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Abstract 
In this paper, we address the problem of efficiently manag

ing the relative power demands of a high-performance GPU 
and its memory subsystem. We develop a management ap
proach that dynamically tunes the hardware operating config
urations to maintain balance between the power dissipated in 
compute versus memory access across GPGPU application 
phases. Our goal is to reduce power with minimal perfor
mance degradation. 

Accordingly, we construct predictors that assess the on
line sensitivity of applications to three hardware utnables
compute frequency, number of active compute units, and 
memory bandwidth. Using these sensitivity predictors, we 
propose a two-level coordinated power management scheme, 
Harmonia, which coordinates the hardware power states 
of the GPU and the memory system. Through hardware 
measurements on a commodity GPU, we evaluate Harmo
nia against a state-of-the-practice commodity GPU power 
management scheme, as well as an oracle scheme. Re
sults show that Harmonia improves measured energy-delay 
squared (ED2) by up to 36% (12% on average) with negli
gible performance loss across representative GPGPU work
loads, and on an average is within 3% of the oracle scheme. 

1. Introduction 

Graphics processing units (GPUs) are now commonly used 
for data parallel applications that do not fit into the traditional 
graphics space. They have been shown to provide signifi

cant improvements in power efficiency and performance ef
ficiency for many classes of applications [3, 28, 21]. How
ever, while compute has been a major consumer of power in 

such systems, moving forward we see that the power spent 
in the memory system and in data movement will begin to 

become major, and sometimes dominant, components of plat

form power [29, 47]. For example, Figure 1 illustrates the 

power distribution in an AMD Radeon ™ HD7970 discrete 

GPU card (dGPU) executing a memory intensive workload 

XSBench [22]. This emerging redistribution of power con
sumption between compute and memory must operate un-
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Figure 1 :  Power breakdown in a typical modern discrete GPU 

card for a memory-intensive workload. 

der a fixed board level power and thermal envelope, while 
with the advent of on-package DRAM (e.g., die stacks and 

EDRAM) [43, 19, 26, 38], they must share an even tighter 
package power and thermal envelope. Therefore we argue 

that effective dynamic power redistribution between compute 
and memory will be key to energy and power efficiency for 

future high-performance GPUs. 

The underlying principle of our approach is to match the 
relative power consumption of GPU cores and the memory 
system, with the relative compute and memory demands of 

the applications. For example, the ops/byte value of an ap
plication (number of compute operations per byte of memory 

data transfer) represents the relative demand placed on the 

GPU cores and the memory system. Hardware tun abies such 
as the number of parallel cores, core operating frequency, 
and the memory bandwidth collectively capture the relative 

time and power cost of performing operations versus mem
ory accesses in the hardware platform. Ideally, the relative 
ops/byte demand of the applications matches the relative time 

and power costs of compute and memory hardware of the plat

form and we have a perfectly balanced system [9, 51], with
out wasted power and/or unexploited performance opportuni
ties. In reality, application behavior is time-varying, and the 

ops/byte costs of the platform depend on the values of the 

hardware tunables. For example, we studied the behavior of 
Graph500 [37] running on an AMDl Radeon HD7970 GPU 
card with GDDR5 memory [35]. Its ops/byte varies from 
lows of 0.64 ops/byte to bursts of 264 ops/byte. The high de

mand on ops/byte of the application implies the memory sys
tem can be run at lower speeds relative to compute with negli

gible performance degradation but significantly lower power. 

Hence, to retain the most power efficient operation, we need a 

runtime power management infrastructure that can coordinate 
power states of the processor (GPU) and the off-chip memory 
system so that they are in balance, or in "harmony". 

1 AMD, the AMD Arrow logo, and combinations thereof are trademarks 
of Advanced Micro Devices, Inc. Other product names used in this publi
cation are for identification purposes only and may be trademarks of their 
respective companies. 



In this paper, we propose Harmonia, a runtime scheme 
that adjusts the hardware tunabLes on a state-of-the-art, high

performance discrete GPU to baLance the power in the mem

ory system and GPU cores to match the desired ops/byte 

characteristics of a high performance computing (HPC) ap

plication. We show how such a baLance can reduce overall 
pLatform power with littLe compromise in performance. Our 

focus is on the HPC domain where applications are charac
terized by reLativeLy uncompromising demands for execution 
time performance, thereby pLacing stringent demands on im

provements in power and energy efficiency. 

