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of which has greater capacity 
than the preceding but which 
is less quickly accessible.
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Just as accesses to books on the desk naturally exhibit locality, locality in 
programs arises from simple and natural program structures. For example, 
most programs contain loops, so instructions and data are likely to be accessed 
repeatedly, showing high amounts of temporal locality. Since instructions are 
normally accessed sequentially, programs also show high spatial locality. Accesses 
to data also exhibit a natural spatial locality. For example, sequential accesses to 
elements of an array or a record will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory 
of a computer as a memory hierarchy. A memory hierarchy consists of multiple 
levels of memory with diff erent speeds and sizes. Th e faster memories are more 
expensive per bit than the slower memories and thus are smaller.

Figure 5.1 shows the faster memory is close to the processor and the slower, 
less expensive memory is below it. Th e goal is to present the user with as much 
memory as is available in the cheapest technology, while providing access at the 
speed off ered by the fastest memory.

Th e data is similarly hierarchical: a level closer to the processor is generally a 
subset of any level further away, and all the data is stored at the lowest level. By 
analogy, the books on your desk form a subset of the library you are working in, 
which is in turn a subset of all the libraries on campus. Furthermore, as we move 
away from the processor, the levels take progressively longer to access, just as we 
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between 
only two adjacent levels at a time, so we can focus our attention on just two levels. 

memory hierarchy 
A structure that uses 
multiple levels of 
memories; as the distance 
from the processor 
increases, the size of the 
memories and the access 
time both increase.
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FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as 
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can 
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal 
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see 
Section 5.2.
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Th e upper level—the one closer to the processor—is smaller and faster than the lower 
level, since the upper level uses technology that is more expensive. Figure 5.2 shows 
that the minimum unit of information that can be either present or not present in 
the two-level hierarchy is called a block or a line; in our library analogy, a block of 
information is one book.

If the data requested by the processor appears in some block in the upper level, 
this is called a hit (analogous to your fi nding the information in one of the books 
on your desk). If the data is not found in the upper level, the request is called a miss. 
Th e lower level in the hierarchy is then accessed to retrieve the block containing the 
requested data. (Continuing our analogy, you go from your desk to the shelves to 
fi nd the desired book.) Th e hit rate, or hit ratio, is the fraction of memory accesses 
found in the upper level; it is oft en used as a measure of the performance of the 
memory hierarchy. Th e miss rate (1−hit rate) is the fraction of memory accesses 
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time 
to service hits and misses is important. Hit time is the time to access the upper level 
of the memory hierarchy, which includes the time needed to determine whether 
the access is a hit or a miss (that is, the time needed to look through the books on 
the desk). Th e miss penalty is the time to replace a block in the upper level with 
the corresponding block from the lower level, plus the time to deliver this block to 
the processor (or the time to get another book from the shelves and place it on the 
desk). Because the upper level is smaller and built using faster memory parts, the 
hit time will be much smaller than the time to access the next level in the hierarchy, 
which is the major component of the miss penalty. (Th e time to examine the books 
on the desk is much smaller than the time to get up and get a new book from the 
shelves.)

block (or line) Th e 
minimum unit of 
information that can 
be either present or not 
present in a cache.

hit rate Th e fraction of 
memory accesses found 
in a level of the memory 
hierarchy.

miss rate Th e fraction 
of memory accesses not 
found in a level of the 
memory hierarchy.

hit time Th e time 
required to access a level 
of the memory hierarchy, 
including the time needed 
to determine whether the 
access is a hit or a miss.

miss penalty Th e time 
required to fetch a block 
into a level of the memory 
hierarchy from the lower 
level, including the time 
to access the block, 
transmit it from one level 
to the other, insert it in 
the level that experienced 
the miss, and then pass 
the block to the requestor.

Processor

Data is transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an 
upper and lower level. Within each level, the unit of information that is present or not is called a block or 
a line. Usually we transfer an entire block when we copy something between levels.
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As we will see in this chapter, the concepts used to build memory systems aff ect 
many other aspects of a computer, including how the operating system manages 
memory and I/O, how compilers generate code, and even how applications use 
the computer. Of course, because all programs spend much of their time accessing 
memory, the memory system is necessarily a major factor in determining 
performance. Th e reliance on memory hierarchies to achieve performance 
has meant that programmers, who used to be able to think of memory as a fl at, 
random access storage device, now need to understand that memory is a hierarchy 
to get good performance. We show how important this understanding is in later 
examples, such as Figure 5.18 on page 408, and Section 5.14, which shows how to 
double matrix multiply performance.

Since memory systems are critical to performance, computer designers devote a 
great deal of attention to these systems and develop sophisticated mechanisms for 
improving the performance of the memory system. In this chapter, we discuss the 
major conceptual ideas, although we use many simplifi cations and abstractions to 
keep the material manageable in length and complexity.

Programs exhibit both temporal locality, the tendency to reuse recently 
accessed data items, and spatial locality, the tendency to reference data 
items that are close to other recently accessed items. Memory hierarchies 
take advantage of temporal locality by keeping more recently accessed 
data items closer to the processor. Memory hierarchies take advantage of 
spatial locality by moving blocks consisting of multiple contiguous words 
in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster 
memory technologies close to the processor. Th us, accesses that hit in the 
highest level of the hierarchy can be processed quickly. Accesses that miss 
go to lower levels of the hierarchy, which are larger but slower. If the hit 
rate is high enough, the memory hierarchy has an eff ective access time 
close to that of the highest (and fastest) level and a size equal to that of the 
lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data 
cannot be present in level i unless it is also present in level i ! 1.

The BIG
Picture

Which of the following statements are generally true?
1. Memory hierarchies take advantage of temporal locality.
2. On a read, the value returned depends on which blocks are in the cache.
3. Most of the cost of the memory hierarchy is at the highest level.
4. Most of the capacity of the memory hierarchy is at the lowest level.

Check 
Yourself
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SRAM Technology
SRAMs are simply integrated circuits that are memory arrays with (usually) a 
single access port that can provide either a read or a write. SRAMs have a fi xed 
access time to any datum, though the read and write access times may diff er. 

SRAMs don’t need to refresh and so the access time is very close to the cycle 
time. SRAMs typically use six to eight transistors per bit to prevent the information 
from being disturbed when read. SRAM needs only minimal power to retain the 
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either 
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all 
levels of caches are integrated onto the processor chip, so the market for separate 
SRAM chips has nearly evaporated.

DRAM Technology
In a SRAM, as long as power is applied, the value can be kept indefi nitely. In a 
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. 
A single transistor is then used to access this stored charge, either to read the 
value or to overwrite the charge stored there. Because DRAMs use only a single 
transistor per bit of storage, they are much denser and cheaper per bit than SRAM. 
As DRAMs store the charge on a capacitor, it cannot be kept indefi nitely and must 
periodically be refreshed. Th at is why this memory structure is called dynamic, as 
opposed to the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th e charge 
can be kept for several milliseconds. If every bit had to be read out of the DRAM 
and then written back individually, we would constantly be refreshing the DRAM, 
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding 
structure, and this allows us to refresh an entire row (which shares a word line) 
with a read cycle followed immediately by a write cycle. 

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows 
how the density, cost, and access time of DRAMs have changed over the years.

Th e row organization that helps with refresh also helps with performance. To 
improve performance, DRAMs buff er rows for repeated access. Th e buff er acts 
like an SRAM; by changing the address, random bits can be accessed in the buff er 
until the next row access. Th is capability improves the access time signifi cantly, 
since the access time to bits in the row is much lower. Making the chip wider also 
improves the memory bandwidth of the chip. When the row is in the buff er, it 
can be transferred by successive addresses at whatever the width of the DRAM is 
(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address 
within the buff er. 

To further improve the interface to processors, DRAMs added clocks and are 
properly called Synchronous DRAMs or SDRAMs. Th e advantage of SDRAMs 
is that the use of a clock eliminates the time for the memory and processor to 
synchronize. Th e speed advantage of synchronous DRAMs comes from the ability 
to transfer the bits in the burst without having to specify additional address bits. 
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write from multiple banks, with each having its own row buff er. Sending an address 
to several banks permits them all to read or write simultaneously. For example, 
with four banks, there is just one access time and then accesses rotate between 
the four banks to supply four times the bandwidth. Th is rotating access scheme is 
called address interleaving. 

Although Personal Mobile Devices like the iPad (see Chapter 1) use individual 
DRAMs, memory for servers are commonly sold on small boards called dual inline 
memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are 
normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-
3200 SDRAMs could transfer at 8 " 3200 # 25,600 megabytes per second. Such 
DIMMs are named aft er their bandwidth: PC25600. Since a DIMM can have so 
many DRAM chips that only a portion of them are used for a particular transfer, we 
need a term to refer to the subset of chips in a DIMM that share common address 
lines. To avoid confusion with the internal DRAM names of row and banks, we use 
the term memory rank for such a subset of chips in a DIMM.

Elaboration: One way to measure the performance of the memory system behind the 
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of 
long vector operations. They have no temporal locality and they access arrays that are 
larger than the cache of the computer being tested.

Flash Memory
Flash memory is a type of electrically erasable programmable read-only memory 
(EEPROM). 

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out 
fl ash memory bits. To cope with such limits, most fl ash products include a controller 
to spread the writes by remapping blocks that have been written many times to less 
trodden blocks. Th is technique is called wear leveling. With wear leveling, personal 
mobile devices are very unlikely to exceed the write limits in the fl ash. Such wear 
leveling lowers the potential performance of fl ash, but it is needed unless higher-
level soft ware monitors block wear. Flash controllers that perform wear leveling can 
also improve yield by mapping out memory cells that were manufactured incorrectly.

Disk Memory
As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which 
rotate on a spindle at 5400 to 15,000 revolutions per minute. Th e metal platters are 
covered with magnetic recording material on both sides, similar to the material found 
on a cassette or videotape. To read and write information on a hard disk, a movable arm 
containing a small electromagnetic coil called a read-write head is located just above 
each surface. Th e entire drive is permanently sealed to control the environment inside 
the drive, which, in turn, allows the disk heads to be much closer to the drive surface.

Each disk surface is divided into concentric circles, called tracks. Th ere are 
typically tens of thousands of tracks per surface. Each track is in turn divided into 

track One of thousands 
of concentric circles that 
makes up the surface of a 
magnetic disk.
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sectors that contain the information; each track may have thousands of sectors. 
Sectors are typically 512 to 4096 bytes in size. Th e sequence recorded on the 
magnetic media is a sector number, a gap, the information for that sector including 
error correction code (see Section 5.5), a gap, the sector number of the next sector, 
and so on.

Th e disk heads for each surface are connected together and move in conjunction, 
so that every head is over the same track of every surface. Th e term cylinder is used 
to refer to all the tracks under the heads at a given point on all surfaces.

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. Th e diameter of 
today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

To access data, the operating system must direct the disk through a three-stage 
process. Th e fi rst step is to position the head over the proper track. Th is operation is 
called a seek, and the time to move the head to the desired track is called the seek time.

Disk manufacturers report minimum seek time, maximum seek time, and average 
seek time in their manuals. Th e fi rst two are easy to measure, but the average is open to 
wide interpretation because it depends on the seek distance. Th e industry calculates 
average seek time as the sum of the time for all possible seeks divided by the number 
of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but, 
depending on the application and scheduling of disk requests, the actual average seek 
time may be only 25% to 33% of the advertised number because of locality of disk 

sector One of the 
segments that make up a 
track on a magnetic disk; 
a sector is the smallest 
amount of information 
that is read or written on 
a disk.

seek Th e process of 
positioning a read/write 
head over the proper 
track on a disk.
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references. Th is locality arises both because of successive accesses to the same fi le and 
because the operating system tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sector 
to rotate under the read/write head. Th is time is called the rotational latency or 
rotational delay. Th e average latency to the desired information is halfway around 
the disk. Disks rotate at 5400 RPM to 15,000 RPM. Th e average rotational latency 
at 5400 RPM is

Average rotational latency 0.5 rotation
 RPM

0.5 rotati
# #

5400
oon

 RPM/ seconds
minute

0.0056 seconds 5.6 m

5400 60⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

# # ss

Th e last component of a disk access, transfer time, is the time to transfer a block 
of bits. Th e transfer time is a function of the sector size, the rotation speed, and the 
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec. 

One complication is that most disk controllers have a built-in cache that stores 
sectors as they are passed over; transfer rates from the cache are typically higher, 
and were up to 750 MB/sec (6 Gbit/sec) in 2012. 

Alas, where block numbers are located is no longer intuitive. Th e assumptions of 
the sector-track-cylinder model above are that nearby blocks are on the same track, 
blocks in the same cylinder take less time to access since there is no seek time, 
and some tracks are closer than others. Th e reason for the change was the raising 
of the level of the disk interfaces. To speed-up sequential transfers, these higher-
level interfaces organize disks more like tapes than like random access devices. 
Th e logical blocks are ordered in serpentine fashion across a single surface, trying 
to capture all the sectors that are recorded at the same bit density to try to get best 
performance. Hence, sequential blocks may be on diff erent tracks.

In summary, the two primary diff erences between magnetic disks and 
semiconductor memory technologies are that disks have a slower access time because 
they are mechanical devices—fl ash is 1000 times as fast and DRAM is 100,000 times 
as fast—yet they are cheaper per bit because they have very high storage capacity at a 
modest cost—disk is 10 to 100 time cheaper. Magnetic disks are nonvolatile like fl ash, 
but unlike fl ash there is no write wear-out problem. However, fl ash is much more 
rugged and hence a better match to the jostling inherent in personal mobile devices.

 5.3 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things 
(books) that we needed to examine. Cache was the name chosen to represent the 
level of the memory hierarchy between the processor and main memory in the fi rst 
commercial computer to have this extra level. Th e memories in the datapath in 
Chapter 4 are simply replaced by caches. Today, although this remains the dominant 

rotational latency Also 
called rotational delay. 
Th e time required for 
the desired sector of a 
disk to rotate under the 
read/write head; usually 
assumed to be half the 
rotation time.

Cache: a safe place 
for hiding or storing 
things.
Webster’s New World 
Dictionary of the 
American Language, 
Th ird College Edition, 
1988
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use of the word cache, the term is also used to refer to any storage managed to take 
advantage of locality of access. Caches fi rst appeared in research computers in the 
early 1960s and in production computers later in that same decade; every general-
purpose computer built today, from servers to low-power embedded processors, 
includes caches.

In this section, we begin by looking at a very simple cache in which the processor 
requests are each one word and the blocks also consist of a single word. (Readers 
already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows 
such a simple cache, before and aft er requesting a data item that is not initially in 
the cache. Before the request, the cache contains a collection of recent references 
X1, X2, …, Xn$1, and the processor requests a word Xn that is not in the cache. Th is 
request results in a miss, and the word Xn is brought from memory into the cache.

In looking at the scenario in Figure 5.7, there are two questions to answer: How 
do we know if a data item is in the cache? Moreover, if it is, how do we fi nd it? Th e 
answers are related. If each word can go in exactly one place in the cache, then it 
is straightforward to fi nd the word if it is in the cache. Th e simplest way to assign 
a location in the cache for each word in memory is to assign the cache location 
based on the address of the word in memory. Th is cache structure is called direct 
mapped, since each memory location is mapped directly to exactly one location in 
the cache. Th e typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use 
this mapping to fi nd a block:

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be 
computed simply by using the low-order log2 (cache size in blocks) bits of the 
address. Th us, an 8-block cache uses the three lowest bits (8 # 23) of the block 
address. For example, Figure 5.8 shows how the memory addresses between 1ten 
(00001two) and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a 
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of diff erent 
memory locations, how do we know whether the data in the cache corresponds 
to a requested word? Th at is, how do we know whether a requested word is in the 
cache or not? We answer this question by adding a set of tags to the cache. Th e 
tags contain the address information required to identify whether a word in the 
cache corresponds to the requested word. Th e tag needs only to contain the upper 
portion of the address, corresponding to the bits that are not used as an index into 
the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address 
bits in the tag, since the lower 3-bit index fi eld of the address selects the block. 
Architects omit the index bits because they are redundant, since by defi nition the 
index fi eld of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid 
information. For instance, when a processor starts up, the cache does not have good 
data, and the tag fi elds will be meaningless. Even aft er executing many instructions, 

direct-mapped cache 
A cache structure in 
which each memory 
location is mapped to 
exactly one location in the 
cache.

tag A fi eld in a table used 
for a memory hierarchy 
that contains the address 
information required 
to identify whether the 
associated block in the 
hierarchy corresponds to 
a requested word.
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we have confl icting demands for a block. Th e word at address 18 (10010two) should 
be brought into cache block 2 (010two). Hence, it must replace the word at address 
26 (11010two), which is already in cache block 2 (010two). Th is behavior allows a 
cache to take advantage of temporal locality: recently referenced words replace less 
recently referenced words.

Th is situation is directly analogous to needing a book from the shelves and 
having no more space on your desk—some book already on your desk must be 
returned to the shelves. In a direct-mapped cache, there is only one place to put the 
newly requested item and hence only one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits 
of an address can be used to fi nd the unique cache entry to which the address could 
map. Figure 5.10 shows how a referenced address is divided into

■ A tag fi eld, which is used to compare with the value of the tag fi eld of the 
cache

■ A cache index, which is used to select the block
Th e index of a cache block, together with the tag contents of that block, uniquely 
specifi es the memory address of the word contained in the cache block. Because 
the index fi eld is used as an address to reference the cache, and because an n-bit 
fi eld has 2n values, the total number of entries in a direct-mapped cache must be a 
power of 2. In the MIPS architecture, since words are aligned to multiples of four 
bytes, the least signifi cant two bits of every address specify a byte within a word. 
Hence, the least signifi cant two bits are ignored when selecting a word in the block.

