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ABSTRACT
This paper focuses on running scans in a main memory data pro-
cessing system at “bare metal” speed. Essentially, this means that
the system must aim to process data at or near the speed of the
processor (the fastest component in most system configurations).
Scans are common in main memory data processing environments,
and with the state-of-the-art techniques it still takes many cycles
per input tuple to apply simple predicates on a single column of a
table. In this paper, we propose a technique called BitWeaving that
exploits the parallelism available at the bit level in modern pro-
cessors. BitWeaving operates on multiple bits of data in a single
cycle, processing bits from different columns in each cycle. Thus,
bits from a batch of tuples are processed in each cycle, allowing
BitWeaving to drop the cycles per column to below one in some
case. BitWeaving comes in two flavors: BitWeaving/V which looks
like a columnar organization but at the bit level, and BitWeaving/H
which packs bits horizontally. In this paper we also develop the
arithmetic framework that is needed to evaluate predicates using
these BitWeaving organizations. Our experimental results show
that both these methods produce significant performance benefits
over the existing state-of-the-art methods, and in some cases pro-
duce over an order of magnitude in performance improvement.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—systems

Keywords
Bit-parallel, intra-cycle parallelism, storage organization, indexing,
analytics

1. INTRODUCTION
There is a resurgence of interest in main memory database man-

agement systems (DBMSs), due to the increasing demand for real-
time analytics platforms. Continual drop in DRAM prices and in-
creasing memory densities have made it economical to build and
deploy “in memory” database solutions. Many systems have been
developed to meet this growing requirement [2, 5–7, 9, 14, 21].
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Figure 1: Performance Comparison

A key operation in a main memory DBMS is the full table scan
primitive, since ad hoc business intelligence queries frequently use
scans over tabular data as base operations. An important goal for a
main memory data processing system is to run scans at the speed of
the processing units, and exploit all the functionality that is avail-
able inside modern processors. For example, a recent proposal
for a fast scan [18] packs (dictionary) compressed column values
into four 32-bit slots in a 128-bit SIMD word. Unfortunately, this
method has two main limitations. First, it does not fully utilize the
width of a word. For example, if the compressed value of a particu-
lar attribute is encoded by 9 bits, then we must pad each 9-bit value
to a 32-bit boundary (or what ever is the boundary for the SIMD
instruction), wasting 32 − 9 = 23 bits every 32 bits. The second
limitation is that it imposes extra processing to align tightly packed
values to the four 32-bit slots in a 128-bit SIMD word.

In this paper, we propose a set of techniques, which are collec-
tively called BitWeaving, to aggressively exploit “intra-cycle” par-
allelism. The insight behind our intra-cycle parallelism paradigm is
recognizing that in a single processor clock cycle there is “abundant
parallelism” as the circuits in the processor core are simultaneously
computing on multiple bits of information, even when working on
simple ALU operations. We believe that thinking of how to fully
exploit such intra-cycle parallelism is critical in making data pro-
cessing software run at the speed of the “bare metal”, which in this
study means the speed of the processor core.

The BitWeaving methods that are proposed in this paper target
intra-cycle parallelism for higher performance. BitWeaving does
not rely on the hardware-implemented SIMD capability, and can
be implemented with full-word instructions. (Though, it can also
leverage SIMD capabilities if that is available.) BitWeaving comes
in two flavors: BitWeaving/V and BitWeaving/H, corresponding to
two underlying storage formats. Both methods produce as output
a result bit vector, with one bit per input tuple that indicates if the
input tuple matches the predicate on the column.

The first method, BitWeaving/V, uses a bit-level columnar data
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organization, packed into processor words. It then organizes the
words into a layout that results in largely sequential memory ad-
dress lookups when performing a scan. Predicate evaluation in the
scan operation is converted to logical computation on these “words
of bits” using the arithmetic framework proposed in this paper. In
this organization, storage space is not wasted padding bits to fit
boundaries that are set by the hardware. More importantly, in many
cases, an early pruning technique allows the scan computation to be
safely terminated, even before all the bits in the underlying data are
examined. Thus, predicates can often be computed by only looking
at some of most significant bits in each column. This scheme also
naturally produces compact result bit vectors that can be used to
evaluate the next stage of a complex predicate efficiently.

The second method, BitWeaving/H, uses a bit organization that
is a dual of BitWeaving/V. Unlike the BitWeaving/V format, all the
bits of a column value are stored together in BitWeaving/H, provid-
ing high performance when fetching the entire column value. Un-
like previous horizontal bit packing methods, BitWeaving/H stag-
gers the codes across processor words in a way that produces com-
pact result bit vectors that are easily reusable when evaluating the
next stage of a complex predicate.

Both BitWeaving methods can be used as a native storage orga-
nization technique in a column store database, or as an indexing
method to index specific column(s) in row stores or column stores.

Figure 1 illustrates the performance of a scan operation on a sin-
gle column, when varying the width of the column from 1 bit to 32
bits (Section 6 has more details about this experiment). This fig-
ure shows the SIMD-scan method proposed in [18], and a simple
method (labeled Naive) that scans each column in a traditional scan
loop and interprets each column value one by one. As can be seen
in the figure, both BitWeaving/V and BitWeaving/H outperform
the other methods across all the column widths. Both BitWeaving
methods achieve higher speedups over other methods when the col-
umn representation has fewer number of bits, because this allows
more column predicates to be computed in parallel (i.e. the intra-
cycle parallelism per input column value is higher). For example,
when each column is coded using 4 bits, the BitWeaving methods
are 20X faster than the SIMD-scan method. Even for columns that
are wider than 12 bits, both BitWeaving methods are often more
than 4X faster than the SIMD-scan method. Note that as described
in [18], real world data tends to use 8 to 16 bits to encode a column;
BitWeaving is one order of magnitude faster than the SIMD-scan
method within this range of code widths.

The contribution of this paper is the presentation of the BitWeav-
ing methods that push our intra-cycle parallelism paradigm to its
natural limit – i.e. to the bit level for each column. We also develop
an arithmetic framework for predicate evaluation on BitWeaved
data, and present results from an actual implementation.

The remainder of this paper is organized as follows: Section 2
contains background information. The BitWeaving methods and
the related arithmetic framework is described in Sections 3 through 5.
Section 6 contains our experimental results. Related work is cov-
ered in Section 7, and Section 8 contains our concluding remarks.

2. OVERVIEW
Main memory analytic DBMSs often store data in a compressed

form [2, 4, 5, 10]. The techniques presented in this paper apply to
commonly used column compression methods, including null sup-
pression, prefix suppression, frame of reference, and order-preserving
dictionary encoding [2,4,5,10]. Such a scheme compresses columns
using a fixed-length order-preserving scheme, and converts the na-
tive column value to a code. In this paper, we use the term “code”
to mean an encoded column value. The data for a column is repre-

sented using these codes, and these codes only use as many bits as
are needed for the fixed-length encoding.

In these compression methods, all value types, including nu-
meric and string types, are encoded as an unsigned integer code.
For example, an order-preserving dictionary can map strings to un-
signed integers [3, 10]. A scale scheme can convert floating point
numbers to unsigned integers by multiplying by a certain factor [4].
These compression methods maintain an order-preserving one-to-
one mapping between the column values to the codes. As a result,
column scans can usually be directly evaluated on the codes.

For predicates involving arithmetic or similarity predicates (e.g.
the LIKE predicates on strings), scans cannot be performed directly
on the encoded codes. These codes have to be decoded, and then
are evaluated in a conventional way.

2.1 Problem Statement
A column-scalar scan takes as input a list of n k-bit codes and a

predicate with a basic comparison, e.g. =, 6=, <,>,≤,≥, BETWEEN,
on a single column. Constants in the predicate are also in the do-
main of the compressed codes. The column-scalar scan finds all
matching codes that satisfy the predicate, and outputs an n-bit vec-
tor, called the result bit vector, to indicate the matching codes.

A processor word is a data block that can be processed as a unit
by the processor. For ease of explanation, we initially assume that a
processor word is an Arithmetic Logic Unit (ALU) word, i.e. a 64-
bit word for modern CPUs, and in Appendix C of the extended ver-
sion of this paper [12] we generalize our method for wider words
(e.g. SIMD). The instructions that process the processor word as
a unit of computation are called full-word instructions. Next, we
define when a scan is a bit-parallel method.

