I

(Instructions) 1 16 byte lines 64 byte lines I 64 byte hne

L 1 Cache 16 KB, 2-way, 32 KB, 2-way, ] 64 KB, 2-way,

I (Data) I 16 bvte hne~ I 32 byte hnes I 32 byte lines ~

L2 Cache 1 MB, l-way 1 MB. 2-way, 4 MB, 2-way,

(Umfied) 128 byte hnes 128 byte hnes 128 byte lines

L1 mlssl I 50 nanosecs
L2 hit time I 50 nanosecs I 30 nanosecs I

I L2 miss time I soo nanosecs I 300 nanosecs ! 250 nanosec I

TABLE 3.1. 1994,1996, and 1998 machine model parameters.

The peak performance is achieved in the absence of memory or pipeline

stalls The timings are the Iatency of the miss as observed by the processor.
All 2-way set associative caches use an LRU replacement policy

instruction set. The memory management and trap architecture of

the CPU models are that of the MIPS R3000. Memory
management is handled by a software-reload TLB configured with

64 fully-associative entries and a 4 kilobyte page size.

3.2 1994 Model

We base the 1994 model onthe Indigo line of workstations from

Silicon Graphics which contain the MIPS R4400 processor. The
R4400 uses a fairly simple pipeline model that is capable of

executing most instructions in a single clock cycle. It has a two
level cache hierarchy with separate level-l instruction and data

caches on chip, and an off-chip unified level-2 cache The MIPS
R4400 has blocking caches. When a cache miss occurs the
processor stalls until the miss is satisfied by the second level cache

or memory system.

To model the R4400, we use a simple simulator which exe-

cutes all instructions in a single cycle. Cache misses in this simula-

tor stall the CPU for the duration of the cache miss. Cache size,

organization, and miss penalties were chosen based on the SGI
workstation parameters. 1

3.3 1996 Model

Next-generation microprocessors such as the MIPS R1OOOO [9],

Intel P6, and Sun UltraSPARC, will incorporate several new
features including multiple instruction issue, dynamic scheduling,

and non-blocking caches. The multiple instruction issue feature

allows these processors to issue multiple consecutive instructions
every clock cycle. Dynamic scheduling allows the instructions
within a certain window to be shuffled around and issued out of

order to the execution units, as long as essential dependence are
maintained. This technique allows greater concurrency to be
exploited in executing the instruction stream, With branch
prediction, it is also possible to speculatively execute past
branches whose outcome is yet unknown. Finally, non-blocking
caches allow multiple loads and stores that miss inthecache to be

l, The R44001evel-1 caches aredlrect mapped, butthenewer R4600 has
two-way setwsociative level-l caches. Weconservatively choose tomoctel
two-way setassociativity inour level-l caches

serviced by the memory system simultaneously. Non-blocking

caches, coupled with dynamic scheduling, allow the execution of
any available instructions while cache misses are satisfied. This

ability to hide cache miss latency is potentially a large

performance win for programs with poor memory system ]ocahty,

a characteristic frequently attributed to operating system kernels.

We model these next-generation processors using the MXS

CPU simulator [1], We configure the MXS pipeline and caches to
model the MIPS R1OOOO, the successor to the MIPS R4400 due

out in early 1996.

The MXS simulator models a processor built out of decoupled
fetch, execution, and graduation units. The fetch unit retrieves up

to 4 instructions per cycle from the instruction cache into a buffer

called the instruction window. To avoid waiting for conditional
branches to be executed, the fetch unit implements abranchpre-
diction algorithm that allows it to fetch through up to 4 unresolved

conditional branches and register indirect jumps

Asthefetch unit is filling the instruction window, theexecu-

tion unit is scanning it looking for instructions that are ready to

execute. The execution unit can begin the execution of up to 4

instructions per cycle. Once the instruction execution has com-
pleted, the graduation unit removes the finished instruction from

the instruction window and makes the instruction’s changes per-
manent(i,e, they arecommitted totheregister file orto the cache),

The graduation unit graduatesup to4 instructions per cycle. To
support precise exceptions, instructions are always graduated in

the order in which they were fetched.

Both the level-1 andlevel-2 caches arenon-blocking and sup-

port uptofour outstanding misses. The level-l caches support up
to two cache accesses per cycle even with misses outstanding.

With cache miss stalls being overlapped with instruction exe-

cution and other stalls, it is difficuh toprecisely define a memory

stall. When the graduation unit cannot graduate its full load of four
instructions, we record the wasted cycles as stall time. We further

decompose this stall time based on the state of the graduation unit.
If the graduation unit cannot proceed due to a load or store instruc-
tion that missed m the data cache, we record this as data cache

stall. Iftheentire instruction window isempty andthefetch unit is
stalled on an instruction cache miss, we record an instruction cache
stall. Finally, any other condition is attributed to pipeline stall

because it is normally caused by pipeline dependencies.

Although MXS models the Iatencies of the R1OOOO instruc-
tions, it has some performance advantages over thereal RIOOOO,

Its internal queues and tables are slightly more aggressive than the

R1 0000. The reorder buffer can hold 64 instructions, the load/store

queue can hold 32 instructions, and the branch prediction table has
1024 entries. Furthermore, it does not contain any of the execu-

tion-unit restrictions that are present in most of the next-generation
processors. For example, the RI OOOOhas only one shifter func-

tional unit, so it can execute only one shift instruction per cycle.

MXS canexecute any four instructions percycle inchrding four
shift instructions. We use this slightly more aggressive model in

order to avoid the specifics of the R 10000 implementation and pro-
vide results that are more generally applicable. Additional parame-

ters of the 1996 model arepresented in Table3 1,

3.4 1998 Model

It is difficult to predict the architecture and speeds of the
processors that will appear in 1998 since they haven’t been

announced yet. Processors like the MIPS RI OOOO have
significantly increased thecomplexity of the design while holding
the clock rate relatively constant. The next challenge appears to be
increasing the clock rate without sacrificing advanced processor

features [5]. We assume that a 1998 microprocessor will contain
thelatency tolerating features of the 1996 model, but will run ata

500Mhz clock rate and contain larger caches. We also allow for
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small improvements in cache and memory system miss times. The
exact machine parameters are again shown in Table 3.1.

3.5 Multiprocessor Model

Another trend in computer systems is to have multiple CPUS

sharing a common memory. Although shared-memory

multiprocessors have been around for a long time, recent

microprocessor trends have the potential of making these systems

much more common. Many next generation microprocessors, such

as the MIPS R 10000 and the Intel P6, support “glue-less MP’
where shared memory multiprocessors can be built simply by

plugging multiple CPUS into a shared bus.