Th e total number of bits needed for a cache is a function of the cache size and 
the address size, because the cache includes both the storage for the data and the 
tags. Th e size of the block above was one word, but normally it is several. For the 
following situation:

■ 32-bit addresses
■ A direct-mapped cache
■ Th e cache size is 2n blocks, so n bits are used for the index
■ Th e block size is 2m words (2m+2 bytes), so m bits are used for the word within 

the block, and two bits are used for the byte part of the address
the size of the tag fi eld is

32 $ (n ! m ! 2).

Th e total number of bits in a direct-mapped cache is

2n " (block size ! tag size ! valid fi eld size).
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Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of 
data and 4-word blocks, assuming a 32-bit address?

We know that 16 KiB is 4096 (212) words. With a block size of 4 words (22), 
there are 1024 (210) blocks. Each block has 4 " 32 or 128 bits of data plus a 
tag, which is 32 $ 10 $ 2 $ 2 bits, plus a valid bit. Th us, the total cache size is

210 " (4 " 32 ! (32 $ 10 $ 2 $ 2) ! 1) # 210 " 147 # 147 Kibibits

or 18.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the 
cache is about 1.15 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block 
number does byte address 1200 map?

We saw the formula on page 384. Th e block is given by

(Block address) modulo (Number of blocks in the cache)

where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

Byte address
Bytes per block

Bytes per block
⎡

⎣
⎢
⎢

⎤

⎦
⎥
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ANSWER

EXAMPLE
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the block from the next lower level of the hierarchy and load it into the cache. Th e 
time to fetch the block has two parts: the latency to the fi rst word and the transfer 
time for the rest of the block. Clearly, unless we change the memory system, the 
transfer time—and hence the miss penalty—will likely increase as the block size 
increases. Furthermore, the improvement in the miss rate starts to decrease as the 
blocks become larger. Th e result is that the increase in the miss penalty overwhelms 
the decrease in the miss rate for blocks that are too large, and cache performance 
thus decreases. Of course, if we design the memory to transfer larger blocks more 
effi  ciently, we can increase the block size and obtain further improvements in cache 
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component of 
the miss penalty for large blocks, we may be able to hide some of the transfer time so 
that the miss penalty is effectively smaller. The simplest method for doing this, called 
early restart, is simply to resume execution as soon as the requested word of the block 
is returned, rather than wait for the entire block. Many processors use this technique 
for instruction access, where it works best. Instruction accesses are largely sequential, 
so if the memory system can deliver a word every clock cycle, the processor may be 
able to restart operation when the requested word is returned, with the memory system 
delivering new instruction words just in time. This technique is usually less effective for 
data caches because it is likely that the words will be requested from the block in a 
less predictable way, and the probability that the processor will need another word from 
a different cache block before the transfer completes is high. If the processor cannot 
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested 
word is transferred from the memory to the cache fi rst. The remainder of the block 
is then transferred, starting with the address after the requested word and wrapping 
around to the beginning of the block. This technique, called requested word fi rst or 
critical word fi rst, can be slightly faster than early restart, but it is limited by the same 
properties that limit early restart.

Handling Cache Misses
Before we look at the cache of a real system, let’s see how the control unit deals with 
cache misses. (We describe a cache controller in detail in Section 5.9). Th e control 
unit must detect a miss and process the miss by fetching the requested data from 
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the 
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however, 
require some extra work. Th e cache miss handling is done in collaboration with 
the processor control unit and with a separate controller that initiates the memory 
access and refi lls the cache. Th e processing of a cache miss creates a pipeline stall 
(Chapter 4) as opposed to an interrupt, which would require saving the state of all 
registers. For a cache miss, we can stall the entire processor, essentially freezing 
the contents of the temporary and programmer-visible registers, while we wait 

cache miss A request for 
data from the cache that 
cannot be fi lled because 
the data is not present in 
the cache.
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for memory. More sophisticated out-of-order processors can allow execution of 
instructions while waiting for a cache miss, but we’ll assume in-order processors 
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same 
approach can be easily extended to handle data misses. If an instruction access 
results in a miss, then the content of the Instruction register is invalid. To get the 
proper instruction into the cache, we must be able to instruct the lower level in the 
memory hierarchy to perform a read. Since the program counter is incremented in 
the fi rst clock cycle of execution, the address of the instruction that generates an 
instruction cache miss is equal to the value of the program counter minus 4. Once 
we have the address, we need to instruct the main memory to perform a read. We 
wait for the memory to respond (since the access will take multiple clock cycles), 
and then write the words containing the desired instruction into the cache.

We can now defi ne the steps to be taken on an instruction cache miss:
1. Send the original PC value (current PC – 4) to the memory.
2. Instruct main memory to perform a read and wait for the memory to 

complete its access.
3. Write the cache entry, putting the data from memory in the data portion of 

the entry, writing the upper bits of the address (from the ALU) into the tag 
fi eld, and turning the valid bit on.

4. Restart the instruction execution at the fi rst step, which will refetch the 
instruction, this time fi nding it in the cache.

Th e control of the cache on a data access is essentially identical: on a miss, we 
simply stall the processor until the memory responds with the data.

Handling Writes
Writes work somewhat diff erently. Suppose on a store instruction, we wrote the 
data into only the data cache (without changing main memory); then, aft er the 
write into the cache, memory would have a diff erent value from that in the cache. 
In such a case, the cache and memory are said to be inconsistent. Th e simplest way 
to keep the main memory and the cache consistent is always to write the data into 
both the memory and the cache. Th is scheme is called write-through.

Th e other key aspect of writes is what occurs on a write miss. We fi rst fetch the 
words of the block from memory. Aft er the block is fetched and placed into the 
cache, we can overwrite the word that caused the miss into the cache block. We also 
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very 
good performance. With a write-through scheme, every write causes the data 
to be written to main memory. Th ese writes will take a long time, likely at least 
100 processor clock cycles, and could slow down the processor considerably. For 
example, suppose 10% of the instructions are stores. If the CPI without cache 

write-through 
A scheme in which writes 
always update both the 
cache and the next lower 
level of the memory 
hierarchy, ensuring that 
data is always consistent 
between the two.
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misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of 
1.0 ! 100 " 10% # 11, reducing performance by more than a factor of 10.

One solution to this problem is to use a write buff er. A write buff er stores the 
data while it is waiting to be written to memory. Aft er writing the data into the 
cache and into the write buff er, the processor can continue execution. When a write 
to main memory completes, the entry in the write buff er is freed. If the write buff er 
is full when the processor reaches a write, the processor must stall until there is an 
empty position in the write buff er. Of course, if the rate at which the memory can 
complete writes is less than the rate at which the processor is generating writes, no 
amount of buff ering can help, because writes are being generated faster than the 
memory system can accept them.

Th e rate at which writes are generated may also be less than the rate at which the 
memory can accept them, and yet stalls may still occur. Th is can happen when the 
writes occur in bursts. To reduce the occurrence of such stalls, processors usually 
increase the depth of the write buff er beyond a single entry.

Th e alternative to a write-through scheme is a scheme called write-back. In a 
write-back scheme, when a write occurs, the new value is written only to the block 
in the cache. Th e modifi ed block is written to the lower level of the hierarchy when 
it is replaced. Write-back schemes can improve performance, especially when 
processors can generate writes as fast or faster than the writes can be handled by 
main memory; a write-back scheme is, however, more complex to implement than 
write-through.

In the rest of this section, we describe caches from real processors, and we 
examine how they handle both reads and writes. In Section 5.8, we will describe 
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present 
for reads. Here we discuss two of them: the policy on write misses and effi cient 
implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate a 
block in the cache, called write allocate. The block is fetched from memory and then the 
appropriate portion of the block is overwritten. An alternative strategy is to update the portion 
of the block in memory but not put it in the cache, called no write allocate. The motivation is 
that sometimes programs write entire blocks of data, such as when the operating system 
zeros a page of memory. In such cases, the fetch associated with the initial write miss may 
be unnecessary. Some computers allow the write allocation policy to be changed on a per 
page basis.

Actually implementing stores effi ciently in a cache that uses a write-back strategy is 
more complex than in a write-through cache. A write-through cache can write the data 
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the 
cache is write-through, the overwriting of the block in the cache is not catastrophic, since 
memory has the correct value. In a write-back cache, we must fi rst write the block back 
to memory if the data in the cache is modifi ed and we have a cache miss. If we simply 
overwrote the block on a store instruction before we knew whether the store had hit in 
the cache (as we could for a write-through cache), we would destroy the contents of the 
block, which is not backed up in the next lower level of the memory hierarchy.

write buff er A queue 
that holds data while 
the data is waiting to be 
written to memory.

write-back A scheme 
that handles writes by 
updating values only to 
the block in the cache, 
then writing the modifi ed 
block to the lower level 
of the hierarchy when the 
block is replaced.
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In a write-back cache, because we cannot overwrite the block, stores either require 
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or 
require a write buffer to hold that data—effectively allowing the store to take only one 
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup 
and places the data in the store buffer during the normal cache access cycle. Assuming 
a cache hit, the new data is written from the store buffer into the cache on the next 
unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle. 
We read the tag and write the data portion of the selected block. If the tag matches 
the address of the block being written, the processor can continue normally, since the 
correct block has been updated. If the tag does not match, the processor generates a 
write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss 
penalty when a miss replaces a modifi ed block. In such a case, the modifi ed block is 
moved to a write-back buffer associated with the cache while the requested block is read 
from memory. The write-back buffer is later written back to memory. Assuming another 
miss does not occur immediately, this technique halves the miss penalty when a dirty 
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor
Th e Intrinsity FastMATH is an embedded microprocessor that uses the MIPS 
architecture and a simple cache implementation. Near the end of the chapter, we 
will examine the more complex cache designs of ARM and Intel microprocessors, 
but we start with this simple, yet real, example for pedagogical reasons. Figure 5.12 
shows the organization of the Intrinsity FastMATH data cache.

Th is processor has a 12-stage pipeline. When operating at peak speed, the 
processor can request both an instruction word and a data word on every clock. 
To satisfy the demands of the pipeline without stalling, separate instruction 
and data caches are used. Each cache is 16 KiB, or 4096 words, with 16-word 
blocks.

Read requests for the cache are straightforward. Because there are separate 
data and instruction caches, we need separate control signals to read and write 
each cache. (Remember that we need to update the instruction cache when a miss 
occurs.) Th us, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. Th e address comes either from 
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines. 
Since there are 16 words in the desired block, we need to select the right one. 
A block index fi eld is used to control the multiplexor (shown at the bottom 
of the fi gure), which selects the requested word from the 16 words in the 
indexed block.
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To take advantage of spatial locality, a cache must have a block size larger than 
one word. Th e use of a larger block decreases the miss rate and improves the 
effi  ciency of the cache by reducing the amount of tag storage relative to the amount 
of data storage in the cache. Although a larger block size decreases the miss rate, it 
can also increase the miss penalty. If the miss penalty increased linearly with the 
block size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to 
transfer cache blocks more effi  ciently. Common methods for increasing bandwidth 
external to the DRAM are making the memory wider and interleaving. DRAM 
designers have steadily improved the interface between the processor and memory 
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache 
block sizes.

Th e speed of the memory system aff ects the designer’s decision on the size of 
the cache block. Which of the following cache designer guidelines are generally 
valid?

1. Th e shorter the memory latency, the smaller the cache block
2. Th e shorter the memory latency, the larger the cache block
3. Th e higher the memory bandwidth, the smaller the cache block
4. Th e higher the memory bandwidth, the larger the cache block

 5.4  Measuring and Improving Cache 
Performance

In this section, we begin by examining ways to measure and analyze cache 
performance. We then explore two diff erent techniques for improving cache 
performance. One focuses on reducing the miss rate by reducing the probability 
that two diff erent memory blocks will contend for the same cache location. Th e 
second technique reduces the miss penalty by adding an additional level to the 
hierarchy. Th is technique, called multilevel caching, fi rst appeared in high-end 
computers selling for more than $100,000 in 1990; since then it has become 
common on personal mobile devices selling for a few hundred dollars!

Check 
Yourself
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CPU time can be divided into the clock cycles that the CPU spends executing 
the program and the clock cycles that the CPU spends waiting for the memory 
system. Normally, we assume that the costs of cache accesses that are hits are part 
of the normal CPU execution cycles. Th us,

CPU time #  (CPU execution clock cycles ! Memory-stall clock cycles) 
" Clock cycle time

Th e memory-stall clock cycles come primarily from cache misses, and we make 
that assumption here. We also restrict the discussion to a simplifi ed model of the 
memory system. In real processors, the stalls generated by reads and writes can be 
quite complex, and accurate performance prediction usually requires very detailed 
simulations of the processor and memory system.

Memory-stall clock cycles can be defi ned as the sum of the stall cycles coming 
from reads plus those coming from writes:

Memory-stall clock cycles # (Read-stall cycles ! Write-stall cycles)

Th e read-stall cycles can be defi ned in terms of the number of read accesses per 
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles Reads
Program

Read miss rate Read miss pennalty

Writes are more complicated. For a write-through scheme, we have two sources of 
stalls: write misses, which usually require that we fetch the block before continuing 
the write (see the Elaboration on page 394 for more details on dealing with writes), 
and write buff er stalls, which occur when the write buff er is full when a write 
occurs. Th us, the cycles stalled for writes equals the sum of these two:

Write-stall cycles Writes
Program

Write miss rate Write misss penalty

 Write buffer stalls

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Because the write buff er stalls depend on the proximity of writes, and not just 
the frequency, it is not possible to give a simple equation to compute such stalls. 
Fortunately, in systems with a reasonable write buff er depth (e.g., four or more 
words) and a memory capable of accepting writes at a rate that signifi cantly exceeds 
the average write frequency in programs (e.g., by a factor of 2), the write buff er 
stalls will be small, and we can safely ignore them. If a system did not meet these 
criteria, it would not be well designed; instead, the designer should have used either 
a deeper write buff er or a write-back organization.
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Write-back schemes also have potential additional stalls arising from the need 
to write a cache block back to memory when the block is replaced. We will discuss 
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are 
the same (the time to fetch the block from memory). If we assume that the write 
buff er stalls are negligible, we can combine the reads and writes by using a single 
miss rate and the miss penalty:

Memory-stall clock cycles Memory accesses
Program

Miss rate Miss penalty

We can also factor this as

Memory-stall clock cycles Instructions
Program

Misses
Instrucction

Miss penalty

Let’s consider a simple example to help us understand the impact of cache 
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data 
cache is 4%. If a processor has a CPI of 2 without any memory stalls and the 
miss penalty is 100 cycles for all misses, determine how much faster a processor 
would run with a perfect cache that never missed. Assume the frequency of all 
loads and stores is 36%.

Th e number of memory miss cycles for instructions in terms of the Instruction 
count (I) is

Instruction miss cycles # I " 2% " 100 # 2.00 " I

As the frequency of all loads and stores is 36%, we can fi nd the number of 
memory miss cycles for data references:

Data miss cycles # I " 36% " 4% " 100 # 1.44 " I

EXAMPLE

ANSWER



 5.4 Measuring and Improving Cache Performance 401

What happens if the processor is made faster, but the memory system is not? Th e 
amount of time spent on memory stalls will take up an increasing fraction of the 
execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of 
this fact. A few simple examples show how serious this problem can be. Suppose 
we speed-up the computer in the previous example by reducing its CPI from 2 to 1 
without changing the clock rate, which might be done with an improved pipeline. 
Th e system with cache misses would then have a CPI of 1 ! 3.44 # 4.44, and the 
system with the perfect cache would be

4 44
1
.

# 4.44 times as fast.

Th e amount of execution time spent on memory stalls would have risen from
3 44
5 44

.

.
# 63%

to 3 44
4 44

.

.
# 77%

Similarly, increasing the clock rate without changing the memory system also 
increases the performance lost due to cache misses.

Th e previous examples and equations assume that the hit time is not a factor in 
determining cache performance. Clearly, if the hit time increases, the total time to 
access a word from the memory system will increase, possibly causing an increase in 
the processor cycle time. Although we will see additional examples of what can increase 

Th e total number of memory-stall cycles is 2.00 I ! 1.44 I # 3.44 I. Th is is 
more than three cycles of memory stall per instruction. Accordingly, the total 
CPI including memory stalls is 2 ! 3.44 # 5.44. Since there is no change in 
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

I CPIstall Clock cycle
I CPI Clock cycle
CPI

CPI
5

perfect

stall

perfect

.44
2

Th e performance with the perfect cache is better by 
5 44

2
.

# 2.72.
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hit time shortly, one example is increasing the cache size. A larger cache could clearly 
have a longer access time, just as, if your desk in the library was very large (say, 3 square 
meters), it would take longer to locate a book on the desk. An increase in hit time 
likely adds another stage to the pipeline, since it may take multiple cycles for a cache 
hit. Although it is more complex to calculate the performance impact of a deeper 
pipeline, at some point the increase in hit time for a larger cache could dominate the 
improvement in hit rate, leading to a decrease in processor performance.

To capture the fact that the time to access data for both hits and misses aff ects 
performance, designers sometime use average memory access time (AMAT) as 
a way to examine alternative cache designs. Average memory access time is the 
average time to access memory considering both hits and misses and the frequency 
of diff erent accesses; it is equal to the following:

AMAT # Time for a hit ! Miss rate " Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of 
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access 
time (including hit detection) of 1 clock cycle. Assume that the read and write 
miss penalties are the same and ignore other write stalls.