DEFINITION 1. If w is the width of a processor word, and k is
the number of bits that are needed to encode a code in the column
C, then a column-scalar scan on column C is a bit-parallel method
if it runs in O(nk

w
) full-word instructions to scan over n codes.

A bit-parallel method needs to run in O(nk
w
) instructions to make

full use of the “parallelism” that is offered by the bits in the entire
width of a processor word. Since processing nk bits with w-bit
processor words requires at least O(nk

w
) instructions, intuitively a

method that matches the O(nk
w
) bound has the potential to run at

the speed of the underlying processor hardware.

2.2 Framework
The focus of this paper is on speeding up scan queries on colum-

nar data in main memory data processing engines. Our frame-
work targets the single-table predicates in the WHERE clause of
SQL. More specifically, the framework allows conjunctions, dis-
junctions, or arbitrary boolean combinations of the following basic
comparison operators: =, 6=, <,>,≤,≥,BETWEEN.

For the methods proposed in this paper, we evaluate the complex
predicate by first evaluating basic comparisons on each column,
using a column-scalar scan. Each column-scalar scan produces a
result bit vector, with one bit for each input column value that in-
dicates if the corresponding column value was selected to be in
the result. Conjunctions and disjunctions are implemented as log-
ical AND and OR operations on these result bit vectors. Once the
column-scalar scans are complete, the result bit vector is converted
to a list of record numbers, which is then used to retrieve other
columns of interest for this query. (See Appendix A in [12] for
more details.) NULL values and three-valued boolean logic can
be implemented in our framework using the techniques proposed
in [13], and, in the interest of space, this discussion is omitted here.

We represent the predicates in the SQL WHERE clause as a bi-
nary predicate tree. A leaf node encapsulates a basic comparison
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operation on a single column. The internal nodes represent logical
operation, e.g. AND, OR, NOT, on one or two nodes. To evalu-
ate a predicate consisting of arbitrary boolean combinations of ba-
sic comparisons, we traverse the predicate tree in depth-first order,
performing the column-scalar comparison on each leaf node, and
merging result bit vectors at each internal node based on the logical
operator that is represented by the internal node. Figure 8 illustrates
an example predicate tree. In Section 3, we focus on single-column
scans, and we discuss complex predicates in Section 4.3.

3. BIT-PARALLEL METHODS
In this section, we propose two bit-parallel methods that are de-

signed to fully utilize the entire width of the processor words to
reduce the number of instructions that are needed to process data.
These two bit-parallel methods are called Horizontal Bit-Parallel
(HBP) and Vertical Bit-Parallel (VBP) methods. Each method has
a storage format and an associated method to perform a column-
scalar scan on that storage method. In Section 4, we describe an
early pruning technique to improve on the column-scalar scan for
both HBP and VBP. Then, in Section 5 we describe the BitWeaving
method, which combines the bit-parallel methods that are described
below with the early pruning technique. BitWeaving comes in two
flavors: BitWeaving/H and BitWeaving/V corresponding to the un-
derlying bit-parallel method (i.e. HBP or VBP) that it builds on.

3.1 Overview of the two bit-parallel methods
As their names indicate, the two bit-parallel methods, HBP and

VBP, organize the column codes horizontally and vertically, respec-
tively. If we thought of a code as a tuple consisting of multiple
fields (bits), HBP and VBP can be viewed as row-oriented storage
and column-oriented storage at the bit level, respectively. Figure 2
demonstrates the basic idea behind HBP and VBP storage layouts.

Both HBP and VBP only require the following full-word opera-
tions, which are common in all modern CPU architectures (includ-
ing at the SIMD register level in most architectures): logical and
(∧), logical or (∨), exclusive or (⊕), binary addition (+), negation
(¬), and k-bit left or right shift (←k or→k, respectively).

Processor Word

code

(a) Horizontal Bit-Parallel
Processor Word

c
o
d
e

(b) Vertical Bit-Parallel

Figure 2: HBP and VBP layouts for a column with 3-bit codes.
The shaded boxes represent the bits for the first column value.

Since the primary access pattern for scan operations is the se-
quential access pattern, both the CPU cost and the memory access
cost are significant components that contribute to the overall exe-
cution time for that operation. Consequently, our methods are op-
timized for both the number of CPU instructions that are needed to
process the data, as well as the number of CPU cache lines that are
occupied by the underlying (HBP or VBP) data representations.

3.1.1 Running Example
To illustrate the techniques, we use the following example through-

out this section. The data set has 10 tuples, and the column of inter-
est contains the following codes: {1 = (001)2, 5 = (101)2, 6 =
(110)2, 1 = (001)2, 6 = (110)2, 4 = (100)2, 0 = (000)2, 7 =

(111)2, 4 = (100)2, 3 = (011)2}, denoted as c1 – c10 respec-
tively. Each value can be encoded by 3 bits (k = 3). For ease of
illustration, we assume 8-bit processor words (i.e. w = 8).

3.2 The Horizontal bit-parallel (HBP) method
The HBP method compactly packs codes into processor words,

and implements the functionality of hardware-implemented SIMD
instructions based on ordinary full-word instructions. The HBP
method solves a general problem for hardware-implemented SIMD
that the natural bit width of a column often does not match any of
the bank widths of the SIMD processor, which leads to an under-
utilization of the available bit-level parallelism.

We first present the storage layout of HBP in Section 3.2.1, and
then describe the algorithm to perform a basic scan on a single
column over the proposed storage layout in Section 3.2.2.

3.2.1 Storage layout
In the HBP method, each code is stored in a (k + 1)-bit section

whose leftmost bit is used as a delimiter between adjacent codes (k
denote the number of bits needed to encode a code). A method that
does not require the extra delimiter bit is feasible, but is much more
complicated than the method with delimiter bits, and also requires
executing more instructions per code [11]. Thus, our HBP method
uses this extra bit for storage.

HBP tightly packs and pads a group of (k + 1)-bit sections into
a processor word. Let w denote the width of a processor word.
Then, inside the processor word, b w

k+1
c sections are concatenated

together and padded to the right with 0s up to the word boundary.

Segment 2

Segment 1
0 0 1

1 0 1

1 1 0

0 0 1

1 1 0

1 0 0

0 0 0

1 1 1

Column Codes HBP Storage Layout

1 0 0

0 1 1

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

0 0 0 1 0 1 1 0v1

c1 c5

0 1 0 1 0 1 0 0v2

c2 c6

0 1 1 0 0 0 0 0v3

c3 c7

0 0 0 1 0 1 1 1v4

c4 c8

0 1 0 0 0 0 1 1v5

c9 c10

Processor Word

Figure 3: Example of the HBP storage layout (k = 3, w = 8).
Delimiter bits are marked in gray.

In the HBP method, the codes are organized in a storage lay-
out that simplifies the process of producing a result bit vector with
one bit per input code (described below in Section 3.2.2). The col-
umn is divided into fixed-length segments, each of which contains
(k + 1) · b w

k+1
c codes. Each code represents k + 1 bits values,

with k bits for the actual code and the leading bit set to the delim-
iter value of 0. Since a processor word fits b w

k+1
c codes, a segment

occupies k + 1 contiguous processor words in memory space. In-
side a segment, the layout of the (k + 1) · b w

k+1
c codes, denoted

as c1 ∼ c(k+1)·b w
k+1
c, is shown below. We use vi to denote the ith

processor word in the segment.

v1 : c1 ck+2 c2k+3 · · · ck·b w
k+1
c+1

v2 : c2 ck+3 c2k+4 · · · ck·b w
k+1
c+2

...
...

...
...