Our multiprocessor studies are based on an 8-CPU system with

a uniform memory access time shared memory. We use 1994
model processors; multiprocessor studies with the MXS simulator
were prohibitively time consuming. Each CPU has its own caches.

Cache-coherency is maintained by a 3-state (invalid, shared, dirty)
invalidation-based protocol. The cache access times and main

memory-latency are modelled to be the same as those in the 1994

model.

4 Uniprocessor Results

The vast majority of machines on the market today are

uniprocessors, and this is where we start our examination of

operating system performance. In this section we present a detailed
characterization of the workloads running on the three machine

configurations. In Section 4.1, we begin by describing the
performance on the 1994 machine model. We then show in
Section 4.2 how the 1996 and 1998 models improve performance.
In Section 4,3 and Section 4.4, we show the specific impact of two

architectural trends: latency hiding mechanisms and increases in

cache size. Finally, in Section 4.5 we present a detailed
examination of the relative call frequency, computation time,

memory system behavior, and scaling of specific kernel services.

4.1 Base Characterization

Table 4.2 describes the operating system and hardware event rates

for the workloads. In Figure 4.1, we provide a time-based profile

of the execution of the workloads

The program development workload makes heavy but erratic

use of the kernel services resulting in 16~0 of the non-idle execu-

tion time being spent in the kernel. The frequent creation and dele-

tion of processes result in the large spikes of kernel activity found
in the profile. The workload also generates a steady stream of disk
1/0s, but contains enough concurrency to overlap most of the disk
waits. As a result, the workload shows only a small amount of idle

time.

The database workload makes heavy use of a number of kernel

services. Inter-process communication occurs between the clients

and the database server and between the database server and its

asynchronous 1/0 processes. The result of this communication is

both a high system call and context-switching rate. These effects,

combined with a high TLB miss rate, result in the kernel occupy-

ing 38?10of the non-idle execution time. The database workload
also makes heavy use of the disks. Data is constantly read from the

database’s data disk and log entries are written to a separate disk.
Although the server is very good at overlapping computation with

the disk operations, the workload is nevertheless idle for 369Z0of
the execution time.

The engineering workload uses very few system services.

Only the process scheduler and TLB miss handler are heavily
used, and the kernel accounts for just 5% of the total workload
execution time. The comb-like profile is due to the workload
switching between the VCS and Flashlite processes, each of which
has very different memory system behavior.

20

n

uIdle

User Stall
~. User

M Kernel Stall

Proaram Development Kernel

“o 1 2 3 4 5 6 7 6

Time (seconds)

Databaae
~ lCQ 1 1 I I , ml
E.-.

60

60

40

20

0

Time (seconds)

Engineering

40

20

0
0 1 2 3 4

Time (seconds)

FIGURE 4.1. Profiles of uniprocessor workloads.
The execution time of each workload is separated into the time spent in
user, kernel, and idle modes on the 1994 model. User and kernel modes
are further subdivided into instruction execution and memory stall.

Also visible in Figure 4.1 is the large amount of memory stall

time present in all of the workloads. Memory stall time is particu-

larly prevalent in the database and engineering workloads, the two
workloads that consist of large applications.
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OS events Prog-Dev Database I Eng

[ Duration [ 8.5 sees I 7.6 sees I 41 sees I

I Process creations I 11 I <11 <1 I

Context switches 92 847 34

Interrupts 162 753 [33

System calls 1133 4632 18

I TLB refills I 87x103 I 425x103 ] 486x103 !

I VM faults I 2195 I 9197 I 3386 I
1 [ I

Other exceptions 405 304 I 12

Hardware events

I Instructions I 129x106 ~ 111x106 I 101x106 I

I L1-1 cache rmsses I 2738x 103 I 4441X 103 ! 4162x 103 I

~Li-tl cache misses I 1412x 103 I 1453x 103 ! 1628x 103 I

L2-cache misses I 324 X 103 339 x 10’ 460 X 103

Disk 1/0s 29 286 I 1

TABLE 4.2. Event rates for the uniprocessor workloads.

All rates are reported as events per second on the 1994 model

4.2 Impact of Next-Generation Processors

In this section we examme the effect of future architectures on the

three workloads. Figure 4.3 shows the normalized execution time
of the workloads as the machine model is changed from the 1994

to the 1996 and 1998 models. The speedups for the 1998 model

range from a fairly impressive factor of 8 for the engineering

workload to a modest 27910for the database.

The primary cause of the poor speedup is delays introduced by

disk accesses. This is the classic 1/0 bottleneck problem and can

be seen in the large increases in idle time for tbe workloads with
significant disk 1/0 rates. For tbe database system, the fraction of
the execution time spent in the idle loop increases from 36% of the

workload on the 1994 model to 75% of the time in tbe 1996 model
and over go~o of the 1998 model. The program development work-

load also suffers from this problem with tbe 1998 model spending

over 66% of the time waiting in the idle loop for disk requests to
complete.

The implications of this 1/0 bottleneck on the operating system

are different for the database and program development work-
loads. In the database workload, almost all of the disk accesses are

made by the database server using the Unix “raw’” disk device
interface, This interface bypasses the file system allowing the data
server to directly launch disk read and write requests, Given this
usage, there is little that the operating system can do to reduce tbe
1/0 time. Possible solutions include striping the data across multi-
ple disks or switching to RAIDs and other higher performance disk

subsystems.

In contrast, the kernel is directly responsible for the

I/O-incurred idle time present in the program development work-
load. Like many other Unix file systems, the IRIX extent-based file

system uses synchronous writes to update tile system meta-data
structures whenever files are created or deleted. The frequent cre-
ation and deletion of compiler temporary files results in most of

the disk traffic being writes to the meta-data associated with tbe
temporary file directory. Almost half of tbe workload’s disk
requests are writes to the single disk sector containing the / tmp
meta-data ! There have been a number of proposed and imple-
mented solutions to the meta-data update problems. These sokr-
tions range from special-casing the / tmp directory and making it

a memory-based file system to adding write-ahead logging to file

systems [12]. i

20

0

11 ~ii
IDLE

SER-mem

m7
USER-rest

KERN-mem

KERN-rest

TL--
Program Development Database Engineering

FIGURE 4.3. Execution time on next-generation machines.