Th e average memory access time per instruction is

AMAT Time for a hit Miss rate Miss penalty
1 0.05 20
2 clocck cycles

or 2 ns.

Th e next subsection discusses alternative cache organizations that decrease 
miss rate but may sometimes increase hit time; additional examples appear in 
Section 5.15, Fallacies and Pitfalls.

Reducing Cache Misses by More Flexible Placement 
of Blocks
So far, when we place a block in the cache, we have used a simple placement scheme: 
A block can go in exactly one place in the cache. As mentioned earlier, it is called 
direct mapped because there is a direct mapping from any block address in memory 
to a single location in the upper level of the hierarchy. However, there is actually a 
whole range of schemes for placing blocks. Direct mapped, where a block can be 
placed in exactly one location, is at one extreme.

EXAMPLE

ANSWER
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At the other extreme is a scheme where a block can be placed in any location 
in the cache. Such a scheme is called fully associative, because a block in memory 
may be associated with any entry in the cache. To fi nd a given block in a fully 
associative cache, all the entries in the cache must be searched because a block 
can be placed in any one. To make the search practical, it is done in parallel with 
a comparator associated with each cache entry. Th ese comparators signifi cantly 
increase the hardware cost, eff ectively making fully associative placement practical 
only for caches with small numbers of blocks.

Th e middle range of designs between direct mapped and fully associative 
is called set associative. In a set-associative cache, there are a fi xed number of 
locations where each block can be placed. A set-associative cache with n locations 
for a block is called an n-way set-associative cache. An n-way set-associative cache 
consists of a number of sets, each of which consists of n blocks. Each block in the 
memory maps to a unique set in the cache given by the index fi eld, and a block can 
be placed in any element of that set. Th us, a set-associative placement combines 
direct-mapped placement and fully associative placement: a block is directly 
mapped into a set, and then all the blocks in the set are searched for a match. For 
example, Figure 5.14 shows where block 12 may be placed in a cache with eight 
blocks total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is 
given by

(Block number) modulo (Number of blocks in the cache)

fully associative 
cache A cache structure 
in which a block can be 
placed in any location in 
the cache.

set-associative cache 
A cache that has a fi xed 
number of locations (at 
least two) where each 
block can be placed.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1
2

Set associative

20 1 3Set #

Data

Tag

Search

1
2

Fully associative

Data

Tag

Search

1
2

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight 
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is 
given by (12 modulo 8) # 4. In a two-way set-associative cache, there would be four sets, and memory block 
12 must be in set (12 mod 4) # 0; the memory block could be in either element of the set. In a fully associative 
placement, the memory block for block address 12 can appear in any of the eight cache blocks.
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In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements 
of the set must be searched. In a fully associative cache, the block can go anywhere, 
and all tags of all the blocks in the cache must be searched.

We can also think of all block placement strategies as a variation on set 
associativity. Figure 5.15 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is simply a one-way set-associative cache: 
each cache entry holds one block and each set has one element. A fully associative 
cache with m entries is simply an m-way set-associative cache; it has one set with m 
blocks, and an entry can reside in any block within that set.

Th e advantage of increasing the degree of associativity is that it usually decreases 
the miss rate, as the next example shows. Th e main disadvantage, which we discuss 
in more detail shortly, is a potential increase in the hit time.

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

Four-way set associative

TagTag Data DataSet

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Two-way set associative

Tag DataBlock

One-way set associative
(direct mapped)

FIGURE 5.15 An eight-block cache confi gured as direct mapped, two-way set associative, 
four-way set associative, and fully associative. Th e total size of the cache in blocks is equal to the 
number of sets times the associativity. Th us, for a fi xed cache size, increasing the associativity decreases 
the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-
associative cache is the same as a fully associative cache.
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is replaced. (We will discuss other replacement rules in more detail shortly.) 
Using this replacement rule, the contents of the set-associative cache aft er each 
reference looks like this:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has 
been less recently referenced than block 0. Th e two-way set-associative cache 
has four misses, one less than the direct-mapped cache.

Th e fully associative cache has four cache blocks (in a single set); any 
memory block can be stored in any cache block. Th e fully associative cache has 
the best performance, with only three misses:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because three 
unique block addresses are accessed. Notice that if we had eight blocks in the 
cache, there would be no replacements in the two-way set-associative cache 
(check this for yourself), and it would have the same number of misses as the 
fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have 
the same number of misses. Even this trivial example shows that cache size and 
associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity? 
Figure 5.16 shows the improvement for a 64 KiB data cache with a 16-word block, 
and associativity ranging from direct mapped to eight-way. Going from one-way 
to two-way associativity decreases the miss rate by about 15%, but there is little 
further improvement in going to higher associativity.



 5.4 Measuring and Improving Cache Performance 407

Locating a Block in the Cache
Now, let’s consider the task of fi nding a block in a cache that is set associative. 
Just as in a direct-mapped cache, each block in a set-associative cache includes 
an address tag that gives the block address. Th e tag of every cache block within 
the appropriate set is checked to see if it matches the block address from the 
processor. Figure 5.17 decomposes the address. Th e index value is used to select 
the set containing the address of interest, and the tags of all the blocks in the set 
must be searched. Because speed is of the essence, all the tags in the selected set are 
searched in parallel. As in a fully associative cache, a sequential search would make 
the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity increases the 
number of blocks per set, which is the number of simultaneous compares needed 
to perform the search in parallel: each increase by a factor of 2 in associativity 
doubles the number of blocks per set and halves the number of sets. Accordingly, 
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and 
increases the size of the tag by 1 bit. In a fully associative cache, there is eff ectively 
only one set, and all the blocks must be checked in parallel. Th us, there is no index, 
and the entire address, excluding the block off set, is compared against the tag of 
every block. In other words, we search the entire cache without any indexing.

In a direct-mapped cache, only a single comparator is needed, because the entry can 
be in only one block, and we access the cache simply by indexing. Figure 5.18 shows 
that in a four-way set-associative cache, four comparators are needed, together with 
a 4-to-1 multiplexor to choose among the four potential members of the selected set. 
Th e cache access consists of indexing the appropriate set and then searching the tags 
of the set. Th e costs of an associative cache are the extra comparators and any delay 
imposed by having to do the compare and select from among the elements of the set.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.16 The data cache miss rates for an organization like the Intrinsity FastMATH 
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to 
eight-way. Th ese results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003).

Block offsetTag Index

FIGURE 5.17 The three portions of an address in a set-associative or direct-mapped 
cache. Th e index is used to select the set, then the tag is used to choose the block by comparison with the 
blocks in the selected set. Th e block off set is the address of the desired data within the block.
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Choosing Which Block to Replace
When a miss occurs in a direct-mapped cache, the requested block can go in 
exactly one position, and the block occupying that position must be replaced. In 
an associative cache, we have a choice of where to place the requested block, and 
hence a choice of which block to replace. In a fully associative cache, all blocks are 
candidates for replacement. In a set-associative cache, we must choose among the 
blocks in the selected set.

Th e most commonly used scheme is least recently used (LRU), which we used 
in the previous example. In an LRU scheme, the block replaced is the one that has 
been unused for the longest time. Th e set associative example on page 405 uses 
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a 
set was used relative to the other elements in the set. For a two-way set-associative 
cache, tracking when the two elements were used can be implemented by keeping 
a single bit in each set and setting the bit to indicate an element whenever that 
element is referenced. As associativity increases, implementing LRU gets harder; in 
Section 5.8, we will see an alternative scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per 
cache block. Assuming a cache of 4096 blocks, a 4-word block size, and a 
32-bit address, fi nd the total number of sets and the total number of tag bits 
for caches that are direct mapped, two-way and four-way set associative, and 
fully associative.

Since there are 16 (# 24) bytes per block, a 32-bit address yields 32$4 # 28 bits 
to be used for index and tag. Th e direct-mapped cache has the same number 
of sets as blocks, and hence 12 bits of index, since log2(4096) # 12; hence, the 
total number is (28$12) " 4096 # 16 " 4096 # 66 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and 
thus decreases the number of bits used to index the cache by 1 and increases 
the number of bits in the tag by 1. Th us, for a two-way set-associative cache, 
there are 2048 sets, and the total number of tag bits is (28$11) " 2 " 2048 # 
34 " 2048 # 70 Kbits. For a four-way set-associative cache, the total number 
of sets is 1024, and the total number is (28$10) " 4 " 1024 # 72 " 1024 # 
74 K tag bits.

For a fully associative cache, there is only one set with 4096 blocks, and the 
tag is 28 bits, leading to 28 " 4096 " 1 # 115 K tag bits.

least recently used 
(LRU) A replacement 
scheme in which the 
block replaced is the one 
that has been unused for 
the longest time.
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Reducing the Miss Penalty Using Multilevel Caches
All modern computers make use of caches. To close the gap further between the 
fast clock rates of modern processors and the increasingly long time required to 
access DRAMs, most microprocessors support an additional level of caching. Th is 
second-level cache is normally on the same chip and is accessed whenever a miss 
occurs in the primary cache. If the second-level cache contains the desired data, 
the miss penalty for the fi rst-level cache will be essentially the access time of the 
second-level cache, which will be much less than the access time of main memory. 
If neither the primary nor the secondary cache contains the data, a main memory 
access is required, and a larger miss penalty is incurred.

How signifi cant is the performance improvement from the use of a secondary 
cache? Th e next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references 
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory 
access time of 100 ns, including all the miss handling. Suppose the miss rate 
per instruction at the primary cache is 2%. How much faster will the processor 
be if we add a secondary cache that has a 5 ns access time for either a hit or 
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

Th e miss penalty to main memory is

100

0 25

 ns

 ns
clock cycle

400 clock cycles
.

#

Th e eff ective CPI with one level of caching is given by

Total CPI # Base CPI ! Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI # 1.0 ! Memory-stall cycles per instruction # 1.0 ! 2% " 400 # 9

With two levels of caching, a miss in the primary (or fi rst-level) cache can be 
satisfi ed either by the secondary cache or by main memory. Th e miss penalty 
for an access to the second-level cache is

5
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 ns

 ns
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20 clock cycles
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#
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If the miss is satisfi ed in the secondary cache, then this is the entire miss 
penalty. If the miss needs to go to main memory, then the total miss penalty is 
the sum of the secondary cache access time and the main memory access time.

Th us, for a two-level cache, total CPI is the sum of the stall cycles from both 
levels of cache and the base CPI:

Total CPI 1 Primary stalls per instruction Secondary stallss per instruction
1 2% 20 0.5% 400 1 0.4 2.0 3.4

Th us, the processor with the secondary cache is faster by

9 0
3 4

.

.
# 2.6

Alternatively, we could have computed the stall cycles by summing the stall 
cycles of those references that hit in the secondary cache ((2%$0.5%) " 
20 # 0.3). Th ose references that go to main memory, which must include the 
cost to access the secondary cache as well as the main memory access time, are 
(0.5% " (20 ! 400) # 2.1). Th e sum, 1.0 ! 0.3 ! 2.1, is again 3.4.

Th e design considerations for a primary and secondary cache are signifi cantly 
diff erent, because the presence of the other cache changes the best choice versus 
a single-level cache. In particular, a two-level cache structure allows the primary 
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer 
pipeline stages, while allowing the secondary cache to focus on miss rate to reduce 
the penalty of long memory access times.

Th e eff ect of these changes on the two caches can be seen by comparing each 
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is oft en smaller. Furthermore, 
the primary cache may use a smaller block size, to go with the smaller cache size and 
also to reduce the miss penalty. In comparison, the secondary cache will be much 
larger than in a single-level cache, since the access time of the secondary cache is 
less critical. With a larger total size, the secondary cache may use a larger block size 
than appropriate with a single-level cache. It oft en uses higher associativity than 
the primary cache given the focus of reducing miss rates.

Sorting has been exhaustively analyzed to fi nd better algorithms: Bubble Sort, 
Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by 
item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix 
Sort has an algorithmic advantage over Quicksort in terms of number of operations. 
Figure 5.19(b) shows time per key instead of instructions executed. We see that the 
lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line 

multilevel cache 
A memory hierarchy with 
multiple levels of caches, 
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FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item 
sorted, (b) time per item sorted, and (c) cache misses per item sorted. Th is data is from a 
paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented 
that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). Th e basic 
idea of cache optimizations is to use all the data in a block repeatedly before it is replaced on a miss.
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diverges as the data to sort increases. What is going on? Figure 5.19(c) answers by 
looking at the cache misses per item sorted: Quicksort consistently has many fewer 
misses per item to be sorted.

Alas, standard algorithmic analysis oft en ignores the impact of the memory 
hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all of 
the performance out of a stream of instructions, using the memory hierarchy well 
is critical to high performance. As we said in the introduction, understanding the 
behavior of the memory hierarchy is critical to understanding the performance of 
programs on today’s computers.

Software Optimization via Blocking
Given the importance of the memory hierarchy to program performance, not 
surprisingly many soft ware optimizations were invented that can dramatically 
improve performance by reusing data within the cache and hence lower miss rates 
due to improved temporal locality.

When dealing with arrays, we can get good performance from the memory 
system if we store the array in memory so that accesses to the array are sequential 
in memory. Suppose that we are dealing with multiple arrays, however, with some 
arrays accessed by rows and some by columns. Storing the arrays row-by-row 
(called row major order) or column-by-column (column major order) does not 
solve the problem because both rows and columns are used in every loop iteration. 

Instead of operating on entire rows or columns of an array, blocked algorithms 
operate on submatrices or blocks. Th e goal is to maximize accesses to the data 
loaded into the cache before the data are replaced; that is, improve temporal locality 
to reduce cache misses. 

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.21 in 
Chapter 3) are

for (int j = 0; j < n; ++j) 
    {
     double cij = C[i+j*n]; /* cij = C[i][j] */
     for( int k = 0; k < n; k++ )
       cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
     C[i+j*n] = cij; /* C[i][j] = cij */
     }
}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to 
one row of A repeatedly, and writes what corresponds to one row of N elements of 
C. (Th e comments make the rows and columns of the matrices easier to identify.) 
Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade 
indicates a recent access, a light shade indicates an older access, and white means 
not yet accessed.
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Th e number of capacity misses clearly depends on N and the size of the cache. If 
it can hold all three N-by-N matrices, then all is well, provided there are no cache 
confl icts. We purposely picked the matrix size to be 32 by 32 in DGEMM for 
Chapters 3 and 4 so that this would be the case. Each matrix is 32 " 32 # 1024 
elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which 
comfortably fi t in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge).

If the cache can hold one N-by-N matrix and one row of N, then at least the ith 
row of A and the array B may stay in the cache. Less than that and misses may 
occur for both B and C. In the worst case, there would be 2 N3 ! N2 memory words 
accessed for N3 operations.

To ensure that the elements being accessed can fi t in the cache, the original code 
is changed to compute on a submatrix. Hence, we essentially invoke the version of 
DGEMM from Figure 4.80 in Chapter 4 repeatedly on matrices of size BLOCKSIZE 
by BLOCKSIZE. BLOCKSIZE is called the blocking factor. 

Figure 5.21 shows the blocked version of DGEMM. Th e function do_block is 
DGEMM from Figure 3.21 with three new parameters si, sj, and sk to specify 
the starting position of each submatrix of of A, B, and C. Th e two inner loops of the 
do_block now compute in steps of size BLOCKSIZE rather than the full length 
of B and C. Th e gcc optimizer removes any function call overhead by “inlining” the 
function; that is, it inserts the code directly to avoid the conventional parameter 
passing and return address bookkeeping instructions.

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking 
only at capacity misses, the total number of memory words accessed is 2 N3/ 
BLOCKSIZE ! N2. Th is total is an improvement by about a factor of BLOCKSIZE. 
Hence, blocking exploits a combination of spatial and temporal locality, since A 
benefi ts from spatial locality and B benefi ts from temporal locality.

FIGURE 5.20 A snapshot of the three arrays C, A, and B when N ! 6 and i ! 1. Th e age of 
accesses to the array elements is indicated by shade: white means not yet touched, light means older accesses, 
and dark means newer accesses. Compared to Figure 5.21, elements of A and B are read repeatedly to calculate 
new elements of x. Th e variables i, j, and k are shown along the rows or columns used to access the arrays.
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FIGURE 5.21 Cache blocked version of DGEMM in Figure 3.21. Assume C is initialized to zero. Th e do_block 
function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the submatrices of 
BLOCKSIZE. Th e gcc optimizer can remove the function overhead instructions by inlining the do_block function.

FIGURE 5.22 The age of accesses to the arrays C, A, and B when BLOCKSIZE ! 3. Note that, 
in contrast to Figure 5.20, fewer elements are accessed.
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1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5  for (int i = si; i < si+BLOCKSIZE; ++i)
6   for (int j = sj; j < sj+BLOCKSIZE; ++j)
7     {
8     double cij = C[i+j*n];/* cij = C[i][j] */
9     for( int k = sk; k < sk+BLOCKSIZE; k++ )
10      cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11     C[i+j*n] = cij;/* C[i][j] = cij */
12     }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16   for ( int sj = 0; sj < n; sj += BLOCKSIZE )
17    for ( int si = 0; si < n; si += BLOCKSIZE )
18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )
19     do_block(n, si, sj, sk, A, B, C);
20 }

Although we have aimed at reducing cache misses, blocking can also be used to 
help register allocation. By taking a small blocking size such that the block can be 
held in registers, we can minimize the number of loads and stores in the program, 
which also improves performance.
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Figure 5.23 shows the impact of cache blocking on the performance of the 
unoptimized DGEMM as we increase the matrix size beyond where all three 
matrices fi t in the cache. Th e unoptimized performance is halved for the largest 
matrix. Th e cache-blocked version is less than 10% slower even at matrices that are 
960x960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4.