...
vk : ck c2k+1 c3k+2 · · · c(k+1)·b w

k+1
c−1

vk+1 : ck+1 c2k+2 c3k+3 · · · c(k+1)·b w
k+1
c
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v1(c1, c5) v2(c2, c6) v3(c3, c7) v4(c4, c8) v5(c9, c10)
X = (0001 0110)2 (0101 0100)2 (0110 0000)2 (0001 0111)2 (0100 0011)2
Y = (0101 0101)2 (0101 0101)2 (0101 0101)2 (0101 0101)2 (0101 0101)2

mask = (0111 0111)2 (0111 0111)2 (0111 0111)2 (0111 0111)2 (0111 0111)2
X ⊕mask = (0110 0001)2 (0010 0011)2 (0001 0111)2 (0110 0000)2 (0011 0100)2

Y + (X ⊕mask) = (1011 0110)2 (0111 1000)2 (0110 1100)2 (1011 0101)2 (1001 1001)2
Z = (Y + (X ⊕mask)) ∧ ¬mask = (1000 0000)2 (0000 1000)2 (0000 1000)2 (1000 0000)2 (1000 1000)2

Figure 4: Evaluating a predicate c < 5 on the example column c

Figure 3 demonstrates the storage layout for the example col-
umn. Since each code in the example column is encoded by 3 bits
(k = 3), we use 4 = 3+1 bits to store each code and fit two codes
into a 8-bit word (w = 8). As shown in the figure, the 10 values
are divided into 2 segments. In segment 1, eight codes are packed
into four 8-bit words. More specifically, word 1 contains code 1
and 5. Word 2 contains code 2 and 6. Word 3 contains code 3 and
7. Word 4 contains code 4 and 8. Segment 2 is only partially filled,
and contains code 9 and code 10 that are packed into word 5.

3.2.2 Column-scalar scans
The HBP column-scalar scan compares each code with a con-

stant C, and outputs a bit vector to indicate whether or not the cor-
responding code satisfies the comparison condition.

In HBP, b w
k+1
c codes are packed into a processor word. Thus,

we first introduce a function f◦(X,C) that performs simultaneous
comparisons on b w

k+1
c packed codes in a processor word. The

outcome of the function is a vector of b w
k+1
c results, each of which

occupies a (k + 1)-bit section. The delimiter (leftmost) bit of each
section indicates the comparison results.

Formally, a function f◦(X,C) takes as input a comparison oper-
ator ◦, a comparison constant C, and a processor word X that con-
tains a vector of b w

k+1
c codes in the form X = (x1, x2, · · · , xb w

k+1
c),

and outputs a vector Z = (z1, z2, · · · , zb w
k+1
c), where zi = 10k

if xi ◦ C = true, or zi = 0k+1 if xi ◦ C = false. Note that
in the notation above for zi, we use exponentiation to denote bit
repetition, e.g. 1402 = 111100, 10k = 100 · · · 00︸ ︷︷ ︸

k

.

Since the codes are packed into processor words, the ALU in-
struction set can not be directly used to process these packed codes.
In HBP, the functionality of vector processing is implemented using
full-word instructions. Let Y denote a vector of b w

k+1
c instances of

constant C, i.e. Y = (y1, y2, · · · , yb w
k+1
c), where yi = C. Then,

the task is to calculate the vector Z in parallel, where each (k+1)-
bit section in this vector, zi = xi ◦ yi; here, ◦ is one of comparison
operators described as follows. Note that most of these functions
are adapted from [11].

INEQUALITY ( 6=). For the INEQUALITY, observe that xi 6= yi
iff xi ⊕ yi 6= 0k+1. Thus, we know that xi 6= yi iff (xi ⊕ yi) +
01k = 1∗k (we use ∗ to represent an arbitrary bit), which is true iff
((xi ⊕ yi) + 01k) ∧ 10k = 10k. We know that (xi ⊕ yi) + 01k is
always less than 2k+1, so overflow is impossible for each (k+1)-bit
section. As a result, these computation can be done simultaneously
on all xi and yi within a processor word. It is straightforward to
see that Z = ((X ⊕ Y ) + 01k01k · · · 01k) ∧ 10k10k · · · 10k.

EQUALITY (=). EQUALITY operator is implemented by the
complement of the INEQUALITY operator, i.e. Z = ¬((X ⊕ Y ) +
01k01k · · · 01k) ∧10k10k · · · 10k.

LESS THAN (<). Since both xi and yi are integers, we know that
xi < yi iff xi ≤ yi − 1, which is true iff 2k ≤ yi + 2k − xi − 1.
Observe that 2k−xi−1 is just the k-bit logical complement of xi,
which can be calculated as xi ⊕ 01k. It is then easy to show that

(yi + (xi ⊕ 01k)) ∧ 10k = 10k iff xi < yi. We also know that
yi+(xi⊕01k) is always less than 2k+1, so overflow is impossible
for each (k + 1)-bit section. Thus, we have Z = (Y + (X ⊕
01k01k · · · 01k))∧10k10k · · · 10k for the comparison operator <.

LESS THAN OR EQUAL TO (≤). Since xi ≤ yi iff xi < yi + 1,
we have Z = (Y + (X ⊕ 01k) + 0k1) ∧ 10k10k · · · 10k for the
comparison operator ≤.

Then, GREATER THAN (>) and GREATER THAN OR EQUAL TO
(≥) can be implemented by swapping X and Y for LESS THAN (<)
and LESS THAN OR EQUAL TO (≤) operators, respectively.

Thus, the function f◦(X,C) computes the predicates listed above
on b w

k+1
c codes using 3–4 instructions.

Figure 4 illustrates an example when applying f<(vi, 5) on the
words v1 ∼ v5 shown in Figure 3. The ith column in the fig-
ure demonstrates the steps when calculating Z = f<(vi, 5) on the
word vi. The last row represents the results of the function. Each
result word contains two comparison results. The value (1000)2
indicates that the corresponding code is less than the constant 5,
whereas the value (0000)2 indicates that the corresponding code
does not satisfy the comparison condition.

Algorithm 1 HBP column-scalar scan
Input: a comparison operator ◦

a comparison constant C
Output: BVout: result bit vector
1: for each segment s in column c do
2: ms := 0
3: for i := 1 . . . k + 1 do
4: mw := f◦(s.vi, C)
5: ms := ms∨ →i−1 (mw)
6: append ms to BVout

7: return BVout;

Next, we present the HBP column-scalar scan algorithm based
on the function f◦(X,C). Algorithm 1 shows the pseudocode for
the scan method. The basic idea behind this algorithm is to re-
organize the comparison results in an appropriate order, matching
the order of the original codes. As shown in the algorithm, for
each segment in the column, we iterate over the k + 1 words. In
the inner loop over the k + 1 words, we combine the results of
f◦(v1, C) ∼ f◦(vk+1, C) together to obtain the result bit vector
on segment s. This procedure is illustrated below:

f◦(v1, C) : R(c1) 0 · · · 0 0 R(ck+2) · · ·
→1 (f◦(v2, C)) : 0 R(c2) · · · 0 0 0 · · ·

...
...

...
...

→k−1 (f◦(vk, C)) : 0 0 · · · R(ck) 0 0 · · ·
→k (f◦(vk+1, C)) : 0 0 · · · 0 R(ck+1) 0 · · ·∑

∨ : R(c1) R(c2) · · · R(ck) R(ck+1) R(ck+2) · · ·

In the tabular representation above, each column represents one
bit in the outcome of f◦(vi, C). Let R(ci) denote the binary re-
sult of the comparison on ci ◦ C. Since R(ci) is always placed in
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1 1 0 1 0 0 0 1

Column Codes VBP Storage Layout
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c9 c10

Figure 5: Example of the VBP storage layout. The middle bits
of codes are marked in light gray, whereas the least significant
bits are marked in dark gray.

the delimiter (leftmost) bit in a (k + 1)-bit section, the output of
f◦(vi, C) is in the form: R(ci)0

kR(ck+1+i)0
k · · · . By right shift-

ing the output of f◦(vi, C), we move the result bits R(ci) to the
appropriate bit positions. The OR (∨) summation over the k + 1
result words is then in the form of R(c1)R(c2)R(c3) · · · , repre-
senting the comparison results on the b w

k+1
c codes of segment s, in

the desired result bit vector format.
For instance, to compute the result bit vector on segment 1

(v1, v2, v3, and v4) shown in Figure 3 and Figure 4, we perform
(1000 0000)2∨ →1 (0000 1000)2∨ →2 (0000 1000)2∨ →3

(1000 0000)2 = (1001 0110)2. The result bit vector (1001 0110)2
means that c1, c4, c6, and c7 satisfy the comparison condition.

Note that the steps above, which are carried out to produce a
result bit vector with one bit per input code, are essential when
using the result bit vector in a subsequent operation (e.g. the next
step of a complex predicate evaluation in which the other attributes
in the predicate have different code widths).

