
5
Ideally one would desire an
indefi nitely large memory
capacity such that any
particular … word would be
immediately available. … We
are … forced to recognize the
possibility of constructing a
hierarchy of memories, each
of which has greater capacity
than the preceding but which
is less quickly accessible.
A. W. Burks, H. H. Goldstine, and
J. von Neumann
Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument, 1946

Large and Fast:
Exploiting Memory
Hierarchy
5.1 Introduction 374
5.2 Memory Technologies 378
5.3 The Basics of Caches 383
5.4 Measuring and Improving Cache

Performance 398
5.5 Dependable Memory Hierarchy 418
5.6 Virtual Machines 424
5.7 Virtual Memory 427

Computer Organization and Design. DOI:
© 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-407726-3.00001-1
2013

 5.1 Introduction 375

Just as accesses to books on the desk naturally exhibit locality, locality in
programs arises from simple and natural program structures. For example,
most programs contain loops, so instructions and data are likely to be accessed
repeatedly, showing high amounts of temporal locality. Since instructions are
normally accessed sequentially, programs also show high spatial locality. Accesses
to data also exhibit a natural spatial locality. For example, sequential accesses to
elements of an array or a record will naturally have high degrees of spatial locality.

We take advantage of the principle of locality by implementing the memory
of a computer as a memory hierarchy. A memory hierarchy consists of multiple
levels of memory with diff erent speeds and sizes. Th e faster memories are more
expensive per bit than the slower memories and thus are smaller.

Figure 5.1 shows the faster memory is close to the processor and the slower,
less expensive memory is below it. Th e goal is to present the user with as much
memory as is available in the cheapest technology, while providing access at the
speed off ered by the fastest memory.

Th e data is similarly hierarchical: a level closer to the processor is generally a
subset of any level further away, and all the data is stored at the lowest level. By
analogy, the books on your desk form a subset of the library you are working in,
which is in turn a subset of all the libraries on campus. Furthermore, as we move
away from the processor, the levels take progressively longer to access, just as we
might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between
only two adjacent levels at a time, so we can focus our attention on just two levels.

memory hierarchy
A structure that uses
multiple levels of
memories; as the distance
from the processor
increases, the size of the
memories and the access
time both increase.

Speed

Fastest

Slowest

Smallest

Biggest

Size Cost ($/bit)
Current

technology

Highest

Lowest

SRAM

DRAM

Magnetic disk

Processor

Memory

Memory

Memory

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as
a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can
be accessed as if it were all built from the fastest memory. Flash memory has replaced disks in many personal
mobile devices, and may lead to a new level in the storage hierarchy for desktop and server computers; see
Section 5.2.

376 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Th e upper level—the one closer to the processor—is smaller and faster than the lower
level, since the upper level uses technology that is more expensive. Figure 5.2 shows
that the minimum unit of information that can be either present or not present in
the two-level hierarchy is called a block or a line; in our library analogy, a block of
information is one book.

If the data requested by the processor appears in some block in the upper level,
this is called a hit (analogous to your fi nding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a miss.
Th e lower level in the hierarchy is then accessed to retrieve the block containing the
requested data. (Continuing our analogy, you go from your desk to the shelves to
fi nd the desired book.) Th e hit rate, or hit ratio, is the fraction of memory accesses
found in the upper level; it is oft en used as a measure of the performance of the
memory hierarchy. Th e miss rate (1−hit rate) is the fraction of memory accesses
not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper level
of the memory hierarchy, which includes the time needed to determine whether
the access is a hit or a miss (that is, the time needed to look through the books on
the desk). Th e miss penalty is the time to replace a block in the upper level with
the corresponding block from the lower level, plus the time to deliver this block to
the processor (or the time to get another book from the shelves and place it on the
desk). Because the upper level is smaller and built using faster memory parts, the
hit time will be much smaller than the time to access the next level in the hierarchy,
which is the major component of the miss penalty. (Th e time to examine the books
on the desk is much smaller than the time to get up and get a new book from the
shelves.)

block (or line) Th e
minimum unit of
information that can
be either present or not
present in a cache.

hit rate Th e fraction of
memory accesses found
in a level of the memory
hierarchy.

miss rate Th e fraction
of memory accesses not
found in a level of the
memory hierarchy.

hit time Th e time
required to access a level
of the memory hierarchy,
including the time needed
to determine whether the
access is a hit or a miss.

miss penalty Th e time
required to fetch a block
into a level of the memory
hierarchy from the lower
level, including the time
to access the block,
transmit it from one level
to the other, insert it in
the level that experienced
the miss, and then pass
the block to the requestor.

Processor

Data is transferred

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block or
a line. Usually we transfer an entire block when we copy something between levels.

 5.1 Introduction 377

As we will see in this chapter, the concepts used to build memory systems aff ect
many other aspects of a computer, including how the operating system manages
memory and I/O, how compilers generate code, and even how applications use
the computer. Of course, because all programs spend much of their time accessing
memory, the memory system is necessarily a major factor in determining
performance. Th e reliance on memory hierarchies to achieve performance
has meant that programmers, who used to be able to think of memory as a fl at,
random access storage device, now need to understand that memory is a hierarchy
to get good performance. We show how important this understanding is in later
examples, such as Figure 5.18 on page 408, and Section 5.14, which shows how to
double matrix multiply performance.

Since memory systems are critical to performance, computer designers devote a
great deal of attention to these systems and develop sophisticated mechanisms for
improving the performance of the memory system. In this chapter, we discuss the
major conceptual ideas, although we use many simplifi cations and abstractions to
keep the material manageable in length and complexity.

Programs exhibit both temporal locality, the tendency to reuse recently
accessed data items, and spatial locality, the tendency to reference data
items that are close to other recently accessed items. Memory hierarchies
take advantage of temporal locality by keeping more recently accessed
data items closer to the processor. Memory hierarchies take advantage of
spatial locality by moving blocks consisting of multiple contiguous words
in memory to upper levels of the hierarchy.

Figure 5.3 shows that a memory hierarchy uses smaller and faster
memory technologies close to the processor. Th us, accesses that hit in the
highest level of the hierarchy can be processed quickly. Accesses that miss
go to lower levels of the hierarchy, which are larger but slower. If the hit
rate is high enough, the memory hierarchy has an eff ective access time
close to that of the highest (and fastest) level and a size equal to that of the
lowest (and largest) level.

In most systems, the memory is a true hierarchy, meaning that data
cannot be present in level i unless it is also present in level i ! 1.

The BIG
Picture

Which of the following statements are generally true?
1. Memory hierarchies take advantage of temporal locality.
2. On a read, the value returned depends on which blocks are in the cache.
3. Most of the cost of the memory hierarchy is at the highest level.
4. Most of the capacity of the memory hierarchy is at the lowest level.

Check
Yourself

 5.2 Memory Technologies 379

SRAM Technology
SRAMs are simply integrated circuits that are memory arrays with (usually) a
single access port that can provide either a read or a write. SRAMs have a fi xed
access time to any datum, though the read and write access times may diff er.

SRAMs don’t need to refresh and so the access time is very close to the cycle
time. SRAMs typically use six to eight transistors per bit to prevent the information
from being disturbed when read. SRAM needs only minimal power to retain the
charge in standby mode.

In the past, most PCs and server systems used separate SRAM chips for either
their primary, secondary, or even tertiary caches. Today, thanks to Moore’s Law, all
levels of caches are integrated onto the processor chip, so the market for separate
SRAM chips has nearly evaporated.

DRAM Technology
In a SRAM, as long as power is applied, the value can be kept indefi nitely. In a
dynamic RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor.
A single transistor is then used to access this stored charge, either to read the
value or to overwrite the charge stored there. Because DRAMs use only a single
transistor per bit of storage, they are much denser and cheaper per bit than SRAM.
As DRAMs store the charge on a capacitor, it cannot be kept indefi nitely and must
periodically be refreshed. Th at is why this memory structure is called dynamic, as
opposed to the static storage in an SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th e charge
can be kept for several milliseconds. If every bit had to be read out of the DRAM
and then written back individually, we would constantly be refreshing the DRAM,
leaving no time for accessing it. Fortunately, DRAMs use a two-level decoding
structure, and this allows us to refresh an entire row (which shares a word line)
with a read cycle followed immediately by a write cycle.

Figure 5.4 shows the internal organization of a DRAM, and Figure 5.5 shows
how the density, cost, and access time of DRAMs have changed over the years.

Th e row organization that helps with refresh also helps with performance. To
improve performance, DRAMs buff er rows for repeated access. Th e buff er acts
like an SRAM; by changing the address, random bits can be accessed in the buff er
until the next row access. Th is capability improves the access time signifi cantly,
since the access time to bits in the row is much lower. Making the chip wider also
improves the memory bandwidth of the chip. When the row is in the buff er, it
can be transferred by successive addresses at whatever the width of the DRAM is
(typically 4, 8, or 16 bits), or by specifying a block transfer and the starting address
within the buff er.

To further improve the interface to processors, DRAMs added clocks and are
properly called Synchronous DRAMs or SDRAMs. Th e advantage of SDRAMs
is that the use of a clock eliminates the time for the memory and processor to
synchronize. Th e speed advantage of synchronous DRAMs comes from the ability
to transfer the bits in the burst without having to specify additional address bits.

 5.2 Memory Technologies 381

write from multiple banks, with each having its own row buff er. Sending an address
to several banks permits them all to read or write simultaneously. For example,
with four banks, there is just one access time and then accesses rotate between
the four banks to supply four times the bandwidth. Th is rotating access scheme is
called address interleaving.

Although Personal Mobile Devices like the iPad (see Chapter 1) use individual
DRAMs, memory for servers are commonly sold on small boards called dual inline
memory modules (DIMMs). DIMMs typically contain 4–16 DRAMs, and they are
normally organized to be 8 bytes wide for server systems. A DIMM using DDR4-
3200 SDRAMs could transfer at 8 " 3200 # 25,600 megabytes per second. Such
DIMMs are named aft er their bandwidth: PC25600. Since a DIMM can have so
many DRAM chips that only a portion of them are used for a particular transfer, we
need a term to refer to the subset of chips in a DIMM that share common address
lines. To avoid confusion with the internal DRAM names of row and banks, we use
the term memory rank for such a subset of chips in a DIMM.

Elaboration: One way to measure the performance of the memory system behind the
caches is the Stream benchmark [McCalpin, 1995]. It measures the performance of
long vector operations. They have no temporal locality and they access arrays that are
larger than the cache of the computer being tested.

Flash Memory
Flash memory is a type of electrically erasable programmable read-only memory
(EEPROM).

Unlike disks and DRAM, but like other EEPROM technologies, writes can wear out
fl ash memory bits. To cope with such limits, most fl ash products include a controller
to spread the writes by remapping blocks that have been written many times to less
trodden blocks. Th is technique is called wear leveling. With wear leveling, personal
mobile devices are very unlikely to exceed the write limits in the fl ash. Such wear
leveling lowers the potential performance of fl ash, but it is needed unless higher-
level soft ware monitors block wear. Flash controllers that perform wear leveling can
also improve yield by mapping out memory cells that were manufactured incorrectly.

Disk Memory
As Figure 5.6 shows, a magnetic hard disk consists of a collection of platters, which
rotate on a spindle at 5400 to 15,000 revolutions per minute. Th e metal platters are
covered with magnetic recording material on both sides, similar to the material found
on a cassette or videotape. To read and write information on a hard disk, a movable arm
containing a small electromagnetic coil called a read-write head is located just above
each surface. Th e entire drive is permanently sealed to control the environment inside
the drive, which, in turn, allows the disk heads to be much closer to the drive surface.

Each disk surface is divided into concentric circles, called tracks. Th ere are
typically tens of thousands of tracks per surface. Each track is in turn divided into

track One of thousands
of concentric circles that
makes up the surface of a
magnetic disk.

382 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

sectors that contain the information; each track may have thousands of sectors.
Sectors are typically 512 to 4096 bytes in size. Th e sequence recorded on the
magnetic media is a sector number, a gap, the information for that sector including
error correction code (see Section 5.5), a gap, the sector number of the next sector,
and so on.

Th e disk heads for each surface are connected together and move in conjunction,
so that every head is over the same track of every surface. Th e term cylinder is used
to refer to all the tracks under the heads at a given point on all surfaces.

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. Th e diameter of
today’s disks is 2.5 or 3.5 inches, and there are typically one or two platters per drive today.

To access data, the operating system must direct the disk through a three-stage
process. Th e fi rst step is to position the head over the proper track. Th is operation is
called a seek, and the time to move the head to the desired track is called the seek time.

Disk manufacturers report minimum seek time, maximum seek time, and average
seek time in their manuals. Th e fi rst two are easy to measure, but the average is open to
wide interpretation because it depends on the seek distance. Th e industry calculates
average seek time as the sum of the time for all possible seeks divided by the number
of possible seeks. Average seek times are usually advertised as 3 ms to 13 ms, but,
depending on the application and scheduling of disk requests, the actual average seek
time may be only 25% to 33% of the advertised number because of locality of disk

sector One of the
segments that make up a
track on a magnetic disk;
a sector is the smallest
amount of information
that is read or written on
a disk.

seek Th e process of
positioning a read/write
head over the proper
track on a disk.

 5.3 The Basics of Caches 383

references. Th is locality arises both because of successive accesses to the same fi le and
because the operating system tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sector
to rotate under the read/write head. Th is time is called the rotational latency or
rotational delay. Th e average latency to the desired information is halfway around
the disk. Disks rotate at 5400 RPM to 15,000 RPM. Th e average rotational latency
at 5400 RPM is

Average rotational latency 0.5 rotation
 RPM

0.5 rotati
#

5400
oon

 RPM/ seconds
minute

0.0056 seconds 5.6 m

5400 60⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

ss

Th e last component of a disk access, transfer time, is the time to transfer a block
of bits. Th e transfer time is a function of the sector size, the rotation speed, and the
recording density of a track. Transfer rates in 2012 were between 100 and 200 MB/sec.

One complication is that most disk controllers have a built-in cache that stores
sectors as they are passed over; transfer rates from the cache are typically higher,
and were up to 750 MB/sec (6 Gbit/sec) in 2012.

Alas, where block numbers are located is no longer intuitive. Th e assumptions of
the sector-track-cylinder model above are that nearby blocks are on the same track,
blocks in the same cylinder take less time to access since there is no seek time,
and some tracks are closer than others. Th e reason for the change was the raising
of the level of the disk interfaces. To speed-up sequential transfers, these higher-
level interfaces organize disks more like tapes than like random access devices.
Th e logical blocks are ordered in serpentine fashion across a single surface, trying
to capture all the sectors that are recorded at the same bit density to try to get best
performance. Hence, sequential blocks may be on diff erent tracks.

In summary, the two primary diff erences between magnetic disks and
semiconductor memory technologies are that disks have a slower access time because
they are mechanical devices—fl ash is 1000 times as fast and DRAM is 100,000 times
as fast—yet they are cheaper per bit because they have very high storage capacity at a
modest cost—disk is 10 to 100 time cheaper. Magnetic disks are nonvolatile like fl ash,
but unlike fl ash there is no write wear-out problem. However, fl ash is much more
rugged and hence a better match to the jostling inherent in personal mobile devices.

 5.3 The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things
(books) that we needed to examine. Cache was the name chosen to represent the
level of the memory hierarchy between the processor and main memory in the fi rst
commercial computer to have this extra level. Th e memories in the datapath in
Chapter 4 are simply replaced by caches. Today, although this remains the dominant

rotational latency Also
called rotational delay.
Th e time required for
the desired sector of a
disk to rotate under the
read/write head; usually
assumed to be half the
rotation time.

Cache: a safe place
for hiding or storing
things.
Webster’s New World
Dictionary of the
American Language,
Th ird College Edition,
1988

384 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

use of the word cache, the term is also used to refer to any storage managed to take
advantage of locality of access. Caches fi rst appeared in research computers in the
early 1960s and in production computers later in that same decade; every general-
purpose computer built today, from servers to low-power embedded processors,
includes caches.

In this section, we begin by looking at a very simple cache in which the processor
requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 5.4.) Figure 5.7 shows
such a simple cache, before and aft er requesting a data item that is not initially in
the cache. Before the request, the cache contains a collection of recent references
X1, X2, …, Xn$1, and the processor requests a word Xn that is not in the cache. Th is
request results in a miss, and the word Xn is brought from memory into the cache.

In looking at the scenario in Figure 5.7, there are two questions to answer: How
do we know if a data item is in the cache? Moreover, if it is, how do we fi nd it? Th e
answers are related. If each word can go in exactly one place in the cache, then it
is straightforward to fi nd the word if it is in the cache. Th e simplest way to assign
a location in the cache for each word in memory is to assign the cache location
based on the address of the word in memory. Th is cache structure is called direct
mapped, since each memory location is mapped directly to exactly one location in
the cache. Th e typical mapping between addresses and cache locations for a direct-
mapped cache is usually simple. For example, almost all direct-mapped caches use
this mapping to fi nd a block:

(Block address) modulo (Number of blocks in the cache)

If the number of entries in the cache is a power of 2, then modulo can be
computed simply by using the low-order log2 (cache size in blocks) bits of the
address. Th us, an 8-block cache uses the three lowest bits (8 # 23) of the block
address. For example, Figure 5.8 shows how the memory addresses between 1ten
(00001two) and 29ten (11101two) map to locations 1ten (001two) and 5ten (101two) in a
direct-mapped cache of eight words.

Because each cache location can contain the contents of a number of diff erent
memory locations, how do we know whether the data in the cache corresponds
to a requested word? Th at is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. Th e
tags contain the address information required to identify whether a word in the
cache corresponds to the requested word. Th e tag needs only to contain the upper
portion of the address, corresponding to the bits that are not used as an index into
the cache. For example, in Figure 5.8 we need only have the upper 2 of the 5 address
bits in the tag, since the lower 3-bit index fi eld of the address selects the block.
Architects omit the index bits because they are redundant, since by defi nition the
index fi eld of any address of a cache block must be that block number.

We also need a way to recognize that a cache block does not have valid
information. For instance, when a processor starts up, the cache does not have good
data, and the tag fi elds will be meaningless. Even aft er executing many instructions,

direct-mapped cache
A cache structure in
which each memory
location is mapped to
exactly one location in the
cache.

tag A fi eld in a table used
for a memory hierarchy
that contains the address
information required
to identify whether the
associated block in the
hierarchy corresponds to
a requested word.

388 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

we have confl icting demands for a block. Th e word at address 18 (10010two) should
be brought into cache block 2 (010two). Hence, it must replace the word at address
26 (11010two), which is already in cache block 2 (010two). Th is behavior allows a
cache to take advantage of temporal locality: recently referenced words replace less
recently referenced words.