This figure shows execution time of the three workloads running on the
three machine models The time is normalized to the speed of the 1994
model, The horizontat bars separate kernel. user, and Idle time. Note that

the engineering workload has no idle time and little kernel time,

Ignoring idle time2, tbe computation portions of tbe workloads

all show significant speedups. The advanced features of tbe 1996

model give it non-idle time speedups of 2,8x (Engineering), 3,0x
(Program Development), and 3.1 x (Database). The larger caches

and higher clock rate of the 1998 model result in non-idle speed-
ups of 7.4x (Program Development), 7.9x (Engineering), and 8.3x

(Database).

Figure 4.3 highlights two other important points. First, tbe

overall performance gains of tbe future machine models appear to

apply equally to both user and kernel code. This implies that the
relative importance of kernel execution time wi 11likely remain the

same on next-generation machines. While this means that the ker-
nel time will remain significant. it is certainly preferable to
increased kernel overhead,

Second, the fraction of execution time spent in memory stalls

does not increase on the significantly faster CPUS. This is a sur-
prising result given the increase in peak processor performance,

Figure 4.4 shows the memory stall time on future machines

expressed as memory stall cycles per instruction (MCPI), We see

that next-generation machines have a significantly smaller amount

of memory stall time than the 1994 model This is indeed fortunate

since the 1996 and 1998 models can execute up to 4 instruction per

cycle, making them much more sensitive to large stall times. If the
1996 and 1998 models had tbe 1994 model’s MCPI, they would

spend 80% to 90% of their time stalled.

Figure 4.4 also decomposes the MCPI into instruction and data
cache stalls and into level- 1 and level-2 cache stalls. Although
instruction cache stalls account for a large portion of the kernel

stall time on the 1994 model, the effect is less prominent on the
1996 and 1998 models. For the program development workload,

the instruction cache stall time is reduced from 45% of the kernel

stall time in tbe 1994 model to only 11YO of the kernel stall time in
the 1998 model,

Figure 4.4 emphasizes the different memory system bebavior

of the workloads. The relatively small processes that comprise tbe

program development workload easily tit into tbe caches of future

1, SGI’S new file system, XFS, contains write-ahead logging of meta-data,
Unfortunately, XFS was not available for this performance study.
2 To ensure that this omission does not compromise accuracy, we exam-
ined the program development and database workloads with disks that
were 100 times faster. We found little differences ]n the non-rdle memory

system behavior.
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FIGURE 4.4. Memory stall cycles per instruction.
This figure shows the memory stall cycles per instruction (MCPI) for the

three machine models running the three workloads, MCP1 IS broken down

by Its source: level-1 and level-2 data cache statl (L1-D & L2-D), level-1

and level-2 instruction cache stall (L I-I & L2-1). Results are presented for
both non-idle kernel (-K) and user (-U) execution,

L14 L24 L1-D L2-D

FIGURE 4.5, Kernel stall time hidden by the 1996 and 1998 models.

This figure shows the non-idle kernel MCPI of the dynamically scheduled
[996 and 1998 models and the part of the MCPI which N hidden. The

results for the level- 1 mstrucuon miss stall (L 1-[), level-2 InstructIon mms

statl (L2-1) and leve[-1 (L I -D) and level-2 (L2-D) data stalls are shown,

processors. This results in a negligible user-level MCPI, especially

when compared to the kernel’s memory system behavior. In con-
trast, the engineering and database work~oads consist of very large

programs which continue to suffer from significant memory stall
time. In fact, their memory system behavior is quite comparable to

that of the kernel. Other studies have concluded that the memory

system behavior of the kernel was worse than that of application
programs [3]. We find that this is true for smaller programs, but

does not hold for large applications. The implication is that proces-

sor improvements targeted at large applications will likely benefit

kernel performance as well.

The improved memory system behavior of the 1996 and 1998

models is due to two features: latency tolerance and larger caches,

In Section 4.3 and Section 4.4 we examine separately the benefits
of these features.

4.3 Latency Tolerance

Dynamically scheduled processors can hide portions of cache miss

latencies. Figure 4.5 presents the amount of memory stall time
observed in the 1996 and 1998 models and compares it with the

memory stall time of the comparable statically-scheduled models.
The numbers for this figure were computed by running the 1994

model configured with the same caches and memory system as the

next-generation models and comparing the amount of memory

stall seen by the processor.

The figure emphasizes two results. First, dynamically sched-

uled processors are more effective at hiding the shorter Iatencies of
level- 1 misses than that of level-2 misses. Dynamically scheduled
processors hide approximately half of the latency of kernel level-1

misses. The notable exception is the engineering workload which

spends most of its limited kernel time in the UTLB miss handler.
We discuss the special behavior of this routine in Section 4,5.

Unfortunately, level-2 caches do not benefit from latency hid-

ing as much as level-1 caches. The longer latency of a level-2 miss
makes it more difficult for dynamic scheduling to overlap signifi-

cant portions of the stall time with execution. Level-2 miss costs

are equivalent to the cost of executing hundreds of instructions.
There is simply not enough instruction window capacity to hold
the number of instructions needed to overlap this cost. Although it
is possible to overlap Ievel-2 stalls with other memory system

stalls. we didn’t observe multiple outstanding Ievel-2 misses fre-
quently enough to significantly reduce the stall time.

A second and somewhat surprising result from Figure 4.5 is

that the future processor models are particularly effective at hiding
the latency of instruction cache misses. This is non-intuitive

because when the instruction fetch unit of the processor stalls on a
cache miss, it can no longer feed the execution unit with instruc-
tions, The effectiveness is due to the decoupling of the fetch unit

from the execution unit. The execution unit can continue executing

the instructions already in the window while the fetch unit is
stalled on an instruction cache miss. Frequent data cache misses

cause both the executing instruction and dependent instructions to

stall, and give the instruction unit time to get ahead of the execu-

tion unit. Thus, next generation processors overlap instruction

cache miss latency with the latency of data cache misses while
statically-scheduled processors must suffer these misses serially.

4.4 Larger Cache Sizes

Future processors will not only have latency tolerating features,

but will also have room for larger caches. The sizes of the caches

are controlled by a number of factors including semiconductor
technology as well as target cycle time. We first examine sizes

likely to be found in on-chip level- I caches and then explore the

sizes likely to be found in off-chip level-2 caches.

4.4.1 Level-1 Cache

Figure 4.6 presents the average number of cache misses per
instruction for each of the workloads. We explore a range of sizes

that could appear in level-1 caches of future processors. We model
separate data and instruction caches.