The HBP storage layout is designed to make it easy to assemble
the result bit vector with one bit per input code. Taking Figure 3 as
an example again, imagine that we lay out all the codes in sequence,
i.e. put c1 and c2 in v1, put c3 and c4 in v2, and so forth. Now,
the result words from the predicate evaluation function f◦(vi, C)
on v1, v2, · · · are f◦(v1, C) = R(c1)000R(c2)000, f◦(v2, C) =
R(c3)000R(c4)000, · · · . Then, these result words must be con-
verted to a bit vector of the form R(c1)R(c2)R(c3)R(c4) · · · , by
extracting all the delimiter bits R(ci) and omitting all other bits.
Unfortunately, this conversion is relatively expensive compared to
the computation of the function f◦(vi, C) (See Appendix B in [12]
for more details). In contrast, the storage layout used by the HBP
method does not need to execute this conversion to produce the re-
sult bit vector. In Section 6.1.1, we empirically compare the HBP
method with a method that needs this conversion.

3.3 The Vertical bit-parallel (VBP) method
The Vertical Bit-Parallel (VBP) method is like a bit-level column

store, with data being packed at word boundaries. VBP is inspired
by the bit-sliced method [13], but as described below, is different
in the way it organizes data around word boundaries.

3.3.1 Storage layout
In VBP, the column of codes is broken down to fixed-length seg-

ments, each of which contains w codes (w is the width of a proces-
sor word). The w k-bit codes in a segment are then transposed into

Algorithm 2 VBP column-scalar comparison
Input: a predicate C1 < c < C2 on column c
Output: BVout: result bit vector
1: for i := 1 . . . k do
2: if i-th bit in C1 is on then
3: C1i := 1w

4: else
5: C1i := 0w

6: for i := 1 . . . k do
7: if i-th bit in C2 is on then
8: C2i := 1w

9: else
10: C2i := 0w

11: for each segment s in column c do
12: mlt,mgt := 0
13: meq1,meq2 := 1w

14: for i := 1 . . . k do
15: mgt := mgt ∨ (meq1 ∧ ¬C1i ∧ s.vi)
16: mlt := mlt ∨ (meq2 ∧ C2i ∧ ¬s.vi)
17: meq1 := meq1 ∧ ¬(s.vi ⊕ C1i)
18: meq2 := meq2 ∧ ¬(s.vi ⊕ C2i)
19: append mgt ∧mlt to BVout

20: return BVout;

k w-bit words, denoted as v1, v2, · · · , vk, such that the j-th bit in
vi equals to the i-th bit in the original code cj .

Inside a segment, the k words, i.e. v1, v2, · · · , vk, are physically
stored in a continuous memory space. The layout of the k words ex-
actly matches the access pattern of column-scalar scans (presented
below in Section 3.3.2), which leads to a sequential access pattern
on these words, making it amenable for hardware prefetching.

Figure 5 illustrates the VBP storage layout for the running ex-
ample shown in Section 3.1.1. The ten codes are broken into two
segments with eight and two codes, respectively. The two segments
are separately transposed into three 8-bit words. The word v1 in
segment 1 holds the most significant (leftmost) bits of the codes
c1 ∼ c8, the word v2 holds the middle bits of the codes c1 ∼ c8,
and the word v3 holds the least significant (rightmost) bits of the
codes c1 ∼ c8. In segment 2, only the leftmost two bits of the
three words are used, and the remaining bits are filled with zeros.

3.3.2 Column-scalar scans
The VBP column-scalar scan evaluates a comparison condition

over all the codes in a single column and outputs a bit vector, where
each bit indicates whether or not the corresponding code satisfies
the comparison condition.

The VBP column-scalar scan follows the natural way to compare
two integers in the form of bit strings: we compare each pair of
bits at the same position of the two bit strings, starting from the
most significant bits to the least significant bits. The VBP method
essentially performs this process on a vector of w codes in parallel,
inside each segment.

Algorithm 2 shows the pseudocode to evaluate the comparison
predicate BETWEEN C1 AND C2.

At the beginning of the algorithm (Lines 1–5), we create a list
of words C11 ∼ C1k to represent w instances of C1 in the VBP
storage format. If the i-th bit of C1 is 1, C1i is set to be all 1s, as
all the i-th bits of the w instances of C1 are all 1s. Otherwise, C1i
is set to be all 0s. Similarly, we create C21 ∼ C2k to represent C2
in the VBP storage format (in Line 6–10).

In the next step, we iterate over all segments of the column, and
simultaneously evaluate the range on all the w codes in each seg-
ment. The bit vector mgt is used to indicate the codes such that
they are greater than the constant C1, i.e. if the i-th bit of mgt is
on, then the i-th code in the segment is greater than the constant
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C1. Likewise, mlt is used to indicate the codes that are less than
the constant C2. meq1 and meq2 are used to indicate the codes that
are equivalent to the constant C1 and C2, respectively.

In the inner loop (Line 14–18), we compare the codes with the
constants C1 and C2 from the most significant bits to the least sig-
nificant bits, and update the bit vector mgt, mlt, meq1, and meq2,
correspondingly. The k words in the segment s are denoted as
s.v1 ∼ s.vk. At the i-th bit position, for a code with the i-th bit
on, the code must be greater than the constant C1 iff the i-th bit of
C1 is off and all bits to the left of this position between the code
and C1 are all equal (meq1 ∧ ¬C1i ∧ s.vi). The corresponding
bits in mgt are then updated to be 1s (Line 15). Similarly, mlt is
updated if the i-th bit of a code is 0, the i-th bit of C2 is 1, and
all the bits to the left of this position are all equal (Line 16). We
also update meq1 (meq2) for the codes that are different from the
constant C1(C2) at the i-th bit position (Line 17 & 18).

After the inner loop, we perform a logical AND between the bit
vector mgt and mlt to obtain the result bit vector on the segment
(Line 19). This bit vector is then appended to the result bit vector.

Algorithm 2 can be easily extended for other comparison condi-
tions. For example, we can modify Line 19 to “append mgt∧mlt∨
meq1 ∨meq2 to BVout” to evaluate the condition C1 ≤ c ≤ C2.
For certain comparison conditions, some steps can be eliminated.
For instance, Line 15 and 17 can be skipped for a LESS THAN (<)
comparison, as we do not need to evaluate mgt and meq1.

4. EARLY PRUNING
The early pruning technique aims to avoid accesses on unneces-

sary data at the bit level. This technique is orthogonal to the two
bit-parallel methods described in Section 3, and hence can be ap-
plied to both the HBP and the VBP methods. However, as the early
pruning technique is more naturally described within the context of
VBP, we first describe this technique as applied to VBP. Then, in
Section 5.2 we discuss how to apply this technique to HBP.

4.1 Basic idea behind early pruning
It is often not necessary to access all the bits of a code to compute

the final result. For instance, to compare the code (11010101)2 to
a constant (11001010)2, we compare the pair of bits at the same
position, starting from the most significant bit to the least signifi-
cant bit, until we find two bits that are different. At the 4th position
(underlined above), the two bits are different, and thus we know
that the code is greater than the constant. We can now ignore the
remaining bits.

Constant VBP words mlt

1st bit 0 01101101 00000000
2nd bit 1 00101001 10010010
3rd bit 1 11010001 -

Figure 6: Evaluating c < 3 with the early pruning technique

It is easy to apply the early pruning technique on VBP, which
performs comparisons on a vector of w codes in parallel. Figure 6
illustrates the process of evaluating the eight codes in segment 1 of
the example column c with a comparison condition c < 3. The
constant 3 is represented in the binary form (011)2 as shown in the
second column in the figure. The first eight codes (1 = (001)2,
5 = (101)2, 6 = (110)2, 1 = (001)2, 6 = (110)2, 4 = (100)2,
0 = (000)2, 7 = (111)2) of column c are stored in three 8-bit VBP
words, as shown in the third column in the figure.