Th is situation is directly analogous to needing a book from the shelves and
having no more space on your desk—some book already on your desk must be
returned to the shelves. In a direct-mapped cache, there is only one place to put the
newly requested item and hence only one choice of what to replace.

We know where to look in the cache for each possible address: the low-order bits
of an address can be used to fi nd the unique cache entry to which the address could
map. Figure 5.10 shows how a referenced address is divided into

■ A tag fi eld, which is used to compare with the value of the tag fi eld of the
cache

■ A cache index, which is used to select the block
Th e index of a cache block, together with the tag contents of that block, uniquely
specifi es the memory address of the word contained in the cache block. Because
the index fi eld is used as an address to reference the cache, and because an n-bit
fi eld has 2n values, the total number of entries in a direct-mapped cache must be a
power of 2. In the MIPS architecture, since words are aligned to multiples of four
bytes, the least signifi cant two bits of every address specify a byte within a word.
Hence, the least signifi cant two bits are ignored when selecting a word in the block.

Th e total number of bits needed for a cache is a function of the cache size and
the address size, because the cache includes both the storage for the data and the
tags. Th e size of the block above was one word, but normally it is several. For the
following situation:

■ 32-bit addresses
■ A direct-mapped cache
■ Th e cache size is 2n blocks, so n bits are used for the index
■ Th e block size is 2m words (2m+2 bytes), so m bits are used for the word within

the block, and two bits are used for the byte part of the address
the size of the tag fi eld is

32 $ (n ! m ! 2).

Th e total number of bits in a direct-mapped cache is

2n " (block size ! tag size ! valid fi eld size).

390 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KiB of
data and 4-word blocks, assuming a 32-bit address?

We know that 16 KiB is 4096 (212) words. With a block size of 4 words (22),
there are 1024 (210) blocks. Each block has 4 " 32 or 128 bits of data plus a
tag, which is 32 $ 10 $ 2 $ 2 bits, plus a valid bit. Th us, the total cache size is

210 " (4 " 32 ! (32 $ 10 $ 2 $ 2) ! 1) # 210 " 147 # 147 Kibibits

or 18.4 KiB for a 16 KiB cache. For this cache, the total number of bits in the
cache is about 1.15 times as many as needed just for the storage of the data.

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. To what block
number does byte address 1200 map?

We saw the formula on page 384. Th e block is given by

(Block address) modulo (Number of blocks in the cache)

where the address of the block is

Byte address
Bytes per block

Notice that this block address is the block containing all addresses between

Byte address
Bytes per block

Bytes per block
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥"

EXAMPLE

ANSWER

EXAMPLE

ANSWER

392 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

the block from the next lower level of the hierarchy and load it into the cache. Th e
time to fetch the block has two parts: the latency to the fi rst word and the transfer
time for the rest of the block. Clearly, unless we change the memory system, the
transfer time—and hence the miss penalty—will likely increase as the block size
increases. Furthermore, the improvement in the miss rate starts to decrease as the
blocks become larger. Th e result is that the increase in the miss penalty overwhelms
the decrease in the miss rate for blocks that are too large, and cache performance
thus decreases. Of course, if we design the memory to transfer larger blocks more
effi ciently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

Elaboration: Although it is hard to do anything about the longer latency component of
the miss penalty for large blocks, we may be able to hide some of the transfer time so
that the miss penalty is effectively smaller. The simplest method for doing this, called
early restart, is simply to resume execution as soon as the requested word of the block
is returned, rather than wait for the entire block. Many processors use this technique
for instruction access, where it works best. Instruction accesses are largely sequential,
so if the memory system can deliver a word every clock cycle, the processor may be
able to restart operation when the requested word is returned, with the memory system
delivering new instruction words just in time. This technique is usually less effective for
data caches because it is likely that the words will be requested from the block in a
less predictable way, and the probability that the processor will need another word from
a different cache block before the transfer completes is high. If the processor cannot
access the data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the requested
word is transferred from the memory to the cache fi rst. The remainder of the block
is then transferred, starting with the address after the requested word and wrapping
around to the beginning of the block. This technique, called requested word fi rst or
critical word fi rst, can be slightly faster than early restart, but it is limited by the same
properties that limit early restart.

Handling Cache Misses
Before we look at the cache of a real system, let’s see how the control unit deals with
cache misses. (We describe a cache controller in detail in Section 5.9). Th e control
unit must detect a miss and process the miss by fetching the requested data from
memory (or, as we shall see, a lower-level cache). If the cache reports a hit, the
computer continues using the data as if nothing happened.

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. Th e cache miss handling is done in collaboration with
the processor control unit and with a separate controller that initiates the memory
access and refi lls the cache. Th e processing of a cache miss creates a pipeline stall
(Chapter 4) as opposed to an interrupt, which would require saving the state of all
registers. For a cache miss, we can stall the entire processor, essentially freezing
the contents of the temporary and programmer-visible registers, while we wait

cache miss A request for
data from the cache that
cannot be fi lled because
the data is not present in
the cache.

 5.3 The Basics of Caches 393

for memory. More sophisticated out-of-order processors can allow execution of
instructions while waiting for a cache miss, but we’ll assume in-order processors
that stall on cache misses in this section.

Let’s look a little more closely at how instruction misses are handled; the same
approach can be easily extended to handle data misses. If an instruction access
results in a miss, then the content of the Instruction register is invalid. To get the
proper instruction into the cache, we must be able to instruct the lower level in the
memory hierarchy to perform a read. Since the program counter is incremented in
the fi rst clock cycle of execution, the address of the instruction that generates an
instruction cache miss is equal to the value of the program counter minus 4. Once
we have the address, we need to instruct the main memory to perform a read. We
wait for the memory to respond (since the access will take multiple clock cycles),
and then write the words containing the desired instruction into the cache.

We can now defi ne the steps to be taken on an instruction cache miss:
1. Send the original PC value (current PC – 4) to the memory.
2. Instruct main memory to perform a read and wait for the memory to

complete its access.
3. Write the cache entry, putting the data from memory in the data portion of

the entry, writing the upper bits of the address (from the ALU) into the tag
fi eld, and turning the valid bit on.

4. Restart the instruction execution at the fi rst step, which will refetch the
instruction, this time fi nding it in the cache.

Th e control of the cache on a data access is essentially identical: on a miss, we
simply stall the processor until the memory responds with the data.

Handling Writes
Writes work somewhat diff erently. Suppose on a store instruction, we wrote the
data into only the data cache (without changing main memory); then, aft er the
write into the cache, memory would have a diff erent value from that in the cache.
In such a case, the cache and memory are said to be inconsistent. Th e simplest way
to keep the main memory and the cache consistent is always to write the data into
both the memory and the cache. Th is scheme is called write-through.

Th e other key aspect of writes is what occurs on a write miss. We fi rst fetch the
words of the block from memory. Aft er the block is fetched and placed into the
cache, we can overwrite the word that caused the miss into the cache block. We also
write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very
good performance. With a write-through scheme, every write causes the data
to be written to main memory. Th ese writes will take a long time, likely at least
100 processor clock cycles, and could slow down the processor considerably. For
example, suppose 10% of the instructions are stores. If the CPI without cache

write-through
A scheme in which writes
always update both the
cache and the next lower
level of the memory
hierarchy, ensuring that
data is always consistent
between the two.

394 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of
1.0 ! 100 " 10% # 11, reducing performance by more than a factor of 10.

One solution to this problem is to use a write buff er. A write buff er stores the
data while it is waiting to be written to memory. Aft er writing the data into the
cache and into the write buff er, the processor can continue execution. When a write
to main memory completes, the entry in the write buff er is freed. If the write buff er
is full when the processor reaches a write, the processor must stall until there is an
empty position in the write buff er. Of course, if the rate at which the memory can
complete writes is less than the rate at which the processor is generating writes, no
amount of buff ering can help, because writes are being generated faster than the
memory system can accept them.

Th e rate at which writes are generated may also be less than the rate at which the
memory can accept them, and yet stalls may still occur. Th is can happen when the
writes occur in bursts. To reduce the occurrence of such stalls, processors usually
increase the depth of the write buff er beyond a single entry.

Th e alternative to a write-through scheme is a scheme called write-back. In a
write-back scheme, when a write occurs, the new value is written only to the block
in the cache. Th e modifi ed block is written to the lower level of the hierarchy when
it is replaced. Write-back schemes can improve performance, especially when
processors can generate writes as fast or faster than the writes can be handled by
main memory; a write-back scheme is, however, more complex to implement than
write-through.

In the rest of this section, we describe caches from real processors, and we
examine how they handle both reads and writes. In Section 5.8, we will describe
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present
for reads. Here we discuss two of them: the policy on write misses and effi cient
implementation of writes in write-back caches.

Consider a miss in a write-through cache. The most common strategy is to allocate a
block in the cache, called write allocate. The block is fetched from memory and then the
appropriate portion of the block is overwritten. An alternative strategy is to update the portion
of the block in memory but not put it in the cache, called no write allocate. The motivation is
that sometimes programs write entire blocks of data, such as when the operating system
zeros a page of memory. In such cases, the fetch associated with the initial write miss may
be unnecessary. Some computers allow the write allocation policy to be changed on a per
page basis.

Actually implementing stores effi ciently in a cache that uses a write-back strategy is
more complex than in a write-through cache. A write-through cache can write the data
into the cache and read the tag; if the tag mismatches, then a miss occurs. Because the
cache is write-through, the overwriting of the block in the cache is not catastrophic, since
memory has the correct value. In a write-back cache, we must fi rst write the block back
to memory if the data in the cache is modifi ed and we have a cache miss. If we simply
overwrote the block on a store instruction before we knew whether the store had hit in
the cache (as we could for a write-through cache), we would destroy the contents of the
block, which is not backed up in the next lower level of the memory hierarchy.

write buff er A queue
that holds data while
the data is waiting to be
written to memory.

write-back A scheme
that handles writes by
updating values only to
the block in the cache,
then writing the modifi ed
block to the lower level
of the hierarchy when the
block is replaced.

 5.3 The Basics of Caches 395

In a write-back cache, because we cannot overwrite the block, stores either require
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or
require a write buffer to hold that data—effectively allowing the store to take only one
cycle by pipelining it. When a store buffer is used, the processor does the cache lookup
and places the data in the store buffer during the normal cache access cycle. Assuming
a cache hit, the new data is written from the store buffer into the cache on the next
unused cache access cycle.

By comparison, in a write-through cache, writes can always be done in one cycle.
We read the tag and write the data portion of the selected block. If the tag matches
the address of the block being written, the processor can continue normally, since the
correct block has been updated. If the tag does not match, the processor generates a
write miss to fetch the rest of the block corresponding to that address.

Many write-back caches also include write buffers that are used to reduce the miss
penalty when a miss replaces a modifi ed block. In such a case, the modifi ed block is
moved to a write-back buffer associated with the cache while the requested block is read
from memory. The write-back buffer is later written back to memory. Assuming another
miss does not occur immediately, this technique halves the miss penalty when a dirty
block must be replaced.

An Example Cache: The Intrinsity FastMATH Processor
Th e Intrinsity FastMATH is an embedded microprocessor that uses the MIPS
architecture and a simple cache implementation. Near the end of the chapter, we
will examine the more complex cache designs of ARM and Intel microprocessors,
but we start with this simple, yet real, example for pedagogical reasons. Figure 5.12
shows the organization of the Intrinsity FastMATH data cache.

Th is processor has a 12-stage pipeline. When operating at peak speed, the
processor can request both an instruction word and a data word on every clock.
To satisfy the demands of the pipeline without stalling, separate instruction
and data caches are used. Each cache is 16 KiB, or 4096 words, with 16-word
blocks.

Read requests for the cache are straightforward. Because there are separate
data and instruction caches, we need separate control signals to read and write
each cache. (Remember that we need to update the instruction cache when a miss
occurs.) Th us, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. Th e address comes either from
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.
Since there are 16 words in the desired block, we need to select the right one.
A block index fi eld is used to control the multiplexor (shown at the bottom
of the fi gure), which selects the requested word from the 16 words in the
indexed block.

398 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

To take advantage of spatial locality, a cache must have a block size larger than
one word. Th e use of a larger block decreases the miss rate and improves the
effi ciency of the cache by reducing the amount of tag storage relative to the amount
of data storage in the cache. Although a larger block size decreases the miss rate, it
can also increase the miss penalty. If the miss penalty increased linearly with the
block size, larger blocks could easily lead to lower performance.

To avoid performance loss, the bandwidth of main memory is increased to
transfer cache blocks more effi ciently. Common methods for increasing bandwidth
external to the DRAM are making the memory wider and interleaving. DRAM
designers have steadily improved the interface between the processor and memory
to increase the bandwidth of burst mode transfers to reduce the cost of larger cache
block sizes.

Th e speed of the memory system aff ects the designer’s decision on the size of
the cache block. Which of the following cache designer guidelines are generally
valid?

1. Th e shorter the memory latency, the smaller the cache block
2. Th e shorter the memory latency, the larger the cache block
3. Th e higher the memory bandwidth, the smaller the cache block
4. Th e higher the memory bandwidth, the larger the cache block

 5.4 Measuring and Improving Cache
Performance

In this section, we begin by examining ways to measure and analyze cache
performance. We then explore two diff erent techniques for improving cache
performance. One focuses on reducing the miss rate by reducing the probability
that two diff erent memory blocks will contend for the same cache location. Th e
second technique reduces the miss penalty by adding an additional level to the
hierarchy. Th is technique, called multilevel caching, fi rst appeared in high-end
computers selling for more than $100,000 in 1990; since then it has become
common on personal mobile devices selling for a few hundred dollars!

Check
Yourself

 5.4 Measuring and Improving Cache Performance 399

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Th us,

CPU time # (CPU execution clock cycles ! Memory-stall clock cycles)
" Clock cycle time

Th e memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplifi ed model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very detailed
simulations of the processor and memory system.

Memory-stall clock cycles can be defi ned as the sum of the stall cycles coming
from reads plus those coming from writes:

Memory-stall clock cycles # (Read-stall cycles ! Write-stall cycles)

Th e read-stall cycles can be defi ned in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Read-stall cycles Reads
Program

Read miss rate Read miss pennalty

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continuing
the write (see the Elaboration on page 394 for more details on dealing with writes),
and write buff er stalls, which occur when the write buff er is full when a write
occurs. Th us, the cycles stalled for writes equals the sum of these two:

Write-stall cycles Writes
Program

Write miss rate Write misss penalty

 Write buffer stalls

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Because the write buff er stalls depend on the proximity of writes, and not just
the frequency, it is not possible to give a simple equation to compute such stalls.
Fortunately, in systems with a reasonable write buff er depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that signifi cantly exceeds
the average write frequency in programs (e.g., by a factor of 2), the write buff er
stalls will be small, and we can safely ignore them. If a system did not meet these
criteria, it would not be well designed; instead, the designer should have used either
a deeper write buff er or a write-back organization.

400 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 5.8.

In most write-through cache organizations, the read and write miss penalties are
the same (the time to fetch the block from memory). If we assume that the write
buff er stalls are negligible, we can combine the reads and writes by using a single
miss rate and the miss penalty:

Memory-stall clock cycles Memory accesses
Program

Miss rate Miss penalty

We can also factor this as

Memory-stall clock cycles Instructions
Program

Misses
Instrucction

Miss penalty

Let’s consider a simple example to help us understand the impact of cache
performance on processor performance.

Calculating Cache Performance

Assume the miss rate of an instruction cache is 2% and the miss rate of the data
cache is 4%. If a processor has a CPI of 2 without any memory stalls and the
miss penalty is 100 cycles for all misses, determine how much faster a processor
would run with a perfect cache that never missed. Assume the frequency of all
loads and stores is 36%.

Th e number of memory miss cycles for instructions in terms of the Instruction
count (I) is

Instruction miss cycles # I " 2% " 100 # 2.00 " I

As the frequency of all loads and stores is 36%, we can fi nd the number of
memory miss cycles for data references:

Data miss cycles # I " 36% " 4% " 100 # 1.44 " I

EXAMPLE

ANSWER

 5.4 Measuring and Improving Cache Performance 401

What happens if the processor is made faster, but the memory system is not? Th e
amount of time spent on memory stalls will take up an increasing fraction of the
execution time; Amdahl’s Law, which we examined in Chapter 1, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed-up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
Th e system with cache misses would then have a CPI of 1 ! 3.44 # 4.44, and the
system with the perfect cache would be

4 44
1
.

4.44 times as fast.

Th e amount of execution time spent on memory stalls would have risen from
3 44
5 44

.

.
63%

to 3 44
4 44

.

.
77%

Similarly, increasing the clock rate without changing the memory system also
increases the performance lost due to cache misses.

Th e previous examples and equations assume that the hit time is not a factor in
determining cache performance. Clearly, if the hit time increases, the total time to
access a word from the memory system will increase, possibly causing an increase in
the processor cycle time. Although we will see additional examples of what can increase

Th e total number of memory-stall cycles is 2.00 I ! 1.44 I # 3.44 I. Th is is
more than three cycles of memory stall per instruction. Accordingly, the total
CPI including memory stalls is 2 ! 3.44 # 5.44. Since there is no change in
instruction count or clock rate, the ratio of the CPU execution times is

CPU time with stalls
CPU time with perfect cache

I CPIstall Clock cycle
I CPI Clock cycle
CPI

CPI
5

perfect

stall

perfect

.44
2

Th e performance with the perfect cache is better by
5 44

2
.

2.72.

402 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

hit time shortly, one example is increasing the cache size. A larger cache could clearly
have a longer access time, just as, if your desk in the library was very large (say, 3 square
meters), it would take longer to locate a book on the desk. An increase in hit time
likely adds another stage to the pipeline, since it may take multiple cycles for a cache
hit. Although it is more complex to calculate the performance impact of a deeper
pipeline, at some point the increase in hit time for a larger cache could dominate the
improvement in hit rate, leading to a decrease in processor performance.

To capture the fact that the time to access data for both hits and misses aff ects
performance, designers sometime use average memory access time (AMAT) as
a way to examine alternative cache designs. Average memory access time is the
average time to access memory considering both hits and misses and the frequency
of diff erent accesses; it is equal to the following:

AMAT # Time for a hit ! Miss rate " Miss penalty

Calculating Average Memory Access Time

Find the AMAT for a processor with a 1 ns clock cycle time, a miss penalty of
20 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access
time (including hit detection) of 1 clock cycle. Assume that the read and write
miss penalties are the same and ignore other write stalls.