One of the key questions is whether increasing cache sizes will
reduce memory stall time to the point where operating system

developers do not need to worry about it. The miss rates in
Figure 4.6 translate into different amounts of memory stalls on dif-
ferent processor models. For example, the maximum cost of a

level- I cache miss which hits in the level-2 cache on the 1998

model is 60 instructions. A miss rate of just 0.4% on both instruc-

tion and data level- 1 caches means that the processor could spend
half as much time stalled as executing instructions. This can be

seen in the memory stall time on the 1998 model.
Since larger caches will not avoid all misses, we next classify

them into 5 categories based on the cause of a line’s replacement.
Cold misses occur on the first reference to a cache line. KERN-self

occur when the kernel knocks its own lines out of the cache and
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FIGURE 4.6. Cache misses for several I- and D-cache sizes.
All caches are two-way set-associative with LRU replacement. The
instruction caches (-I) have a cache hne size of 64 bytes, and tbe data
caches (-D) have 32 byte hnes Misses are broken down by mode (user,

kernel) and by the cause of the miss All cache sizes are in kdobytes

ICIRV-drer- misses occur when a user process replaces the ker-

nel’s cache lines, USER-self misses occur when a user process

knocks its own lines out of the cache and USER-other misses

occur when a cache line is replaced by the kernel or by a different

user process.

Figure 4,6 shows that larger caches are more effective at
removing self-inflicted misses in both the user applications

(USER-self) and the kernel (KERN-self) than they are at reducing
interference misses (USER-other and KERN-other). This is most

striking in the database workload where USER-self and KERN-

self misses steadily decline with larger caches while the USER-
other and KERN-other misses remain relatively constant.

Apart from techniques such as virtual memory page coloring,

the operating system has no control over user-self cache misses.

Any improvements will necessarily have to come from improved
memory systems. However, operating system designers can

address KERN-self cache misses. For example, recent work has

shown how code re-organization can reduce these instruction
misses [14].

Reducing the KERN-other and the USER-other misses is more
problematic. Most of the USER-other misses are due to interfer-

ence between the user and kernel rather than interference between

two user processes. In fact, these two miss types are quite comple-

mentary. When the kernel knocks a user line from the cache, the
user often returns the favor knocking a kernel line out of the cache.

Although re-organizing the kernel to reduce its cache footprint
could decrease the amount of interference, the problem will

remain. As long as two large code segments are trying to share the

same level- 1 instruction cache, there will be potential for conflicts.

We also explored the impact of cache associativity by looking

at both direct-mapped and 4-way associative caches. Like cache
size increases, higher associativities reduce self-induced misses
significantly more than interference misses. We hypothesize that
the entire state in the relatively small level-1 caches is quickly
replaced after each transition between kernel and user mode. As

long as this is the case, associativity will not significantly reduce
interference misses.

4.4.2 Level-2 Caches

Figure 4.7 presents the miss rates for cache sizes likely to be found
in off-chip, level-2 caches. These caches typically contain both
instructions and data, have larger line sizes, and incur significantly
higher miss costs than on-chip caches, For example, the latency of
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FIGURE 4.7. Behavior of unified level-2 caches.
All caches Me 2-way associative with LRU replacement and have 128 byte

lines. As in Figure 4.6, we break the misses down by type

a level-2 cache miss in the 1998 model is equivalent to the

execution of 500 instructions. A cache miss rate of just 0.170 could

stall the 1998 processor for half as much time as it spends
executing instructions. The smallest miss rate shown in Figure 4.7

would SIOWdown such a processor by as much as 25Y0.

Similarly to level-1 caches, larger level-2 caches reduce

misses substantially, but still do not totally eliminate them. For the

program development and database workloads, a 4MB level-2
cache eliminates most capacity misses. The remaining misses are

cold missesl.

4.5 Characterization of Operating System Services

In previous sections we have looked at kernel behavior at a coarse

level, focusing on average memory stall time. In order to identify

the specific kernel services responsible for this behavior, we use

SimOS annotations to decompose the kernel time into the services
that the operating system provides to user processes. Table 4.8

decomposes operating system execution time into the most

significant operating system services.

One common characteristic of these services is that the execu-
tion time breakdown does not change significantly when moving
from the 1994 to the 1996 and 1998 models. This is encouraging

since optimization intended to speed up specific services today
will likely be applicable on future systems. We now examine sepa-

rately the detailed operating system behavior of the three work-

loads,

Program development workload. On the 1994 model, this
workload spends about 50% of its kernel time performing services

related to the virtual memory system calls, 3070 in file system
related services, and most of the remaining time in process
management services. Memory stall time is concentrated in

routines that access large blocks of memory. These include
DEMAND - ZERO and copy-on-write (COW) faults processing as
well as the read and write system calls that transfer data
between the application’s address space and the kernel’s file cache.

The larger caches of the 1998 model remove most of the
level-2 capacity misses of the workload. The remaining stall time
is due mostly to level-l cache misses and to level-2 cold misses.

1. Most of the cold mrsses are reatly misclassified capacity misses. The rea-
son that they are misclassified is that the initial accesses to the memory pre-
ceded the detaded simulation start. Had the detailed examination started at
boot time, these cold misses would have been classified as capacity misses
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DEMAND ZERO 181 171 25.0 51 33 51 375 052 223 4% 16% 1,84 0,05 I 43 170 35% 51 33 51 532 54

QUICK FAULT 105 9.9 7.7 13 33 96 2,09 080 030 6’% 2% 0,55 0.04 005 1% 170 13 34 96 1224 0

execve 102 10.7 10.5 1180 3.0 69 264 0.89 075 5’% 4% 095 012 0.38 270 1% 1221 25 66 13 8

g write 100 94 10.4 47 33 6.8 297 073 124 4% 6% 1.10 009 060 2% 10% 52 3.4 7.1 320 12

g read 91 85 7.8 87 3.4 82 352 098 154 4% 6% 107 010 0.53 1Ya l~o 87 33 8,2 157 4

g CO W FAULT 63 5,5 64 82 3.6 69 418 048 270 1% 6% 153 004 I 10 O% 8% 82 36 6,9 115 12

~ UTLB 47 84 7,0 0,08 1,7 4.6 177 004 075 0% 3% 0.96 0 WI 007 OYC I % 008 17 46 87442 0

> open 46 47 38 100 3,1 84 327 173 054 4% 1% 096 028 0.18 2% 1‘%

~ fork

2594 09 10 69 0

42 43 45 568 3.0 65 303 0.76 i 26 2% 3% 117 012 062 ] % 4~o 35 ms 3,8 84 11 5

x ex]t 35 42 34 481 26 74 237 066 071 1% 2% 080 011 023

$ ;:AULT

170 2% 482 2,6 7,4 II o

28 27 22 33 3,3 9 I 3.80 206 074 2% 1% 104 037 017 1% 190 33 3,4 91 I 30 0

a
2.4 2,4 1,8 14 3,2 92 232 107 026 2% o% 0.64 012 0.05 1% o% 14 32 92 266 0

g CLOCK lNT 24 1.0 0,5 36 3,8 12,5 621 357 165 2% 1% 170 063 042 o% 0% 37 38 123 100 0

close 19 1.9 15 31 32 9.1 363 202 060 2% o% 099 0.30 0.17 1Y. o% 916 12 12 92 0

unlink 15 14 12 197 32 88 3.56 184 072 1% o% 100 026 022 1‘%0 070 17 ms 1.0 10 11 0