By comparing the first bit of the constant (0) with the first bits of
the eight codes (01101101), we notice that no code is guaranteed to
be less than the constant at this point. Thus, the bit vector mlt is all
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0s to reflect this situation. Next, we expand the comparison to the
second bit between the constant and the codes. Now, we know that
the 1st, 4th, and 7th codes are smaller than the constant because
their first two bits are less than the first two bits of the constant
(01). We also know that the 2nd, 3rd, 5th, 6th, and 8th codes are
greater than the constant, as their first two bits are greater than the
first two bits of the constant (01). At this point, all the codes have a
definite answer w.r.t. this predicate, and we can terminate the VBP
column-scalar scan on this segment. The bit vector mlt is updated
to be 10010010, and it is also the final result bit vector.

4.2 Estimating the early pruning probability
We first introduce the fill factor f of a segment, defined as the

number of codes that are present over the maximum number of
codes in the segment, i.e. the width of processor word w. For
instance, the fill factor of the segment 1 in Figure 5 is 8/8 = 100%,
whereas the fill factor of the segment 2 is 2/8 = 25%. According
to this definition, a segment contains wf codes.

The early pruning probability P (b) is defined as the probability
that the wf codes in a segment are all different from the constant
in the most significant b bits, i.e. it is the probability that we can
terminate the computation at the bit position b.

We analyze the early pruning probability P (b) on a segment con-
taining wf k-bit codes. We assume that a code and the constant
have the same value at a certain bit position with a probability of
1/2. Thus, the probability that all of the leading b bits between a
code and the constant are identical is given by ( 1

2
)b. Since a seg-

ment contains wf codes, the probability that these codes are all
different from the constant in the leading b bits, i.e. the early prun-
ing probability P (b), is:

P (b) = (1− (
1

2
)b)w·f

Figure 7 plots the early pruning probability P (b) with a 64-bit
processor word (w = 64) by varying the bit position b. We first
look at the curve with a 100% fill factor. The early pruning prob-
ability increases as the bit position number increases. At the bit
position 12, the early pruning probability is already very close to
100%, which indicates that in many cases we can terminate the
scan after looking at the first 12 bits. If a code is a 32-bit integer,
VBP with early pruning potentially only uses 12/32 of the memory
bandwidth and the processing time that is needed by the base VBP
method (without early pruning).

In Figure 7, at the lower fill factors, segments are often “cut-
off” early. For example, for segments with fill factor 10%, we can
prune the computation at bit position 8 in most (i.e. 97.5%) cases.
This cut-off mechanism allows for efficient evaluation of conjunc-
tion/disjunction predicates in BitWeaving, as we will see next in
Section 4.3.
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R.a < 10 R.b > 5 R.c < 20 R.d = 3

AND

AND

OR

Figure 8: An example predicate tree for the expression
R.a < 10 AND R.b > 5 AND R.c < 20 OR R.d = 3

4.3 Filter bit vectors on complex predicates
The early pruning technique can also be used when evaluating

predicate clauses on multiple columns. Predicate evaluation on a
single column can be pruned as outlined above in Section 4.1. But,
early pruning can also be used when evaluating a series of predicate
clauses with the result vector from the first clause being used to
“initialize” the pruning bit vector for the second clause.

The result bit vector that is produced from a previous step is
called the filter bit vector of the current column-scalar scan. This
filter bit vector is used to filter out the tuples that do not match the
predicate clauses that were examined in the previous steps, lead-
ing to a lower fill factor on the current column. Thus, the filter
bit vector further reduces the computation on the current column-
scalar scan (note that at the lower fill factors, predicate evaluation
are often “cut-off” early, as shown in Figure 7).

As an example, consider the complex predicate: R.a < 10
AND R.b > 5 AND R.c < 20 OR R.d = 3. Figure 8 il-
lustrates the predicate tree for this expression. First, we evaluate the
predicate clause on column R.a, using early pruning. This evalu-
ation produces a result bit vector. Next, we start evaluating the
predicate clause on the column R.b, using early pruning. How-
ever, in this step we use the result bit vector produced from the
previous step to seed the early pruning. Thus, tuples that did not
match the predicate clause R.a < 10 become candidates for early
pruning when evaluating the predicate clause on R.b, regardless of
the value of their b column. As a result, the predicate evaluation
on column b is often “cut-off” even earlier. Similarly, the result bit
vector produced at the end of evaluating the AND node (the white
AND node in the figure) is fed into the scan on column R.c. Fi-
nally, since the root node is an OR node, the complement of the
result bit vector on the AND node (the gray one) is fed into the
final scan on column R.d.

5. BIT WEAVING
In this section, we combine the techniques proposed above, and

extend them, into the overall method called BitWeaving. BitWeav-
ing comes in two flavors: BitWeaving/H and BitWeaving/V corre-
sponding to the underlying bit-parallel storage format (i.e. HBP or
VBP described in Section 3) that it builds on. As described below,
BitWeaving/V also employs an adapted form of the early pruning
technique described in Section 4.

We note that the BitWeaving methods can be used as a base stor-
age organization format in column-oriented data stores, and/or as
indices to speedup the scans over some attributes. For ease of pre-
sentation, below we assume that BitWeaving is used as a storage
format. It is straightforward to employ the BitWeaving method as
indices, and in Section 6.2 we empirically evaluate the performance
of the BitWeaving methods when used in both these ways.

5.1 BitWeaving/V
BitWeaving/V is a method that applies the early pruning tech-

nique on VBP. BitWeaving/V has three key features: 1) The early
pruning technique skips over pruned column data, thereby reducing

the total number of bits that are accessed in a column-scalar scan
operation; 2) The storage format is not a pure VBP format, but a
weaving of the VBP format with horizontal packing into bit groups
to further exploit the benefits of early pruning, by making access
to the underlying bits more sequential (and hence more amenable
for hardware prefetching); 3) It can be implemented with SIMD
instructions allowing it to make full use of the entire width of the
(wider) SIMD words in modern processors.

5.1.1 Storage layout
In this section, we describe how the VBP storage layout is adapted

in BitWeaving/V to further exploit the benefits of the early pruning
technique. In addition to the core VBP technique of vertical par-
titioning the codes at the bit level, in BitWeaving/V the codes are
also partitioned in a horizontal fashion to provide better CPU cache
performance when using the early pruning technique. This combi-
nation of vertical and horizontal partitioning is the reason why the
proposed solution is called BitWeaving.

Cut-off

Segment 1

Processor
Word

Cut-off

Segment 2

(a) VBP

Bit Group 1

Bit Group 2

Bit Group 3

Cut-off Cut-off

Segment 1 Segment 2

Processor
Word

(b) BitWeaving/V

Figure 9: Early pruning on VBP and BitWeaving/V

The VBP storage format potentially wastes memory bandwidth
if we apply the early pruning technique on the base VBP storage
format. (See Section 3.3 for details.) Figure 9(a) illustrates a scan
on a column stored in the VBP format. Suppose that with the early
pruning technique (described in Section 4.1), the outcome of com-
parisons on all the codes in a segment is determined after accessing
the first three words. Thus, the 4th to the 9th words in segment 1
can be skipped, and the processing can move to the next segment
(as shown by the dashed arrow). Suppose that a CPU cache line
contains 8 words. Thus, the six words that are skipped occupy the
same CPU cache line as the first three words. Skipping over the
content that has already been loaded into the CPU cache results
in wasted memory bandwidth, which is often a critical resource in
main memory data processing environments.

We solve this problem by dividing the k words in a segment into
fixed sized bit groups. Let B denote the size of each bit group.
The words in the same bit group are physically stored in continu-
ous space. Figure 9(b) illustrates how the storage layout with the
bit grouping reduces the amount of data that is loaded into the CPU
cache. As shown in this figure, the nine words in each segment are
divided into three bit groups, each containing three words per seg-
ment. Suppose that with the early pruning technique, the outcome
of the comparisons on all the codes in a segment is determined after
accessing the first three words. In this case, we only need to access
the first three words of each segment, which are all laid out contin-
uously and compactly in the first bit group. Consequently, the bit
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Algorithm 3 BitWeaving/V column-scalar scan
Input: a predicate C1 < c < C2 on column c

BVin: filter bit vector
Output: BVout: result bit vector
1: initialize C1 and C2 (same as Lines 1-10 in Algorithm 2)
2: for each segment s in column c do
3: mlt,mgt := 0
4: meq1,meq2 := BVin.s �

5: for g := 1 . . . b k
B
c do 2

6: if meq1 == 0 and meq2 == 0 then 2

7: break 2

8: for i := gB + 1 . . .min(gB +B, k) do 2

9: mgt := mgt ∨ (meq1 ∧ ¬C1i ∧ s.wi)
10: mlt := mlt ∨ (meq2 ∧ C2i ∧ ¬s.wi)
11: meq1 := meq1 ∧ ¬(s.wi ⊕ C1i)
12: meq2 := meq2 ∧ ¬(s.wi ⊕ C2i)
13: append mgt ∧mlt to BVout

14: return BVout;

grouping technique uses memory bandwidth more judiciously, and
results in a more sequential access pattern.