Th e average memory access time per instruction is

AMAT Time for a hit Miss rate Miss penalty
1 0.05 20
2 clocck cycles

or 2 ns.

Th e next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in
Section 5.15, Fallacies and Pitfalls.

Reducing Cache Misses by More Flexible Placement
of Blocks
So far, when we place a block in the cache, we have used a simple placement scheme:
A block can go in exactly one place in the cache. As mentioned earlier, it is called
direct mapped because there is a direct mapping from any block address in memory
to a single location in the upper level of the hierarchy. However, there is actually a
whole range of schemes for placing blocks. Direct mapped, where a block can be
placed in exactly one location, is at one extreme.

EXAMPLE

ANSWER

 5.4 Measuring and Improving Cache Performance 403

At the other extreme is a scheme where a block can be placed in any location
in the cache. Such a scheme is called fully associative, because a block in memory
may be associated with any entry in the cache. To fi nd a given block in a fully
associative cache, all the entries in the cache must be searched because a block
can be placed in any one. To make the search practical, it is done in parallel with
a comparator associated with each cache entry. Th ese comparators signifi cantly
increase the hardware cost, eff ectively making fully associative placement practical
only for caches with small numbers of blocks.

Th e middle range of designs between direct mapped and fully associative
is called set associative. In a set-associative cache, there are a fi xed number of
locations where each block can be placed. A set-associative cache with n locations
for a block is called an n-way set-associative cache. An n-way set-associative cache
consists of a number of sets, each of which consists of n blocks. Each block in the
memory maps to a unique set in the cache given by the index fi eld, and a block can
be placed in any element of that set. Th us, a set-associative placement combines
direct-mapped placement and fully associative placement: a block is directly
mapped into a set, and then all the blocks in the set are searched for a match. For
example, Figure 5.14 shows where block 12 may be placed in a cache with eight
blocks total, according to the three block placement policies.

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of blocks in the cache)

fully associative
cache A cache structure
in which a block can be
placed in any location in
the cache.

set-associative cache
A cache that has a fi xed
number of locations (at
least two) where each
block can be placed.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1
2

Set associative

20 1 3Set #

Data

Tag

Search

1
2

Fully associative

Data

Tag

Search

1
2

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight
blocks varies for direct-mapped, set-associative, and fully associative placement. In direct-
mapped placement, there is only one cache block where memory block 12 can be found, and that block is
given by (12 modulo 8) # 4. In a two-way set-associative cache, there would be four sets, and memory block
12 must be in set (12 mod 4) # 0; the memory block could be in either element of the set. In a fully associative
placement, the memory block for block address 12 can appear in any of the eight cache blocks.

404 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

Since the block may be placed in any element of the set, all the tags of all the elements
of the set must be searched. In a fully associative cache, the block can go anywhere,
and all tags of all the blocks in the cache must be searched.

We can also think of all block placement strategies as a variation on set
associativity. Figure 5.15 shows the possible associativity structures for an eight-
block cache. A direct-mapped cache is simply a one-way set-associative cache:
each cache entry holds one block and each set has one element. A fully associative
cache with m entries is simply an m-way set-associative cache; it has one set with m
blocks, and an entry can reside in any block within that set.

Th e advantage of increasing the degree of associativity is that it usually decreases
the miss rate, as the next example shows. Th e main disadvantage, which we discuss
in more detail shortly, is a potential increase in the hit time.

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

Four-way set associative

TagTag Data DataSet

0

1

0

1

2

3

0

1

2

3

4

5

6

7

Two-way set associative

Tag DataBlock

One-way set associative
(direct mapped)

FIGURE 5.15 An eight-block cache confi gured as direct mapped, two-way set associative,
four-way set associative, and fully associative. Th e total size of the cache in blocks is equal to the
number of sets times the associativity. Th us, for a fi xed cache size, increasing the associativity decreases
the number of sets while increasing the number of elements per set. With eight blocks, an eight-way set-
associative cache is the same as a fully associative cache.

406 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

is replaced. (We will discuss other replacement rules in more detail shortly.)
Using this replacement rule, the contents of the set-associative cache aft er each
reference looks like this:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. Th e two-way set-associative cache
has four misses, one less than the direct-mapped cache.

Th e fully associative cache has four cache blocks (in a single set); any
memory block can be stored in any cache block. Th e fully associative cache has
the best performance, with only three misses:

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]

For this series of references, three misses is the best we can do, because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
fully associative cache. Similarly, if we had 16 blocks, all 3 caches would have
the same number of misses. Even this trivial example shows that cache size and
associativity are not independent in determining cache performance.

How much of a reduction in the miss rate is achieved by associativity?
Figure 5.16 shows the improvement for a 64 KiB data cache with a 16-word block,
and associativity ranging from direct mapped to eight-way. Going from one-way
to two-way associativity decreases the miss rate by about 15%, but there is little
further improvement in going to higher associativity.

 5.4 Measuring and Improving Cache Performance 407

Locating a Block in the Cache
Now, let’s consider the task of fi nding a block in a cache that is set associative.
Just as in a direct-mapped cache, each block in a set-associative cache includes
an address tag that gives the block address. Th e tag of every cache block within
the appropriate set is checked to see if it matches the block address from the
processor. Figure 5.17 decomposes the address. Th e index value is used to select
the set containing the address of interest, and the tags of all the blocks in the set
must be searched. Because speed is of the essence, all the tags in the selected set are
searched in parallel. As in a fully associative cache, a sequential search would make
the hit time of a set-associative cache too slow.

If the total cache size is kept the same, increasing the associativity increases the
number of blocks per set, which is the number of simultaneous compares needed
to perform the search in parallel: each increase by a factor of 2 in associativity
doubles the number of blocks per set and halves the number of sets. Accordingly,
each factor-of-2 increase in associativity decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit. In a fully associative cache, there is eff ectively
only one set, and all the blocks must be checked in parallel. Th us, there is no index,
and the entire address, excluding the block off set, is compared against the tag of
every block. In other words, we search the entire cache without any indexing.

In a direct-mapped cache, only a single comparator is needed, because the entry can
be in only one block, and we access the cache simply by indexing. Figure 5.18 shows
that in a four-way set-associative cache, four comparators are needed, together with
a 4-to-1 multiplexor to choose among the four potential members of the selected set.
Th e cache access consists of indexing the appropriate set and then searching the tags
of the set. Th e costs of an associative cache are the extra comparators and any delay
imposed by having to do the compare and select from among the elements of the set.

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 5.16 The data cache miss rates for an organization like the Intrinsity FastMATH
processor for SPEC CPU2000 benchmarks with associativity varying from one-way to
eight-way. Th ese results for 10 SPEC CPU2000 programs are from Hennessy and Patterson (2003).

Block offsetTag Index

FIGURE 5.17 The three portions of an address in a set-associative or direct-mapped
cache. Th e index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. Th e block off set is the address of the desired data within the block.

 5.4 Measuring and Improving Cache Performance 409

Choosing Which Block to Replace
When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set.

Th e most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme, the block replaced is the one that has
been unused for the longest time. Th e set associative example on page 405 uses
LRU, which is why we replaced Memory(0) instead of Memory(6).

LRU replacement is implemented by keeping track of when each element in a
set was used relative to the other elements in the set. For a two-way set-associative
cache, tracking when the two elements were used can be implemented by keeping
a single bit in each set and setting the bit to indicate an element whenever that
element is referenced. As associativity increases, implementing LRU gets harder; in
Section 5.8, we will see an alternative scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators and more tag bits per
cache block. Assuming a cache of 4096 blocks, a 4-word block size, and a
32-bit address, fi nd the total number of sets and the total number of tag bits
for caches that are direct mapped, two-way and four-way set associative, and
fully associative.

Since there are 16 (# 24) bytes per block, a 32-bit address yields 32$4 # 28 bits
to be used for index and tag. Th e direct-mapped cache has the same number
of sets as blocks, and hence 12 bits of index, since log2(4096) # 12; hence, the
total number is (28$12) " 4096 # 16 " 4096 # 66 K tag bits.

Each degree of associativity decreases the number of sets by a factor of 2 and
thus decreases the number of bits used to index the cache by 1 and increases
the number of bits in the tag by 1. Th us, for a two-way set-associative cache,
there are 2048 sets, and the total number of tag bits is (28$11) " 2 " 2048 #
34 " 2048 # 70 Kbits. For a four-way set-associative cache, the total number
of sets is 1024, and the total number is (28$10) " 4 " 1024 # 72 " 1024 #
74 K tag bits.

For a fully associative cache, there is only one set with 4096 blocks, and the
tag is 28 bits, leading to 28 " 4096 " 1 # 115 K tag bits.

least recently used
(LRU) A replacement
scheme in which the
block replaced is the one
that has been unused for
the longest time.

EXAMPLE

ANSWER

410 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Reducing the Miss Penalty Using Multilevel Caches
All modern computers make use of caches. To close the gap further between the
fast clock rates of modern processors and the increasingly long time required to
access DRAMs, most microprocessors support an additional level of caching. Th is
second-level cache is normally on the same chip and is accessed whenever a miss
occurs in the primary cache. If the second-level cache contains the desired data,
the miss penalty for the fi rst-level cache will be essentially the access time of the
second-level cache, which will be much less than the access time of main memory.
If neither the primary nor the secondary cache contains the data, a main memory
access is required, and a larger miss penalty is incurred.

How signifi cant is the performance improvement from the use of a secondary
cache? Th e next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references
hit in the primary cache, and a clock rate of 4 GHz. Assume a main memory
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2%. How much faster will the processor
be if we add a secondary cache that has a 5 ns access time for either a hit or
a miss and is large enough to reduce the miss rate to main memory to 0.5%?

Th e miss penalty to main memory is

100

0 25

 ns

 ns
clock cycle

400 clock cycles
.

#

Th e eff ective CPI with one level of caching is given by

Total CPI # Base CPI ! Memory-stall cycles per instruction

For the processor with one level of caching,

Total CPI # 1.0 ! Memory-stall cycles per instruction # 1.0 ! 2% " 400 # 9

With two levels of caching, a miss in the primary (or fi rst-level) cache can be
satisfi ed either by the secondary cache or by main memory. Th e miss penalty
for an access to the second-level cache is

5

0 25

 ns

 ns
clock cycle

20 clock cycles
.

#

EXAMPLE

ANSWER

 5.4 Measuring and Improving Cache Performance 411

If the miss is satisfi ed in the secondary cache, then this is the entire miss
penalty. If the miss needs to go to main memory, then the total miss penalty is
the sum of the secondary cache access time and the main memory access time.

Th us, for a two-level cache, total CPI is the sum of the stall cycles from both
levels of cache and the base CPI:

Total CPI 1 Primary stalls per instruction Secondary stallss per instruction
1 2% 20 0.5% 400 1 0.4 2.0 3.4

Th us, the processor with the secondary cache is faster by

9 0
3 4

.

.
2.6

Alternatively, we could have computed the stall cycles by summing the stall
cycles of those references that hit in the secondary cache ((2%$0.5%) "
20 # 0.3). Th ose references that go to main memory, which must include the
cost to access the secondary cache as well as the main memory access time, are
(0.5% " (20 ! 400) # 2.1). Th e sum, 1.0 ! 0.3 ! 2.1, is again 3.4.

Th e design considerations for a primary and secondary cache are signifi cantly
diff erent, because the presence of the other cache changes the best choice versus
a single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle or fewer
pipeline stages, while allowing the secondary cache to focus on miss rate to reduce
the penalty of long memory access times.

Th e eff ect of these changes on the two caches can be seen by comparing each
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is oft en smaller. Furthermore,
the primary cache may use a smaller block size, to go with the smaller cache size and
also to reduce the miss penalty. In comparison, the secondary cache will be much
larger than in a single-level cache, since the access time of the secondary cache is
less critical. With a larger total size, the secondary cache may use a larger block size
than appropriate with a single-level cache. It oft en uses higher associativity than
the primary cache given the focus of reducing miss rates.

Sorting has been exhaustively analyzed to fi nd better algorithms: Bubble Sort,
Quicksort, Radix Sort, and so on. Figure 5.19(a) shows instructions executed by
item searched for Radix Sort versus Quicksort. As expected, for large arrays, Radix
Sort has an algorithmic advantage over Quicksort in terms of number of operations.
Figure 5.19(b) shows time per key instead of instructions executed. We see that the
lines start on the same trajectory as in Figure 5.19(a), but then the Radix Sort line

multilevel cache
A memory hierarchy with
multiple levels of caches,
rather than just a cache
and main memory.

Understanding
Program
Performance

412 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item
sorted, (b) time per item sorted, and (c) cache misses per item sorted. Th is data is from a
paper by LaMarca and Ladner [1996]. Due to such results, new versions of Radix Sort have been invented
that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.15). Th e basic
idea of cache optimizations is to use all the data in a block repeatedly before it is replaced on a miss.

Radix Sort

Quicksort

Size (K items to sort)

In
st

ru
ct

io
ns

/it
em

0
4 8 16 32

200

400

600

800

1000

1200

64 128 256 512 1024 2048 4096
a.

Radix Sort

Quicksort

Size (K items to sort)

C
lo

ck
 c

yc
le

s/
ite

m

0
4 8 16 32

400

800

1200

1600

2000

64 128 256 512 1024 2048 4096

b.

Radix Sort

Quicksort

Size (K items to sort)

C
ac

he
 m

is
se

s/
ite

m

0
4 8 16 32

1

2

3

4

5

64 128 256 512 1024 2048 4096

c.

 5.4 Measuring and Improving Cache Performance 413

diverges as the data to sort increases. What is going on? Figure 5.19(c) answers by
looking at the cache misses per item sorted: Quicksort consistently has many fewer
misses per item to be sorted.

Alas, standard algorithmic analysis oft en ignores the impact of the memory
hierarchy. As faster clock rates and Moore’s Law allow architects to squeeze all of
the performance out of a stream of instructions, using the memory hierarchy well
is critical to high performance. As we said in the introduction, understanding the
behavior of the memory hierarchy is critical to understanding the performance of
programs on today’s computers.

Software Optimization via Blocking
Given the importance of the memory hierarchy to program performance, not
surprisingly many soft ware optimizations were invented that can dramatically
improve performance by reusing data within the cache and hence lower miss rates
due to improved temporal locality.

When dealing with arrays, we can get good performance from the memory
system if we store the array in memory so that accesses to the array are sequential
in memory. Suppose that we are dealing with multiple arrays, however, with some
arrays accessed by rows and some by columns. Storing the arrays row-by-row
(called row major order) or column-by-column (column major order) does not
solve the problem because both rows and columns are used in every loop iteration.

Instead of operating on entire rows or columns of an array, blocked algorithms
operate on submatrices or blocks. Th e goal is to maximize accesses to the data
loaded into the cache before the data are replaced; that is, improve temporal locality
to reduce cache misses.

For example, the inner loops of DGEMM (lines 4 through 9 of Figure 3.21 in
Chapter 3) are

for (int j = 0; j < n; ++j)
 {
 double cij = C[i+j*n]; /* cij = C[i][j] */
 for(int k = 0; k < n; k++)
 cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
 C[i+j*n] = cij; /* C[i][j] = cij */
 }
}

It reads all N-by-N elements of B, reads the same N elements in what corresponds to
one row of A repeatedly, and writes what corresponds to one row of N elements of
C. (Th e comments make the rows and columns of the matrices easier to identify.)
Figure 5.20 gives a snapshot of the accesses to the three arrays. A dark shade
indicates a recent access, a light shade indicates an older access, and white means
not yet accessed.

414 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Th e number of capacity misses clearly depends on N and the size of the cache. If
it can hold all three N-by-N matrices, then all is well, provided there are no cache
confl icts. We purposely picked the matrix size to be 32 by 32 in DGEMM for
Chapters 3 and 4 so that this would be the case. Each matrix is 32 " 32 # 1024
elements and each element is 8 bytes, so the three matrices occupy 24 KiB, which
comfortably fi t in the 32 KiB data cache of the Intel Core i7 (Sandy Bridge).

If the cache can hold one N-by-N matrix and one row of N, then at least the ith
row of A and the array B may stay in the cache. Less than that and misses may
occur for both B and C. In the worst case, there would be 2 N3 ! N2 memory words
accessed for N3 operations.

To ensure that the elements being accessed can fi t in the cache, the original code
is changed to compute on a submatrix. Hence, we essentially invoke the version of
DGEMM from Figure 4.80 in Chapter 4 repeatedly on matrices of size BLOCKSIZE
by BLOCKSIZE. BLOCKSIZE is called the blocking factor.

Figure 5.21 shows the blocked version of DGEMM. Th e function do_block is
DGEMM from Figure 3.21 with three new parameters si, sj, and sk to specify
the starting position of each submatrix of of A, B, and C. Th e two inner loops of the
do_block now compute in steps of size BLOCKSIZE rather than the full length
of B and C. Th e gcc optimizer removes any function call overhead by “inlining” the
function; that is, it inserts the code directly to avoid the conventional parameter
passing and return address bookkeeping instructions.

Figure 5.22 illustrates the accesses to the three arrays using blocking. Looking
only at capacity misses, the total number of memory words accessed is 2 N3/
BLOCKSIZE ! N2. Th is total is an improvement by about a factor of BLOCKSIZE.
Hence, blocking exploits a combination of spatial and temporal locality, since A
benefi ts from spatial locality and B benefi ts from temporal locality.

FIGURE 5.20 A snapshot of the three arrays C, A, and B when N ! 6 and i ! 1. Th e age of
accesses to the array elements is indicated by shade: white means not yet touched, light means older accesses,
and dark means newer accesses. Compared to Figure 5.21, elements of A and B are read repeatedly to calculate
new elements of x. Th e variables i, j, and k are shown along the rows or columns used to access the arrays.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

 5.4 Measuring and Improving Cache Performance 415

FIGURE 5.21 Cache blocked version of DGEMM in Figure 3.21. Assume C is initialized to zero. Th e do_block
function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the submatrices of
BLOCKSIZE. Th e gcc optimizer can remove the function overhead instructions by inlining the do_block function.

FIGURE 5.22 The age of accesses to the arrays C, A, and B when BLOCKSIZE ! 3. Note that,
in contrast to Figure 5.20, fewer elements are accessed.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5 for (int i = si; i < si+BLOCKSIZE; ++i)
6 for (int j = sj; j < sj+BLOCKSIZE; ++j)
7 {
8 double cij = C[i+j*n];/* cij = C[i][j] */
9 for(int k = sk; k < sk+BLOCKSIZE; k++)
10 cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11 C[i+j*n] = cij;/* C[i][j] = cij */
12 }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16 for (int sj = 0; sj < n; sj += BLOCKSIZE)
17 for (int si = 0; si < n; si += BLOCKSIZE)
18 for (int sk = 0; sk < n; sk += BLOCKSIZE)
19 do_block(n, si, sj, sk, A, B, C);
20 }

Although we have aimed at reducing cache misses, blocking can also be used to
help register allocation. By taking a small blocking size such that the block can be
held in registers, we can minimize the number of loads and stores in the program,
which also improves performance.