Other 7.8 7.8 63 -- -- -- -- -- -- 6?0 270 -- -- -- 3% 290 -. .. .. . . 1

read 15,2 124 126 80 36 94 394 211 083 12% 5% 1.07 0.29 028 8% 796 2090 12 13 466 30

select 15.2 13.8 135 86 31 84 280 099 081 8% 6% 090 017 026 6% 9% 44 ms 1.2 1,2 43 I o

UTLB 129 260 262 0,07 1,4 38 135 0.00 035 o% 5% 0.90 0 CO 008 o% 5’% 007 14 38 424582 0

wn te 84 70 68 88 33 88 420 252 06s 7% 2% 1.28 0.51 021 6’% 2% 734 17 29 233 0

IOcti 81 63 58 37 34 93 387 183 104 6’% 3% 105 027 026 3% 3%

SW lNT

5309 II 10 534 0

72 5,7 54- 62 37 103 526 293 133 6% 3% 1.30 044 030 4% 3yo 62 37 10.3 283 0
g \e”d 43 37 33 76 34 101 531 330 101 4% !% 1,31 054 025 3% 1% 138 35 10,2 138 0
~ DEMAND zERO 4.1 3.7 58 69 32 55 488 137 252 2% 3% 224 027 154 2% 9% 70 32 5,5 I 45 53
g DISK lNT 34 26 21 28 3,6 114 4.58 270 088 3% 1% 1.02 032 0.18 2% 1% 28 36 11,4 289 0
~ DBL_FAuLT 30 19 15 087 15 4.9 172 048 022 1% 1% 0.87 0.10 0.17 o% 1% 088 15 49 8553 0

fcntl 25 23 2.0 22 3.1 9.1 5.65 3.13 I 52 2% 1% 156 068 037 2% 1’% 22 31 91 286 0

Sysadl 20 19 20 [7 2,8 71 247 1.04 0.43 1% 1% 0.87 026 014 1% l% 17 28 72 286 0

recv 1.8 15 13 31 3.4 104 342 196 045 1% o% 0.82 0.23 011 1% o% 31 34 105 140 0

gettimeofday 14 1.5 15 9 2,7 7,2 329 177 0.52 1% o% 115 0.25 014 I % 070 9 28 73 391 0
sigprocmwk 12 1,3 1,3 5 2,8 6,8 202 094 008 1% o% 0.74 0.19 0,03 1% o% 5 28 68 571 0

Other 92 8.5 89 -- -- -- -- -- -- 6% 3% .. . . . . 5% 596 -- -- -- -- 12

UTLB 69.8 861 87.4 007 14 36 149 0.01 0.47 1% 33% 103 000 0,14 096 41% 007 1.4 36 485840 2
0 CLOCK lNT 12.5 27 09 58 28 84 918 4.86 333 10% 7% 2.69 0.97 1,06 170 1% 59 2.8 84 100 I

~ DBL.FAULT 6.0 50 4.7 083 27 76 189 044 041 2% 2% 0.62 0.01 0,01 0% o% 083 27 76

w exit

3365 0

29 2,1 2.9 1099 23 44 227 034 093 1% 2% 128 0,12 064 I % 5% 1099 22 4,4 1 29
g DEMAND ZERO 1.7 0,9 12 89 33 66 646 250 295 1% 1% 241 0,33 166 1% 3% 89 33 66 9 16

v SW INT 14 0.5 04 44 2,4 55 3.87 194 096 1% o% 1.08 0,31 028 o% o% 74 20 42 14 2

E DAEMONS 1.I 0.6 0.4 213 2.5 2.9 7.89 1.39 5.51 o% 1% 7.94 0,74 6,69 o% l’% 273 25 29 2 28

Other 4.6 2,1 21 -- -- -- -- -- -- 3% 1% -- -- -- 2% 2% -- -- -- -- 16

TABLE 4.8. Detailed breakdown of the uniprocessor workloads’ kernel activity.

The most .wgmficarrt services of the uniproce;sor workloads are presented in order-of their fraction of kernel computation time on the 1994 machme model.
Lower-case services denote UNIX system catls, and upper-case serwces denote traps and tntermpts(INT). UTLB reloads the TLB for user addresses A
DBL_FAULT occurs when the UTLB takes a TLB miss A QUICK FAULT is a page fault where the page m already in memory, and PFAULT denotes
protection violation traps used for modify bit emulation and other purposes We compare the memory system behavior of the 1994 and 1998 models. The
cycles per instruction (CPI) as well as the instruction and data memory CPI (i-MCP1, d-MCPI), are indicators of processor performance. The concentration of
instruction and data memory stall (%stall (1) and %statl (D)) M expressed in percentage of at] kernel memory stalls, Latency numbers can be compared to
computation t]me to determine the importance of 1/0 and scheduling on the latency of various services.

The DEMAND-ZERO page fault generates more than sf)~o of al] In contrast, the latency tolerating features work well on the

cold misses. This service amounts to 18% of kernel execution time block copy/zero routines. Non-blocking caches allow the proces-

in the 1994 model and 25% of kernel execution time in the 1998 sor to overlap cache miss stall with the block movement instruc-

model. In general, the services with large concentrations of cold tions. Additionally, they permit multiple outstanding cache misses,

misses, including the copy-on-write fault and the write system allowing stall times to overlap. These features effectively hide all

call, increase in importance. Fortunate] y, the operating system can level- 1 block-copy stall time that is present in the 1994 model.

address this problem. Many of the cold misses are due to the vir- This effect can be seen in the relatively large speedups obtained by

tual memory page allocation policy which does not re-use recently the read and write system calls, and the large level- 1 data

freed pages that would potentially still reside in the level-2 cache. cache stall time hidden in the workload (see Prog L 1-D in

The workload touches a total of 33 megabytes of memory. Given Figure 4.5).

the large number of process creations and deletions, it is likely that The operating system can still potentially improve the perfor-

this memory footprint could be reduced by modifying the page mance of level-2 cache behavior in the block copy/zero routines.

allocator to return recently freed pages (the current allocation pol- The current routines fill the load/store buffer of the processor
icy delays page reuse to deal with instruction cache coherency before they are able to generate multiple outstanding level-2 cache
issues). misses. By re-coding the functions to force cache misses out ear-
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lier. we can overlap the staH time of multiple misses, substantially

reducing the total level-2 cache stall time. Re-coding this type of

routine to take advantage of next generation processors can reduce

the performance impact of the block-copy routines.