In the example above, if the early pruning triggers at two bits
(instead of three bits), then we still save on memory accesses over
a method that does not use bit groups. However, we will likely
waste memory bandwidth bringing in data for the third bit. Picking
an optimal bit group size is an interesting direction for future work.
In Appendix D.2 of the full-length version of this paper [12], we
empirically demonstrate the impact of the bit group size.

5.1.2 Column-scalar scans
We apply the early pruning technique on the VBP column-scalar

scan, in two ways. First, when evaluating a comparison condition
on a vector of codes, we skip over the least significant bits as soon
as the outcome of the scan is fully determined. Second, a filter bit
vector is fed into the scan to further speedup comparisons. This bit
vector is used to filter out unmatched tuples even before the scan
starts. This technique reduces the number of available codes in
each segment, and thus speedups the scan (recall that early pruning
technique often runs faster on segments with a lower fill factor as
shown in Section 4.2).

The pseudocode for a VBP column-scalar scan with early prun-
ing technique is shown in Algorithm 3. The algorithm is based on
the VBP column-scalar scan shown in Algorithm 2. The modified
lines are marked with � and 2 at the end of lines.

The first modification over the VBP scan method is to skip over
the least significant bits once the outcome of the scan is fully de-
termined (marked with 2 at the end of lines). In the BitWeaving/V
storage layout, k words representing a segment are divided into
fixed-size bit groups. Each bit group contains B words in the seg-
ment. Predicate evaluation is also broken into a group of small
loops to adapt to the design of bit groups. Before working on each
bit group, we check the values of the bit masks meq1 and meq2. If
both bit masks are all 0s, then the leading bits between the codes
and the constant are all different. Thus, the outcome of the scan
on the segment is fully determined. As a result, we terminate the
evaluation on this segment, and move to the next one.

We check the cut-off condition (in Line 6) in one of every B
iterations of processing the k words of a segment. The purpose of
this design is to reduce the cost of checking the condition as well
as the cost of CPU branch mispredictions that this step triggers. If
the cut-off probability at a bit position is neither close to 0% nor
100%, it is difficult for the CPU to predict the branch. Such branch
misprediction can significantly slows down the overall execution.
With the early pruning technique, checking the cut-off condition

in one of every B iterations reduces the number of checks at the
positions where the cut-off probability is in the middle range. We
have observed that without this attention to branch prediction in the
algorithm, the scans generally run slower by up to 40%.

The second modification is to feed a filter bit vector into the
column-scalar comparisons. In a filter bit vector, the bits associated
with the filtered codes are turned off. Filter bit vectors are typically
the result bit vectors on other predicates in a complex WHERE
clause (see Section 4.3 for more details).

To implement this feature, the bit masks meq1 and meq2 are ini-
tialized to the corresponding segment in the filter bit vector (marked
with � at the end of the line). During the evaluation on a segment,
the bit masks meq1 and meq2 are updated by meq1 := meq1 ∧
¬(s.wi⊕C1i) and meq2 := meq2 ∧¬(s.wi⊕C2i), respectively.
Thus, the filtered codes remain 0s in meq1 and meq2 during the
evaluation. Once the bits associated with the unfiltered codes are
all updated to 0s, we terminate the comparisons on this segment
following the early pruning technique. The filter bit vector poten-
tially speedups the cut-off process.

5.2 BitWeaving/H
It is also feasible to apply early pruning technique on data stored

in the HBP format. The key difference is that we store each bit
group in the HBP storage layout (described in Section 3.2). For
a column-scalar scan, we evaluate the comparison condition on bit
groups starting from the one containing the most significant bits. In
addition to the result bit vector on the input comparison condition,
we also need to compute a bit vector for the inequality condition in
order to detect if the outcome of the scan is fully determined. Once
the outcome is fully determined, we skip the remaining bit groups
(using early pruning).

However, the effect of early pruning technique on HBP is offset
by the high overhead of computing the additional bit vector, and
has an overall negative impact on performance (see Section 6.1.2).
Therefore, the BitWeaving/H method is simply the HBP method.

5.3 BitWeaving/H and BitWeaving/V
In this section, we compare the two BitWeaving methods, in

terms of performance, applicability, as well as ease of implementa-
tion. The summary of this comparison is shown in Table 1.

BitWeaving/H BitWeaving/V
Scan Complexity O(bn(k+1)

w
c) O(nk

w
)

SIMD Implementation Limited Good
Early Pruning No Yes
Lookup Performance Good Poor

Table 1: Comparing BitWeaving/H and BitWeaving/V

Scan Complexity. BitWeaving/H uses k + 1 bits of processor
word to store a k-bit code, while BitWeaving/V requires only k
bits. As both methods simultaneously process multiple codes, the
CPU cost of BitWeaving/H and BitWeaving/V are O(bn(k+1)

w
c)

and O(nk
w
), respectively; i.e., both are bit-parallel methods as per

Definition 1. Both BitWeaving methods are generally competitive
to other methods. However, in the extreme cases, BitWeaving/V
could be close to 2X faster than BitWeaving/H due to the overhead
of the delimiter bits (in BitWeaving/H). For instance, BitWeav-
ing/H fits only one 32-bit code (with an addition delimiter bit) in a
64-bit process word, whereas BitWeaving/V fits two codes.

SIMD Implementation. The implementation of BitWeaving/H
method relies on arithmetic and shift operations, which is generally
not supported on an entire SIMD word today. Thus, BitWeaving/H
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Figure 10: Performance on query Q1.

has to pad codes to the width of banks in the SIMD registers, rather
than the SIMD word width. This leads to underutilization of the full
width of the SIMD registers. In contrast, BitWeaving/V method
achieves the full parallelism that is offered by SIMD instructions.
Appendix C in [12] describes how our methods can be extended to
work with larger SIMD words.

Early Pruning. Applying early pruning technique on HBP re-
quires extra processing that hurts the performance of HBP. As a
result, BitWeaving/H does not employ the early pruning technique.
In contrast, in BitWeaving/V, the early pruning technique works
naturally with the underlying VBP-like format with no extra cost,
and usually improves the scan performance.

Lookup Performance. With the BitWeaving/H layout, it is easy
to fetch a code as all the bits of the code are stored contiguously. In
contrast, for BitWeaving/V, all the bits of a code are spread across
various bit groups, distributed over different words. Consequently,
looking up a code potentially incurs many CPU cache misses, and
can thus hurts performance.

To summarize, in general, both BitWeaving/H and BitWeaving/V
are competitive methods. BitWeaving/V outperforms BitWeaving/H
for scan performance whereas BitWeaving/H achieves better lookup
performance. Empirical evaluation comparing these two methods
is presented in the next section.

6. EVALUATION
We ran our experiments on a machine with dual 2.67GHz In-

tel Xeon 6-core CPUs, and 24GB of DDR3 main memory. Each
processor has 12MB of L3 cache shared by all the cores on that
processor. The processors support a 64-bit ALU instruction set as
well as a 128-bit Intel SIMD instruction set. The operating system
is Linux 2.6.9.

In the evaluation below, we compare BitWeaving to the SIMD-
scan method proposed in [18], the Bit-sliced method [13], and a
method based on Blink [8]. Collectively, these three methods rep-
resent the current state-of-the-art main memory scan methods.

To serve as a yardstick, we also include comparison with a naive
method that simply extracts, loads, and then evaluates each code
with the comparison condition in series, without exploiting any
word-level parallelism. In the graphs below the tag Naive refers
to this simple scan method.

Below, the tag SIMD-scan refers to the technique in [18] that
uses SIMD instructions to align multiple tightly packed codes to
SIMD banks in parallel, and then simultaneously processes multi-
ple codes using SIMD instructions.