416 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Figure 5.23 shows the impact of cache blocking on the performance of the
unoptimized DGEMM as we increase the matrix size beyond where all three
matrices fi t in the cache. Th e unoptimized performance is halved for the largest
matrix. Th e cache-blocked version is less than 10% slower even at matrices that are
960x960, or 900 times larger than the 32 × 32 matrices in Chapters 3 and 4.

Elaboration: Multilevel caches create several complications. First, there are now
several different types of misses and corresponding miss rates. In the example on
pages 410–411, we saw the primary cache miss rate and the global miss rate—the
fraction of references that missed in all cache levels. There is also a miss rate for the
secondary cache, which is the ratio of all misses in the secondary cache divided by the
number of accesses to it. This miss rate is called the local miss rate of the secondary
cache. Because the primary cache fi lters accesses, especially those with good spatial
and temporal locality, the local miss rate of the secondary cache is much higher than the
global miss rate. For the example on pages 410–411, we can compute the local miss
rate of the secondary cache as 0.5%/2% # 25%! Luckily, the global miss rate dictates
how often we must access the main memory.

Elaboration: With out-of-order processors (see Chapter 4), performance is more
complex, since they execute instructions during the miss penalty. Instead of instruction
miss rates and data miss rates, we use misses per instruction, and this formula:

Memory stall cycles
Instruction

Misses
Instruction

(Total misss latency Overlapped miss latency)

global miss rate Th e
fraction of references
that miss in all levels of a
multilevel cache.

local miss rate Th e
fraction of references to
one level of a cache that
miss; used in multilevel
hierarchies.

1.8

1.5

1.2

0.9

0.6

G
FL

O
P

S

0.3

–
Unoptimized

1.7
1.5

1.3

0.8

1.7 1.6 1.6
1.5

Blocked

32x32 160x160 480x480 960x960

FIGURE 5.23 Performance of unoptimized DGEMM (Figure 3.21) versus cache blocked
DGEMM (Figure 5.21) as the matrix dimension varies from 32x32 (where all three matrices
fi t in the cache) to 960x960.

 5.4 Measuring and Improving Cache Performance 417

There is no general way to calculate overlapped miss latency, so evaluations of
memory hierarchies for out-of-order processors inevitably require simulation of the
processor and the memory hierarchy. Only by seeing the execution of the processor
during each miss can we see if the processor stalls waiting for data or simply fi nds other
work to do. A guideline is that the processor often hides the miss penalty for an L1
cache miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy
varies between different implementations of the same architecture in cache size,
associativity, block size, and number of caches. To cope with such variability, some
recent numerical libraries parameterize their algorithms and then search the parameter
space at runtime to fi nd the best combination for a particular computer. This approach
is called autotuning.

Which of the following is generally true about a design with multiple levels of
caches?

1. First-level caches are more concerned about hit time, and second-level
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level
caches are more concerned about hit time.

Summary
In this section, we focused on four topics: cache performance, using associativity to
reduce miss rates, the use of multilevel cache hierarchies to reduce miss penalties,
and soft ware optimizations to improve eff ectiveness of caches.

Th e memory system has a signifi cant eff ect on program execution time. Th e
number of memory-stall cycles depends on both the miss rate and the miss penalty.
Th e challenge, as we will see in Section 5.8, is to reduce one of these factors without
signifi cantly aff ecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes.
Such schemes can reduce the miss rate of a cache by allowing more fl exible
placement of blocks within the cache. Fully associative schemes allow blocks to be
placed anywhere, but also require that every block in the cache be searched to satisfy
a request. Th e higher costs make large fully associative caches impractical. Set-
associative caches are a practical alternative, since we need only search among the
elements of a unique set that is chosen by indexing. Set-associative caches have higher
miss rates but are faster to access. Th e amount of associativity that yields the best
performance depends on both the technology and the details of the implementation.

We looked at multilevel caches as a technique to reduce the miss penalty by
allowing a larger secondary cache to handle misses to the primary cache. Second-
level caches have become commonplace as designers fi nd that limited silicon and
the goals of high clock rates prevent primary caches from becoming large. Th e
secondary cache, which is oft en ten or more times larger than the primary cache,
handles many accesses that miss in the primary cache. In such cases, the miss
penalty is that of the access time to the secondary cache (typically < 10 processor

Check
Yourself

420 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The Hamming Single Error Correcting, Double Error
Detecting Code (SEC/DED)
Richard Hamming invented a popular redundancy scheme for memory, for which
he received the Turing Award in 1968. To invent redundant codes, it is helpful
to talk about how “close” correct bit patterns can be. What we call the Hamming
distance is just the minimum number of bits that are diff erent between any two
correct bit patterns. For example, the distance between 011011 and 001111 is two.
What happens if the minimum distance between members of a codes is two, and
we get a one-bit error? It will turn a valid pattern in a code to an invalid one. Th us,
if we can detect whether members of a code are valid or not, we can detect single
bit errors, and can say we have a single bit error detection code.

Hamming used a parity code for error detection. In a parity code, the number
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and
even otherwise. When a word is written into memory, the parity bit is also written
(1 for odd, 0 for even). Th at is, the parity of the N+1 bit word should always be even.
Th en, when the word is read out, the parity bit is read and checked. If the parity of the
memory word and the stored parity bit do not match, an error has occurred.

Calculate the parity of a byte with the value 31ten and show the pattern stored to
memory. Assume the parity bit is on the right. Suppose the most signifi cant bit
was inverted in memory, and then you read it back. Did you detect the error?
What happens if the two most signifi cant bits are inverted?

31ten is 00011111two, which has fi ve 1s. To make parity even, we need to write a 1
in the parity bit, or 000111111two. If the most signifi cant bit is inverted when we
read it back, we would see 100111111two which has seven 1s. Since we expect
even parity and calculated odd parity, we would signal an error. If the two most
signifi cant bits are inverted, we would see 110111111two which has eight 1s or
even parity and we would not signal an error.

If there are 2 bits of error, then a 1-bit parity scheme will not detect any errors,
since the parity will match the data with two errors. (Actually, a 1-bit parity scheme
can detect any odd number of errors; however, the probability of having 3 errors is
much lower than the probability of having two, so, in practice, a 1-bit parity code is
limited to detecting a single bit of error.)

Of course, a parity code cannot correct errors, which Hamming wanted to do
as well as detect them. If we used a code that had a minimum distance of 3, then
any single bit error would be closer to the correct pattern than to any other valid
pattern. He came up with an easy to understand mapping of data into a distance 3
code that we call Hamming Error Correction Code (ECC) in his honor. We use extra

error detection
code A code that
enables the detection of
an error in data, but not
the precise location and,
hence, correction of the
error.

EXAMPLE

ANSWER

422 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Assume one byte data value is 10011010two. First show the Hamming ECC code
for that byte, and then invert bit 10 and show that the ECC code fi nds and
corrects the single bit error.

Leaving spaces for the parity bits, the 12 bit pattern is _ _ 1 _ 0 0 1 _ 1 0 1 0.
Position 1 checks bits 1,3,5,7,9, and11, which we highlight: __ 1 _ 0 0 1 _ 1 0 1
0. To make the group even parity, we should set bit 1 to 0.
Position 2 checks bits 2,3,6,7,10,11, which is 0 _ 1 _ 0 0 1 _ 1 0 1 0 or odd parity,
so we set position 2 to a 1.
Position 4 checks bits 4,5,6,7,12, which is 0 1 1 _ 0 0 1 _ 1 0 1, so we set it to a 1.
Position 8 checks bits 8,9,10,11,12, which is 0 1 1 1 0 0 1 _ 1 0 1 0, so we set it
to a 0.
Th e fi nal code word is 011100101010. Inverting bit 10 changes it to
011100101110.
Parity bit 1 is 0 (011100101110 is four 1s, so even parity; this group is OK).
Parity bit 2 is 1 (011100101110 is fi ve 1s, so odd parity; there is an error
somewhere).
Parity bit 4 is 1 (011100101110 is two 1s, so even parity; this group is OK).
Parity bit 8 is 1 (011100101110 is three 1s, so odd parity; there is an error
somewhere).
Parity bits 2 and 10 are incorrect. As 2 + 8 = 10, bit 10 must be wrong. Hence,
we can correct the error by inverting bit 10: 011100101010. Voila!

Hamming did not stop at single bit error correction code. At the cost of one more
bit, we can make the minimum Hamming distance in a code be 4. Th is means
we can correct single bit errors and detect double bit errors. Th e idea is to add a
parity bit that is calculated over the whole word. Let’s use a four-bit data word as
an example, which would only need 7 bits for single bit error detection. Hamming
parity bits H (p1 p2 p3) are computed (even parity as usual) plus the even parity
over the entire word, p4:
 1 2 3 4 5 6 7 8
 p1 p2 d1 p3 d2 d3 d4 p4

Th en the algorithm to correct one error and detect two is just to calculate parity
over the ECC groups (H) as before plus one more over the whole group (p4). Th ere
are four cases:

1. H is even and p4 is even, so no error occurred.
2. H is odd and p4 is odd, so a correctable single error occurred. (p4 should

calculate odd parity if one error occurred.)
3. H is even and p4 is odd, a single error occurred in p4 bit, not in the rest of the

word, so correct the p4 bit.

EXAMPLE

ANSWER

 5.6 Virtual Machines 425

allow these separate soft ware stacks to run independently yet share hardware,
thereby consolidating the number of servers. Another example is that some
VMMs support migration of a running VM to a diff erent computer, either
to balance load or to evacuate from failing hardware.

Amazon Web Services (AWS) uses the virtual machines in its cloud computing
off ering EC2 for fi ve reasons:

1. It allows AWS to protect users from each other while sharing the same server.
2. It simplifi es soft ware distribution within a warehouse scale computer. A

customer installs a virtual machine image confi gured with the appropriate
soft ware, and AWS distributes it to all the instances a customer wants to use.

3. Customers (and AWS) can reliably “kill” a VM to control resource usage
when customers complete their work.

4. Virtual machines hide the identity of the hardware on which the customer is
running, which means AWS can keep using old servers and introduce new,
more effi cient servers. Th e customer expects performance for instances to
match their ratings in “EC2 Compute Units,” which AWS defi nes: to “provide
the equivalent CPU capacity of a 1.0–1.2 GHz 2007 AMD Opteron or 2007
Intel Xeon processor.” Th anks to Moore’s Law, newer servers clearly off er
more EC2 Compute Units than older ones, but AWS can keep renting old
servers as long as they are economical.

5. Virtual Machine Monitors can control the rate that a VM uses the processor,
the network, and disk space, which allows AWS to off er many price points
of instances of diff erent types running on the same underlying servers.
For example, in 2012 AWS off ered 14 instance types, from small standard
instances at $0.08 per hour to high I/O quadruple extra large instances at
$3.10 per hour.

In general, the cost of processor virtualization depends on the workload. User-
level processor-bound programs have zero virtualization overhead, because the
OS is rarely invoked, so everything runs at native speeds. I/O-intensive workloads
are generally also OS-intensive, executing many system calls and privileged
instructions that can result in high virtualization overhead. On the other hand, if
the I/O-intensive workload is also I/O-bound, the cost of processor virtualization
can be completely hidden, since the processor is oft en idle waiting for I/O.

Th e overhead is determined by both the number of instructions that must be
emulated by the VMM and by how much time each takes to emulate them. Hence,
when the guest VMs run the same ISA as the host, as we assume here, the goal

Hardware/
Software
Interface

426 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

of the architecture and the VMM is to run almost all instructions directly on the
native hardware.

Requirements of a Virtual Machine Monitor
What must a VM monitor do? It presents a soft ware interface to guest soft ware, it
must isolate the state of guests from each other, and it must protect itself from guest
soft ware (including guest OSes). Th e qualitative requirements are:

■ Guest soft ware should behave on a VM exactly as if it were running on the
native hardware, except for performance-related behavior or limitations of
fi xed resources shared by multiple VMs.

■ Guest soft ware should not be able to change allocation of real system resources
directly.

To “virtualize” the processor, the VMM must control just about everything—access
to privileged state, I/O, exceptions, and interrupts—even though the guest VM and
OS currently running are temporarily using them.

For example, in the case of a timer interrupt, the VMM would suspend the
currently running guest VM, save its state, handle the interrupt, determine which
guest VM to run next, and then load its state. Guest VMs that rely on a timer
interrupt are provided with a virtual timer and an emulated timer interrupt by the
VMM.

To be in charge, the VMM must be at a higher privilege level than the guest
VM, which generally runs in user mode; this also ensures that the execution of
any privileged instruction will be handled by the VMM. Th e basic requirements of
system virtual:

■ At least two processor modes, system and user.
■ A privileged subset of instructions that is available only in system mode,

resulting in a trap if executed in user mode; all system resources must be
controllable only via these instructions.

(Lack of) Instruction Set Architecture Support for Virtual
Machines
If VMs are planned for during the design of the ISA, it’s relatively easy to reduce
both the number of instructions that must be executed by a VMM and improve
their emulation speed. An architecture that allows the VM to execute directly on
the hardware earns the title virtualizable, and the IBM 370 architecture proudly
bears that label.

Alas, since VMs have been considered for PC and server applications only fairly
recently, most instruction sets were created without virtualization in mind. Th ese
culprits include x86 and most RISC architectures, including ARMv7 and MIPS.

 5.7 Virtual Memory 427

Because the VMM must ensure that the guest system only interacts with virtual
resources, a conventional guest OS runs as a user mode program on top of the
VMM. Th en, if a guest OS attempts to access or modify information related to
hardware resources via a privileged instruction—for example, reading or writing
a status bit that enables interrupts—it will trap to the VMM. Th e VMM can then
eff ect the appropriate changes to corresponding real resources.

Hence, if any instruction that tries to read or write such sensitive information
traps when executed in user mode, the VMM can intercept it and support a virtual
version of the sensitive information, as the guest OS expects.

In the absence of such support, other measures must be taken. A VMM must
take special precautions to locate all problematic instructions and ensure that they
behave correctly when executed by a guest OS, thereby increasing the complexity
of the VMM and reducing the performance of running the VM.

Protection and Instruction Set Architecture
Protection is a joint eff ort of architecture and operating systems, but architects
had to modify some awkward details of existing instruction set architectures when
virtual memory became popular.

For example, the x86 instruction POPF loads the fl ag registers from the top of
the stack in memory. One of the fl ags is the Interrupt Enable (IE) fl ag. If you run
the POPF instruction in user mode, rather than trap it, it simply changes all the
fl ags except IE. In system mode, it does change the IE. Since a guest OS runs in user
mode inside a VM, this is a problem, as it expects to see a changed IE.

Historically, IBM mainframe hardware and VMM took three steps to improve
performance of virtual machines:

1. Reduce the cost of processor virtualization.
2. Reduce interrupt overhead cost due to the virtualization.
3. Reduce interrupt cost by steering interrupts to the proper VM without

invoking VMM.
AMD and Intel tried to address the fi rst point in 2006 by reducing the cost of
processor virtualization. It will be interesting to see how many generations of
architecture and VMM modifi cations it will take to address all three points, and
how long before virtual machines of the 21st century will be as effi cient as the IBM
mainframes and VMMs of the 1970s.

 5.7 Virtual Memory

In earlier sections, we saw how caches provided fast access to recently used portions
of a program’s code and data. Similarly, the main memory can act as a “cache” for

… a system has
been devised to
make the core drum
combination appear
to the programmer
as a single level
store, the requisite
transfers taking place
automatically.
Kilburn et al., One-level
storage system, 1962

428 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

the secondary storage, usually implemented with magnetic disks. Th is technique is
called virtual memory. Historically, there were two major motivations for virtual
memory: to allow effi cient and safe sharing of memory among multiple programs,
such as for the memory needed by multiple virtual machines for cloud computing,
and to remove the programming burdens of a small, limited amount of main
memory. Five decades aft er its invention, it’s the former reason that reigns today.

Of course, to allow multiple virtual machines to share the same memory, we
must be able to protect the virtual machines from each other, ensuring that a
program can only read and write the portions of main memory that have been
assigned to it. Main memory need contain only the active portions of the many
virtual machines, just as a cache contains only the active portion of one program.
Th us, the principle of locality enables virtual memory as well as caches, and virtual
memory allows us to effi ciently share the processor as well as the main memory.

We cannot know which virtual machines will share the memory with other
virtual machines when we compile them. In fact, the virtual machines sharing
the memory change dynamically while the virtual machines are running. Because
of this dynamic interaction, we would like to compile each program into its
own address space—a separate range of memory locations accessible only to this
program. Virtual memory implements the translation of a program’s address space
to physical addresses. Th is translation process enforces protection of a program’s
address space from other virtual machines.

Th e second motivation for virtual memory is to allow a single user program
to exceed the size of primary memory. Formerly, if a program became too large
for memory, it was up to the programmer to make it fi t. Programmers divided
programs into pieces and then identifi ed the pieces that were mutually exclusive.
Th ese overlays were loaded or unloaded under user program control during
execution, with the programmer ensuring that the program never tried to access
an overlay that was not loaded and that the overlays loaded never exceeded the
total size of the memory. Overlays were traditionally organized as modules, each
containing both code and data. Calls between procedures in diff erent modules
would lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on
programmers. Virtual memory, which was invented to relieve programmers of
this diffi culty, automatically manages the two levels of the memory hierarchy
represented by main memory (sometimes called physical memory to distinguish it
from virtual memory) and secondary storage.

Although the concepts at work in virtual memory and in caches are the same,
their diff ering historical roots have led to the use of diff erent terminology. A virtual
memory block is called a page, and a virtual memory miss is called a page fault.
With virtual memory, the processor produces a virtual address, which is translated
by a combination of hardware and soft ware to a physical address, which in turn can
be used to access main memory. Figure 5.25 shows the virtually addressed memory
with pages mapped to main memory. Th is process is called address mapping or

virtual memory
A technique that uses
main memory as a “cache”
for secondary storage.

physical address
An address in main
memory.

protection A set
of mechanisms for
ensuring that multiple
processes sharing the
processor, memory,
or I/O devices cannot
interfere, intentionally
or unintentionally, with
one another by reading or
writing each other’s data.
Th ese mechanisms also
isolate the operating system
from a user process.

page fault An event that
occurs when an accessed
page is not present in
main memory.

virtual address
An address that
corresponds to a location
in virtual space and is
translated by address
mapping to a physical
address when memory is
accessed.