Elaboration: Multilevel caches create several complications. First, there are now 
several different types of misses and corresponding miss rates. In the example on 
pages 410–411, we saw the primary cache miss rate and the global miss rate—the 
fraction of references that missed in all cache levels. There is also a miss rate for the 
secondary cache, which is the ratio of all misses in the secondary cache divided by the 
number of accesses to it. This miss rate is called the local miss rate of the secondary 
cache. Because the primary cache fi lters accesses, especially those with good spatial 
and temporal locality, the local miss rate of the secondary cache is much higher than the 
global miss rate. For the example on pages 410–411, we can compute the local miss 
rate of the secondary cache as 0.5%/2% # 25%! Luckily, the global miss rate dictates 
how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more 
complex, since they execute instructions during the miss penalty. Instead of instruction 
miss rates and data miss rates, we use misses per instruction, and this formula:

Memory stall cycles
Instruction

Misses
Instruction

(Total misss latency Overlapped miss latency)

global miss rate Th e 
fraction of references 
that miss in all levels of a 
multilevel cache.

local miss rate Th e 
fraction of references to 
one level of a cache that 
miss; used in multilevel 
hierarchies.
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FIGURE 5.23 Performance of unoptimized DGEMM (Figure 3.21) versus cache blocked 
DGEMM (Figure 5.21) as the matrix dimension varies from 32x32 (where all three matrices 
fi t in the cache) to 960x960.
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There is no general way to calculate overlapped miss latency, so evaluations of 
memory hierarchies for out-of-order processors inevitably require simulation of the 
processor and the memory hierarchy. Only by seeing the execution of the processor 
during each miss can we see if the processor stalls waiting for data or simply fi nds other 
work to do. A guideline is that the processor often hides the miss penalty for an L1 
cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy 
varies between different implementations of the same architecture in cache size, 
associativity, block size, and number of caches. To cope with such variability, some 
recent numerical libraries parameterize their algorithms and then search the parameter 
space at runtime to fi nd the best combination for a particular computer. This approach 
is called autotuning.

Which of the following is generally true about a design with multiple levels of 
caches?

1. First-level caches are more concerned about hit time, and second-level 
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level 
caches are more concerned about hit time.

Summary
In this section, we focused on four topics: cache performance, using associativity to 
reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties, 
and soft ware optimizations to improve eff ectiveness of caches.

Th e memory system has a signifi cant eff ect on program execution time. Th e 
number of memory-stall cycles depends on both the miss rate and the miss penalty. 
Th e challenge, as we will see in Section 5.8, is to reduce one of these factors without 
signifi cantly aff ecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes. 
Such schemes can reduce the miss rate of a cache by allowing more fl exible 
placement of blocks within the cache. Fully associative schemes allow blocks to be 
placed anywhere, but also require that every block in the cache be searched to satisfy 
a request. Th e higher costs make large fully associative caches impractical. Set-
associative caches are a practical alternative, since we need only search among the 
elements of a unique set that is chosen by indexing. Set-associative caches have higher 
miss rates but are faster to access. Th e amount of associativity that yields the best 
performance depends on both the technology and the details of the implementation.

We looked at multilevel caches as a technique to reduce the miss penalty by 
allowing a larger secondary cache to handle misses to the primary cache. Second-
level caches have become commonplace as designers fi nd that limited silicon and 
the goals of high clock rates prevent primary caches from becoming large. Th e 
secondary cache, which is oft en ten or more times larger than the primary cache, 
handles many accesses that miss in the primary cache. In such cases, the miss 
penalty is that of the access time to the secondary cache (typically < 10 processor 
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The Hamming Single Error Correcting, Double Error 
Detecting Code (SEC/DED)
Richard Hamming invented a popular redundancy scheme for memory, for which 
he received the Turing Award in 1968. To invent redundant codes, it is helpful 
to talk about how “close” correct bit patterns can be. What we call the Hamming 
distance is just the minimum number of bits that are diff erent between any two 
correct bit patterns. For example, the distance between 011011 and 001111 is two. 
What happens if the minimum distance between members of a codes is two, and 
we get a one-bit error? It will turn a valid pattern in a code to an invalid one. Th us, 
if we can detect whether members of a code are valid or not, we can detect single 
bit errors, and can say we have a single bit error detection code.

Hamming used a parity code for error detection. In a parity code, the number 
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and 
even otherwise. When a word is written into memory, the parity bit is also written 
(1 for odd, 0 for even). Th at is, the parity of the N+1 bit word should always be even. 
Th en, when the word is read out, the parity bit is read and checked. If the parity of the 
memory word and the stored parity bit do not match, an error has occurred.

Calculate the parity of a byte with the value 31ten and show the pattern stored to 
memory. Assume the parity bit is on the right. Suppose the most signifi cant bit 
was inverted in memory, and then you read it back. Did you detect the error? 
What happens if the two most signifi cant bits are inverted?

31ten is 00011111two, which has fi ve 1s. To make parity even, we need to write a 1 
in the parity bit, or 000111111two. If the most signifi cant bit is inverted when we 
read it back, we would see 100111111two which has seven 1s. Since we expect 
even parity and calculated odd parity, we would signal an error. If the two most 
signifi cant bits are inverted, we would see 110111111two which has eight 1s or 
even parity and we would not signal an error.

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors, 
since the parity will match the data with two errors. (Actually, a 1-bit parity scheme 
can detect any odd number of errors; however, the probability of having 3 errors is 
much lower than the probability of having two, so, in practice, a 1-bit parity code is 
limited to detecting a single bit of error.) 

Of course, a parity code cannot correct errors, which Hamming wanted to do 
as well as detect them. If we used a code that had a minimum distance of 3, then 
any single bit error would be closer to the correct pattern than to any other valid 
pattern. He came up with an easy to understand mapping of data into a distance 3 
code that we call Hamming Error Correction Code (ECC) in his honor. We use extra 
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Assume one byte data value is 10011010two. First show the Hamming ECC code 
for that byte, and then invert bit 10 and show that the ECC code fi nds and 
corrects the single bit error.

Leaving spaces for the parity bits, the 12 bit pattern is _ _ 1 _ 0 0 1 _ 1 0 1 0. 
Position 1 checks bits 1,3,5,7,9, and11, which we highlight: __ 1 _ 0 0 1 _ 1 0 1 
0. To make the group even parity, we should set bit 1 to 0. 
Position 2 checks bits 2,3,6,7,10,11, which is 0 _ 1 _ 0 0 1 _ 1 0 1 0 or odd parity, 
so we set position 2 to a 1. 
Position 4 checks bits 4,5,6,7,12, which is 0 1 1 _ 0 0 1 _ 1 0 1, so we set it to a 1. 
Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1 _ 1 0 1 0, so we set it 
to a 0. 
Th e fi nal code word is 011100101010. Inverting bit 10 changes it to 
011100101110.
Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK).
Parity bit 2 is 1 (011100101110 is fi ve 1s, so odd parity; there is an error 
somewhere).
Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK).
Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error 
somewhere).
Parity bits 2 and 10 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence, 
we can correct the error by inverting bit 10: 011100101010. Voila!

Hamming did not stop at single bit error correction code. At the cost of one more 
bit, we can make the minimum Hamming distance in a code be 4. Th is means 
we can correct single bit errors and detect double bit errors. Th e idea is to add a 
parity bit that is calculated over the whole word. Let’s use a four-bit data word as 
an example, which would only need 7 bits for single bit error detection. Hamming 
parity bits H (p1 p2 p3) are computed (even parity as usual) plus the even parity 
over the entire word, p4:
    1    2    3    4    5    6    7   8
     p1  p2   d1   p3   d2   d3  d4   p4

Th en the algorithm to correct one error and detect two is just to calculate parity 
over the ECC groups (H) as before plus one more over the whole group (p4). Th ere 
are four cases:

1. H is even and p4 is even, so no error occurred.
2. H is odd and p4 is odd, so a correctable single error occurred. (p4 should 

calculate odd parity if one error occurred.)
3. H is even and p4 is odd, a single error occurred in p4 bit, not in the rest of the 

word, so correct the p4 bit.
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allow these separate soft ware stacks to run independently yet share hardware, 
thereby consolidating the number of servers. Another example is that some 
VMMs support migration of a running VM to a diff erent computer, either 
to balance load or to evacuate from failing hardware.

Amazon Web Services (AWS) uses the virtual machines in its cloud computing 
off ering EC2 for fi ve reasons:

1. It allows AWS to protect users from each other while sharing the same server.
2. It simplifi es soft ware distribution within a warehouse scale computer. A 

customer installs a virtual machine image confi gured with the appropriate 
soft ware, and AWS distributes it to all the instances a customer wants to use.

3. Customers (and AWS) can reliably “kill” a VM to control resource usage 
when customers complete their work.

4. Virtual machines hide the identity of the hardware on which the customer is 
running, which means AWS can keep using old servers and introduce new, 
more effi  cient servers. Th e customer expects performance for instances to 
match their ratings in “EC2 Compute Units,” which AWS defi nes: to “provide 
the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007 
Intel Xeon processor.” Th anks to Moore’s Law, newer servers clearly off er 
more EC2 Compute Units than older ones, but AWS can keep renting old 
servers as long as they are economical.

5. Virtual Machine Monitors can control the rate that a VM uses the processor, 
the network, and disk space, which allows AWS to off er many price points 
of instances of diff erent types running on the same underlying servers. 
For example, in 2012 AWS off ered 14 instance types, from small standard 
instances at $0.08 per hour to high I/O quadruple extra large instances at 
$3.10 per hour.

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the 
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads 
are generally also OS-intensive, executing many system calls and privileged 
instructions that can result in high virtualization overhead. On the other hand, if 
the I/O-intensive workload is also I/O-bound, the cost of processor virtualization 
can be completely hidden, since the processor is oft en idle waiting for I/O.

Th e overhead is determined by both the number of instructions that must be 
emulated by the VMM and by how much time each takes to emulate them. Hence, 
when the guest VMs run the same ISA as the host, as we assume here, the goal 
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of the architecture and the VMM is to run almost all instructions directly on the 
native hardware.

Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a soft ware interface to guest soft ware, it 
must isolate the state of guests from each other, and it must protect itself from guest 
soft ware (including guest OSes). Th e qualitative requirements are:

■ Guest soft ware should behave on a VM exactly as if it were running on the 
native hardware, except for performance-related behavior or limitations of 
fi xed resources shared by multiple VMs.

■ Guest soft ware should not be able to change allocation of real system resources 
directly.

To “virtualize” the processor, the VMM must control just about everything—access 
to privileged state, I/O, exceptions, and interrupts—even though the guest VM and 
OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the 
currently running guest VM, save its state, handle the interrupt, determine which 
guest VM to run next, and then load its state. Guest VMs that rely on a timer 
interrupt are provided with a virtual timer and an emulated timer interrupt by the 
VMM.

To be in charge, the VMM must be at a higher privilege level than the guest 
VM, which generally runs in user mode; this also ensures that the execution of 
any privileged instruction will be handled by the VMM. Th e basic requirements of 
system virtual:

■ At least two processor modes, system and user.
■ A privileged subset of instructions that is available only in system mode, 

resulting in a trap if executed in user mode; all system resources must be 
controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for Virtual 
Machines
If VMs are planned for during the design of the ISA, it’s relatively easy to reduce 
both the number of instructions that must be executed by a VMM and improve 
their emulation speed. An architecture that allows the VM to execute directly on 
the hardware earns the title virtualizable, and the IBM 370 architecture proudly 
bears that label.

Alas, since VMs have been considered for PC and server applications only fairly 
recently, most instruction sets were created without virtualization in mind. Th ese 
culprits include x86 and most RISC architectures, including ARMv7 and MIPS.
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Because the VMM must ensure that the guest system only interacts with virtual 
resources, a conventional guest OS runs as a user mode program on top of the 
VMM. Th en, if a guest OS attempts to access or modify information related to 
hardware resources via a privileged instruction—for example, reading or writing 
a status bit that enables interrupts—it will trap to the VMM. Th e VMM can then 
eff ect the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information 
traps when executed in user mode, the VMM can intercept it and support a virtual 
version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must 
take special precautions to locate all problematic instructions and ensure that they 
behave correctly when executed by a guest OS, thereby increasing the complexity 
of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture
Protection is a joint eff ort of architecture and operating systems, but architects 
had to modify some awkward details of existing instruction set architectures when 
virtual memory became popular. 

For example, the x86 instruction POPF loads the fl ag registers from the top of 
the stack in memory. One of the fl ags is the Interrupt Enable (IE) fl ag. If you run 
the POPF instruction in user mode, rather than trap it, it simply changes all the 
fl ags except IE. In system mode, it does change the IE. Since a guest OS runs in user 
mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve 
performance of virtual machines:

1. Reduce the cost of processor virtualization.
2. Reduce interrupt overhead cost due to the virtualization.
3. Reduce interrupt cost by steering interrupts to the proper VM without 

invoking VMM.
AMD and Intel tried to address the fi rst point in 2006 by reducing the cost of 
processor virtualization. It will be interesting to see how many generations of 
architecture and VMM modifi cations it will take to address all three points, and 
how long before virtual machines of the 21st century will be as effi  cient as the IBM 
mainframes and VMMs of the 1970s.

 5.7 Virtual Memory

In earlier sections, we saw how caches provided fast access to recently used portions 
of a program’s code and data. Similarly, the main memory can act as a “cache” for 

… a system has 
been devised to 
make the core drum 
combination appear 
to the programmer 
as a single level 
store, the requisite 
transfers taking place 
automatically.
Kilburn et al., One-level 
storage system, 1962
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the secondary storage, usually implemented with magnetic disks. Th is technique is 
called virtual memory. Historically, there were two major motivations for virtual 
memory: to allow effi  cient and safe sharing of memory among multiple programs, 
such as for the memory needed by multiple virtual machines for cloud computing, 
and to remove the programming burdens of a small, limited amount of main 
memory. Five decades aft er its invention, it’s the former reason that reigns today.

Of course, to allow multiple virtual machines to share the same memory, we 
must be able to protect the virtual machines from each other, ensuring that a 
program can only read and write the portions of main memory that have been 
assigned to it. Main memory need contain only the active portions of the many 
virtual machines, just as a cache contains only the active portion of one program. 
Th us, the principle of locality enables virtual memory as well as caches, and virtual 
memory allows us to effi  ciently share the processor as well as the main memory.

We cannot know which virtual machines will share the memory with other 
virtual machines when we compile them. In fact, the virtual machines sharing 
the memory change dynamically while the virtual machines are running. Because 
of this dynamic interaction, we would like to compile each program into its 
own address space—a separate range of memory locations accessible only to this 
program. Virtual memory implements the translation of a program’s address space 
to physical addresses. Th is translation process enforces protection of a program’s 
address space from other virtual machines.

Th e second motivation for virtual memory is to allow a single user program 
to exceed the size of primary memory. Formerly, if a program became too large 
for memory, it was up to the programmer to make it fi t. Programmers divided 
programs into pieces and then identifi ed the pieces that were mutually exclusive. 
Th ese overlays were loaded or unloaded under user program control during 
execution, with the programmer ensuring that the program never tried to access 
an overlay that was not loaded and that the overlays loaded never exceeded the 
total size of the memory. Overlays were traditionally organized as modules, each 
containing both code and data. Calls between procedures in diff erent modules 
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on 
programmers. Virtual memory, which was invented to relieve programmers of 
this diffi  culty, automatically manages the two levels of the memory hierarchy 
represented by main memory (sometimes called physical memory to distinguish it 
from virtual memory) and secondary storage.

Although the concepts at work in virtual memory and in caches are the same, 
their diff ering historical roots have led to the use of diff erent terminology. A virtual 
memory block is called a page, and a virtual memory miss is called a page fault. 
With virtual memory, the processor produces a virtual address, which is translated 
by a combination of hardware and soft ware to a physical address, which in turn can 
be used to access main memory. Figure 5.25 shows the virtually addressed memory 
with pages mapped to main memory. Th is process is called address mapping or 

virtual memory 
A technique that uses 
main memory as a “cache” 
for secondary storage.

physical address 
An address in main 
memory.

protection A set 
of mechanisms for 
ensuring that multiple 
processes sharing the 
processor, memory, 
or I/O devices cannot 
interfere, intentionally 
or unintentionally, with 
one another by reading or 
writing each other’s data. 
Th ese mechanisms also 
isolate the operating system 
from a user process.

page fault An event that 
occurs when an accessed 
page is not present in 
main memory.

virtual address 
An address that 
corresponds to a location 
in virtual space and is 
translated by address 
mapping to a physical 
address when memory is 
accessed.
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Many design choices in virtual memory systems are motivated by the high cost 
of a page fault. A page fault to disk will take millions of clock cycles to process. 
(Th e table on page 378 shows that main memory latency is about 100,000 times 
quicker than disk.) Th is enormous miss penalty, dominated by the time to get the 
fi rst word for typical page sizes, leads to several key decisions in designing virtual 
memory systems:

■ Pages should be large enough to try to amortize the high access time. Sizes 
from 4 KiB to 16 KiB are typical today. New desktop and server systems are 
being developed to support 32 KiB and 64 KiB pages, but new embedded 
systems are going in the other direction, to 1 KiB pages.

■ Organizations that reduce the page fault rate are attractive. Th e primary 
technique used here is to allow fully associative placement of pages in 
memory.