Database workload. This workload spends over half of its kernel

time in routines supporting inter-process communication between

the client and the database server and about one third of its time

performing disk 1/0s for the database server. Additionally. the

1994 model spends 13% of the kernel time servicing UTLB faults.

Unlike the program development workload, the memory stall of

this workload is evenly spread among the kernel services. Kernel
instruction cache performance is particularly bad in the 1994
model, with instruction MCPIS of over 2,0 for several of the major

services.

Most services encounter impressive speedups on the 1996 and

1998 models. The improvement in the cache hierarchy dramati-

cally reduces the instruction and data MCPI of the main services.
Unfortunately, one of the major services only shows a moderate

speedup: the UTLB miss handler is only 1.4x (1996) and 3.8x

(1998) faster than the 1994 model. Because of this lack of speedup
the time spent in the UTLB handler increases to a quarter of the

kernel time (10% of the non-idle execution time) in the 1998

model. The UTLB handler is a highly-tuned sequence of 8 instru-
ctions that are dependent on each other. They do not benefit from
the multiple issue capabilities of the 1996 and 1998 models. Per-
formance improvements will need to come from a reduction of the

TLB miss rate. This can be achieved by improved TLB hardware

or through the use of larger or variable-sized pages

Engineering workload. This workload makes relatively few

direct requests of the operating system, and the kernel time is

dominated by the UTLB handler and by clock interrupt processing

(CLOCK INT). The UTLB miss handler has the same behavior as

in the database workload. Fortunately, it accounts for only ‘7~0 of

the total execution time, The importance of the clock interrupt

handler diminishes significantly on the 1996 and 1998 models. The
service is invoked fewer times during the workload and larger
caches can retain more of its state between invocations.

Latency effects. We have discussed the impact of architectural

trends on the computation time of specific services, We now focus

on their latency.

Table 4.8 also contains the request rate and the average request

latency of the services. The average latency is an interesting metric

as user processes are blocked during the processing of that service.

For most services, the computation time is equivalent to the
latency. However, the computation time is only a small fraction of

the latency of some services. These services are either involved in
1/0, blocked waiting for an event, or rescheduled.

Services such as the open, close, and unlink system calls of the

program development workload and the read and write system
calls of the database workload frequently result in disk 1/0s. These
system calls are limited by the speed of the disks on all processor

models, resulting in both long delays for the calling process and
show very little, if any, speedup. Only changes in the file system
will reduce these Iatencies. System calls which block on certain
events, such as select, also experience longer Iatencies. The long

latency of the fork system call results from the child process get-
ting scheduled before the forking parent is allowed to continue,

5 Multiprocessor Effects

The move to small-scale shared-memory multiprocessors appears
to be another architectural trend, with all major computer vendors
developing and offering such products. To evaluate the effects of
this trend, we compare the behavior of the kernel on a uniprocessor
to its behavior on an 8-CPU multiprocessor. Both configurations
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FIGURE 5.1. Profiles of multiprocessor workloads.
The execution time of each workload is separated into the time spent in
user, kernel, sync, and idle modes on the eight-CPU model. User and
kernel modes are further subdivided into instruction execution and
memory stall.

use the 1994 CPU model and memory hierarchy. The

multiprocessor workloads are scaled-up versions of the

uniprocessor ones, as described in Section 2.2, The multiprocessor

version of the IRIX kernel is based on the uniprocessor version

and includes the requisite locking and synchronization code. It is
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I OS events I Prg-Dev I tlnabas. \ Eng I

Duration 4.7 sees 2,6 sees I 4.4 sees

Process creations 80 I 11 <1

I Contextswitches I 1633 I 3929 I 193 I

System calls 8246 13546 51

TLB refills 655 X 103 1374X 103 2653 X 103

VM faults 17166 30309 30481

~Otherexceotlons I 3216 I 3097 I 118 I

Hardware events

Instructions llo5xlo~ I 1074xlo~ I 882 X 103
00

L 1-I cache misses 18359 X 103 14961 X 103 25229x 103

L 1-D cache misses 10481 X 103 7124x 103 10017 x 103

L2-cache misses 1948 X 103 2500 X 103 3358 X 103

Disk 1/0s I 214 i 829 ] I

TABLE 5.2. Event rates forthemultiprocessor workloads. ‘

Results are aggregated over all eight processors. All rates are reported m
events per second.

designed to run efficiently on the SGI Challenge series of

multiprocessors, which supports up to 36 R4400 processors.

5.1 Base characterization

We begin our investigation with a high-level characterization of

the multiprocessor workloads. Table 5.2 presents hardware and

software event rates for the workloads (aggregated over all

processors), and Figure 5. I presents the execution breakdown over

time. While the uniprocessor and multiprocessor workloads have

different compositions (also see Figure 4.1 and Table 4.2), the
workloads are scaled to represent a realistic load of the same

application mix running on the two configurations. The workloads
drive the operating system in similar ways, and thus provide a
reasonable basis for performance comparisons.

Compared to Figure 4.1, there is an increase in idle time. This
idle time is due to load imbalance towards the end of the program-

development and engineering workloads, and due to 1/0 bottle-

necks for the database workload. Two of the three workloads show

an increase in the relative importance of kernel time. The kernel

component increases due to worse memory system behavior and

synchronization overheads. The portion of non-idle execution time

spent in the kernel in the program development workload rises
from 16% to 24%, and in the engineering workload it rises from
4.6% to s.s~o. The database workload interestingly shows the

opposite behavior. Although the fraction of time spent in the kernel

decreases from 38.2% to 24.9% on the multiprocessor, this reduc-

tion is not due to improved kernel behavior. Rather, the multipro-

cessor version of the database server is a parallel application and
requires more computation per transaction.