430 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Many design choices in virtual memory systems are motivated by the high cost
of a page fault. A page fault to disk will take millions of clock cycles to process.
(Th e table on page 378 shows that main memory latency is about 100,000 times
quicker than disk.) Th is enormous miss penalty, dominated by the time to get the
fi rst word for typical page sizes, leads to several key decisions in designing virtual
memory systems:

■ Pages should be large enough to try to amortize the high access time. Sizes
from 4 KiB to 16 KiB are typical today. New desktop and server systems are
being developed to support 32 KiB and 64 KiB pages, but new embedded
systems are going in the other direction, to 1 KiB pages.

■ Organizations that reduce the page fault rate are attractive. Th e primary
technique used here is to allow fully associative placement of pages in
memory.

■ Page faults can be handled in soft ware because the overhead will be small
compared to the disk access time. In addition, soft ware can aff ord to use clever
algorithms for choosing how to place pages because even small reductions in
the miss rate will pay for the cost of such algorithms.

■ Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation

FIGURE 5.26 Mapping from a virtual to a physical address. Th e page size is 212 # 4 KiB. Th e
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Th us,
main memory can have at most 1 GiB, while the virtual address space is 4 GiB.

 5.7 Virtual Memory 431

Th e next few subsections address these factors in virtual memory design.

Elaboration: We present the motivation for virtual memory as many virtual machines
sharing the same memory, but virtual memory was originally invented so that many
programs could share a computer as part of a timesharing system. Since many readers
today have no experience with time-sharing systems, we use virtual machines to motivate
this section.

Elaboration: For servers and even PCs, 32-bit address processors are problematic.
Although we normally think of virtual addresses as much larger than physical addresses,
the opposite can occur when the processor address size is small relative to the state
of the memory technology. No single program or virtual machine can benefi t, but a
collection of programs or virtual machines running at the same time can benefi t from
not having to be swapped to memory or by running on parallel processors.

Elaboration: The discussion of virtual memory in this book focuses on paging,
which uses fi xed-size blocks. There is also a variable-size block scheme called
segmentation. In segmentation, an address consists of two parts: a segment number
and a segment offset. The segment number is mapped to a physical address, and
the offset is added to fi nd the actual physical address. Because the segment can
vary in size, a bounds check is also needed to make sure that the offset is within
the segment. The major use of segmentation is to support more powerful methods
of protection and sharing in an address space. Most operating system textbooks
contain extensive discussions of segmentation compared to paging and of the use
of segmentation to logically share the address space. The major disadvantage of
segmentation is that it splits the address space into logically separate pieces that
must be manipulated as a two-part address: the segment number and the offset.
Paging, in contrast, makes the boundary between page number and offset invisible
to programmers and compilers.

Segments have also been used as a method to extend the address space without
changing the word size of the computer. Such attempts have been unsuccessful because
of the awkwardness and performance penalties inherent in a two-part address, of which
programmers and compilers must be aware.

Many architectures divide the address space into large fi xed-size blocks that simplify
protection between the operating system and user programs and increase the effi ciency
of implementing paging. Although these divisions are often called “segments,” this
mechanism is much simpler than variable block size segmentation and is not visible to
user programs; we discuss it in more detail shortly.

Placing a Page and Finding It Again
Because of the incredibly high penalty for a page fault, designers reduce page fault
frequency by optimizing page placement. If we allow a virtual page to be mapped
to any physical page, the operating system can then choose to replace any page
it wants when a page fault occurs. For example, the operating system can use a

segmentation
A variable-size address
mapping scheme in which
an address consists of two
parts: a segment number,
which is mapped to a
physical address, and a
segment off set.

432 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

sophisticated algorithm and complex data structures that track page usage to try
to choose a page that will not be needed for a long time. Th e ability to use a clever
and fl exible replacement scheme reduces the page fault rate and simplifi es the use
of fully associative placement of pages.

As mentioned in Section 5.4, the diffi culty in using fully associative placement
is in locating an entry, since it can be anywhere in the upper level of the hierarchy.
A full search is impractical. In virtual memory systems, we locate pages by using a
table that indexes the memory; this structure is called a page table, and it resides
in memory. A page table is indexed with the page number from the virtual address
to discover the corresponding physical page number. Each program has its own
page table, which maps the virtual address space of that program to main memory.
In our library analogy, the page table corresponds to a mapping between book
titles and library locations. Just as the card catalog may contain entries for books
in another library on campus rather than the local branch library, we will see that
the page table may contain entries for pages not present in memory. To indicate the
location of the page table in memory, the hardware includes a register that points to
the start of the page table; we call this the page table register. Assume for now that
the page table is in a fi xed and contiguous area of memory.

Th e page table, together with the program counter and the registers, specifi es
the state of a virtual machine. If we want to allow another virtual machine to use
the processor, we must save this state. Later, aft er restoring this state, the virtual
machine can continue execution. We oft en refer to this state as a process. Th e
process is considered active when it is in possession of the processor; otherwise, it
is considered inactive. Th e operating system can make a process active by loading
the process’s state, including the program counter, which will initiate execution at
the value of the saved program counter.

Th e process’s address space, and hence all the data it can access in memory, is
defi ned by its page table, which resides in memory. Rather than save the entire page
table, the operating system simply loads the page table register to point to the page
table of the process it wants to make active. Each process has its own page table,
since diff erent processes use the same virtual addresses. Th e operating system is
responsible for allocating the physical memory and updating the page tables, so
that the virtual address spaces of diff erent processes do not collide. As we will see
shortly, the use of separate page tables also provides protection of one process from
another.

page table Th e table
containing the virtual
to physical address
translations in a virtual
memory system. Th e
table, which is stored
in memory, is typically
indexed by the virtual
page number; each entry
in the table contains the
physical page number
for that virtual page if
the page is currently in
memory.

Hardware/
Software
Interface

434 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Page Faults
If the valid bit for a virtual page is off , a page fault occurs. Th e operating system
must be given control. Th is transfer is done with the exception mechanism, which
we saw in Chapter 4 and will discuss again later in this section. Once the operating
system gets control, it must fi nd the page in the next level of the hierarchy (usually
fl ash memory or magnetic disk) and decide where to place the requested page in
main memory.

Th e virtual address alone does not immediately tell us where the page is on disk.
Returning to our library analogy, we cannot fi nd the location of a library book on
the shelves just by knowing its title. Instead, we go to the catalog and look up the
book, obtaining an address for the location on the shelves, such as the Library of
Congress call number. Likewise, in a virtual memory system, we must keep track
of the location on disk of each page in virtual address space.

Because we do not know ahead of time when a page in memory will be replaced,
the operating system usually creates the space on fl ash memory or disk for all the
pages of a process when it creates the process. Th is space is called the swap space.
At that time, it also creates a data structure to record where each virtual page is
stored on disk. Th is data structure may be part of the page table or may be an
auxiliary data structure indexed in the same way as the page table. Figure 5.28
shows the organization when a single table holds either the physical page number
or the disk address.

Th e operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs,
if all the pages in main memory are in use, the operating system must choose a
page to replace. Because we want to minimize the number of page faults, most
operating systems try to choose a page that they hypothesize will not be needed
in the near future. Using the past to predict the future, operating systems follow
the least recently used (LRU) replacement scheme, which we mentioned in Section
5.4. Th e operating system searches for the least recently used page, assuming that
a page that has not been used in a long time is less likely to be needed than a more
recently accessed page. Th e replaced pages are written to swap space on the disk.
In case you are wondering, the operating system is just another process, and these
tables controlling memory are in memory; the details of this seeming contradiction
will be explained shortly.

swap space Th e space on
the disk reserved for the
full virtual memory space
of a process.

436 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: With a 32-bit virtual address, 4 KiB pages, and 4 bytes per page table
entry, we can compute the total page table size:

Number of page table entries
2

2
32

20# #
212

Size of page table 2 page table entries 2
bytes

page tabl
20 2

ee entry
4 MiB

That is, we would need to use 4 MiB of memory for each program in execution at any
time. This amount is not so bad for a single process. What if there are hundreds of
processes running, each with their own page table? And how should we handle 64-bit
addresses, which by this calculation would need 252 words?

A range of techniques is used to reduce the amount of storage required for the page
table. The fi ve techniques below aim at reducing the total maximum storage required as
well as minimizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the
page table for a given process. If the virtual page number becomes larger than
the contents of the limit register, entries must be added to the page table. This
technique allows the page table to grow as a process consumes more space.
Thus, the page table will only be large if the process is using many pages of
virtual address space. This technique requires that the address space expand in
only one direction.

2. Allowing growth in only one direction is not suffi cient, since most languages require
two areas whose size is expandable: one area holds the stack and the other area
holds the heap. Because of this duality, it is convenient to divide the page table
and let it grow from the highest address down, as well as from the lowest address
up. This means that there will be two separate page tables and two separate
limits. The use of two page tables breaks the address space into two segments.
The high-order bit of an address usually determines which segment and thus which
page table to use for that address. Since the high-order address bit specifi es the
segment, each segment can be as large as one-half of the address space. A
limit register for each segment specifi es the current size of the segment, which
grows in units of pages. This type of segmentation is used by many architectures,
including MIPS. Unlike the type of segmentation discussed in the third elaboration
on page 431, this form of segmentation is invisible to the application program,
although not to the operating system. The major disadvantage of this scheme is
that it does not work well when the address space is used in a sparse fashion
rather than as a contiguous set of virtual addresses.

3. Another approach to reducing the page table size is to apply a hashing function
to the virtual address so that the page table need be only the size of the number
of physical pages in main memory. Such a structure is called an inverted page
table. Of course, the lookup process is slightly more complex with an inverted
page table, because we can no longer just index the page table.

4. Multiple levels of page tables can also be used to reduce the total amount of
page table storage. The fi rst level maps large fi xed-size blocks of virtual address
space, perhaps 64 to 256 pages in total. These large blocks are sometimes
called segments, and this fi rst-level mapping table is sometimes called a

 5.7 Virtual Memory 437

segment table, though the segments are again invisible to the user. Each entry
in the segment table indicates whether any pages in that segment are allocated
and, if so, points to a page table for that segment. Address translation happens
by fi rst looking in the segment table, using the highest-order bits of the address.
If the segment address is valid, the next set of high-order bits is used to index
the page table indicated by the segment table entry. This scheme allows the
address space to be used in a sparse fashion (multiple noncontiguous segments
can be active) without having to allocate the entire page table. Such schemes
are particularly useful with very large address spaces and in software systems
that require noncontiguous allocation. The primary disadvantage of this two-level
mapping is the more complex process for address translation.

5. To reduce the actual main memory tied up in page tables, most modern systems
also allow the page tables to be paged. Although this sounds tricky, it works
by using the same basic ideas of virtual memory and simply allowing the page
tables to reside in the virtual address space. In addition, there are some small
but critical problems, such as a never-ending series of page faults, which must
be avoided. How these problems are overcome is both very detailed and typically
highly processor specifi c. In brief, these problems are avoided by placing all the
page tables in the address space of the operating system and placing at least
some of the page tables for the operating system in a portion of main memory
that is physically addressed and is always present and thus never on disk.

What about Writes?
Th e diff erence between the access time to the cache and main memory is tens to
hundreds of cycles, and write-through schemes can be used, although we need a
write buff er to hide the latency of the write from the processor. In a virtual memory
system, writes to the next level of the hierarchy (disk) can take millions of processor
clock cycles; therefore, building a write buff er to allow the system to write-through
to disk would be completely impractical. Instead, virtual memory systems must use
write-back, performing the individual writes into the page in memory, and copying
the page back to disk when it is replaced in the memory.

A write-back scheme has another major advantage in a virtual memory system.
Because the disk transfer time is small compared with its access time, copying back
an entire page is much more effi cient than writing individual words back to the disk.
A write-back operation, although more effi cient than transferring individual words, is
still costly. Th us, we would like to know whether a page needs to be copied back when
we choose to replace it. To track whether a page has been written since it was read into
the memory, a dirty bit is added to the page table. Th e dirty bit is set when any word
in a page is written. If the operating system chooses to replace the page, the dirty bit
indicates whether the page needs to be written out before its location in memory can be
given to another page. Hence, a modifi ed page is oft en called a dirty page.

Hardware/
Software
Interface

 5.7 Virtual Memory 439

Because we access the TLB instead of the page table on every reference, the TLB
will need to include other status bits, such as the dirty and the reference bits.

On every reference, we look up the virtual page number in the TLB. If we get a
hit, the physical page number is used to form the address, and the corresponding
reference bit is turned on. If the processor is performing a write, the dirty bit is also
turned on. If a miss in the TLB occurs, we must determine whether it is a page fault
or merely a TLB miss. If the page exists in memory, then the TLB miss indicates
only that the translation is missing. In such cases, the processor can handle the TLB
miss by loading the translation from the page table into the TLB and then trying the
reference again. If the page is not present in memory, then the TLB miss indicates
a true page fault. In this case, the processor invokes the operating system using an
exception. Because the TLB has many fewer entries than the number of pages in
main memory, TLB misses will be much more frequent than true page faults.

TLB misses can be handled either in hardware or in soft ware. In practice, with
care there can be little performance diff erence between the two approaches, because
the basic operations are the same in either case.

Aft er a TLB miss occurs and the missing translation has been retrieved from the
page table, we will need to select a TLB entry to replace. Because the reference and
dirty bits are contained in the TLB entry, we need to copy these bits back to the page
table entry when we replace an entry. Th ese bits are the only portion of the TLB
entry that can be changed. Using write-back—that is, copying these entries back at
miss time rather than when they are written—is very effi cient, since we expect the
TLB miss rate to be small. Some systems use other techniques to approximate the
reference and dirty bits, eliminating the need to write into the TLB except to load
a new table entry on a miss.

Some typical values for a TLB might be
■ TLB size: 16–512 entries
■ Block size: 1–2 page table entries (typically 4–8 bytes each)
■ Hit time: 0.5–1 clock cycle
■ Miss penalty: 10–100 clock cycles
■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is
not too high. Other systems use large TLBs, oft en with small associativity. With
a fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot aff ord an expensive soft ware algorithm, as we can for page faults.
As a result, many systems provide some support for randomly choosing an entry
to replace. We’ll examine replacement schemes in a little more detail in Section 5.8.

440 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the
Intrinsity FastMATH. Th e memory system uses 4 KiB pages and a 32-bit address
space; thus, the virtual page number is 20 bits long, as in the top of Figure 5.30.
Th e physical address is the same size as the virtual address. Th e TLB contains 16
entries, it is fully associative, and it is shared between the instruction and data
references. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual
page number for that TLB entry), the corresponding physical page number (also 20
bits), a valid bit, a dirty bit, and other bookkeeping bits. Like most MIPS systems,
it uses soft ware to handle TLB misses.

Figure 5.30 shows the TLB and one of the caches, while Figure 5.31 shows the
steps in processing a read or write request. When a TLB miss occurs, the MIPS
hardware saves the page number of the reference in a special register and generates
an exception. Th e exception invokes the operating system, which handles the miss
in soft ware. To fi nd the physical address for the missing page, the TLB miss routine
indexes the page table using the page number of the virtual address and the page
table register, which indicates the starting address of the active process page table.
Using a special set of system instructions that can update the TLB, the operating
system places the physical address from the page table into the TLB. A TLB miss
takes about 13 clock cycles, assuming the code and the page table entry are in the
instruction cache and data cache, respectively. (We will see the MIPS TLB code
on page 449.) A true page fault occurs if the page table entry does not have a valid
physical address. Th e hardware maintains an index that indicates the recommended
entry to replace; the recommended entry is chosen randomly.

Th ere is an extra complication for write requests: namely, the write access bit in
the TLB must be checked. Th is bit prevents the program from writing into pages
for which it has only read access. If the program attempts a write and the write
access bit is off , an exception is generated. Th e write access bit forms part of the
protection mechanism, which we will discuss shortly.

Integrating Virtual Memory, TLBs, and Caches
Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. Th e operating system
helps maintain this hierarchy by fl ushing the contents of any page from the cache
when it decides to migrate that page to disk. At the same time, the OS modifi es the
page tables and TLB, so that an attempt to access any data on the migrated page
will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of the
memory hierarchy: the TLB, the page table, and the cache. Th e following example
illustrates these interactions in more detail.

442 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

YesWrite access
bit on?

No

Yes
Cache hit?

No

Write data into cache,
update the dirty bit, and

put the data and the
address into the write buffer

Yes
TLB hit?

Virtual address

TLB access

Try to read data
from cache

No

Yes
Write?

No

Cache miss stall
while read block

Deliver data
to the CPU

Write protection
exception

Yes
Cache hit?

No

Try to write data
to cache

Cache miss stall
while read block

TLB miss
exception Physical address

FIGURE 5.31 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit,
the cache can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall
while the data is brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to
the write buff er if we assume write-through. A write miss is just like a read miss except that the block is modifi ed aft er it is read from memory.
Write-back requires writes to set a dirty bit for the cache block, and a write buff er is loaded with the whole block only on a read miss or write
miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur aft er a TLB
hit occurs, which means that the data must be present in memory. Th e relationship between TLB misses and cache misses is examined further
in the following example and the exercises at the end of this chapter.

 5.7 Virtual Memory 443

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 5.30, which includes a TLB and a
cache organized as shown, a memory reference can encounter three diff erent
types of misses: a TLB miss, a page fault, and a cache miss. Consider all
the combinations of these three events with one or more occurring (seven
possibilities). For each possibility, state whether this event can actually occur
and under what circumstances.

Figure 5.32 shows all combinations and whether each is possible in practice.

Elaboration: Figure 5.32 assumes that all memory addresses are translated to
physical addresses before the cache is accessed. In this organization, the cache is
physically indexed and physically tagged (both the cache index and tag are physical,
rather than virtual, addresses). In such a system, the amount of time to access memory,
assuming a cache hit, must accommodate both a TLB access and a cache access; of
course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely
or partially virtual. This is called a virtually addressed cache, and it uses tags that
are virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In
such caches, the address translation hardware (TLB) is unused during the normal cache
access, since the cache is accessed with a virtual address that has not been translated
to a physical address. This takes the TLB out of the critical path, reducing cache latency.
When a cache miss occurs, however, the processor needs to translate the address to a
physical address so that it can fetch the cache block from main memory.

EXAMPLE

ANSWER

virtually addressed
cache A cache that is
accessed with a virtual
address rather than a
physical address.