■ Page faults can be handled in soft ware because the overhead will be small 
compared to the disk access time. In addition, soft ware can aff ord to use clever 
algorithms for choosing how to place pages because even small reductions in 
the miss rate will pay for the cost of such algorithms.

■ Write-through will not work for virtual memory, since writes take too long. 
Instead, virtual memory systems use write-back.

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

FIGURE 5.26 Mapping from a virtual to a physical address. Th e page size is 212 # 4 KiB. Th e 
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Th us, 
main memory can have at most 1 GiB, while the virtual address space is 4 GiB.
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Th e next few subsections address these factors in virtual memory design.

Elaboration: We present the motivation for virtual memory as many virtual machines 
sharing the same memory, but virtual memory was originally invented so that many 
programs could share a computer as part of a timesharing system. Since many readers 
today have no experience with time-sharing systems, we use virtual machines to motivate 
this section.

Elaboration: For servers and even PCs, 32-bit address processors are problematic. 
Although we normally think of virtual addresses as much larger than physical addresses, 
the opposite can occur when the processor address size is small relative to the state 
of the memory technology. No single program or virtual machine can benefi t, but a 
collection of programs or virtual machines running at the same time can benefi t from 
not having to be swapped to memory or by running on parallel processors. 

Elaboration: The discussion of virtual memory in this book focuses on paging, 
which uses fi xed-size blocks. There is also a variable-size block scheme called 
segmentation. In segmentation, an address consists of two parts: a segment number 
and a segment offset. The segment number is mapped to a physical address, and 
the offset is added to fi nd the actual physical address. Because the segment can 
vary in size, a bounds check is also needed to make sure that the offset is within 
the segment. The major use of segmentation is to support more powerful methods 
of protection and sharing in an address space. Most operating system textbooks 
contain extensive discussions of segmentation compared to paging and of the use 
of segmentation to logically share the address space. The major disadvantage of 
segmentation is that it splits the address space into logically separate pieces that 
must be manipulated as a two-part address: the segment number and the offset. 
Paging, in contrast, makes the boundary between page number and offset invisible 
to programmers and compilers.

Segments have also been used as a method to extend the address space without 
changing the word size of the computer. Such attempts have been unsuccessful because 
of the awkwardness and performance penalties inherent in a two-part address, of which 
programmers and compilers must be aware.

Many architectures divide the address space into large fi xed-size blocks that simplify 
protection between the operating system and user programs and increase the effi ciency 
of implementing paging. Although these divisions are often called “segments,” this 
mechanism is much simpler than variable block size segmentation and is not visible to 
user programs; we discuss it in more detail shortly.

Placing a Page and Finding It Again
Because of the incredibly high penalty for a page fault, designers reduce page fault 
frequency by optimizing page placement. If we allow a virtual page to be mapped 
to any physical page, the operating system can then choose to replace any page 
it wants when a page fault occurs. For example, the operating system can use a 

segmentation 
A variable-size address 
mapping scheme in which 
an address consists of two 
parts: a segment number, 
which is mapped to a 
physical address, and a 
segment off set.
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sophisticated algorithm and complex data structures that track page usage to try 
to choose a page that will not be needed for a long time. Th e ability to use a clever 
and fl exible replacement scheme reduces the page fault rate and simplifi es the use 
of fully associative placement of pages.

As mentioned in Section 5.4, the diffi  culty in using fully associative placement 
is in locating an entry, since it can be anywhere in the upper level of the hierarchy. 
A full search is impractical. In virtual memory systems, we locate pages by using a 
table that indexes the memory; this structure is called a page table, and it resides 
in memory. A page table is indexed with the page number from the virtual address 
to discover the corresponding physical page number. Each program has its own 
page table, which maps the virtual address space of that program to main memory. 
In our library analogy, the page table corresponds to a mapping between book 
titles and library locations. Just as the card catalog may contain entries for books 
in another library on campus rather than the local branch library, we will see that 
the page table may contain entries for pages not present in memory. To indicate the 
location of the page table in memory, the hardware includes a register that points to 
the start of the page table; we call this the page table register. Assume for now that 
the page table is in a fi xed and contiguous area of memory.

Th e page table, together with the program counter and the registers, specifi es 
the state of a virtual machine. If we want to allow another virtual machine to use 
the processor, we must save this state. Later, aft er restoring this state, the virtual 
machine can continue execution. We oft en refer to this state as a process. Th e 
process is considered active when it is in possession of the processor; otherwise, it 
is considered inactive. Th e operating system can make a process active by loading 
the process’s state, including the program counter, which will initiate execution at 
the value of the saved program counter.

Th e process’s address space, and hence all the data it can access in memory, is 
defi ned by its page table, which resides in memory. Rather than save the entire page 
table, the operating system simply loads the page table register to point to the page 
table of the process it wants to make active. Each process has its own page table, 
since diff erent processes use the same virtual addresses. Th e operating system is 
responsible for allocating the physical memory and updating the page tables, so 
that the virtual address spaces of diff erent processes do not collide. As we will see 
shortly, the use of separate page tables also provides protection of one process from 
another.

page table Th e table 
containing the virtual 
to physical address 
translations in a virtual 
memory system. Th e 
table, which is stored 
in memory, is typically 
indexed by the virtual 
page number; each entry 
in the table contains the 
physical page number 
for that virtual page if 
the page is currently in 
memory.
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Page Faults
If the valid bit for a virtual page is off , a page fault occurs. Th e operating system 
must be given control. Th is transfer is done with the exception mechanism, which 
we saw in Chapter 4 and will discuss again later in this section. Once the operating 
system gets control, it must fi nd the page in the next level of the hierarchy (usually 
fl ash memory or magnetic disk) and decide where to place the requested page in 
main memory.

Th e virtual address alone does not immediately tell us where the page is on disk. 
Returning to our library analogy, we cannot fi nd the location of a library book on 
the shelves just by knowing its title. Instead, we go to the catalog and look up the 
book, obtaining an address for the location on the shelves, such as the Library of 
Congress call number. Likewise, in a virtual memory system, we must keep track 
of the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced, 
the operating system usually creates the space on fl ash memory or disk for all the 
pages of a process when it creates the process. Th is space is called the swap space. 
At that time, it also creates a data structure to record where each virtual page is 
stored on disk. Th is data structure may be part of the page table or may be an 
auxiliary data structure indexed in the same way as the page table. Figure 5.28 
shows the organization when a single table holds either the physical page number 
or the disk address.

Th e operating system also creates a data structure that tracks which processes 
and which virtual addresses use each physical page. When a page fault occurs, 
if all the pages in main memory are in use, the operating system must choose a 
page to replace. Because we want to minimize the number of page faults, most 
operating systems try to choose a page that they hypothesize will not be needed 
in the near future. Using the past to predict the future, operating systems follow 
the least recently used (LRU) replacement scheme, which we mentioned in Section 
5.4. Th e operating system searches for the least recently used page, assuming that 
a page that has not been used in a long time is less likely to be needed than a more 
recently accessed page. Th e replaced pages are written to swap space on the disk. 
In case you are wondering, the operating system is just another process, and these 
tables controlling memory are in memory; the details of this seeming contradiction 
will be explained shortly.

swap space Th e space on 
the disk reserved for the 
full virtual memory space 
of a process.
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Elaboration: With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table 
entry, we can compute the total page table size:

Number of page table entries
2

2
32

20# #
212

Size of page table 2  page table entries 2
bytes

page tabl
20 2

ee entry
4 MiB

That is, we would need to use 4 MiB of memory for each program in execution at any 
time. This amount is not so bad for a single process. What if there are hundreds of 
processes running, each with their own page table? And how should we handle 64-bit 
addresses, which by this calculation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page 
table. The fi ve techniques below aim at reducing the total maximum storage required as 
well as minimizing the main memory dedicated to page tables:

1.  The simplest technique is to keep a limit register that restricts the size of the 
page table for a given process. If the virtual page number becomes larger than 
the contents of the limit register, entries must be added to the page table. This 
technique allows the page table to grow as a process consumes more space. 
Thus, the page table will only be large if the process is using many pages of 
virtual address space. This technique requires that the address space expand in 
only one direction. 

2.  Allowing growth in only one direction is not suffi cient, since most languages require 
two areas whose size is expandable: one area holds the stack and the other area 
holds the heap. Because of this duality, it is convenient to divide the page table 
and let it grow from the highest address down, as well as from the lowest address 
up. This means that there will be two separate page tables and two separate 
limits. The use of two page tables breaks the address space into two segments. 
The high-order bit of an address usually determines which segment and thus which 
page table to use for that address. Since the high-order address bit specifi es the 
segment, each segment can be as large as one-half of the address space. A 
limit register for each segment specifi es the current size of the segment, which 
grows in units of pages. This type of segmentation is used by many architectures, 
including MIPS. Unlike the type of segmentation discussed in the third elaboration 
on page 431, this form of segmentation is invisible to the application program, 
although not to the operating system. The major disadvantage of this scheme is 
that it does not work well when the address space is used in a sparse fashion 
rather than as a contiguous set of virtual addresses.

3.  Another approach to reducing the page table size is to apply a hashing function 
to the virtual address so that the page table need be only the size of the number 
of physical pages in main memory. Such a structure is called an inverted page 
table. Of course, the lookup process is slightly more complex with an inverted 
page table, because we can no longer just index the page table.

4.  Multiple levels of page tables can also be used to reduce the total amount of 
page table storage. The fi rst level maps large fi xed-size blocks of virtual address 
space, perhaps 64 to 256 pages in total. These large blocks are sometimes 
called segments, and this fi rst-level mapping table is sometimes called a 
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segment table, though the segments are again invisible to the user. Each entry 
in the segment table indicates whether any pages in that segment are allocated 
and, if so, points to a page table for that segment. Address translation happens 
by fi rst looking in the segment table, using the highest-order bits of the address. 
If the segment address is valid, the next set of high-order bits is used to index 
the page table indicated by the segment table entry. This scheme allows the 
address space to be used in a sparse fashion (multiple noncontiguous segments 
can be active) without having to allocate the entire page table. Such schemes 
are particularly useful with very large address spaces and in software systems 
that require noncontiguous allocation. The primary disadvantage of this two-level 
mapping is the more complex process for address translation.

5.  To reduce the actual main memory tied up in page tables, most modern systems 
also allow the page tables to be paged. Although this sounds tricky, it works 
by using the same basic ideas of virtual memory and simply allowing the page 
tables to reside in the virtual address space. In addition, there are some small 
but critical problems, such as a never-ending series of page faults, which must 
be avoided. How these problems are overcome is both very detailed and typically 
highly processor specifi c. In brief, these problems are avoided by placing all the 
page tables in the address space of the operating system and placing at least 
some of the page tables for the operating system in a portion of main memory 
that is physically addressed and is always present and thus never on disk.

What about Writes?
Th e diff erence between the access time to the cache and main memory is tens to 
hundreds of cycles, and write-through schemes can be used, although we need a 
write buff er to hide the latency of the write from the processor. In a virtual memory 
system, writes to the next level of the hierarchy (disk) can take millions of processor 
clock cycles; therefore, building a write buff er to allow the system to write-through 
to disk would be completely impractical. Instead, virtual memory systems must use 
write-back, performing the individual writes into the page in memory, and copying 
the page back to disk when it is replaced in the memory.

A write-back scheme has another major advantage in a virtual memory system. 
Because the disk transfer time is small compared with its access time, copying back 
an entire page is much more effi  cient than writing individual words back to the disk. 
A write-back operation, although more effi  cient than transferring individual words, is 
still costly. Th us, we would like to know whether a page needs to be copied back when 
we choose to replace it. To track whether a page has been written since it was read into 
the memory, a dirty bit is added to the page table. Th e dirty bit is set when any word 
in a page is written. If the operating system chooses to replace the page, the dirty bit 
indicates whether the page needs to be written out before its location in memory can be 
given to another page. Hence, a modifi ed page is oft en called a dirty page.

Hardware/ 
Software 
Interface
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Because we access the TLB instead of the page table on every reference, the TLB 
will need to include other status bits, such as the dirty and the reference bits.

On every reference, we look up the virtual page number in the TLB. If we get a 
hit, the physical page number is used to form the address, and the corresponding 
reference bit is turned on. If the processor is performing a write, the dirty bit is also 
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault 
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates 
only that the translation is missing. In such cases, the processor can handle the TLB 
miss by loading the translation from the page table into the TLB and then trying the 
reference again. If the page is not present in memory, then the TLB miss indicates 
a true page fault. In this case, the processor invokes the operating system using an 
exception. Because the TLB has many fewer entries than the number of pages in 
main memory, TLB misses will be much more frequent than true page faults.

TLB misses can be handled either in hardware or in soft ware. In practice, with 
care there can be little performance diff erence between the two approaches, because 
the basic operations are the same in either case.

Aft er a TLB miss occurs and the missing translation has been retrieved from the 
page table, we will need to select a TLB entry to replace. Because the reference and 
dirty bits are contained in the TLB entry, we need to copy these bits back to the page 
table entry when we replace an entry. Th ese bits are the only portion of the TLB 
entry that can be changed. Using write-back—that is, copying these entries back at 
miss time rather than when they are written—is very effi  cient, since we expect the 
TLB miss rate to be small. Some systems use other techniques to approximate the 
reference and dirty bits, eliminating the need to write into the TLB except to load 
a new table entry on a miss.

Some typical values for a TLB might be
■ TLB size: 16–512 entries
■ Block size: 1–2 page table entries (typically 4–8 bytes each)
■ Hit time: 0.5–1 clock cycle
■ Miss penalty: 10–100 clock cycles
■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use 
small, fully associative TLBs because a fully associative mapping has a lower miss 
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is 
not too high. Other systems use large TLBs, oft en with small associativity. With 
a fully associative mapping, choosing the entry to replace becomes tricky since 
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB 
misses are much more frequent than page faults and thus must be handled more 
cheaply, we cannot aff ord an expensive soft ware algorithm, as we can for page faults. 
As a result, many systems provide some support for randomly choosing an entry 
to replace. We’ll examine replacement schemes in a little more detail in Section 5.8.
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The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the 
Intrinsity FastMATH. Th e memory system uses 4 KiB pages and a 32-bit address 
space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.30. 
Th e physical address is the same size as the virtual address. Th e TLB contains 16 
entries, it is fully associative, and it is shared between the instruction and data 
references. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual 
page number for that TLB entry), the corresponding physical page number (also 20 
bits), a valid bit, a dirty bit, and other bookkeeping bits. Like most MIPS systems, 
it uses soft ware to handle TLB misses.

Figure 5.30 shows the TLB and one of the caches, while Figure 5.31 shows the 
steps in processing a read or write request. When a TLB miss occurs, the MIPS 
hardware saves the page number of the reference in a special register and generates 
an exception. Th e exception invokes the operating system, which handles the miss 
in soft ware. To fi nd the physical address for the missing page, the TLB miss routine 
indexes the page table using the page number of the virtual address and the page 
table register, which indicates the starting address of the active process page table. 
Using a special set of system instructions that can update the TLB, the operating 
system places the physical address from the page table into the TLB. A TLB miss 
takes about 13 clock cycles, assuming the code and the page table entry are in the 
instruction cache and data cache, respectively. (We will see the MIPS TLB code 
on page 449.) A true page fault occurs if the page table entry does not have a valid 
physical address. Th e hardware maintains an index that indicates the recommended 
entry to replace; the recommended entry is chosen randomly.

Th ere is an extra complication for write requests: namely, the write access bit in 
the TLB must be checked. Th is bit prevents the program from writing into pages 
for which it has only read access. If the program attempts a write and the write 
access bit is off , an exception is generated. Th e write access bit forms part of the 
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches
Our virtual memory and cache systems work together as a hierarchy, so that data 
cannot be in the cache unless it is present in main memory. Th e operating system 
helps maintain this hierarchy by fl ushing the contents of any page from the cache 
when it decides to migrate that page to disk. At the same time, the OS modifi es the 
page tables and TLB, so that an attempt to access any data on the migrated page 
will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and 
sent to the cache where the appropriate data is found, retrieved, and sent back to 
the processor. In the worst case, a reference can miss in all three components of the 
memory hierarchy: the TLB, the page table, and the cache. Th e following example 
illustrates these interactions in more detail.
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YesWrite access
bit on?

No

Yes
Cache hit?

No

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data
from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data
to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss
exception Physical address

FIGURE 5.31 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, 
the cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall 
while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to 
the write buff er if we assume write-through. A write miss is just like a read miss except that the block is modifi ed aft er it is read from memory. 
Write-back requires writes to set a dirty bit for the cache block, and a write buff er is loaded with the whole block only on a read miss or write 
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur aft er a TLB 
hit occurs, which means that the data must be present in memory. Th e relationship between TLB misses and cache misses is examined further 
in the following example and the exercises at the end of this chapter.
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Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.30, which includes a TLB and a 
cache organized as shown, a memory reference can encounter three diff erent 
types of misses: a TLB miss, a page fault, and a cache miss. Consider all 
the combinations of these three events with one or more occurring (seven 
possibilities). For each possibility, state whether this event can actually occur 
and under what circumstances.

Figure 5.32 shows all combinations and whether each is possible in practice.

Elaboration: Figure 5.32 assumes that all memory addresses are translated to 
physical addresses before the cache is accessed. In this organization, the cache is 
physically indexed and physically tagged (both the cache index and tag are physical, 
rather than virtual, addresses). In such a system, the amount of time to access memory, 
assuming a cache hit, must accommodate both a TLB access and a cache access; of 
course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely 
or partially virtual. This is called a virtually addressed cache, and it uses tags that 
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In 
such caches, the address translation hardware (TLB) is unused during the normal cache 
access, since the cache is accessed with a virtual address that has not been translated 
to a physical address. This takes the TLB out of the critical path, reducing cache latency. 
When a cache miss occurs, however, the processor needs to translate the address to a 
physical address so that it can fetch the cache block from main memory.