Specifically, this paper makes the following contributions: 

• Through measurements on a modern GPU, we provide 
a characterization of representative high-performance and 

scientific computing applications with respect to their: i) 
operation intensity, and ii) performance sensitivity to three 

hardware tunabLes-the number of GPU compute units 
(CU), CU frequency, and memory bandwidth. 

• Based on this characterization, we derive online modeLs 
that predict performance sensitivity of appLication kerneLs 

to each of the preceding three hardware tunabLes. 
• We propose a coordinated two-LeveL power management 

scheme, Harmonia, to tune pLatform baLance between com

pute throughput and memory bandwidth by: i) a coarse
grain adjustment of the GPU and the memory power states 
based on online sensitivity prediction, ii) followed by fine

grain tuning through close-Loop performance feedback. 
• Using measurements from an impLementation on commod

ity hardware, we compare Harmonia to a commerciaL, state
of-the-practice power management aLgorithm, demonstrat

ing that up to 36% (average of 12%) improvements in 
energy-deLay-squared product (ED2) are feasibLe with min

imaL sacrifices in performance. In addition, we aLso show 
that Harmonia achieves to within 3% of an oracle scheme. 

The following section describes the state-of-the-art pLat-
form used in the measurements of the paper. The remainder 

of the paper successiveLy presents a detaiLed characterization 
of the pLatform, the performance sensitivity modeL, the Har

monia aLgorithm, and insights from the evaLuation. 

2. Background and Baseline System 

A GPU is a data paralleL execution engine consisting of coL
Lections of simpLe execution units or Arithmetic Logic units 
(ALUs), operating under the controL of a singLe instruction 
multipLe data (SIMD) stream partitions. There are modern 

programming Languages based on the buLk synchronous par
alleL (BSP) modeL, such as OpenCL and CUDA, taking ad

vantage of massiveLy paralleL GPU architectures. This paper 

utiLizes the OpenCL terminoLogy, although the concepts are 
appLicabLe to anaLogous eLements of CUDA. 

2.1. GPU Concurrency Model 

A host program launches a kernel consisting of a 2D/3D grid 

of workgroups where each workgroup is comprised of a block 
of workitems (threads). Workgroups share a block of local 
data storage (LDS) and vector and scalar general purpose reg

isters (VGPR and SGPR). Workitems within a workgroup are 
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Figure 2: AM D HD7970 GPU Architecture [35] . 

also grouped into sets of threads called wavefronts operating 
in lock step relative to each other. A wavefront is the basic 

unit of hardware scheduling. However, there are resources 
that are shared among workgroups. Conflicting resource de

mands and sharing in part govern the number of in-flight 
wavefronts and hence concurrent execution. 

2.2. GPU Hardware Architecture 

We use the AMD Radeon HD 7970 system as our test 
bed [35]. This platform is one of the "Southern Island" fam
ilies of AMD graphics processors, and is illustrated in Fig

ure 2. It features the AMD Graphics Core Next (GCN) archi
tecture and is paired with 3GB of GDDR5 memory organized 

using a set of six 64-bit duaL channel memory controllers 

(MC) with maximum bandwidth of 264GB/s. The processor 
contains up to 32 compute units or CUs with four SIMD vec

tor units in each CU. There are 16 processing eLements (PE) 

per vector unit, called ALUs, resulting in a single precision 

fused multiply-accumulate (FMAC) compute throughput of 
about 4096 GFLOPS. Each CU contains a single instruction 

cache, a scalar data cache, a 16KB Ll data cache and a 64KB 
local data share (LDS) or software managed scratchpad. All 

CUs share a single 768KB L2 cache. All CUs in the GPU 

share a common frequency domain and a voltage plane. 

2.3. GPU Power Management 

The HD7970 uses AMD PowerTune technology [1] to 
optimize performance for thermal design power (TDP)

constrained scenarios. The GPU adjusts power between the 

DPMO, DPMl and DPM2 power states shown in Table 1, 
based on power and thermal headroom avaiLability. It also aL
Lows for a boost state of 1 GHz at 1.19V suppLy voltage when 

there is headroom. This works well for managing compute 

power. However, very little power management exists for 
off-chip memory which shares the same platform-leveL power 
budget on current GPUs, and same on-die power and thermaL 

envelope in future GPUs that use 3D die-stacking [39]. 