TLB
Page
table Cache Possible? If so, under what circumstance?

Hit Hit Miss Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss TLB misses, but entry found in page table; after retry, data misses in cache.

Miss Miss Miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

Hit Miss Miss Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.32 The possible combinations of events in the TLB, virtual memory system,
and cache. Th ree of these combinations are impossible, and one is possible (TLB hit, virtual memory hit,
cache miss) but never detected.

444 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

When the cache is accessed with a virtual address and pages are shared between
processes (which may access them with different virtual addresses), there is the
possibility of aliasing. Aliasing occurs when the same object has two names—in this
case, two virtual addresses for the same page. This ambiguity creates a problem, because
a word on such a page may be cached in two different locations, each corresponding
to different virtual addresses. This ambiguity would allow one program to write the data
without the other program being aware that the data had changed. Completely virtually
addressed caches either introduce design limitations on the cache and TLB to reduce
aliases or require the operating system, and possibly the user, to take steps to ensure
that aliases do not occur.

A common compromise between these two design points is caches that are virtually
indexed—sometimes using just the page-offset portion of the address, which is really
a physical address since it is not translated—but use physical tags. These designs,
which are virtually indexed but physically tagged, attempt to achieve the performance
advantages of virtually indexed caches with the architecturally simpler advantages of a
physically addressed cache. For example, there is no alias problem in this case. Figure
5.30 assumed a 4 KiB page size, but it’s really 16 KiB, so the Intrinsity FastMATH can
use this trick. To pull it off, there must be careful coordination between the minimum
page size, the cache size, and associativity.

Implementing Protection with Virtual Memory
Perhaps the most important function of virtual memory today is to allow sharing of
a single main memory by multiple processes, while providing memory protection
among these processes and the operating system. Th e protection mechanism must
ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or into
the operating system either intentionally or unintentionally. Th e write access bit in
the TLB can protect a page from being written. Without this level of protection,
computer viruses would be even more widespread.

To enable the operating system to implement protection in the virtual memory
system, the hardware must provide at least the three basic capabilities summarized
below. Note that the fi rst two are the same requirements as needed for virtual
machines (Section 5.6).

1. Support at least two modes that indicate whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but not
write. Th is includes the user/supervisor mode bit, which dictates whether
the processor is in user or supervisor mode, the page table pointer, and the

aliasing A situation
in which two addresses
access the same object;
it can occur in virtual
memory when there are
two virtual addresses for
the same physical page.

physically addressed
cache A cache that is
addressed by a physical
address.

Hardware/
Software
Interface

supervisor mode Also
called kernel mode. A
mode indicating that a
running process is an
operating system process.

 5.7 Virtual Memory 445

TLB. To write these elements, the operating system uses special instructions
that are only available in supervisor mode.

3. Provide mechanisms whereby the processor can go from user mode to
supervisor mode and vice versa. Th e fi rst direction is typically accomplished
by a system call exception, implemented as a special instruction (syscall in
the MIPS instruction set) that transfers control to a dedicated location in
supervisor code space. As with any other exception, the program counter
from the point of the system call is saved in the exception PC (EPC), and
the processor is placed in supervisor mode. To return to user mode from the
exception, use the return from exception (ERET) instruction, which resets to
user mode and jumps to the address in EPC.

By using these mechanisms and storing the page tables in the operating system’s
address space, the operating system can change the page tables while preventing a
user process from changing them, ensuring that a user process can access only the
storage provided to it by the operating system.

We also want to prevent a process from reading the data of another process. For
example, we wouldn’t want a student program to read the grades while they were
in the processor’s memory. Once we begin sharing main memory, we must provide
the ability for a process to protect its data from both reading and writing by another
process; otherwise, sharing the main memory will be a mixed blessing!

Remember that each process has its own virtual address space. Th us, if the
operating system keeps the page tables organized so that the independent virtual
pages map to disjoint physical pages, one process will not be able to access another’s
data. Of course, this also requires that a user process be unable to change the page
table mapping. Th e operating system can assure safety if it prevents the user process
from modifying its own page tables. However, the operating system must be able
to modify the page tables. Placing the page tables in the protected address space of
the operating system satisfi es both requirements.

When processes want to share information in a limited way, the operating system
must assist them, since accessing the information of another process requires
changing the page table of the accessing process. Th e write access bit can be used
to restrict the sharing to just read sharing, and, like the rest of the page table, this
bit can be changed only by the operating system. To allow another process, say, P1,
to read a page owned by process P2, P2 would ask the operating system to create
a page table entry for a virtual page in P1’s address space that points to the same
physical page that P2 wants to share. Th e operating system could use the write
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits
that determine the access rights for a page must be included in both the page table
and the TLB, because the page table is accessed only on a TLB miss.

system call A special
instruction that transfers
control from user mode
to a dedicated location
in supervisor code space,
invoking the exception
mechanism in the process.

446 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: When the operating system decides to change from running process
P1 to running process P2 (called a context switch or process switch), it must ensure
that P2 cannot get access to the page tables of P1 because that would compromise
protection. If there is no TLB, it suffi ces to change the page table register to point to P2’s
page table (rather than to P1’s); with a TLB, we must clear the TLB entries that belong to
P1—both to protect the data of P1 and to force the TLB to load the entries for P2. If the
process switch rate were high, this could be quite ineffi cient. For example, P2 might load
only a few TLB entries before the operating system switched back to P1. Unfortunately,
P1 would then fi nd that all its TLB entries were gone and would have to pay TLB misses
to reload them. This problem arises because the virtual addresses used by P1 and P2
are the same, and we must clear out the TLB to avoid confusing these addresses.

A common alternative is to extend the virtual address space by adding a process
identifi er or task identifi er. The Intrinsity FastMATH has an 8-bit address space ID (ASID)
fi eld for this purpose. This small fi eld identifi es the currently running process; it is kept
in a register loaded by the operating system when it switches processes. The process
identifi er is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if
both the page number and the process identifi er match. This combination eliminates the
need to clear the TLB, except on rare occasions.

Similar problems can occur for a cache, since on a process switch the cache will
contain data from the running process. These problems arise in different ways for
physically addressed and virtually addressed caches, and a variety of different solutions,
such as process identifi ers, are used to ensure that a process gets its own data.

Handling TLB Misses and Page Faults
Although the translation of virtual to physical addresses with a TLB is
straightforward when we get a TLB hit, as we saw earlier, handling TLB misses and
page faults is more complex. A TLB miss occurs when no entry in the TLB matches
a virtual address. Recall that a TLB miss can indicate one of two possibilities:

1. Th e page is present in memory, and we need only create the missing TLB
entry.

2. Th e page is not present in memory, and we need to transfer control to the
operating system to deal with a page fault.

MIPS traditionally handles a TLB miss in soft ware. It brings in the page table
entry from memory and then re-executes the instruction that caused the TLB miss.
Upon re-executing, it will get a TLB hit. If the page table entry indicates the page is
not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism
to interrupt the active process, transferring control to the operating system, and
later resuming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle used to access memory. To restart the instruction
aft er the page fault is handled, the program counter of the instruction that caused
the page fault must be saved. Just as in Chapter 4, the exception program counter
(EPC) is used to hold this value.

context switch
A changing of the internal
state of the processor to
allow a diff erent process
to use the processor
that includes saving the
state needed to return to
the currently executing
process.

 5.7 Virtual Memory 447

In addition, a TLB miss or page fault exception must be asserted by the end
of the same clock cycle that the memory access occurs, so that the next clock
cycle will begin exception processing rather than continue normal instruction
execution. If the page fault was not recognized in this clock cycle, a load instruction
could overwrite a register, and this could be disastrous when we try to restart the
instruction. For example, consider the instruction lw $1,0($1): the computer
must be able to prevent the write pipeline stage from occurring; otherwise, it could
not properly restart the instruction, since the contents of $1 would have been
destroyed. A similar complication arises on stores. We must prevent the write into
memory from actually completing when there is a page fault; this is usually done
by deasserting the write control line to the memory.

Between the time we begin executing the exception handler in the operating
system and the time that the operating system has saved all the state of the process,
the operating system is particularly vulnerable. For example, if another exception
occurred when we were processing the fi rst exception in the operating system, the
control unit would overwrite the exception program counter, making it impossible
to return to the instruction that caused the page fault! We can avoid this disaster
by providing the ability to disable and enable exceptions. When an exception fi rst
occurs, the processor sets a bit that disables all other exceptions; this could happen
at the same time the processor sets the supervisor mode bit. Th e operating system
will then save just enough state to allow it to recover if another exception occurs—
namely, the exception program counter (EPC) and Cause registers. EPC and Cause
are two of the special control registers that help with exceptions, TLB misses, and
page faults; Figure 5.33 shows the rest. Th e operating system can then re-enable
exceptions. Th ese steps make sure that exceptions will not cause the processor
to lose any state and thereby be unable to restart execution of the interrupting
instruction.

Once the operating system knows the virtual address that caused the page fault, it
must complete three steps:

1. Look up the page table entry using the virtual address and fi nd the location
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be
written out to disk before we can bring a new virtual page into this physical
page.

3. Start a read to bring the referenced page from disk into the chosen physical
page.

Hardware/
Software
Interface

exception enable Also
called interrupt enable.
A signal or action that
controls whether the
process responds to
an exception or not;
necessary for preventing
the occurrence of
exceptions during
intervals before the
processor has safely saved
the state needed to restart.

 5.7 Virtual Memory 449

Th e exception invokes the operating system, which handles the miss in soft ware.
Control is transferred to address 8000 0000hex, the location of the TLB miss handler.
To fi nd the physical address for the missing page, the TLB miss routine indexes the
page table using the page number of the virtual address and the page table register,
which indicates the starting address of the active process page table. To make this
indexing fast, MIPS hardware places everything you need in the special Context
register: the upper 12 bits have the address of the base of the page table, and the
next 18 bits have the virtual address of the missing page. Each page table entry is
one word, so the last 2 bits are 0. Th us, the fi rst two instructions copy the Context
register into the kernel temporary register $k1 and then load the page table entry
from that address into $k1. Recall that $k0 and $k1 are reserved for the operating
system to use without saving; a major reason for this convention is to make the TLB
miss handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:
mfc0 $k1,Context # copy address of PTE into temp $k1
lw $k1,0($k1) # put PTE into temp $k1
mtc0 $k1,EntryLo # put PTE into special register EntryLo
tlbwr # put EntryLo into TLB entry at Random
eret # return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the
TLB. Th e instruction tlbwr copies from control register EntryLo into the TLB
entry selected by the control register Random. Random implements random
replacement, so it is basically a free-running counter. A TLB miss takes about a
dozen clock cycles.

Note that the TLB miss handler does not check to see if the page table entry is
valid. Because the exception for TLB entry missing is much more frequent than
a page fault, the operating system loads the TLB from the page table without
examining the entry and restarts the instruction. If the entry is invalid, another
and diff erent exception occurs, and the operating system recognizes the page fault.
Th is method makes the frequent case of a TLB miss fast, at a slight performance
penalty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers
control to 8000 0180hex, a diff erent address than the TLB miss handler. Th is is
the general address for exception; TLB miss has a special entry point to lower the
penalty for a TLB miss. Th e operating system uses the exception Cause register
to diagnose the cause of the exception. Because the exception is a page fault, the
operating system knows that extensive processing will be required. Th us, unlike a
TLB miss, it saves the entire state of the active process. Th is state includes all the
general-purpose and fl oating-point registers, the page table address register, the
EPC, and the exception Cause register. Since exception handlers do not usually use
the fl oating-point registers, the general entry point does not save them, leaving that
to the few handlers that need them.

handler Name of a
soft ware routine invoked
to “handle” an exception
or interrupt.

450 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Figure 5.34 sketches the MIPS code of an exception handler. Note that we
save and restore the state in MIPS code, taking care when we enable and disable
exceptions, but we invoke C code to handle the particular exception.

Th e virtual address that caused the fault depends on whether the fault was an
instruction or data fault. Th e address of the instruction that generated the fault is
in the EPC. If it was an instruction page fault, the EPC contains the virtual address
of the faulting page; otherwise, the faulting virtual address can be computed by
examining the instruction (whose address is in the EPC) to fi nd the base register
and off set fi eld.

Elaboration: This simplifi ed version assumes that the stack pointer (sp) is valid. To
avoid the problem of a page fault during this low-level exception code, MIPS sets aside
a portion of its address space that cannot have page faults, called unmapped. The
operating system places the exception entry point code and the exception stack in
unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to BFFF
FFFFhex to physical addresses simply by ignoring the upper bits of the virtual address,
thereby placing these addresses in the low part of physical memory. Thus, the operating
system places exception entry points and exception stacks in unmapped memory.

Elaboration: The code in Figure 5.34 shows the MIPS-32 exception return sequence.
The older MIPS-I architecture uses rfe and jr instead of eret.

Elaboration: For processors with more complex instructions that can touch many
memory locations and write many data items, making instructions restartable is much
harder. Processing one instruction may generate a number of page faults in the middle
of the instruction. For example, x86 processors have block move instructions that touch
thousands of data words. In such processors, instructions often cannot be restarted
from the beginning, as we do for MIPS instructions. Instead, the instruction must be
interrupted and later continued midstream in its execution. Resuming an instruction in
the middle of its execution usually requires saving some special state, processing the
exception, and restoring that special state. Making this work properly requires careful
and detailed coordination between the exception-handling code in the operating system
and the hardware.

Elaboration: Rather than pay an extra level of indirection on every memory access, the
VMM maintains a shadow page table that maps directly from the guest virtual address
space to the physical address space of the hardware. By detecting all modifi cations to
the guest’s page table, the VMM can ensure the shadow page table entries being used
by the hardware for translations correspond to those of the guest OS environment, with
the exception of the correct physical pages substituted for the real pages in the guest
tables. Hence, the VMM must trap any attempt by the guest OS to change its page table
or to access the page table pointer. This is commonly done by write protecting the guest
page tables and trapping any access to the page table pointer by a guest OS. As noted
above, the latter happens naturally if accessing the page table pointer is a privileged
operation.

unmapped A portion
of the address space that
cannot have page faults.

452 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

Elaboration: The fi nal portion of the architecture to virtualize is I/O. This is by far
the most diffi cult part of system virtualization because of the increasing number of
I/O devices attached to the computer and the increasing diversity of I/O device types.
Another diffi culty is the sharing of a real device among multiple VMs, and yet another
comes from supporting the myriad of device drivers that are required, especially if
different guest OSes are supported on the same VM system. The VM illusion can be
maintained by giving each VM generic versions of each type of I/O device driver, and then
leaving it to the VMM to handle real I/O.

Elaboration: In addition to virtualizing the instruction set for a virtual machine,
another challenge is virtualization of virtual memory, as each guest OS in every virtual
machine manages its own set of page tables. To make this work, the VMM separates
the notions of real and physical memory (which are often treated synonymously), and
makes real memory a separate, intermediate level between virtual memory and physical
memory. (Some use the terms virtual memory, physical memory, and machine memory
to name the same three levels.) The guest OS maps virtual memory to real memory
via its page tables, and the VMM page tables map the guest’s real memory to physical
memory. The virtual memory architecture is specifi ed either via page tables, as in IBM
VM/370 and the x86, or via the TLB structure, as in MIPS.

Summary
Virtual memory is the name for the level of memory hierarchy that manages
caching between the main memory and secondary memory. Virtual memory
allows a single program to expand its address space beyond the limits of main
memory. More importantly, virtual memory supports sharing of the main memory
among multiple, simultaneously active processes, in a protected manner.

Managing the memory hierarchy between main memory and disk is challenging
because of the high cost of page faults. Several techniques are used to reduce the
miss rate:

1. Pages are made large to take advantage of spatial locality and to reduce the
miss rate.

2. Th e mapping between virtual addresses and physical addresses, which is
implemented with a page table, is made fully associative so that a virtual
page can be placed anywhere in main memory.

3. Th e operating system uses techniques, such as LRU and a reference bit, to
choose which pages to replace.

 5.7 Virtual Memory 453

Writes to secondary memory are expensive, so virtual memory uses a write-back
scheme and also tracks whether a page is unchanged (using a dirty bit) to avoid
writing unchanged pages.

Th e virtual memory mechanism provides address translation from a virtual
address used by the program to the physical address space used for accessing
memory. Th is address translation allows protected sharing of the main memory
and provides several additional benefi ts, such as simplifying memory allocation.
Ensuring that processes are protected from each other requires that only the
operating system can change the address translations, which is implemented by
preventing user programs from changing the page tables. Controlled sharing of
pages among processes can be implemented with the help of the operating system
and access bits in the page table that indicate whether the user program has read or
write access to a page.

If a processor had to access a page table resident in memory to translate every
access, virtual memory would be too expensive, as caches would be pointless!
Instead, a TLB acts as a cache for translations from the page table. Addresses are
then translated from virtual to physical using the translations in the TLB.

Caches, virtual memory, and TLBs all rely on a common set of principles and
policies. Th e next section discusses this common framework.

Although virtual memory was invented to enable a small memory to act as a large
one, the performance diff erence between secondary memory and main memory
means that if a program routinely accesses more virtual memory than it has
physical memory, it will run very slowly. Such a program would be continuously
swapping pages between memory and disk, called thrashing. Th rashing is a disaster
if it occurs, but it is rare. If your program thrashes, the easiest solution is to run it on
a computer with more memory or buy more memory for your computer. A more
complex choice is to re-examine your algorithm and data structures to see if you
can change the locality and thereby reduce the number of pages that your program
uses simultaneously. Th is set of popular pages is informally called the working set.

A more common performance problem is TLB misses. Since a TLB might
handle only 32–64 page entries at a time, a program could easily see a high TLB
miss rate, as the processor may access less than a quarter mebibyte directly: 64
" 4 KiB # 0.25 MiB. For example, TLB misses are oft en a challenge for Radix
Sort. To try to alleviate this problem, most computer architectures now support
variable page sizes. For example, in addition to the standard 4 KiB page, MIPS
hardware supports 16 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 64 MiB, and
256 MiB pages. Hence, if a program uses large page sizes, it can access more
memory directly without TLB misses.

Th e practical challenge is getting the operating system to allow programs to
select these larger page sizes. Once again, the more complex solution to reducing

Understanding
Program
Performance

454 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

TLB misses is to re-examine the algorithm and data structures to reduce the
working set of pages; given the importance of memory accesses to performance
and the frequency of TLB misses, some programs with large working sets have
been redesigned with that goal.

Match the defi nitions in the right column to the terms in the left column.