EXAMPLE

ANSWER

virtually addressed 
cache A cache that is 
accessed with a virtual 
address rather than a 
physical address.

TLB
Page 
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.32 The possible combinations of events in the TLB, virtual memory system, 
and cache. Th ree of these combinations are impossible, and one is possible (TLB hit, virtual memory hit, 
cache miss) but never detected.
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When the cache is accessed with a virtual address and pages are shared between 
processes (which may access them with different virtual addresses), there is the 
possibility of aliasing. Aliasing occurs when the same object has two names—in this 
case, two virtual addresses for the same page. This ambiguity creates a problem, because 
a word on such a page may be cached in two different locations, each corresponding 
to different virtual addresses. This ambiguity would allow one program to write the data 
without the other program being aware that the data had changed. Completely virtually 
addressed caches either introduce design limitations on the cache and TLB to reduce 
aliases or require the operating system, and possibly the user, to take steps to ensure 
that aliases do not occur.

A common compromise between these two design points is caches that are virtually 
indexed—sometimes using just the page-offset portion of the address, which is really 
a physical address since it is not translated—but use physical tags. These designs, 
which are virtually indexed but physically tagged, attempt to achieve the performance 
advantages of virtually indexed caches with the architecturally simpler advantages of a 
physically addressed cache. For example, there is no alias problem in this case. Figure 
5.30 assumed a 4 KiB page size, but it’s really 16 KiB, so the Intrinsity FastMATH can 
use this trick. To pull it off, there must be careful coordination between the minimum 
page size, the cache size, and associativity.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of 
a single main memory by multiple processes, while providing memory protection 
among these processes and the operating system. Th e protection mechanism must 
ensure that although multiple processes are sharing the same main memory, one 
renegade process cannot write into the address space of another user process or into 
the operating system either intentionally or unintentionally. Th e write access bit in 
the TLB can protect a page from being written. Without this level of protection, 
computer viruses would be even more widespread.

To enable the operating system to implement protection in the virtual memory 
system, the hardware must provide at least the three basic capabilities summarized 
below. Note that the fi rst two are the same requirements as needed for virtual 
machines (Section 5.6).

1. Support at least two modes that indicate whether the running process is a 
user process or an operating system process, variously called a supervisor 
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but not 
write. Th is includes the user/supervisor mode bit, which dictates whether 
the processor is in user or supervisor mode, the page table pointer, and the 

aliasing A situation 
in which two addresses 
access the same object; 
it can occur in virtual 
memory when there are 
two virtual addresses for 
the same physical page.

physically addressed 
cache A cache that is 
addressed by a physical 
address.

Hardware/ 
Software 
Interface

supervisor mode Also 
called kernel mode. A 
mode indicating that a 
running process is an 
operating system process.
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TLB. To write these elements, the operating system uses special instructions 
that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to 
supervisor mode and vice versa. Th e fi rst direction is typically accomplished 
by a system call exception, implemented as a special instruction (syscall in 
the MIPS instruction set) that transfers control to a dedicated location in 
supervisor code space. As with any other exception, the program counter 
from the point of the system call is saved in the exception PC (EPC), and 
the processor is placed in supervisor mode. To return to user mode from the 
exception, use the return from exception (ERET) instruction, which resets to 
user mode and jumps to the address in EPC.

By using these mechanisms and storing the page tables in the operating system’s 
address space, the operating system can change the page tables while preventing a 
user process from changing them, ensuring that a user process can access only the 
storage provided to it by the operating system.

We also want to prevent a process from reading the data of another process. For 
example, we wouldn’t want a student program to read the grades while they were 
in the processor’s memory. Once we begin sharing main memory, we must provide 
the ability for a process to protect its data from both reading and writing by another 
process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Th us, if the 
operating system keeps the page tables organized so that the independent virtual 
pages map to disjoint physical pages, one process will not be able to access another’s 
data. Of course, this also requires that a user process be unable to change the page 
table mapping. Th e operating system can assure safety if it prevents the user process 
from modifying its own page tables. However, the operating system must be able 
to modify the page tables. Placing the page tables in the protected address space of 
the operating system satisfi es both requirements.

When processes want to share information in a limited way, the operating system 
must assist them, since accessing the information of another process requires 
changing the page table of the accessing process. Th e write access bit can be used 
to restrict the sharing to just read sharing, and, like the rest of the page table, this 
bit can be changed only by the operating system. To allow another process, say, P1, 
to read a page owned by process P2, P2 would ask the operating system to create 
a page table entry for a virtual page in P1’s address space that points to the same 
physical page that P2 wants to share. Th e operating system could use the write 
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits 
that determine the access rights for a page must be included in both the page table 
and the TLB, because the page table is accessed only on a TLB miss.

system call A special 
instruction that transfers 
control from user mode 
to a dedicated location 
in supervisor code space, 
invoking the exception 
mechanism in the process.
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Elaboration: When the operating system decides to change from running process 
P1 to running process P2 (called a context switch or process switch), it must ensure 
that P2 cannot get access to the page tables of P1 because that would compromise 
protection. If there is no TLB, it suffi ces to change the page table register to point to P2’s 
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to 
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the 
process switch rate were high, this could be quite ineffi cient. For example, P2 might load 
only a few TLB entries before the operating system switched back to P1. Unfortunately, 
P1 would then fi nd that all its TLB entries were gone and would have to pay TLB misses 
to reload them. This problem arises because the virtual addresses used by P1 and P2 
are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process 
identifi er or task identifi er. The Intrinsity FastMATH has an 8-bit address space ID (ASID) 
fi eld for this purpose. This small fi eld identifi es the currently running process; it is kept 
in a register loaded by the operating system when it switches processes. The process 
identifi er is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if 
both the page number and the process identifi er match. This combination eliminates the 
need to clear the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch the cache will 
contain data from the running process. These problems arise in different ways for 
physically addressed and virtually addressed caches, and a variety of different solutions, 
such as process identifi ers, are used to ensure that a process gets its own data.

Handling TLB Misses and Page Faults
Although the translation of virtual to physical addresses with a TLB is 
straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and 
page faults is more complex. A TLB miss occurs when no entry in the TLB matches 
a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. Th e page is present in memory, and we need only create the missing TLB 
entry.

2. Th e page is not present in memory, and we need to transfer control to the 
operating system to deal with a page fault.

MIPS traditionally handles a TLB miss in soft ware. It brings in the page table 
entry from memory and then re-executes the instruction that caused the TLB miss. 
Upon re-executing, it will get a TLB hit. If the page table entry indicates the page is 
not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism 
to interrupt the active process, transferring control to the operating system, and 
later resuming execution of the interrupted process. A page fault will be recognized 
sometime during the clock cycle used to access memory. To restart the instruction 
aft er the page fault is handled, the program counter of the instruction that caused 
the page fault must be saved. Just as in Chapter 4, the exception program counter 
(EPC) is used to hold this value.

context switch 
A changing of the internal 
state of the processor to 
allow a diff erent process 
to use the processor 
that includes saving the 
state needed to return to 
the currently executing 
process.
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In addition, a TLB miss or page fault exception must be asserted by the end 
of the same clock cycle that the memory access occurs, so that the next clock 
cycle will begin exception processing rather than continue normal instruction 
execution. If the page fault was not recognized in this clock cycle, a load instruction 
could overwrite a register, and this could be disastrous when we try to restart the 
instruction. For example, consider the instruction lw $1,0($1): the computer 
must be able to prevent the write pipeline stage from occurring; otherwise, it could 
not properly restart the instruction, since the contents of $1 would have been 
destroyed. A similar complication arises on stores. We must prevent the write into 
memory from actually completing when there is a page fault; this is usually done 
by deasserting the write control line to the memory.

Between the time we begin executing the exception handler in the operating 
system and the time that the operating system has saved all the state of the process, 
the operating system is particularly vulnerable. For example, if another exception 
occurred when we were processing the fi rst exception in the operating system, the 
control unit would overwrite the exception program counter, making it impossible 
to return to the instruction that caused the page fault! We can avoid this disaster 
by providing the ability to disable and enable exceptions. When an exception fi rst 
occurs, the processor sets a bit that disables all other exceptions; this could happen 
at the same time the processor sets the supervisor mode bit. Th e operating system 
will then save just enough state to allow it to recover if another exception occurs—
namely, the exception program counter (EPC) and Cause registers. EPC and Cause 
are two of the special control registers that help with exceptions, TLB misses, and 
page faults; Figure 5.33 shows the rest. Th e operating system can then re-enable 
exceptions. Th ese steps make sure that exceptions will not cause the processor 
to lose any state and thereby be unable to restart execution of the interrupting 
instruction.

Once the operating system knows the virtual address that caused the page fault, it 
must complete three steps:

1. Look up the page table entry using the virtual address and fi nd the location 
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be 
written out to disk before we can bring a new virtual page into this physical 
page.

3. Start a read to bring the referenced page from disk into the chosen physical 
page.

Hardware/ 
Software 
Interface

exception enable Also 
called interrupt enable. 
A signal or action that 
controls whether the 
process responds to 
an exception or not; 
necessary for preventing 
the occurrence of 
exceptions during 
intervals before the 
processor has safely saved 
the state needed to restart.
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Th e exception invokes the operating system, which handles the miss in soft ware. 
Control is transferred to address 8000 0000hex, the location of the TLB miss handler. 
To fi nd the physical address for the missing page, the TLB miss routine indexes the 
page table using the page number of the virtual address and the page table register, 
which indicates the starting address of the active process page table. To make this 
indexing fast, MIPS hardware places everything you need in the special Context 
register: the upper 12 bits have the address of the base of the page table, and the 
next 18 bits have the virtual address of the missing page. Each page table entry is 
one word, so the last 2 bits are 0. Th us, the fi rst two instructions copy the Context 
register into the kernel temporary register $k1 and then load the page table entry 
from that address into $k1. Recall that $k0 and $k1 are reserved for the operating 
system to use without saving; a major reason for this convention is to make the TLB 
miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:
mfc0 $k1,Context # copy address of PTE into temp $k1
lw $k1,0($k1) # put PTE into temp $k1
mtc0 $k1,EntryLo # put PTE into special register EntryLo
tlbwr  # put EntryLo into TLB entry at Random
eret  # return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the 
TLB. Th e instruction tlbwr copies from control register EntryLo into the TLB 
entry selected by the control register Random. Random implements random 
replacement, so it is basically a free-running counter. A TLB miss takes about a 
dozen clock cycles.

Note that the TLB miss handler does not check to see if the page table entry is 
valid. Because the exception for TLB entry missing is much more frequent than 
a page fault, the operating system loads the TLB from the page table without 
examining the entry and restarts the instruction. If the entry is invalid, another 
and diff erent exception occurs, and the operating system recognizes the page fault. 
Th is method makes the frequent case of a TLB miss fast, at a slight performance 
penalty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers 
control to 8000 0180hex, a diff erent address than the TLB miss handler. Th is is 
the general address for exception; TLB miss has a special entry point to lower the 
penalty for a TLB miss. Th e operating system uses the exception Cause register 
to diagnose the cause of the exception. Because the exception is a page fault, the 
operating system knows that extensive processing will be required. Th us, unlike a 
TLB miss, it saves the entire state of the active process. Th is state includes all the 
general-purpose and fl oating-point registers, the page table address register, the 
EPC, and the exception Cause register. Since exception handlers do not usually use 
the fl oating-point registers, the general entry point does not save them, leaving that 
to the few handlers that need them.

handler Name of a 
soft ware routine invoked 
to “handle” an exception 
or interrupt.
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Figure 5.34 sketches the MIPS code of an exception handler. Note that we 
save and restore the state in MIPS code, taking care when we enable and disable 
exceptions, but we invoke C code to handle the particular exception.

Th e virtual address that caused the fault depends on whether the fault was an 
instruction or data fault. Th e address of the instruction that generated the fault is 
in the EPC. If it was an instruction page fault, the EPC contains the virtual address 
of the faulting page; otherwise, the faulting virtual address can be computed by 
examining the instruction (whose address is in the EPC) to fi nd the base register 
and off set fi eld.

Elaboration: This simplifi ed version assumes that the stack pointer (sp) is valid. To 
avoid the problem of a page fault during this low-level exception code, MIPS sets aside 
a portion of its address space that cannot have page faults, called unmapped. The 
operating system places the exception entry point code and the exception stack in 
unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to BFFF 
FFFFhex to physical addresses simply by ignoring the upper bits of the virtual address, 
thereby placing these addresses in the low part of physical memory. Thus, the operating 
system places exception entry points and exception stacks in unmapped memory.

Elaboration: The code in Figure 5.34 shows the MIPS-32 exception return sequence. 
The older MIPS-I architecture uses rfe and jr instead of eret.

Elaboration: For processors with more complex instructions that can touch many 
memory locations and write many data items, making instructions restartable is much 
harder. Processing one instruction may generate a number of page faults in the middle 
of the instruction. For example, x86 processors have block move instructions that touch 
thousands of data words. In such processors, instructions often cannot be restarted 
from the beginning, as we do for MIPS instructions. Instead, the instruction must be 
interrupted and later continued midstream in its execution. Resuming an instruction in 
the middle of its execution usually requires saving some special state, processing the 
exception, and restoring that special state. Making this work properly requires careful 
and detailed coordination between the exception-handling code in the operating system 
and the hardware.

Elaboration: Rather than pay an extra level of indirection on every memory access, the 
VMM maintains a shadow page table that maps directly from the guest virtual address 
space to the physical address space of the hardware. By detecting all modifi cations to 
the guest’s page table, the VMM can ensure the shadow page table entries being used 
by the hardware for translations correspond to those of the guest OS environment, with 
the exception of the correct physical pages substituted for the real pages in the guest 
tables. Hence, the VMM must trap any attempt by the guest OS to change its page table 
or to access the page table pointer. This is commonly done by write protecting the guest 
page tables and trapping any access to the page table pointer by a guest OS. As noted 
above, the latter happens naturally if accessing the page table pointer is a privileged 
operation.

unmapped A portion 
of the address space that 
cannot have page faults.
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Elaboration: The fi nal portion of the architecture to virtualize is I/O. This is by far 
the most diffi cult part of system virtualization because of the increasing number of 
I/O devices attached to the computer and the increasing diversity of I/O device types. 
Another diffi culty is the sharing of a real device among multiple VMs, and yet another 
comes from supporting the myriad of device drivers that are required, especially if 
different guest OSes are supported on the same VM system. The VM illusion can be 
maintained by giving each VM generic versions of each type of I/O device driver, and then 
leaving it to the VMM to handle real I/O.

Elaboration: In addition to virtualizing the instruction set for a virtual machine, 
another challenge is virtualization of virtual memory, as each guest OS in every virtual 
machine manages its own set of page tables. To make this work, the VMM separates 
the notions of real and physical memory (which are often treated synonymously), and 
makes real memory a separate, intermediate level between virtual memory and physical 
memory. (Some use the terms virtual memory, physical memory, and machine memory 
to name the same three levels.) The guest OS maps virtual memory to real memory 
via its page tables, and the VMM page tables map the guest’s real memory to physical 
memory. The virtual memory architecture is specifi ed either via page tables, as in IBM 
VM/370 and the x86, or via the TLB structure, as in MIPS.

Summary
Virtual memory is the name for the level of memory hierarchy that manages 
caching between the main memory and secondary memory. Virtual memory 
allows a single program to expand its address space beyond the limits of main 
memory. More importantly, virtual memory supports sharing of the main memory 
among multiple, simultaneously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging 
because of the high cost of page faults. Several techniques are used to reduce the 
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the 
miss rate.

2. Th e mapping between virtual addresses and physical addresses, which is 
implemented with a page table, is made fully associative so that a virtual 
page can be placed anywhere in main memory.

3. Th e operating system uses techniques, such as LRU and a reference bit, to 
choose which pages to replace.
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Writes to secondary memory are expensive, so virtual memory uses a write-back 
scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid 
writing unchanged pages.

Th e virtual memory mechanism provides address translation from a virtual 
address used by the program to the physical address space used for accessing 
memory. Th is address translation allows protected sharing of the main memory 
and provides several additional benefi ts, such as simplifying memory allocation. 
Ensuring that processes are protected from each other requires that only the 
operating system can change the address translations, which is implemented by 
preventing user programs from changing the page tables. Controlled sharing of 
pages among processes can be implemented with the help of the operating system 
and access bits in the page table that indicate whether the user program has read or 
write access to a page.

If a processor had to access a page table resident in memory to translate every 
access, virtual memory would be too expensive, as caches would be pointless! 
Instead, a TLB acts as a cache for translations from the page table. Addresses are 
then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and 
policies. Th e next section discusses this common framework.

Although virtual memory was invented to enable a small memory to act as a large 
one, the performance diff erence between secondary memory and main memory 
means that if a program routinely accesses more virtual memory than it has 
physical memory, it will run very slowly. Such a program would be continuously 
swapping pages between memory and disk, called thrashing. Th rashing is a disaster 
if it occurs, but it is rare. If your program thrashes, the easiest solution is to run it on 
a computer with more memory or buy more memory for your computer. A more 
complex choice is to re-examine your algorithm and data structures to see if you 
can change the locality and thereby reduce the number of pages that your program 
uses simultaneously. Th is set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might 
handle only 32–64 page entries at a time, a program could easily see a high TLB 
miss rate, as the processor may access less than a quarter mebibyte directly: 64 
" 4 KiB # 0.25 MiB. For example, TLB misses are oft en a challenge for Radix 
Sort. To try to alleviate this problem, most computer architectures now support 
variable page sizes. For example, in addition to the standard 4 KiB page, MIPS 
hardware supports 16 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 64 MiB, and 
256 MiB pages. Hence, if a program uses large page sizes, it can access more 
memory directly without TLB misses.