5.2 Multiprocessor Overheads

There are a number of overheads found in multiprocessor systems
that are not present in uniprocessors. This section examines two of

these overheads: synchronization and additional memory-stalls.

Synchronization. The multiprocessor IRIX kernel uses spinlocks
to synchronize access to shared data structures. Overheads include
the time to grab and release Iocks, as well as the time spent waiting
for contended locks. Spinlocks are not used in the uniprocessor
version of the kernel.

a.

‘R
Upgrades

Coherence
Capacity
Cold

Program Development Databaae Engineering

FIGURE 5.3. Level-2 cache miss rates in kernel mode.
This compares uniprocessor and multiprocessor miss rates in kernel mode
for a range of cache sizes. We model a unified level-2 cache with 128 byte

lines. Misses are classified m cold, capacity, coherence, or upgrades

The importance of synchronization time varies greatly with the
workload. Synchronization time accounts for 11.2?70, 7.6%. and

1.4% of kernel execution time in the 8-CPU program-develop-
ment, database, and engineering workloads respectively. To better

understand how this time wi 11 scale with more processors, we
examine synchronization behavior for individual system calls in

Section 5.3.

Memory stall time. For the multiprocessor configuration, SimOS

models an invalidation-based cache-coherence protocol. Cache-
coherence induces two new types of memory stalls that do not

occur on uniprocessors. A coherence miss occurs because the

cache line was invalidated from the requestor’s cache by a write

from another processor. 1 An upgrade stall occurs when a

processor writes to a cache line for which it does not have

exclusive ownership. The upgrade requires communication to
notify other processors to invalidate their copy of the cache line.

Figure 5,3 compares the uniprocessor and multiprocessor ker-

nel miss rates for a range of level-2 cache sizes. In contrast to uni-
processors, larger caches do not reduce the miss rate as

dramatically. The reason is simple; coherence misses do not

decrease with increasing cache size. Coherence misses correspond
to communication between processors and are oblivious to

changes in cache size.

The implications of this observation are quite serious. In uni-

processors, larger caches significantly reduce the miss rates, allow-
ing large performance gains in the 1996 and 1998 models. In

multiprocessors, larger caches do not reduce the miss-rate as effec-

tively, and we will see a much higher stall time in future machines.

Although, we did not simulate a multiprocessor machine with

the next generation CPUS, it is possible to make rough estimates

regarding the magnitude of the problem. As mentioned in
Section 4.4.2, a level-2 cache miss rate of just 0,1% stalls the 1998
processor for half as much time as it spends executing instructions.

Figure 5.3 shows that for the program development and database
workloads we will have at least 0.8 misses per 100 kernel instruc-

tions. Thus, although the memory stall times for the 1994 multi-

processor do not look too bad, the stall times for future machines
will be much worse, In the next section we examine specific oper-

ating system services and suggest possible improvements for

1 Cache-coherent DMA causes coherence misses in the uniprocessor
workloads, but they constitute a very small fraction of the total mmses,
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;.4. Detailed breakdown of the multiprocessor workloads’ kernel activity.

The most significant services of the multiprocessor workloads are presented m order of their Importance along with several statistics Again. lower-case
services denote UNIX system calls Uppercase services are as described in Table 4.8 We compare the average computation time of each service to its

execution on the 1994 uniprocessor system. For each service, we mdlcate the fraction of computation time spent in execution, synchroruzation, suffering
coherence misses, requesturg upgrades or memory stalls. Synchrrmization, coherence misses and upgrades are overheads that are inherent to multiprocessors
and not present in uniprocessors. The latency of each service M broken down into average computation time, blocked or 1/0 latency, and scheduling latency

Coherence m]sses that occur m the syncbronizatlon routines are not part of the coherence columns but are factored m the synchronization categories.

reducing the number of coherence misses,

5.3 Characterization of Operating System Services

To better understand the effects of multiprocessor overheads on

kernel performance, Table 5.4 compares the performance of

multiprocessor operating system services to their uniprocessor

counterparts. With a few notable exceptions, the relative

importance of each service remains the same. This implies that

most services suffer similar slowdowns in the transition to

multiprocessors.

Program development workload. The top four services of the

program development workload, DEMAND- ZERO, QUICK-

FAULT, execve, and write, account for about 45% of the

kernel execution time. These services suffer a slowdown of
between 30Y0 and so~. compared to their uniprocessor
equivalents. Spinlock synchronization accounts from 8% to 17~o

the execution time of these services. More than half of

synchronization overhead is due to contention on a single lock
(memlock) that protects tbe data structures that manage the

physical memory of the machine

Coherence misses and upgrades comprise between 8% and
199Z0of the time. Coherence misses and upgrades represent com-
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munication between processors on shared-memory multiproces-

sors. Unfortunately, some of the coherence misses are caused by

false sharing. False sharing occurs when unrelated variables reside

on the same cache line. Whenever one of these variables is written,

the entire cache line must be invalidated from other processors’

caches. As a result. subsequent reads to any variable on the cache

line will miss. One extreme example of false sharing involves

memlock. The cache line containing memlock also contains 22

other variables that the compiler and linker happen to allocate

adjacently. This line alone accounts for 18% of all coherence

misses in the kernel. As the relative cost of coherence misses
increases, programmers and compilers will have to pay much more

attention to this type of data layout problem.

Table 5.4 also compares the latency of the services on both

platforms. Unlike the comparison of computation time. which

always reports a slowdown, some services actually have a shorter

latency on multiprocessors. The fork system calls return in half

the uniprocessor time because of the presence of alternate CPUS to

run concurrent y both the forking parent and the chi Id. On a uni -
processor, the parent gets preempted by the newly created child

process. System calls that perform 1/0 such as open, c 10S e, and

unlink also show speedups of 1s~o to 259Z0 over the uniprocessor

run. This is not due to a reduction in 1/0 latency but again due to

the increased probability that a CPU is available when a disk 1/0
finishes. More specifically, the IRIX scheduler does not preempt
the currently running process to reschedule the process for which
an 1/0 finishes, and this causes the uniprocessor latency to be

longer than simply the disk 1/0 latency. This scheduling policy

also increases the latency of functions that synchronize with block-
ing locks. This can be seen in the 32-fold slow,down of the

PFAULT exception.

Database workload. The general trends for the database workload

look similar to those in the program development workload. The

fraction of computation time taken by key system calls remains the

same across uniprocessor and multiprocessor implementations.