1. L1 cache a. A cache for a cache
2. L2 cache b. A cache for disks
3. Main memory c. A cache for a main memory
4. TLB d. A cache for page table entries

 5.8 A Common Framework for Memory
Hierarchy

By now, you’ve recognized that the diff erent types of memory hierarchies have a
great deal in common. Although many of the aspects of memory hierarchies diff er
quantitatively, many of the policies and features that determine how a hierarchy
functions are similar qualitatively. Figure 5.35 shows how some of the quantitative
characteristics of memory hierarchies can diff er. In the rest of this section, we will
discuss the common operational alternatives for memory hierarchies, and how
these determine their behavior. We will examine these policies as a series of four
questions that apply between any two levels of a memory hierarchy, although for
simplicity we will primarily use terminology for caches.

Check
Yourself

Feature
Typical values
for L1 caches

Typical values
for L2 caches

Typical values for
paged memory

Typical values
for a TLB

Total size in blocks 250–2000 2,500–25,000 16,000–250,000 40–1024

Total size in kilobytes 16–64 125–2000 1,000,000–1,000,000,000 0.25–16

Block size in bytes 16–64 64–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 5.35 The key quantitative design parameters that characterize the major elements of memory hierarchy in a
computer. Th ese are typical values for these levels as of 2012. Although the range of values is wide, this is partially because many of the values
that have shift ed over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. While not
shown, server microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2 caches. L3 caches
lower the L2 miss penalty to 30 to 40 clock cycles.

 5.8 A Common Framework for Memory Hierarchy 457

implementation, such as whether the cache is on-chip, the technology used for
implementing the cache, and the critical role of cache access time in determining
the processor cycle time.

Question 3: Which Block Should Be Replaced on
a Cache Miss?
When a miss occurs in an associative cache, we must decide which block to replace.
In a fully associative cache, all blocks are candidates for replacement. If the cache is
set associative, we must choose among the blocks in the set. Of course, replacement
is easy in a direct-mapped cache because there is only one candidate.

Th ere are the two primary strategies for replacement in set-associative or fully
associative caches:

■ Random: Candidate blocks are randomly selected, possibly using some hardware
assistance. For example, MIPS supports random replacement for TLB misses.

■ Least recently used (LRU): Th e block replaced is the one that has been unused
for the longest time.

In practice, LRU is too costly to implement for hierarchies with more than a small
degree of associativity (two to four, typically), since tracking the usage information
is costly. Even for four-way set associativity, LRU is oft en approximated—for
example, by keeping track of which pair of blocks is LRU (which requires 1 bit),
and then tracking which block in each pair is LRU (which requires 1 bit per pair).

For larger associativity, either LRU is approximated or random replacement is
used. In caches, the replacement algorithm is in hardware, which means that the
scheme should be easy to implement. Random replacement is simple to build in
hardware, and for a two-way set-associative cache, random replacement has a miss
rate about 1.1 times higher than LRU replacement. As the caches become larger, the
miss rate for both replacement strategies falls, and the absolute diff erence becomes
small. In fact, random replacement can sometimes be better than the simple LRU
approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated, since even a tiny
reduction in the miss rate can be important when the cost of a miss is enormous.
Reference bits or equivalent functionality are oft en provided to make it easier for
the operating system to track a set of less recently used pages. Because misses are
so expensive and relatively infrequent, approximating this information primarily
in soft ware is acceptable.

Question 4: What Happens on a Write?
A key characteristic of any memory hierarchy is how it deals with writes. We have
already seen the two basic options:

■ Write-through: Th e information is written to both the block in the cache and
the block in the lower level of the memory hierarchy (main memory for a
cache). Th e caches in Section 5.3 used this scheme.

458 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Write-back: Th e information is written only to the block in the cache. Th e
modifi ed block is written to the lower level of the hierarchy only when it
is replaced. Virtual memory systems always use write-back, for the reasons
discussed in Section 5.7.

Both write-back and write-through have their advantages. Th e key advantages of
write-back are the following:

■ Individual words can be written by the processor at the rate that the cache,
rather than the memory, can accept them.

■ Multiple writes within a block require only one write to the lower level in the
hierarchy.

■ When blocks are written back, the system can make eff ective use of a high-
bandwidth transfer, since the entire block is written.

Write-through has these advantages:
■ Misses are simpler and cheaper because they never require a block to be

written back to the lower level.
■ Write-through is easier to implement than write-back, although to be

practical, a write-through cache will still need to use a write buff er.

Caches, TLBs, and virtual memory may initially look very diff erent, but
they rely on the same two principles of locality, and they can be understood
by their answers to four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative),

or any place (fully associative).
Question 2: How is a block found?
Answer: Th ere are four methods: indexing (as in a direct-mapped

cache), limited search (as in a set-associative cache), full
search (as in a fully associative cache), and a separate
lookup table (as in a page table).

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.
Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either write-through

or write-back.

The BIG
Picture

 5.8 A Common Framework for Memory Hierarchy 459

In virtual memory systems, only a write-back policy is practical because of the long
latency of a write to the lower level of the hierarchy. Th e rate at which writes are
generated by a processor generally exceeds the rate at which the memory system can
process them, even allowing for physically and logically wider memories and burst
modes for DRAM. Consequently, today lowest-level caches typically use write-back.

The Three Cs: An Intuitive Model for Understanding the
Behavior of Memory Hierarchies
In this subsection, we look at a model that provides insight into the sources of
misses in a memory hierarchy and how the misses will be aff ected by changes
in the hierarchy. We will explain the ideas in terms of caches, although the ideas
carry over directly to any other level in the hierarchy. In this model, all misses are
classifi ed into one of three categories (the three Cs):

■ Compulsory misses: Th ese are cache misses caused by the fi rst access to
a block that has never been in the cache. Th ese are also called cold-start
misses.

■ Capacity misses: Th ese are cache misses caused when the cache cannot
contain all the blocks needed during execution of a program. Capacity misses
occur when blocks are replaced and then later retrieved.

■ Confl ict misses: Th ese are cache misses that occur in set-associative or
direct-mapped caches when multiple blocks compete for the same set.
Confl ict misses are those misses in a direct-mapped or set-associative cache
that are eliminated in a fully associative cache of the same size. Th ese cache
misses are also called collision misses.

Figure 5.37 shows how the miss rate divides into the three sources. Th ese sources of
misses can be directly attacked by changing some aspect of the cache design. Since
confl ict misses arise directly from contention for the same cache block, increasing
associativity reduces confl ict misses. Associativity, however, may slow access time,
leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily larger for many years. Of course, when we
make the cache larger, we must also be careful about increasing the access time,
which could lead to lower overall performance. Th us, fi rst-level caches have been
growing slowly, if at all.

Because compulsory misses are generated by the fi rst reference to a block, the
primary way for the cache system to reduce the number of compulsory misses is
to increase the block size. Th is will reduce the number of references required to
touch each block of the program once, because the program will consist of fewer

three Cs model A cache
model in which all cache
misses are classifi ed into
one of three categories:
compulsory misses,
capacity misses, and
confl ict misses.

compulsory miss Also
called cold-start miss.
A cache miss caused by
the fi rst access to a block
that has never been in the
cache.

capacity miss A cache
miss that occurs because
the cache, even with
full associativity, cannot
contain all the blocks
needed to satisfy the
request.

confl ict miss Also called
collision miss. A cache
miss that occurs in a
set-associative or direct-
mapped cache when
multiple blocks compete
for the same set and that
are eliminated in a fully
associative cache of the
same size.

462 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Write-back using write allocate
■ Block size is 4 words (16 bytes or 128 bits)
■ Cache size is 16 KiB, so it holds 1024 blocks
■ 32-byte addresses
■ Th e cache includes a valid bit and dirty bit per block

From Section 5.3, we can now calculate the fi elds of an address for the cache:
■ Cache index is 10 bits
■ Block off set is 4 bits
■ Tag size is 32 $ (10 ! 4) or 18 bits

Th e signals between the processor to the cache are
■ 1-bit Read or Write signal
■ 1-bit Valid signal, saying whether there is a cache operation or not
■ 32-bit address
■ 32-bit data from processor to cache
■ 32-bit data from cache to processor
■ 1-bit Ready signal, saying the cache operation is complete
Th e interface between the memory and the cache has the same fi elds as between

the processor and the cache, except that the data fi elds are now 128 bits wide. Th e
extra memory width is generally found in microprocessors today, which deal with
either 32-bit or 64-bit words in the processor while the DRAM controller is oft en
128 bits. Making the cache block match the width of the DRAM simplifi ed the
design. Here are the signals:

■ 1-bit Read or Write signal
■ 1-bit Valid signal, saying whether there is a memory operation or not
■ 32-bit address
■ 128-bit data from cache to memory
■ 128-bit data from memory to cache
■ 1-bit Ready signal, saying the memory operation is complete

Note that the interface to memory is not a fi xed number of cycles. We assume a
memory controller that will notify the cache via the Ready signal when the memory
read or write is fi nished.

Before describing the cache controller, we need to review fi nite-state machines,
which allow us to control an operation that can take multiple clock cycles.

464 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

needed early in the clock cycle, do not depend on the inputs, but only on the current
state. In Appendix B, when the implementation of this fi nite-state machine is taken down
to logic gates, the size advantage can be clearly seen. The potential disadvantage of a
Moore machine is that it may require additional states. For example, in situations where
there is a one-state difference between two sequences of states, the Mealy machine
may unify the states by making the outputs depend on the inputs.

FSM for a Simple Cache Controller
Figure 5.40 shows the four states of our simple cache controller:

■ Idle: Th is state waits for a valid read or write request from the processor,
which moves the FSM to the Compare Tag state.

■ Compare Tag: As the name suggests, this state tests to see if the requested read
or write is a hit or a miss. Th e index portion of the address selects the tag to
be compared. If the data in the cache block referred to by the index portion
of the address is valid, and the tag portion of the address matches the tag,
then it is a hit. Either the data is read from the selected word if it is a load or
written to the selected word if it is a store. Th e Cache Ready signal is then

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from cache
datapath

FIGURE 5.39 Finite-state machine controllers are typically implemented using a block of
combinational logic and a register to hold the current state. Th e outputs of the combinational
logic are the next-state number and the control signals to be asserted for the current state. Th e inputs to the
combinational logic are the current state and any inputs used to determine the next state. Notice that in the
fi nite-state machine used in this chapter, the outputs depend only on the current state, not on the inputs. Th e
Elaboration explains this in more detail.

468 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

■ Replication: When shared data are being simultaneously read, the caches
make a copy of the data item in the local cache. Replication reduces both
latency of access and contention for a read shared data item.

Supporting migration and replication is critical to performance in accessing
shared data, so many multiprocessors introduce a hardware protocol to maintain
coherent caches. Th e protocols to maintain coherence for multiple processors are
called cache coherence protocols. Key to implementing a cache coherence protocol
is tracking the state of any sharing of a data block.

Th e most popular cache coherence protocol is snooping. Every cache that has a
copy of the data from a block of physical memory also has a copy of the sharing
status of the block, but no centralized state is kept. Th e caches are all accessible via
some broadcast medium (a bus or network), and all cache controllers monitor or
snoop on the medium to determine whether or not they have a copy of a block that
is requested on a bus or switch access.

In the following section we explain snooping-based cache coherence as
implemented with a shared bus, but any communication medium that broadcasts
cache misses to all processors can be used to implement a snooping-based
coherence scheme. Th is broadcasting to all caches makes snooping protocols
simple to implement but also limits their scalability.

Snooping Protocols
One method of enforcing coherence is to ensure that a processor has exclusive
access to a data item before it writes that item. Th is style of protocol is called a write
invalidate protocol because it invalidates copies in other caches on a write. Exclusive
access ensures that no other readable or writable copies of an item exist when the
write occurs: all other cached copies of the item are invalidated.

Figure 5.42 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action. To see how this protocol ensures coherence,
consider a write followed by a read by another processor: since the write requires
exclusive access, any copy held by the reading processor must be invalidated (hence
the protocol name). Th us, when the read occurs, it misses in the cache, and the
cache is forced to fetch a new copy of the data. For a write, we require that the
writing processor have exclusive access, preventing any other processor from being
able to write simultaneously. If two processors do attempt to write the same data
simultaneously, one of them wins the race, causing the other processor’s copy to be
invalidated. For the other processor to complete its write, it must obtain a new copy
of the data, which must now contain the updated value. Th erefore, this protocol
also enforces write serialization.

 5.10 Parallelism and Memory Hierarchy: Cache Coherence 469

One insight is that block size plays an important role in cache coherency. For
example, take the case of snooping on a cache with a block size of eight words,
with a single word alternatively written and read by two processors. Most protocols
exchange full blocks between processors, thereby increasing coherency bandwidth
demands.

Large blocks can also cause what is called false sharing: when two unrelated
shared variables are located in the same cache block, the full block is exchanged
between processors even though the processors are accessing diff erent variables.
Programmers and compilers should lay out data carefully to avoid false sharing.

Elaboration: Although the three properties on pages 466 and 467 are suffi cient to
ensure coherence, the question of when a written value will be seen is also important. To
see why, observe that we cannot require that a read of X in Figure 5.41 instantaneously
sees the value written for X by some other processor. If, for example, a write of X on one
processor precedes a read of X on another processor very shortly beforehand, it may be
impossible to ensure that the read returns the value of the data written, since the written
data may not even have left the processor at that point. The issue of exactly when a
written value must be seen by a reader is defi ned by a memory consistency model.

Hardware/
Software
Interface

false sharing When two
unrelated shared variables
are located in the same
cache block and the
full block is exchanged
between processors even
though the processors
are accessing diff erent
variables.

FIGURE 5.42 An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches. We assume that neither cache initially holds X
and that the value of X in memory is 0. Th e CPU and memory contents show the value aft er the processor
and bus activity have both completed. A blank indicates no activity or no copy cached. When the second
miss by B occurs, CPU A responds with the value canceling the response from memory. In addition, both
the contents of B’s cache and the memory contents of X are updated. Th is update of memory, which occurs
when a block becomes shared, simplifi es the protocol, but it is possible to track the ownership and force the
write-back only if the block is replaced. Th is requires the introduction of an additional state called “owner,”
which indicates that a block may be shared, but the owning processor is responsible for updating any other
processors and memory when it changes the block or replaces it.

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache

Contents of
memory

location X

0

00XrofssimehcaCXsdaerAUPC

CPU B reads X Cache miss for X 0 0 0

01XrofnoitadilavnIXot1asetirwAUPC

CPU B reads X Cache miss for X 1 1 1

 5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory Hierarchies 471

 5.13 Real Stuff: The ARM Cortex-A8 and Intel
Core i7 Memory Hierarchies

In this section, we will look at the memory hierarchy of the same two microprocessors
described in Chapter 4: the ARM Cortex-A8 and Intel Core i7. Th is section is based
on Section 2.6 of Computer Architecture: A Quantitative Approach, 5th edition.

Figure 5.43 summarizes the address sizes and TLBs of the two processors. Note
that the A8 has two TLBs with a 32-bit virtual address space and a 32-bit physical
address space. Th e Core i7 has three TLBs with a 48-bit virtual address and a 44-bit
physical address. Although the 64-bit registers of the Core i7 could hold a larger
virtual address, there was no soft ware need for such a large space and 48-bit virtual
addresses shrinks both the page table memory footprint and the TLB hardware.

Figure 5.44 shows their caches. Keep in mind that the A8 has just one processor
or core while the Core i7 has four. Both have identically organized 32 KiB, 4-way
set associative, L1 instruction caches (per core) with 64 byte blocks. Th e A8 uses the
same design for data cache, while the Core i7 keeps everything the same except the
associativity, which it increases to 8-way. Both use an 8-way set associative unifi ed
L2 cache (per core) with 64 byte blocks, although the A8 varies in size from 128 KiB
to 1 MiB while the Core i7 is fi xed at 256 KiB. As the Core i7 is used for servers, it

Characteristic ARM Cortex-A8 Intel Core i7

Virtual address 32 bits 48 bits

Physical address 32 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 16 MiB Variable: 4 KiB, 2/4 MiB

TLB organization 1 TLB for instructions and 1 TLB
for data

Both TLBs are fully associative,
with 32 entries, round robin
replacement

TLB misses handled in hardware

1 TLB for instructions and 1 TLB for
data per core

Both L1 TLBs are four-way set
associative, LRU replacement

L1 I-TLB has 128 entries for small
pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware

FIGURE 5.43 Address translation and TLB hardware for the ARM Cortex-A8 and Intel
Core i7 920. Both processors provide support for large pages, which are used for things like the operating
system or mapping a frame buff er. Th e large-page scheme avoids using a large number of entries to map a
single object that is always present.

 5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory Hierarchies 473

advantage of this capability, but large servers and multiprocessors oft en have
memory systems capable of handling more than one outstanding miss in parallel.

Th e Core i7 has a prefetch mechanism for data accesses. It looks at a pattern
of data misses and use this information to try to predict the next address to start
fetching the data before the miss occurs. Such techniques generally work best when
accessing arrays in loops.

Th e sophisticated memory hierarchies of these chips and the large fraction of
the dies dedicated to caches and TLBs show the signifi cant design eff ort expended
to try to close the gap between processor cycle times and memory latency.

Performance of the A8 and Core i7 Memory Hierarchies
Th e memory hierarchy of the Cortex-A8 was simulated with a 1 MiB eight-way
set associative L2 cache using the integer Minnespec benchmarks. As mentioned
in Chapter 4, Minnespec is a set of benchmarks consisting of the SPEC2000
benchmarks but with diff erent inputs that reduce the running times by several
orders of magnitude. Although the use of smaller inputs does not change the
instruction mix, it does aff ect the cache behavior. For example, on mcf, the most
memory-intensive SPEC2000 integer benchmark, Minnespec has a miss rate for a
32 KiB cache that is only 65% of the miss rate for the full SPEC2000 version. For
a 1 MiB cache the diff erence is a factor of six! For this reason, one cannot compare
the Minnespec benchmarks against the SPEC2000 benchmarks, much less the even
larger SPEC2006 benchmarks used for the Core i7 in Figure 5.47. Instead, the data
are useful for looking at the relative impact of L1 and L2 misses and on overall CPI,
which we used in Chapter 4.

Th e A8 instruction cache miss rates for these benchmarks (and also for the
full SPEC2000 versions on which Minnespec is based) are very small even for
just the L1: close to zero for most and under 1% for all of them. Th is low rate
probably results from the computationally intensive nature of the SPEC programs
and the four-way set associative cache that eliminates most confl ict misses. Figure
5.45 shows the data cache results for the A8, which have signifi cant L1 and L2
miss rates. Th e L1 miss penalty for a 1 GHz Cortex-A8 is 11 clock cycles, while
the L2 miss penalty is assumed to be 60 clock cycles. Using these miss penalties,
Figure 5.46 shows the average miss penalty per data access.