Th e practical challenge is getting the operating system to allow programs to 
select these larger page sizes. Once again, the more complex solution to reducing 

Understanding 
Program 
Performance



454 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

TLB misses is to re-examine the algorithm and data structures to reduce the 
working set of pages; given the importance of memory accesses to performance 
and the frequency of TLB misses, some programs with large working sets have 
been redesigned with that goal.

Match the defi nitions in the right column to the terms in the left  column.

1. L1 cache a. A cache for a cache
2. L2 cache b. A cache for disks
3. Main memory c. A cache for a main memory
4. TLB d. A cache for page table entries

 5.8  A Common Framework for Memory 
Hierarchy

By now, you’ve recognized that the diff erent types of memory hierarchies have a 
great deal in common. Although many of the aspects of memory hierarchies diff er 
quantitatively, many of the policies and features that determine how a hierarchy 
functions are similar qualitatively. Figure 5.35 shows how some of the quantitative 
characteristics of memory hierarchies can diff er. In the rest of this section, we will 
discuss the common operational alternatives for memory hierarchies, and how 
these determine their behavior. We will examine these policies as a series of four 
questions that apply between any two levels of a memory hierarchy, although for 
simplicity we will primarily use terminology for caches.

Check 
Yourself

Feature
Typical values 
for L1 caches

Typical values 
for L2 caches

Typical values for 
paged memory

Typical values 
for a TLB

Total size in blocks 250–2000 2,500–25,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 125–2000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.35 The key quantitative design parameters that characterize the major elements of memory hierarchy in a 
computer. Th ese are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values 
that have shift ed over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not 
shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches 
lower the L2 miss penalty to 30 to 40 clock cycles.
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implementation, such as whether the cache is on-chip, the technology used for 
implementing the cache, and the critical role of cache access time in determining 
the processor cycle time.

Question 3: Which Block Should Be Replaced on 
a Cache Miss?
When a miss occurs in an associative cache, we must decide which block to replace. 
In a fully associative cache, all blocks are candidates for replacement. If the cache is 
set associative, we must choose among the blocks in the set. Of course, replacement 
is easy in a direct-mapped cache because there is only one candidate.

Th ere are the two primary strategies for replacement in set-associative or fully 
associative caches:

■ Random: Candidate blocks are randomly selected, possibly using some hardware 
assistance. For example, MIPS supports random replacement for TLB misses.

■ Least recently used (LRU): Th e block replaced is the one that has been unused 
for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a small 
degree of associativity (two to four, typically), since tracking the usage information 
is costly. Even for four-way set associativity, LRU is oft en approximated—for 
example, by keeping track of which pair of blocks is LRU (which requires 1 bit), 
and then tracking which block in each pair is LRU (which requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is 
used. In caches, the replacement algorithm is in hardware, which means that the 
scheme should be easy to implement. Random replacement is simple to build in 
hardware, and for a two-way set-associative cache, random replacement has a miss 
rate about 1.1 times higher than LRU replacement. As the caches become larger, the 
miss rate for both replacement strategies falls, and the absolute diff erence becomes 
small. In fact, random replacement can sometimes be better than the simple LRU 
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny 
reduction in the miss rate can be important when the cost of a miss is enormous. 
Reference bits or equivalent functionality are oft en provided to make it easier for 
the operating system to track a set of less recently used pages. Because misses are 
so expensive and relatively infrequent, approximating this information primarily 
in soft ware is acceptable.

Question 4: What Happens on a Write?
A key characteristic of any memory hierarchy is how it deals with writes. We have 
already seen the two basic options:

■ Write-through: Th e information is written to both the block in the cache and 
the block in the lower level of the memory hierarchy (main memory for a 
cache). Th e caches in Section 5.3 used this scheme.
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■ Write-back: Th e information is written only to the block in the cache. Th e 
modifi ed block is written to the lower level of the hierarchy only when it 
is replaced. Virtual memory systems always use write-back, for the reasons 
discussed in Section 5.7.

Both write-back and write-through have their advantages. Th e key advantages of 
write-back are the following:

■ Individual words can be written by the processor at the rate that the cache, 
rather than the memory, can accept them.

■ Multiple writes within a block require only one write to the lower level in the 
hierarchy.

■ When blocks are written back, the system can make eff ective use of a high-
bandwidth transfer, since the entire block is written.

Write-through has these advantages:
■ Misses are simpler and cheaper because they never require a block to be 

written back to the lower level.
■ Write-through is easier to implement than write-back, although to be 

practical, a write-through cache will still need to use a write buff er.

Caches, TLBs, and virtual memory may initially look very diff erent, but 
they rely on the same two principles of locality, and they can be understood 
by their answers to four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative), 

or any place (fully associative).
Question 2: How is a block found?
Answer: Th ere are four methods: indexing (as in a direct-mapped 

cache), limited search (as in a set-associative cache), full 
search (as in a fully associative cache), and a separate 
lookup table (as in a page table).

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.
Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either write-through 

or write-back.

The BIG
Picture



 5.8 A Common Framework for Memory Hierarchy 459

In virtual memory systems, only a write-back policy is practical because of the long 
latency of a write to the lower level of the hierarchy. Th e rate at which writes are 
generated by a processor generally exceeds the rate at which the memory system can 
process them, even allowing for physically and logically wider memories and burst 
modes for DRAM. Consequently, today lowest-level caches typically use write-back.

The Three Cs: An Intuitive Model for Understanding the 
Behavior of Memory Hierarchies
In this subsection, we look at a model that provides insight into the sources of 
misses in a memory hierarchy and how the misses will be aff ected by changes 
in the hierarchy. We will explain the ideas in terms of caches, although the ideas 
carry over directly to any other level in the hierarchy. In this model, all misses are 
classifi ed into one of three categories (the three Cs):

■ Compulsory misses: Th ese are cache misses caused by the fi rst access to 
a block that has never been in the cache. Th ese are also called cold-start 
misses.

■ Capacity misses: Th ese are cache misses caused when the cache cannot 
contain all the blocks needed during execution of a program. Capacity misses 
occur when blocks are replaced and then later retrieved.

■ Confl ict misses: Th ese are cache misses that occur in set-associative or 
direct-mapped caches when multiple blocks compete for the same set. 
Confl ict misses are those misses in a direct-mapped or set-associative cache 
that are eliminated in a fully associative cache of the same size. Th ese cache 
misses are also called collision misses.

Figure 5.37 shows how the miss rate divides into the three sources. Th ese sources of 
misses can be directly attacked by changing some aspect of the cache design. Since 
confl ict misses arise directly from contention for the same cache block, increasing 
associativity reduces confl ict misses. Associativity, however, may slow access time, 
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily larger for many years. Of course, when we 
make the cache larger, we must also be careful about increasing the access time, 
which could lead to lower overall performance. Th us, fi rst-level caches have been 
growing slowly, if at all.

Because compulsory misses are generated by the fi rst reference to a block, the 
primary way for the cache system to reduce the number of compulsory misses is 
to increase the block size. Th is will reduce the number of references required to 
touch each block of the program once, because the program will consist of fewer 

three Cs model A cache 
model in which all cache 
misses are classifi ed into 
one of three categories: 
compulsory misses, 
capacity misses, and 
confl ict misses.

compulsory miss Also 
called cold-start miss. 
A cache miss caused by 
the fi rst access to a block 
that has never been in the 
cache.

capacity miss A cache 
miss that occurs because 
the cache, even with 
full associativity, cannot 
contain all the blocks 
needed to satisfy the 
request.

confl ict miss Also called 
collision miss. A cache 
miss that occurs in a 
set-associative or direct-
mapped cache when 
multiple blocks compete 
for the same set and that 
are eliminated in a fully 
associative cache of the 
same size.
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■ Write-back using write allocate
■ Block size is 4 words (16 bytes or 128 bits)
■ Cache size is 16 KiB, so it holds 1024 blocks
■ 32-byte addresses
■ Th e cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fi elds of an address for the cache:
■ Cache index is 10 bits
■ Block off set is 4 bits
■ Tag size is 32 $ (10 ! 4) or 18 bits

Th e signals between the processor to the cache are
■ 1-bit Read or Write signal
■ 1-bit Valid signal, saying whether there is a cache operation or not
■ 32-bit address
■ 32-bit data from processor to cache
■ 32-bit data from cache to processor
■ 1-bit Ready signal, saying the cache operation is complete
Th e interface between the memory and the cache has the same fi elds as between 

the processor and the cache, except that the data fi elds are now 128 bits wide. Th e 
extra memory width is generally found in microprocessors today, which deal with 
either 32-bit or 64-bit words in the processor while the DRAM controller is oft en 
128 bits. Making the cache block match the width of the DRAM simplifi ed the 
design. Here are the signals:

■ 1-bit Read or Write signal
■ 1-bit Valid signal, saying whether there is a memory operation or not
■ 32-bit address
■ 128-bit data from cache to memory
■ 128-bit data from memory to cache
■ 1-bit Ready signal, saying the memory operation is complete

Note that the interface to memory is not a fi xed number of cycles. We assume a 
memory controller that will notify the cache via the Ready signal when the memory 
read or write is fi nished.

Before describing the cache controller, we need to review fi nite-state machines, 
which allow us to control an operation that can take multiple clock cycles.
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needed early in the clock cycle, do not depend on the inputs, but only on the current 
state. In Appendix B, when the implementation of this fi nite-state machine is taken down 
to logic gates, the size advantage can be clearly seen. The potential disadvantage of a 
Moore machine is that it may require additional states. For example, in situations where 
there is a one-state difference between two sequences of states, the Mealy machine 
may unify the states by making the outputs depend on the inputs.

FSM for a Simple Cache Controller
Figure 5.40 shows the four states of our simple cache controller:

■ Idle: Th is state waits for a valid read or write request from the processor, 
which moves the FSM to the Compare Tag state.

■ Compare Tag: As the name suggests, this state tests to see if the requested read 
or write is a hit or a miss. Th e index portion of the address selects the tag to 
be compared. If the data in the cache block referred to by the index portion 
of the address is valid, and the tag portion of the address matches the tag, 
then it is a hit. Either the data is read from the selected word if it is a load or  
written to the selected word if it is a store. Th e Cache Ready signal is then 

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath

FIGURE 5.39 Finite-state machine controllers are typically implemented using a block of 
combinational logic and a register to hold the current state. Th e outputs of the combinational 
logic are the next-state number and the control signals to be asserted for the current state. Th e inputs to the 
combinational logic are the current state and any inputs used to determine the next state. Notice that in the 
fi nite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs. Th e 
Elaboration explains this in more detail.
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■ Replication: When shared data are being simultaneously read, the caches 
make a copy of the data item in the local cache. Replication reduces both 
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing 
shared data, so many multiprocessors introduce a hardware protocol to maintain 
coherent caches. Th e protocols to maintain coherence for multiple processors are 
called cache coherence protocols. Key to implementing a cache coherence protocol 
is tracking the state of any sharing of a data block.

Th e most popular cache coherence protocol is snooping. Every cache that has a 
copy of the data from a block of physical memory also has a copy of the sharing 
status of the block, but no centralized state is kept. Th e caches are all accessible via 
some broadcast medium (a bus or network), and all cache controllers monitor or 
snoop on the medium to determine whether or not they have a copy of a block that 
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as 
implemented with a shared bus, but any communication medium that broadcasts 
cache misses to all processors can be used to implement a snooping-based 
coherence scheme. Th is broadcasting to all caches makes snooping protocols 
simple to implement but also limits their scalability.

Snooping Protocols
One method of enforcing coherence is to ensure that a processor has exclusive 
access to a data item before it writes that item. Th is style of protocol is called a write 
invalidate protocol because it invalidates copies in other caches on a write. Exclusive 
access ensures that no other readable or writable copies of an item exist when the 
write occurs: all other cached copies of the item are invalidated.

Figure 5.42 shows an example of an invalidation protocol for a snooping bus 
with write-back caches in action. To see how this protocol ensures coherence, 
consider a write followed by a read by another processor: since the write requires 
exclusive access, any copy held by the reading processor must be invalidated (hence 
the protocol name). Th us, when the read occurs, it misses in the cache, and the 
cache is forced to fetch a new copy of the data. For a write, we require that the 
writing processor have exclusive access, preventing any other processor from being 
able to write simultaneously. If two processors do attempt to write the same data 
simultaneously, one of them wins the race, causing the other processor’s copy to be 
invalidated. For the other processor to complete its write, it must obtain a new copy 
of the data, which must now contain the updated value. Th erefore, this protocol 
also enforces write serialization.
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One insight is that block size plays an important role in cache coherency. For 
example, take the case of snooping on a cache with a block size of eight words, 
with a single word alternatively written and read by two processors. Most protocols 
exchange full blocks between processors, thereby increasing coherency bandwidth 
demands.

Large blocks can also cause what is called false sharing: when two unrelated 
shared variables are located in the same cache block, the full block is exchanged 
between processors even though the processors are accessing diff erent variables. 
Programmers and compilers should lay out data carefully to avoid false sharing.

Elaboration: Although the three properties on pages 466 and 467 are suffi cient to 
ensure coherence, the question of when a written value will be seen is also important. To 
see why, observe that we cannot require that a read of X in Figure 5.41 instantaneously 
sees the value written for X by some other processor. If, for example, a write of X on one 
processor precedes a read of X on another processor very shortly beforehand, it may be 
impossible to ensure that the read returns the value of the data written, since the written 
data may not even have left the processor at that point. The issue of exactly when a 
written value must be seen by a reader is defi ned by a memory consistency model.

Hardware/ 
Software 
Interface

false sharing When two 
unrelated shared variables 
are located in the same 
cache block and the 
full block is exchanged 
between processors even 
though the processors 
are accessing diff erent 
variables.

FIGURE 5.42 An example of an invalidation protocol working on a snooping bus for a 
single cache block (X) with write-back caches. We assume that neither cache initially holds X 
and that the value of X in memory is 0. Th e CPU and memory contents show the value aft er the processor 
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second 
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both 
the contents of B’s cache and the memory contents of X are updated. Th is update of memory, which occurs 
when a block becomes shared, simplifi es the protocol, but it is possible to track the ownership and force the 
write-back only if the block is replaced. Th is requires the introduction of an additional state called “owner,” 
which indicates that a block may be shared, but the owning processor is responsible for updating any other 
processors and memory when it changes the block or replaces it.

Processor activity Bus activity
Contents of  

CPU A’s cache
Contents of  

CPU B’s cache

Contents of  
memory  

location X

0

00XrofssimehcaCXsdaerAUPC

CPU B reads X Cache miss for X 0 0 0

01XrofnoitadilavnIXot1asetirwAUPC

CPU B reads X Cache miss for X 1 1 1
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  5.13  Real Stuff: The ARM Cortex-A8 and Intel 
Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors 
described in Chapter 4: the ARM Cortex-A8 and Intel Core i7. Th is section is based 
on Section 2.6 of Computer Architecture: A Quantitative Approach, 5th edition.

Figure 5.43 summarizes the address sizes and TLBs of the two processors. Note 
that the A8 has two TLBs with a 32-bit virtual address space and a 32-bit physical 
address space. Th e Core i7 has three TLBs with a 48-bit virtual address and a 44-bit 
physical address. Although the 64-bit registers of the Core i7 could hold a larger 
virtual address, there was no soft ware need for such a large space and 48-bit virtual 
addresses shrinks both the page table memory footprint and the TLB hardware.

Figure 5.44 shows their caches. Keep in mind that the A8 has just one processor 
or core while the Core i7 has four. Both have identically organized 32 KiB, 4-way 
set associative, L1 instruction caches (per core) with 64 byte blocks. Th e A8 uses the 
same design for data cache, while the Core i7 keeps everything the same except the 
associativity, which it increases to 8-way. Both use an 8-way set associative unifi ed 
L2 cache (per core) with 64 byte blocks, although the A8 varies in size from 128 KiB 
to 1 MiB while the Core i7 is fi xed at 256 KiB. As the Core i7 is used for servers, it 

Characteristic ARM Cortex-A8 Intel Core i7

Virtual address 32 bits 48 bits

Physical address 32 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 16 MiB Variable: 4 KiB, 2/4 MiB

TLB organization 1 TLB for instructions and 1 TLB
for data

Both TLBs are fully associative,
with 32 entries, round robin
replacement

TLB misses handled in hardware

1 TLB for instructions and 1 TLB for
data per core

Both L1 TLBs are four-way set
associative, LRU replacement

L1 I-TLB has 128 entries for small
pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small 
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries 

TLB misses handled in hardware

FIGURE 5.43 Address translation and TLB hardware for the ARM Cortex-A8 and Intel 
Core i7 920. Both processors provide support for large pages, which are used for things like the operating 
system or mapping a frame buff er. Th e large-page scheme avoids using a large number of entries to map a 
single object that is always present. 
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advantage of this capability, but large servers and multiprocessors oft en have 
memory systems capable of handling more than one outstanding miss in parallel.

Th e Core i7 has a prefetch mechanism for data accesses. It looks at a pattern 
of data misses and use this information to try to predict the next address to start 
fetching the data before the miss occurs. Such techniques generally work best when 
accessing arrays in loops.