Below, the tag Bit-sliced refers to the traditional bit-sliced method

proposed in [13]. This method was originally proposed to index ta-
bles with low number of distinct values; it shares similarities to
the VBP method, but does not explore the storage layout and early
pruning technique. Surprisingly, previous recent work on main
memory scans have largely ignored the bit-sliced method.

In the graphs below, we use the tag BL (Blink-Like) to repre-
sent the method that adapts the Blink method [8] for column stores
(since we focus on column stores for this evaluation). Thus, the
tag BL refers to tightly (horizontally) packed columns with a sim-
ple linear layout, and without the extra bit that is used by HBP
(see Section 3.2). The BL method differs from the BitWeaving/H
method as it does not have the extra bit, and it lays out the codes in
order (w.r.t. the discussion in the last paragraph in Section 3.2, the
layout of the codes in BL is c1 and c2 in v1, c3 and c4 in v2, and
so on in Figure 3).

Below, the tags BitWeaving/H (or BW/H) and BitWeaving/V (or
BW/V) refer to the methods proposed in this paper. The size of the
bit group is 4 for all experiments. The effect of the other bit group
sizes on scan performance is shown in Appendix D.2 in [12].

We implemented each method in C++, and compiled the code
using g++ 3.4.6 with optimization flags (O3).

In all the results below, we ran experiments using a single pro-
cess with a single thread. We have also experimented using mul-
tiple threads working on independent data partitions. Since the re-
sults are similar to that of a single thread (all the methods parallelize
well assuming that each thread works on a separate partition), in the
interest of space, we omit these results.

6.1 Micro-Benchmark Evaluation
For this experiment, we created a table R with a single column

and one billion uniformly distributed integer values in this column.
The domain of the values are [0, 2d), where d is the width of the
column that is varied in the experiments. The query (Q1), shown
below, is used to evaluate a column-scalar scan with a simple LESS
THAN predicate. The performance on other predicates is similar
to that on the LESS THAN predicate. (See Appendix D.1 in [12]
for more details.) The constants in the WHERE clause are used
to control the selectivity. By default, the selectivity on each predi-
cate is set to 10%, i.e. 10% of the input tuples match the predicate.
Note, we also evaluate the impact of different selectivity (see Ap-
pendix D.3 in [12]), but by default use a value of 10%.

Q1: SELECT COUNT(*) FROM R WHERE R.a < C1

6.1.1 BitWeaving v/s the Other Methods
In the evaluation below, we first compare BitWeaving to the
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Figure 11: Performance comparison between the HBP and the VBP related methods on Query Q1.

Naive, the SIMD-scan [18], the Bit-sliced [13], and the BL meth-
ods. Figure 10(a), Figure 10(b), and Figure 10(c) illustrate the
number of cycles, cache misses, and CPU instructions for the six
methods for Q1 respectively, when varying the width of the column
code from 1 bit to 32 bits. The total number of cycles for the query
is measured by using the RDTSC instruction. We divide this total
number of cycles by the number of codes to compute the cycles per
code, which is shown in Figure 10(a).

As can be observed in Figure 10(a), not surprisingly, the Naive
method is the slowest. The Naive method shifts and applies a mask
to extract and align each packed code to the processor word. Since
each code is much smaller than a processor word (64-bit), it burns
many more instructions than the other methods (see Figure 10(c))
on every word of data that is fetched from the underlying memory
subsystem (with L1/L2/L3 caches buffering data fetched from main
memory). Even when most of the data is served from the L1 cache,
its CPU cost dominates the overall query execution time.

The SIMD-scan achieves 50%–75% performance improvement
over the Naive method (see Figure 10(a)), but it is still worse com-
pared to the other methods. Even though a SIMD instruction can
process four 32-bit banks in parallel, the number of instructions
drops by only 2.2-2.6X (over the Naive method), because it im-
poses extra instructions to align packed codes into the four banks
before any computation can be run on that data. Furthermore, we
observe that with SIMD instructions, the CPI (Cycles Per Instruc-
tions) increases from 0.37 to 0.56 (see Figure 10(c)), which means
that a single SIMD instructions takes more cycles to executed than
a ordinary ALU instruction. This effect further dampens the benefit
of this SIMD implementation.

As can be seen in Figure 10(a), the Bit-sliced and the BL meth-
ods shows a near linear increase in run time as the code width
increases. Surprisingly, both these methods are almost uniformly
faster than the SIMD-scan method. However, the storage layout
of the Bit-sliced method occupies many CPU cache lines for wider
codes. As a result, as can be seen in Figure 10(b), the number of L3
cache misses quickly increases and hinders overall performance.

In this experiment, the BitWeaving methods outperform all the
other methods across all the code widths (see Figure 10(a)). Un-
like the Naive and the SIMD-scan methods, they do not need to
move data to appropriate positions before the predicate evaluation
computation. In addition, as shown in Figure 10(b) and 10(c), the
BitWeaving methods are optimized for both cache misses and in-
structions due to their storage layouts and scan algorithms. Finally,
with the early pruning technique, the execution time of BitWeav-
ing/V (see Figure 10(a)) does not increase for codes that are wider
than 12 bits. As can be seen in Figure 10(a), for codes wider than

12 bits, both BitWeaving methods are often more than 3X faster
than the SIMD-scan, the Bit-sliced and the BL methods.

6.1.2 Individual BitWeaving Components
In this experiment, we compare the effect of the various tech-

niques (VBP v/s HBP, early pruning, and SIMD optimizations) that
have been proposed in this paper. Figure 11(a) and 11(b) plot the
performance of these techniques for VBP and HBP for query Q1,
respectively.

First, we compare the scan performance of the HBP and the VBP
methods for query Q1. From the results shown in Figure 11(a) and
11(b), we observe that at certain points, VBP is up to 2X faster than
HBP. For example, VBP is 2X faster than HBP for 32-bit codes, be-
cause HBP has to pad 32-bit code to a entire 64-bit word to fit both
the code and the delimiter bit. In spite of this, HBP and VBP gener-
ally show a similar performance trend as the code width increases.
This empirical results matches our analysis that both methods sat-
isfy the cost-bound for bit-parallel methods.

Next, we examine the effects of the early pruning technique on
both the VBP and the HBP methods. As can be seen in Figure 11(a),
for wider codes, the early pruning technique quickly reduces the
query execution time for VBP, and beyond 12 bits, the query ex-
ecution time with early pruning is nearly constant. Essentially, as
described in Section 4.2, for wider codes early pruning has a high
chance of terminating after examining the first few bits.

In contrast, as can be seen in Figure 11(b), the effect of the early
pruning technique on the HBP method is offset by the high over-
head of computing the additional masks (see Section 5.2). Conse-
quently, the HBP method (which is the same as BitWeaving/H, as
discussed in Section 5.2) is uniformly faster than “HBP + Pruning”.

Applying SIMD parallelism achieves marginal speedups for both
the HBP and the VBP methods (see Figures 11(a) and 11(b)). Ide-
ally, the implementation with a 128-bit SIMD word should be 2X
faster than that with 64-bit ALU word. However, by measuring the
number of instructions, we observed that the SIMD implementa-
tion reduces the number of instructions by 40%, but also increase
the CPI by 1.5X. Consequently, the net effect is that the SIMD
implementation is only 20% and 10% faster than the ALU imple-
mentation, for VBP and HBP respectively.

Next, we evaluate the performance of a lookup operation. A
lookup operation is important to produce the attributes in the pro-
jection list after the predicates in the WHERE clause have been
applied. In this experiment, we randomly pick 10 million positions
in the column, and measure the average number of cycles that are
needed to fetch (and assemble) a code at each position. The results
for this experiment are shown in Figure 11(c).

As can be seen in Figure 11(c), amongst the four methods, the
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Figure 12: Performance comparison with the TPC-H Queries (BW=BitWeaving).

lookup performance of the HBP method is the best, and its per-
formance is stable across the code widths. The reason for this
behavior is because all the bits of a code in the HBP method are
located together. For the VBP method, all the bits of a code are
stored in continuous space, and thus it is relatively fast to access
all the bits and assemble the code. For the methods with the early
pruning technique, the bits of a code are distributed into various bit
groups. Assembling a code requires access to data across multi-
ple bit groups at different locations, which incurs many CPU cache
misses, and thus significantly hurts the lookup performance.