However, several aspects are unique to this workload. The

database workload heavily utilizes inter-process communication,
which is implemented differently by the uniprocessor and

multiprocessor kernels. The uniprocessor kernel implements the

socket send system call by setting a software interrupt (SW INT

in Table 4.8) to handle the reception of the message. The

multiprocessor version hands off the same processing to a kernel

daemon process (rtnetd). The advantage of this latter approach
is that the daemon process can be scheduled on another idle
processor. As Table 5.4 shows, this reduces the latency of a send

system call by S9Y0 on the multiprocessor version.

Another significant difference is the increased importance of
the END_IDLE state which takes 0.6% of kernel time on the uni-

processor but 5.0% of the time on the multiprocessor. This state
captures the time spent between the end of the idle loop and the

resumption of the process in its normal context. Two factors

explain this difference. First, in the multiprocessor, all idle proces-

sors detect tbe addition of a process to the global run queue, but

only one ends up running it. The rest (approximately one quarter of
the processors in this workload) return back to the idle loop, hav-

ing spent time in the END_ I DLE state. Second, a process that gets
rescheduled on a different processor than the one it last ran on

must pull several data structures to the cache of its new host pro-
cessor before starting to run. This explains the large amount of
communication measured during this transition, which amounts to

45% (coherence plus upgrade time) of the execution time for

END_ IDLE.

The frequent rescheduling of processes on different processors
increases the coherence traffic. Three data structures closely asso-
ciated with processes (the process table, user areas, and kernel

stacks), are responsible for 33~o of the kernel’s coherence misses.

To hide part of the coherence miss latency, the operating system

could prefetch all or part of these data structures when a process is

rescheduled on another processor. The operating system may also

benefit by using affinity scheduling to limit the movement of pro-

cesses between processors.

Engineering workload. Kernel activity in the engineering

work~oad is not heavily affected by the transition to
multiprocessors. The UTLB miss handler dominates the minimal

kernel time of the engineering workload. The multiprocessor

UTLB handler contains two extra instructions, resulting in a small

impact on its performance.

6 Related Work

A number of recent papers have characterized mtdtiprogrammed

and multiprocessor operating system behavior. One interesting

point of comparison between these studies and ours is the

methodology used to observe system behavior. Previous studies
were based on the analysis of traces either using hardware

monitors [2][8][ 13] or through software instrumentation [3]. To

these traditional methodologies, we add the use of complete

machine simulation for operating system characterization. We

believe that our approach has several advantages over the previous
techniques.

First, SimOS has an inherent advantage over trace-based simu-

lation since it can accurately model the effects of hardware

changes on the system. The interaction of an operating system with

the interrupt timer and other devices makes its execution timing

sensitive. Changes in hardware configurations impact the timing of
the workload and result in a different execution path. However,

these changes are not captured by trace-based simulations as they

are limited to the ordering of events recorded when the trace was
generated.

When compared to studies that use hardware trace generation

to capture operating system events of interest, SimOS provides

better visibility into the system being studied. For example, operat-
ing system studies using the DASH bus monitor [2][ 13] observe

only level-2 cache misses and hence are blind to performance

effects due to the level-1 caches, write buffer, and processor pipe-
line. Furthermore, because the caches filter memory references

seen by the monitor, only a limited set of cache configurations can

be examined. SimOS simulates all of the hardware and no events

are hidden from the simulator. SimOS can model any hardware

platform that would successfully execute the workloads.

Studies often use software instrumentation to annotate a work-

load’s code and to improve the visibility of hardware monitors.

Unfortunately, this instrumentation is intrusive. For example,

Chen [3] had to deal with both time and memory dilations.
Although this was feasible for a uniprocessor memory system

behavior study, it becomes significantly more difficult on multipro-

cessors. The SimOS annotation mechanism allows non-intrusive
system observation at levels of detail not previously obtainable.

Our results confirm numerous studies [2][3][8][ 13]: memory

system performance, block copy, and instruction miss stall time are
important components of operating system performance. Like

Maynard [8] and Torrellas [13], who used hardware-based traces,
we were able to examine large applications and confirm their

results. Using SimOS, however, we were able to examine the oper-

ating system in more detail and explore the effects of technology

trends.

7 Concluding Remarks

We have examined the impact of architectural trends on operating
system performance. These trends include transition from simple
single-instruction-issue processors to multiple-instruction-issue
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dynamically-scheduled processors, moves towards higher clock-

rates and larger non-blocking caches, and a transition from

uniprocessors to multiprocessors. The workloads studied include

program development, commercial database, and engineering

compute-server environments.

Our data show that the 1/0 subsystem is the primary bottleneck

for the program development and the database workloads, and that

its importance continues to increase over time. For the program-

development workload this result emphasizes the need for the
removal of synchronous writes in the handling of file system meta-

data. Since the database effectively bypasses the operating system
by using “raw” disk devices, there is little the operating system can

do about 1/0 problems in this case.

The memory system is the second major bottleneck for all of

the workloads. While m the kernel, the processor is stalled for
more than 50?70 of the time due to cache misses. Fortunately, archi-
tectural trends appear to be improving the situation; we find the

memory stall time actually reduces slightly when moving from the

1994 to 1998 CPU model, even though the peak processor-execu-

tion rates grow very rapidly. The reasons for this are two-fold.

First, the larger caches in subsequent years help reduce the miss
rate, and second, the ability of dynamically-scheduled processors

to overlap outstanding misses with computation helps hide the

IaLency of misses.

Kernel builders wishing to improve performance beyond that
provided by the architectural improvements should invest in tech-

niques to improve cache reuse and to exploit the increased concur-

rency to be found in future memory systems. Suggested changes
include hawng the virtual memory page allocator factor in the
probability of the page being in the cache when doing allocation

and re-writing all memory copy routines to optimally exploit the

non-blocking caches.

The multiprocessor results show that each of the kernel ser-

vices takes substantially more computation time than on the uni-

processors. The reasons vary all over for the different kernel
services; they could be any combination of overhead and conten-

tion due to locks, stalls due to coherence misses, and extra instruc-

tions and/or misses due to use of different data structures. These
need special attention from kernel developers since improvements
in hardware are not expected to help much (e, g., larger caches do

not reduce coherence misses), and changes in data structures and

locking will be required.

The multiprocessor results also point out the importance of

simulation environments such as SimOS in guiding future

improvements in the kernel. SimOS provides detailed information
regarding the cause(s) of performance bottlenecks for individual
operating system services. Without such detailed understanding of

the bottlenecks, especially on complex architectures as expected in

the future, tremendous effort could be wasted in ad hoc optimiza-

tion that increase kernel complexity without improving perfor-
mance.
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