Th e sophisticated memory hierarchies of these chips and the large fraction of 
the dies dedicated to caches and TLBs show the signifi cant design eff ort expended 
to try to close the gap between processor cycle times and memory latency.

Performance of the A8 and Core i7 Memory Hierarchies
Th e memory hierarchy of the Cortex-A8 was simulated with a 1 MiB eight-way 
set associative L2 cache using the integer Minnespec benchmarks. As mentioned 
in Chapter 4, Minnespec is a set of benchmarks consisting of the SPEC2000 
benchmarks but with diff erent inputs that reduce the running times by several 
orders of magnitude. Although the use of smaller inputs does not change the 
instruction mix, it does aff ect the cache behavior. For example, on mcf, the most 
memory-intensive SPEC2000 integer benchmark, Minnespec has a miss rate for a 
32 KiB cache that is only 65% of the miss rate for the full SPEC2000 version. For 
a 1 MiB cache the diff erence is a factor of six! For this reason, one cannot compare 
the Minnespec benchmarks against the SPEC2000 benchmarks, much less the even 
larger SPEC2006 benchmarks used for the Core i7 in Figure 5.47. Instead, the data 
are useful for looking at the relative impact of L1 and L2 misses and on overall CPI, 
which we used in Chapter 4.

Th e A8 instruction cache miss rates for these benchmarks (and also for the 
full SPEC2000 versions on which Minnespec is based) are very small even for 
just the L1: close to zero for most and under 1% for all of them. Th is low rate 
probably results from the computationally intensive nature of the SPEC programs 
and the four-way set associative cache that eliminates most confl ict misses. Figure 
5.45 shows the data cache results for the A8, which have signifi cant L1 and L2 
miss rates. Th e L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while 
the L2 miss penalty is assumed to be 60 clock cycles. Using these miss penalties, 
Figure 5.46 shows the average miss penalty per data access. 

Figure 5.47 shows the miss rates for the caches of the Core i7 using the SPEC2006 
benchmarks. Th e L1 instruction cache miss rate varies from 0.1% to 1.8%, 
averaging just over 0.4%. Th is rate is in keeping with other studies of instruction 
cache behavior for the SPECCPU2006 benchmarks, which show low instruction 
cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes 
higher, the importance of the L2 and L3 caches should be obvious. Since the cost 
for a miss to memory is over 100 cycles and the average data miss rate in L2 is 4%, 
L3 is obviously critical. Assuming about half the instructions are loads or stores, 
without L3 the L2 cache misses could add two cycles per instruction to the CPI! In 
comparison, the average L3 data miss rate of 1% is still signifi cant but four times 
lower than the L2 miss rate and six times less than the L1 miss rate.
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#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk, 
               double *A, double *B, double *C)
{
  for ( int i = si; i < si+BLOCKSIZE; i+=UNROLL*4 )
    for ( int j = sj; j < sj+BLOCKSIZE; j++ ) {
      __m256d c[4];
      for ( int x = 0; x < UNROLL; x++ ) 
        c[x] = _mm256_load_pd(C+i+x*4+j*n);
     /* c[x] = C[i][j] */
      for( int k = sk; k < sk+BLOCKSIZE; k++ )
      {
        __m256d b = _mm256_broadcast_sd(B+k+j*n);
     /* b = B[k][j] */
        for (int x = 0; x < UNROLL; x++)
          c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
                 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
      }

      for ( int x = 0; x < UNROLL; x++ ) 
        _mm256_store_pd(C+i+x*4+j*n, c[x]);
        /* C[i][j] = c[x] */
    }
}

void dgemm (int n, double* A, double* B, double* C)
{
  for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 
    for ( int si = 0; si < n; si += BLOCKSIZE )
      for ( int sk = 0; sk < n; sk += BLOCKSIZE )
        do_block(n, si, sj, sk, A, B, C);
}

1
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19
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FIGURE 5.48 Optimized C version of DGEMM from Figure 4.80 using cache blocking. Th ese changes 
are the same ones found in Figure 5.21. Th e assembly language produced by the compiler for the do_block function 
is nearly identical to Figure 4.81. Once again, there is no overhead to call the do_block because the compiler inlines 
the function call.



of A, B, and C. Indeed, lines 28 – 34 and lines 7 – 8 in Figure 5.48 are identical to 
lines 14 – 20 and lines 5 – 6 in Figure 5.21, with the exception of incrementing the 
for loop in line 7 by the amount unrolled.

Unlike the earlier chapters, we do not show the resulting x86 code because the 
inner loop code is nearly identical to Figure 4.81, as the blocking does not aff ect the 
computation, just the order that it accesses data in memory. What does change is 
the bookkeeping integer instructions to implement the for loops. It expands from 
14 instructions before the inner loop and 8 aft er the loop for Figure 4.80 to 40 and 
28 instructions respectively for the bookkeeping code generated for Figure 5.48. 
Nevertheless, the extra instructions executed pale in comparison to the performance 
improvement of reducing cache misses. Figure 5.49 compares unoptimzed to 
optimizations for subword parallelism, instruction level parallelism, and caches. 
Blocking improves performance over unrolled AVX code by factors of 2 to 2.5 for 
the larger matrices. When we compare unoptimized code to the code with all three 
optimizations, the performance improvement is factors of 8 to 15, with the largest 
increase for the largest matrix.

32x32 160x160 480x480 960x960

16.0

12.0

8.0

4.0

Unoptimized AVX AVX + unroll AVX + unroll +
blocked

–
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FIGURE 5.49 Performance of four versions of DGEMM from matrix dimensions 32x32 to 
960x960. Th e fully optimized code for largest matrix is almost 15 times as fast the unoptimized version in 
Figure 3.21 in Chapter 3.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are 
with Turbo mode turned off. As in Chapters 3 and 4, when we turn it on we improve all 
the results by the temporary increase in the clock rate of 3.3/2.6 # 1.27. Turbo mode 
works particularly well in this case because it is using only a single core of an eight-
core chip. However, if we want to run fast we should use all cores, which we’ll see in 
Chapter 6.
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Th is mistake catches many people, including the authors (in earlier draft s) and 
instructors who forget whether they intended the addresses to be in words, bytes, 
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Having less set associativity for a shared cache than the number of cores or 
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can 
easily allocate data structures to addresses that would map to the same set of a 
shared L2 cache. If the cache is at least 2n-way associative, then these accidental 
confl icts are hidden by the hardware from the program. If not, programmers could 
face apparently mysterious performance bugs—actually due to L2 confl ict misses—
when migrating from, say, a 16-core design to 32-core design if both use 16-way 
associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an 
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the 
memory-stall time and the processor execution time, and hence evaluate the memory 
hierarchy independently using average memory access time (see page 399).

If the processor continues to execute instructions, and may even sustain more 
cache misses during a cache miss, then the only accurate assessment of the memory 
hierarchy is to simulate the out-of-order processor along with the memory hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented 
address space.

During the 1970s, many programs grew so large that not all the code and data could 
be addressed with just a 16-bit address. Computers were then revised to off er 32-
bit addresses, either through an unsegmented 32-bit address space (also called a fl at 
address space) or by adding 16 bits of segment to the existing 16-bit address. From 
a marketing point of view, adding segments that were programmer-visible and that 
forced the programmer and compiler to decompose programs into segments could 
solve the addressing problem. Unfortunately, there is trouble any time a programming 
language wants an address that is larger than one segment, such as indices for large 
arrays, unrestricted pointers, or reference parameters. Moreover, adding segments 
can turn every address into two words—one for the segment number and one for the 
segment off set—causing problems in the use of addresses in registers.

Fallacy: Disk failure rates in the fi eld match their specifi cations.
Two recent studies evaluated large collections of disks to check the relationship 
between results in the fi eld compared to specifi cations. One study was of almost 
100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of 
0.6% to 0.8%. Th ey found AFRs of 2% to 4% to be common, oft en three to fi ve 
times higher than the specifi ed rates [Schroeder and Gibson, 2007]. A second study 
of more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw 
failure rates of 1.7% for drives in their fi rst year rise to 8.6% for drives in their third 
year, or about fi ve to six times the specifi ed rate [Pinheiro, Weber, and Barroso, 
2007].





FIGURE 5.51 Summary of 18 x86 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. Th e fi rst fi ve instructions in the top group allow a program in user mode to 
read a control register, such as descriptor table registers, without causing a trap. Th e pop fl ags instruction 
modifi es a control register with sensitive information but fails silently when in user mode. Th e protection 
checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these 
instructions checks the privilege level implicitly as part of instruction execution when reading a control 
register. Th e checking assumes that the OS must be at the highest privilege level, which is not the case for 
guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it 
as well.

Problem category Problem x86 instructions

Access sensitive registers without 
trapping when running in user mode 

Store global descriptor table register (SGDT) 
Store local descriptor table register (SLDT) 
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory 
mechanisms in user mode, instructions 
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

Pitfall: Implementing a virtual machine monitor on an instruction set architecture 
that wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all 
instructions reading or writing information related to hardware resource 
information were privileged. Th is laissez-faire attitude causes problems for VMMs 
for all of these architectures, including the x86, which we use here as an example.

Figure 5.51 describes the 18 instructions that cause problems for virtualization 
[Robin and Irvine, 2000]. Th e two broad classes are instructions that

■ Read control registers in user mode that reveals that the guest operating 
system is running in a virtual machine (such as POPF, mentioned earlier)

■ Check protection as required by the segmented architecture but assume that 
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have 
proposed extensions to the architecture via a new mode. Intel’s VT-x provides 
a new execution mode for running VMs, an architected defi nition of the VM 
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5.1.4 [10] <§5.1> How many 16-byte cache blocks are needed to store all 32-bit 
matrix elements being referenced?

5.1.5 [5] <§5.1> References to which variables exhibit temporal locality?

5.1.6 [5] <§5.1> References to which variables exhibit spatial locality?

5.2 Caches are important to providing a high-performance memory hierarchy 
to processors. Below is a list of 32-bit memory address references, given as word 
addresses.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

5.2.1 [10] <§5.3> For each of these references, identify the binary address, the tag, 
and the index given a direct-mapped cache with 16 one-word blocks. Also list if each 
reference is a hit or a miss, assuming the cache is initially empty.

5.2.2 [10] <§5.3> For each of these references, identify the binary address, the tag, 
and the index given a direct-mapped cache with two-word blocks and a total size of 8 
blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given 
references. Th ere are three direct-mapped cache designs possible, all with a total of 8 
words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks. 
In terms of miss rate, which cache design is the best? If the miss stall time is 25 cycles, 
and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is 
the best cache design?

Th ere are many diff erent design parameters that are important to a cache’s overall 
performance. Below are listed parameters for diff erent direct-mapped cache designs.

Cache Data Size:  32 KiB

Cache Block Size:  2 words

Cache Access Time:  1 cycle

5.2.4 [15] <§5.3> Calculate the total number of bits required for the cache listed 
above, assuming a 32-bit address. Given that total size, fi nd the total size of the closest 
direct-mapped cache with 16-word blocks of equal size or greater. Explain why the 
second cache, despite its larger data size, might provide slower performance than the 
fi rst cache.

5.2.5 [20] <§§5.3, 5.4> Generate a series of read requests that have a lower miss rate 
on a 2 KiB 2-way set associative cache than the cache listed above. Identify one possible 
solution that would make the cache listed have an equal or lower miss rate than the 2 
KiB cache. Discuss the advantages and disadvantages of such a solution.

5.2.6 [15] <§5.3> Th e formula shown in Section 5.3 shows the typical method to 
index a direct-mapped cache, specifi cally (Block address) modulo (Number of blocks in 
the cache). Assuming a 32-bit address and 1024 blocks in the cache, consider a diff erent 



















Consider the following address sequence:  0, 2, 4, 8, 10, 12, 14, 16, 0

5.13.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, how many hits does 
this address sequence exhibit?

5.13.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement policy, 
how many hits does this address sequence exhibit?

5.13.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by fl ipping a coin. For 
example, “heads” means to evict the fi rst block in a set and “tails” means to evict the 
second block in a set. How many hits does this address sequence exhibit?

5.13.4 [10] <§§5.4, 5.8> Which address should be evicted at each replacement to 
maximize the number of hits? How many hits does this address sequence exhibit if you 
follow this “optimal” policy?

5.13.5 [10] <§§5.4, 5.8> Describe why it is diffi  cult to implement a cache replacement 
policy that is optimal for all address sequences.

5.13.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory 
reference whether or not you want the requested address to be cached. What impact 
could this have on miss rate?

5.14 To support multiple virtual machines, two levels of memory virtualization are 
needed. Each virtual machine still controls the mapping of virtual address (VA) to 
physical address (PA), while the hypervisor maps the physical address (PA) of each 
virtual machine to the actual machine address (MA). To accelerate such mappings, 
a soft ware approach called “shadow paging” duplicates each virtual machine’s page 
tables in the hypervisor, and intercepts VA to PA mapping changes to keep both copies 
consistent. To remove the complexity of shadow page tables, a hardware approach 
called nested page table (NPT) explicitly supports two classes of page tables (VA ⇒ PA 
and PA ⇒ MA) and can walk such tables purely in hardware.

Consider the following sequence of operations: (1) Create process; (2) TLB miss; 
(3) page fault; (4) context switch;

5.14.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence for 
shadow page table and nested page table, respectively?

5.14.2 [10] <§§5.6, 5.7> Assuming an x86-based 4-level page table in both guest and 
nested page table, how many memory references are needed to service a TLB miss for 
native vs. nested page table?

5.14.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate, and 
page fault handler latency, which metrics are more important for shadow page table? 
Which are important for nested page table?
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5.16 In this exercise, we will explore the control unit for a cache controller for a 
processor with a write buff er. Use the fi nite state machine found in Figure 5.40 as a 
starting point for designing your own fi nite state machines. Assume that the cache 
controller is for the simple direct-mapped cache described on page 465 (Figure 5.40 in  
Section 5.9), but you will add a write buff er with a capacity of one block.

Recall that the purpose of a write buff er is to serve as temporary storage so that the 
processor doesn’t have to wait for two memory accesses on a dirty miss. Rather than 
writing back the dirty block before reading the new block, it buff ers the dirty block and 
immediately begins reading the new block. Th e dirty block can then be written to main 
memory while the processor is working.

5.16.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request that 
hits in the cache while a block is being written back to main memory from the write 
buff er?

5.16.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request that 
misses in the cache while a block is being written back to main memory from the write 
buff er?

5.16.3 [30] <§§5.8, 5.9> Design a fi nite state machine to enable the use of a write 
buff er.

5.17 Cache coherence concerns the views of multiple processors on a given cache 
block. Th e following data shows two processors and their read/write operations on two 
diff erent words of a cache block X (initially X[0] = X[1] = 0).  Assume the size of integers is 
32 bits.

P1 P2

X[0] ++; X[1] = 3; X[0] = 5; X[1] +=2;

5.17.1 [15] <§5.10> List the possible values of the given cache block for a correct 
cache coherence protocol implementation. List at least one more possible value of the 
block if the protocol doesn’t ensure cache coherency.

5.17.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on each 
processor/cache to fi nish the above read/write operations.

5.17.3 [10] <§5.10> What are the best-case and worst-case numbers of cache misses 
needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. Th e following data 
shows two processors and their read/write operations on diff erent cache blocks (A and 
B initially 0).

P1 P2

A = 1; B = 2; A+=2; B++; C = B; D = A;
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5.19 In this exercise we show the defi nition of a web server log and examine code 
optimizations to improve log processing speed. Th e data structure for the log is defi ned 
as follows:

struct entry {
int srcIP;   // remote IP address
char URL[128]; // request URL (e.g., “GET index.html”)
long long refTime; // reference time
int status;  // connection status
char browser[64]; // client browser name

} log [NUM_ENTRIES];

Assume the following processing function for the log:

topK_sourceIP (int hour);

5.19.1 [5] <§5.15> Which fi elds in a log entry will be accessed for the given log 
processing function? Assuming 64-byte cache blocks and no prefetching, how many 
cache misses per entry does the given function incur on average?

5.19.2 [10] <§5.15> How can you reorganize the data structure to improve cache 
utilization and access locality? Show your structure defi nition code.

5.19.3 [10] <§5.15> Give an example of another log processing function that would 
prefer a diff erent data structure layout. If both functions are important, how would you 
rewrite the program to improve the overall performance? Supplement the discussion 
with code snippet and data.

For the problems below, use data from “Cache Performance for SPEC CPU2000 
Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for the 
pairs of benchmarks shown in the following table.

a. Mesa / gcc
b. mcf / swim

5.19.4 [10] <§5.15> For 64 KiB data caches with varying set associativities, what are 
the miss rates broken down by miss types (cold, capacity, and confl ict misses) for each 
benchmark?

5.19.5 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data cache 
shared by both benchmarks. If the L1 cache has to be directly mapped, select the set 
associativity for the 1 MiB L2 cache.

5.19.6 [20] <§5.15> Give an example in the miss rate table where higher set 
associativity actually increases miss rate. Construct a cache confi guration and reference 
stream to demonstrate this.
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498 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

§5.1, page 377: 1 and 4. (3 is false because the cost of the memory hierarchy varies 
per computer, but in 2013 the highest cost is usually the DRAM.)
§5.3, page 398: 1 and 4: A lower miss penalty can enable smaller blocks, since you 
don’t have that much latency to amortize, yet higher memory bandwidth usually 
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 417: 1.
§5.7, page 454: 1-a, 2-c, 3-b, 4-d.
§5.8, page 461: 2. (Both large block sizes and prefetching may reduce compulsory 
misses, so 1 is false.)

Answers to 
Check Yourself
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