Figure 5.47 shows the miss rates for the caches of the Core i7 using the SPEC2006
benchmarks. Th e L1 instruction cache miss rate varies from 0.1% to 1.8%,
averaging just over 0.4%. Th is rate is in keeping with other studies of instruction
cache behavior for the SPECCPU2006 benchmarks, which show low instruction
cache miss rates. With L1 data cache miss rates running 5% to 10%, and sometimes
higher, the importance of the L2 and L3 caches should be obvious. Since the cost
for a miss to memory is over 100 cycles and the average data miss rate in L2 is 4%,
L3 is obviously critical. Assuming about half the instructions are loads or stores,
without L3 the L2 cache misses could add two cycles per instruction to the CPI! In
comparison, the average L3 data miss rate of 1% is still signifi cant but four times
lower than the L2 miss rate and six times less than the L1 miss rate.

476 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

#include <x86intrin.h>
#define UNROLL (4)
#define BLOCKSIZE 32
void do_block (int n, int si, int sj, int sk,
 double *A, double *B, double *C)
{
 for (int i = si; i < si+BLOCKSIZE; i+=UNROLL*4)
 for (int j = sj; j < sj+BLOCKSIZE; j++) {
 __m256d c[4];
 for (int x = 0; x < UNROLL; x++)
 c[x] = _mm256_load_pd(C+i+x*4+j*n);
 /* c[x] = C[i][j] */
 for(int k = sk; k < sk+BLOCKSIZE; k++)
 {
 __m256d b = _mm256_broadcast_sd(B+k+j*n);
 /* b = B[k][j] */
 for (int x = 0; x < UNROLL; x++)
 c[x] = _mm256_add_pd(c[x], /* c[x]+=A[i][k]*b */
 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
 }

 for (int x = 0; x < UNROLL; x++)
 _mm256_store_pd(C+i+x*4+j*n, c[x]);
 /* C[i][j] = c[x] */
 }
}

void dgemm (int n, double* A, double* B, double* C)
{
 for (int sj = 0; sj < n; sj += BLOCKSIZE)
 for (int si = 0; si < n; si += BLOCKSIZE)
 for (int sk = 0; sk < n; sk += BLOCKSIZE)
 do_block(n, si, sj, sk, A, B, C);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

FIGURE 5.48 Optimized C version of DGEMM from Figure 4.80 using cache blocking. Th ese changes
are the same ones found in Figure 5.21. Th e assembly language produced by the compiler for the do_block function
is nearly identical to Figure 4.81. Once again, there is no overhead to call the do_block because the compiler inlines
the function call.

of A, B, and C. Indeed, lines 28 – 34 and lines 7 – 8 in Figure 5.48 are identical to
lines 14 – 20 and lines 5 – 6 in Figure 5.21, with the exception of incrementing the
for loop in line 7 by the amount unrolled.

Unlike the earlier chapters, we do not show the resulting x86 code because the
inner loop code is nearly identical to Figure 4.81, as the blocking does not aff ect the
computation, just the order that it accesses data in memory. What does change is
the bookkeeping integer instructions to implement the for loops. It expands from
14 instructions before the inner loop and 8 aft er the loop for Figure 4.80 to 40 and
28 instructions respectively for the bookkeeping code generated for Figure 5.48.
Nevertheless, the extra instructions executed pale in comparison to the performance
improvement of reducing cache misses. Figure 5.49 compares unoptimzed to
optimizations for subword parallelism, instruction level parallelism, and caches.
Blocking improves performance over unrolled AVX code by factors of 2 to 2.5 for
the larger matrices. When we compare unoptimized code to the code with all three
optimizations, the performance improvement is factors of 8 to 15, with the largest
increase for the largest matrix.

32x32 160x160 480x480 960x960

16.0

12.0

8.0

4.0

Unoptimized AVX AVX + unroll AVX + unroll +
blocked

–

1.7 1.5 1.3 0.8

6.4

3.5
2.3 2.5

14.6

6.6

4.7 5.1

13.6
12.7

11.712.0

G
FL

O
P

S

FIGURE 5.49 Performance of four versions of DGEMM from matrix dimensions 32x32 to
960x960. Th e fully optimized code for largest matrix is almost 15 times as fast the unoptimized version in
Figure 3.21 in Chapter 3.

Elaboration: As mentioned in the Elaboration in Section 3.8, these results are
with Turbo mode turned off. As in Chapters 3 and 4, when we turn it on we improve all
the results by the temporary increase in the clock rate of 3.3/2.6 # 1.27. Turbo mode
works particularly well in this case because it is using only a single core of an eight-
core chip. However, if we want to run fast we should use all cores, which we’ll see in
Chapter 6.

 5.14 Going Faster: Cache Blocking and Matrix Multiply 477

 5.15 Fallacies and Pitfalls 479

Th is mistake catches many people, including the authors (in earlier draft s) and
instructors who forget whether they intended the addresses to be in words, bytes,
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Having less set associativity for a shared cache than the number of cores or
threads sharing that cache.

Without extra care, a parallel program running on 2n processors or threads can
easily allocate data structures to addresses that would map to the same set of a
shared L2 cache. If the cache is at least 2n-way associative, then these accidental
confl icts are hidden by the hardware from the program. If not, programmers could
face apparently mysterious performance bugs—actually due to L2 confl ict misses—
when migrating from, say, a 16-core design to 32-core design if both use 16-way
associative L2 caches.

Pitfall: Using average memory access time to evaluate the memory hierarchy of an
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the
memory-stall time and the processor execution time, and hence evaluate the memory
hierarchy independently using average memory access time (see page 399).

If the processor continues to execute instructions, and may even sustain more
cache misses during a cache miss, then the only accurate assessment of the memory
hierarchy is to simulate the out-of-order processor along with the memory hierarchy.

Pitfall: Extending an address space by adding segments on top of an unsegmented
address space.

During the 1970s, many programs grew so large that not all the code and data could
be addressed with just a 16-bit address. Computers were then revised to off er 32-
bit addresses, either through an unsegmented 32-bit address space (also called a fl at
address space) or by adding 16 bits of segment to the existing 16-bit address. From
a marketing point of view, adding segments that were programmer-visible and that
forced the programmer and compiler to decompose programs into segments could
solve the addressing problem. Unfortunately, there is trouble any time a programming
language wants an address that is larger than one segment, such as indices for large
arrays, unrestricted pointers, or reference parameters. Moreover, adding segments
can turn every address into two words—one for the segment number and one for the
segment off set—causing problems in the use of addresses in registers.

Fallacy: Disk failure rates in the fi eld match their specifi cations.
Two recent studies evaluated large collections of disks to check the relationship
between results in the fi eld compared to specifi cations. One study was of almost
100,000 disks that had quoted MTTF of 1,000,000 to 1,500,000 hours, or AFR of
0.6% to 0.8%. Th ey found AFRs of 2% to 4% to be common, oft en three to fi ve
times higher than the specifi ed rates [Schroeder and Gibson, 2007]. A second study
of more than 100,000 disks at Google, which had a quoted AFR of about 1.5%, saw
failure rates of 1.7% for drives in their fi rst year rise to 8.6% for drives in their third
year, or about fi ve to six times the specifi ed rate [Pinheiro, Weber, and Barroso,
2007].

FIGURE 5.51 Summary of 18 x86 instructions that cause problems for virtualization
[Robin and Irvine, 2000]. Th e fi rst fi ve instructions in the top group allow a program in user mode to
read a control register, such as descriptor table registers, without causing a trap. Th e pop fl ags instruction
modifi es a control register with sensitive information but fails silently when in user mode. Th e protection
checking of the segmented architecture of the x86 is the downfall of the bottom group, as each of these
instructions checks the privilege level implicitly as part of instruction execution when reading a control
register. Th e checking assumes that the OS must be at the highest privilege level, which is not the case for
guest VMs. Only the Move to segment register tries to modify control state, and protection checking foils it
as well.

Problem category Problem x86 instructions

Access sensitive registers without
trapping when running in user mode

Store global descriptor table register (SGDT)
Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)
Push flags (PUSHF, PUSHFD)
Pop flags (POPF, POPFD)

When accessing virtual memory
mechanisms in user mode, instructions
fail the x86 protection checks

Load access rights from segment descriptor (LAR)
Load segment limit from segment descriptor (LSL)
Verify if segment descriptor is readable (VERR)
Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)
Far return to different privilege level (RET)
Far jump to different privilege level (JMP)
Software interrupt (INT)
Store segment selector register (STR)
Move to/from segment registers (MOVE)

Pitfall: Implementing a virtual machine monitor on an instruction set architecture
that wasn’t designed to be virtualizable.

Many architects in the 1970s and 1980s weren’t careful to make sure that all
instructions reading or writing information related to hardware resource
information were privileged. Th is laissez-faire attitude causes problems for VMMs
for all of these architectures, including the x86, which we use here as an example.

Figure 5.51 describes the 18 instructions that cause problems for virtualization
[Robin and Irvine, 2000]. Th e two broad classes are instructions that

■ Read control registers in user mode that reveals that the guest operating
system is running in a virtual machine (such as POPF, mentioned earlier)

■ Check protection as required by the segmented architecture but assume that
the operating system is running at the highest privilege level

To simplify implementations of VMMs on the x86, both AMD and Intel have
proposed extensions to the architecture via a new mode. Intel’s VT-x provides
a new execution mode for running VMs, an architected defi nition of the VM

 5.15 Fallacies and Pitfalls 481

484 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

5.1.4 [10] <§5.1> How many 16-byte cache blocks are needed to store all 32-bit
matrix elements being referenced?

5.1.5 [5] <§5.1> References to which variables exhibit temporal locality?

5.1.6 [5] <§5.1> References to which variables exhibit spatial locality?

5.2 Caches are important to providing a high-performance memory hierarchy
to processors. Below is a list of 32-bit memory address references, given as word
addresses.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

5.2.1 [10] <§5.3> For each of these references, identify the binary address, the tag,
and the index given a direct-mapped cache with 16 one-word blocks. Also list if each
reference is a hit or a miss, assuming the cache is initially empty.

5.2.2 [10] <§5.3> For each of these references, identify the binary address, the tag,
and the index given a direct-mapped cache with two-word blocks and a total size of 8
blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.

5.2.3 [20] <§§5.3, 5.4> You are asked to optimize a cache design for the given
references. Th ere are three direct-mapped cache designs possible, all with a total of 8
words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks.
In terms of miss rate, which cache design is the best? If the miss stall time is 25 cycles,
and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is
the best cache design?

Th ere are many diff erent design parameters that are important to a cache’s overall
performance. Below are listed parameters for diff erent direct-mapped cache designs.

Cache Data Size: 32 KiB

Cache Block Size: 2 words

Cache Access Time: 1 cycle

5.2.4 [15] <§5.3> Calculate the total number of bits required for the cache listed
above, assuming a 32-bit address. Given that total size, fi nd the total size of the closest
direct-mapped cache with 16-word blocks of equal size or greater. Explain why the
second cache, despite its larger data size, might provide slower performance than the
fi rst cache.

5.2.5 [20] <§§5.3, 5.4> Generate a series of read requests that have a lower miss rate
on a 2 KiB 2-way set associative cache than the cache listed above. Identify one possible
solution that would make the cache listed have an equal or lower miss rate than the 2
KiB cache. Discuss the advantages and disadvantages of such a solution.

5.2.6 [15] <§5.3> Th e formula shown in Section 5.3 shows the typical method to
index a direct-mapped cache, specifi cally (Block address) modulo (Number of blocks in
the cache). Assuming a 32-bit address and 1024 blocks in the cache, consider a diff erent

Consider the following address sequence: 0, 2, 4, 8, 10, 12, 14, 16, 0

5.13.1 [5] <§§5.4, 5.8> Assuming an LRU replacement policy, how many hits does
this address sequence exhibit?

5.13.2 [5] <§§5.4, 5.8> Assuming an MRU (most recently used) replacement policy,
how many hits does this address sequence exhibit?

5.13.3 [5] <§§5.4, 5.8> Simulate a random replacement policy by fl ipping a coin. For
example, “heads” means to evict the fi rst block in a set and “tails” means to evict the
second block in a set. How many hits does this address sequence exhibit?

5.13.4 [10] <§§5.4, 5.8> Which address should be evicted at each replacement to
maximize the number of hits? How many hits does this address sequence exhibit if you
follow this “optimal” policy?

5.13.5 [10] <§§5.4, 5.8> Describe why it is diffi cult to implement a cache replacement
policy that is optimal for all address sequences.

5.13.6 [10] <§§5.4, 5.8> Assume you could make a decision upon each memory
reference whether or not you want the requested address to be cached. What impact
could this have on miss rate?

5.14 To support multiple virtual machines, two levels of memory virtualization are
needed. Each virtual machine still controls the mapping of virtual address (VA) to
physical address (PA), while the hypervisor maps the physical address (PA) of each
virtual machine to the actual machine address (MA). To accelerate such mappings,
a soft ware approach called “shadow paging” duplicates each virtual machine’s page
tables in the hypervisor, and intercepts VA to PA mapping changes to keep both copies
consistent. To remove the complexity of shadow page tables, a hardware approach
called nested page table (NPT) explicitly supports two classes of page tables (VA ⇒ PA
and PA ⇒ MA) and can walk such tables purely in hardware.

Consider the following sequence of operations: (1) Create process; (2) TLB miss;
(3) page fault; (4) context switch;

5.14.1 [10] <§§5.6, 5.7> What would happen for the given operation sequence for
shadow page table and nested page table, respectively?

5.14.2 [10] <§§5.6, 5.7> Assuming an x86-based 4-level page table in both guest and
nested page table, how many memory references are needed to service a TLB miss for
native vs. nested page table?

5.14.3 [15] <§§5.6, 5.7> Among TLB miss rate, TLB miss latency, page fault rate, and
page fault handler latency, which metrics are more important for shadow page table?
Which are important for nested page table?

 5.18 Exercises 493

5.16 In this exercise, we will explore the control unit for a cache controller for a
processor with a write buff er. Use the fi nite state machine found in Figure 5.40 as a
starting point for designing your own fi nite state machines. Assume that the cache
controller is for the simple direct-mapped cache described on page 465 (Figure 5.40 in
Section 5.9), but you will add a write buff er with a capacity of one block.

Recall that the purpose of a write buff er is to serve as temporary storage so that the
processor doesn’t have to wait for two memory accesses on a dirty miss. Rather than
writing back the dirty block before reading the new block, it buff ers the dirty block and
immediately begins reading the new block. Th e dirty block can then be written to main
memory while the processor is working.

5.16.1 [10] <§§5.8, 5.9> What should happen if the processor issues a request that
hits in the cache while a block is being written back to main memory from the write
buff er?

5.16.2 [10] <§§5.8, 5.9> What should happen if the processor issues a request that
misses in the cache while a block is being written back to main memory from the write
buff er?

5.16.3 [30] <§§5.8, 5.9> Design a fi nite state machine to enable the use of a write
buff er.

5.17 Cache coherence concerns the views of multiple processors on a given cache
block. Th e following data shows two processors and their read/write operations on two
diff erent words of a cache block X (initially X[0] = X[1] = 0). Assume the size of integers is
32 bits.

P1 P2

X[0] ++; X[1] = 3; X[0] = 5; X[1] +=2;

5.17.1 [15] <§5.10> List the possible values of the given cache block for a correct
cache coherence protocol implementation. List at least one more possible value of the
block if the protocol doesn’t ensure cache coherency.

5.17.2 [15] <§5.10> For a snooping protocol, list a valid operation sequence on each
processor/cache to fi nish the above read/write operations.

5.17.3 [10] <§5.10> What are the best-case and worst-case numbers of cache misses
needed to execute the listed read/write instructions?

Memory consistency concerns the views of multiple data items. Th e following data
shows two processors and their read/write operations on diff erent cache blocks (A and
B initially 0).

P1 P2

A = 1; B = 2; A+=2; B++; C = B; D = A;

 5.18 Exercises 495

5.19 In this exercise we show the defi nition of a web server log and examine code
optimizations to improve log processing speed. Th e data structure for the log is defi ned
as follows:

struct entry {
int srcIP; // remote IP address
char URL[128]; // request URL (e.g., “GET index.html”)
long long refTime; // reference time
int status; // connection status
char browser[64]; // client browser name

} log [NUM_ENTRIES];

Assume the following processing function for the log:

topK_sourceIP (int hour);

5.19.1 [5] <§5.15> Which fi elds in a log entry will be accessed for the given log
processing function? Assuming 64-byte cache blocks and no prefetching, how many
cache misses per entry does the given function incur on average?

5.19.2 [10] <§5.15> How can you reorganize the data structure to improve cache
utilization and access locality? Show your structure defi nition code.

5.19.3 [10] <§5.15> Give an example of another log processing function that would
prefer a diff erent data structure layout. If both functions are important, how would you
rewrite the program to improve the overall performance? Supplement the discussion
with code snippet and data.

For the problems below, use data from “Cache Performance for SPEC CPU2000
Benchmarks” (http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/) for the
pairs of benchmarks shown in the following table.

a. Mesa / gcc
b. mcf / swim

5.19.4 [10] <§5.15> For 64 KiB data caches with varying set associativities, what are
the miss rates broken down by miss types (cold, capacity, and confl ict misses) for each
benchmark?

5.19.5 [10] <§5.15> Select the set associativity to be used by a 64 KiB L1 data cache
shared by both benchmarks. If the L1 cache has to be directly mapped, select the set
associativity for the 1 MiB L2 cache.

5.19.6 [20] <§5.15> Give an example in the miss rate table where higher set
associativity actually increases miss rate. Construct a cache confi guration and reference
stream to demonstrate this.

 5.18 Exercises 497

498 Chapter 5 Large and Fast: Exploiting Memory Hierarchy

§5.1, page 377: 1 and 4. (3 is false because the cost of the memory hierarchy varies
per computer, but in 2013 the highest cost is usually the DRAM.)
§5.3, page 398: 1 and 4: A lower miss penalty can enable smaller blocks, since you
don’t have that much latency to amortize, yet higher memory bandwidth usually
leads to larger blocks, since the miss penalty is only slightly larger.
§5.4, page 417: 1.
§5.7, page 454: 1-a, 2-c, 3-b, 4-d.
§5.8, page 461: 2. (Both large block sizes and prefetching may reduce compulsory
misses, so 1 is false.)

Answers to
Check Yourself

This page intentionally left blank