6.2 TPC-H Evaluation
In this experiment, we use seven queries from the TPC-H bench-

mark [17]. These experiments were run against a TPC-H dataset
at scale factor 10. The total size of the database is approximately
10GB. First, we compare the performance of the various methods
on the TPC-H scan query (Q6). This query is shown below:
SELECT sum(l_extendedprice * l_discount)
FROM lineitem
WHERE l_shipdate BETWEEN Date and Date + 1 year
and l_discount BETWEEN Discount - 0.01
and Discount + 0.01 and l_quantity < Quantity

As per the TPC-H specifications for the domain size for each of
the columns/attributes in this query, the column l_shipdate,
l_discount, l_quantity, l_extendedprice are en-
coded with 12 bits, 4 bits, 6 bits, and 24 bits, respectively. The
selectivity of this query is approximately 2%.

Figure 12(a) shows the time breakdown for the scan and the ag-
gregation operations for the BitWeaving and the other methods.
Not surprisingly, the Naive method is the slowest. The SIMD-
scan method only achieves about 20% performance improvement
over the Naive method, mainly because the SIMD-scan method per-
forms relatively poorly when evaluating the BETWEEN predicates
(see Appendix D.1 in [12]). Evaluating a BETWEEN predicate is
complicated/expensive with the SIMD-scan method since the re-
sults of the SIMD computations are always stored in the original
input registers. Consequently, we have to make two copies for each
attribute value, and compare each copy with the lower and upper
bound constants in the BETWEEN predicate, respectively.

The BL method runs at a much higher speed compared to the
Naive and the SIMD methods. However, compared to BitWeav-
ing/H, the BL method uses more instructions to implement its func-
tionality of parallel processing on packed data and the conversion
process to produce the result bit vector, which hinders its scan per-
formance.

Note that both the BitWeaving methods (BW/H and BW/V) out-
perform all existing methods. As the column l_extendedprice

is fairly wide (24 bits), BitWeaving/V spends more cycles extract-
ing the matching values from the aggregation columns. As a result,
for this particular query, BitWeaving/H is faster than BitWeaving/V.

We also evaluated the effects of using the BitWeaving methods
as indices. In this method, the entire WHERE clause is evaluated
using the corresponding BitWeaving methods on the columns of
interest for this WHERE clause. Then, using the method described
in Appendix A in [12] , the columns involved in the aggregation
(in the SELECT clause of the query) are fetched from the associ-
ated column store(s) for these attributes. These column stores use
a Naive storage organization.

In Figure 12, these BitWeaving index-based methods are de-
noted as BW/H-idx and BW/V-idx. As can be seen in Figure 12(a),
BW/H-idx and BW/H have similar performance. The key differ-
ence between these methods is whether the aggregation columns
are accessed from either the BW/H format or from the Naive col-
umn store. However, since using BW/H always results in accessing
one cache line per lookup, its performance is similar to the lookup
with the Naive column store organization (i.e the BW/H-idx case).
On the other hand, the BW/V-idx method is about 30% faster than
the BW/V method. The reason for this behavior is that the verti-
cal bit layout in BW/V results in looking up data across multiple
cache lines for each aggregate column value, whereas the BW/V-
idx method fetches these attribute values from the Naive column
store, which requires accessing only one cache line for each aggre-
gate column value.

Next, we selected six TPC-H join queries (Q4, Q5, Q12, Q14,
Q17, Q19), and materialized the join component in these queries.
Then, we ran scan operations on the pre-joined materialized tables.
Here, we report the results of these scan operations on these ma-
terialized tables. The widths of the columns involved in the se-
lection operations (i.e. the WHERE clause in the SQL query on
the pre-joined materialized tables) ranges from 2 bits to 12 bits.
All these queries, except for query Q19, contain a predicate clause
that is a conjunction of one to four predicates. Query Q19 has
a more complex predicate clause, which includes a disjunction of
three predicate clauses, each of which is a conjunction of six pred-
icates. These queries contain a variety of predicates, including
<,>,=, <>, BETWEEN, and IN. Some queries also involve
predicates that perform comparisons between two columns. The
projection clauses of these six queries contain one to three columns
with widths that vary from 3 to 24 bits.

Figure 12(b) plots the speedup of all the methods over the Naive
method for the six TPC-H queries. For most queries, the BitWeav-
ing methods are over one order of magnitude faster than the Naive
method.

By comparing the performance of the BW/H and the BW/V meth-
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ods, we observe that the answer to the question of which BitWeav-
ing method has higher performance depends on many query char-
acteristics. For Q4 and Q14, the BW/H method is slightly faster
than the BW/V method, because the BW/H method performs bet-
ter on the BETWEEN predicate on relative narrow columns (see Ap-
pendix D.1 in [12]). Query Q4 contains two predicate clauses, one
of which is a BETWEEN predicate. In contrast, Query Q14 contains
only one predicate clause, which is a BETWEEN predicate. For
queries Q5, Q12, Q17, and Q19, the BW/V method outperforms
the BW/H method as these four queries contain more than three
predicate clauses. Although some of these queries also contain
the BETWEEN predicate(s), the early pruning technique (of BW/V)
speedups the scans with on BETWEEN predicates when performed
at the end of a series of column-scalar scans. In general, we ob-
serve that the BW/V method has higher performance for queries
with predicates that involve many columns, involve wider columns,
and have highly selective predicates.

Using the BW/V method as an index improves the performance
by about 15% for Q5 and Q17 (both queries contain wider columns
in their projection lists), and has no significant gain for the other
queries. In general, we observe that it is not very productive to use
the BW/H method as an index, since it already has a low lookup
cost as a base storage format. For the BW/V method, using it as an
index improves the performance for some queries by avoiding the
slow lookups that are associated with using the BW/V method as
the base storage format.

We note that there are interesting issues here in terms of how to
pick between BitWeaving/H vs. BitWeaving/V, and whether to use
the BitWeaving methods as an index of for base storage. Build-
ing an accurate cost model that can guide these choices based on
workload characteristics is an interesting direction for future work.

7. RELATED WORK
The techniques present in this paper are applicable to main-memory

analytics DBMSs. In such DBMSs, data is often stored in com-
pressed form. SAP HANA [5], IBM Blink [2,15], and HYRISE [10]
use sorted dictionaries to encode values. Dynamic order-preserving
dictionary was proposed to encode strings [3]. Other light-weight
compression schemes can also be used for main-memory column-
wise databases, such as [1, 4, 20].

SIMD instructions can be used to speed up database operations [19],
and the SIMD-scan [18] method is the state-of-the-art scan method
that uses SIMD. In this paper we compare BitWeaving with this
scan method. We note that BitWeaving can also be used in pro-
cessing environments that don’t support SIMD instructions.

The BitWeaving/V methods shares similarity to the bit-sliced in-
dex [13], but the storage layout of a bit-sliced index is not opti-
mized for memory access, as well as our proposed early pruning
technique. A follow-up work presented the algorithms that perform
arithmetic on bit-sliced indices [16]. Some techniques described in
that paper are also applicable to our BitWeaving/V method.

The BitWeaving/H method relies on the capability to process
packed data in parallel. This technique was first proposed by Lam-
port [11]. Recently, a similar technique [8] was used to evaluate
complex predicates in IBM’s Blink System [2].

8. CONCLUSIONS AND FUTURE WORK
With the increasing demand for main memory analytics data pro-

cessing, there is an critical need for fast scan primitives. This pa-
per proposes a method called BitWeaving that addresses this need
by exploiting the parallelism available at the bit level in modern
processors. The two flavors of BitWeaving are optimized for two

common access patterns, and both methods match the complex-
ity bound for bit-parallel scans. Our experimental studies show
that the BitWeaving techniques are faster than the state-of-the-art
scan methods, and in some cases by over an order of magnitude.
For future work, we plan to explore methods to use BitWeaving
effectively in other database operations, such as joins and aggre-
gates. We also plan to study how to apply the BitWeaving technique
within the context of broader automatic physical database design
issues (e.g. replication, and forming column groups [8] automat-
ically), multi-threaded scans, concurrent scans, other compression
schemes, and considering the impact of BitWeaving on query opti-
mization.
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