2.4. Memory Power Management 

As can be seen in Figure 1, memory is a significant power 

consumer in the GPU. One way to change memory power is 

by dynamically adjusting the memory bus frequency, which 
controls the memory controller, GDDR PHY, and the DRAM 

devices. DRAM power can be further broken down into 
background, activation/pre-charge, read-write, and termina-



tion power. Changing memory bus frequency has a different 

impact on each of these components. Lowering bus frequency 
lowers background and PLL power, as well as memory con

troller and PHY power. On the other hand, it can increase 

read/write and termination energy due to longer intervals be
tween array accesses. Further, if frequency is slowed down 
to a point where memory latency can no longer be hidden 
through thread-level parallelism in the GPU, it can hurt per
formance significantly and increase the overall energy con
sumption of the platform. In this paper, due to hardware lim

itation, we use only memory channel (i.e., bus) frequency as 

the knob to manage memory power and memory bandwidth. 

I GPU DVFS state I Freq (MHz) I Voltage (V) I 
DPMO 300 0.85 

DPMl 500 0.95 

DPM2 925 1.17 

Table 1 :  AM D HD7970 GPU DVFS table. 

3. Motivation and Opportunities 

The compute throughput of the GPU is determined by the 
number of active CUs and their operating frequency. Simi
larly, memory bandwidth is determined by the frequency of 

the memory bus. Our goal is to strike the right balance be
tween the settings for compute throughput and memory band

width as determined by application characteristics. Towards 
this end, this section presents a characterization of the rela
tionship between application behaviors and the settings for 
compute throughput and memory bandwidth. 

3.1. Experimental Methodology and Terminology 

In the AMD Radeon HD 7970, the number of active CUs is 
adjustable from 4 to 32, and the CU frequency can be varied 

from 300MHz to IGHz, in steps of 100MHz. We call a spe

cific setting of the CU count and CU frequency as the com
pute configuration. Memory bandwidth can be varied from 

90GB/s (at 475MHz bus frequency) to 264GB/s (at 1375MHz 

bus frequency), in steps of 30GB/s (l50MHz). A specific set

ting is called the memory configuration. The total number of 
combinations of compute and memory configurations is ap

proximately 450. Each combination reflects a specific value 
of ops/byte that the platform hardware can deliver. It also 

reflects a specific balance between power devoted to com

pute and memory. Significant imbalance between demanded 
ops/byte of the application and what the platform delivers can 
result in longer execution time and/or energy inefficiencies. 

3.2. Performance-Power Scaling and Hardware Balance 

Figure 3 shows the normalized measured performance of 

three different applications: a) MaxFlops, b) DeviceMemory, 
and c) LUD. Among them, MaxFlops and DeviceMemory are 
benchmarks from the SHOC suite [12] that are conunonly 

used in the GPGPU cOlmnunity to stress the GPU hardware 

against its compute and memory limits, respectively. LUD is 
a representative scientific application from the Rodinia bench

mark suite [6, 7] that performs matrix decomposition. The 

X-axis shows the ops/byte provided by the hardware. Each 
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curve in the figures corresponds to a fixed memory configu

ration. Each point on the curve is a different compute con
figuration with increasing CU frequency and number of CUs 

as we move to the right (i.e., increasing ops/byte of the plat

form). The Y-axis shows performance (i.e., lIexecution time). 
Both the X and Y axes are normalized to those of a minimum 

hardware configuration with 4 active CUs, 300MHz compute 
frequency and 90GB/s memory bandwidth. 

MaxFlops is a compute-bound application. As we can see 

from Figure 3(a), increasing compute throughput results in 
linear increase in performance for a fixed memory bandwidth. 

Also, for the same compute-to-memory bandwidth ratio in 
the platform (i.e. same ops/byte value on the x-axis), higher 

available memory bandwidth means higher available compute 
throughput and hence higher performance for this benchmark. 

However, it is clear that maximum performance (at 27 nor

malized performance on Y-axis) is achieved at multiple mem

ory configurations. All these points are at the same com
pute configuration-maximum 32 CUs and maximum IGHz 
compute frequency. However, the most energy-efficient point 

is the rightmost point at 27 normalized ops/byte of x-axis, 

which corresponds to the lowest memory bandwidth. This is 
because MaxFlops is not memory sensitive-running at the 

lowest memory bandwidth does not hurt performance, but sig

nificantly improves energy efficiency. 

Now consider the memory-bound application DeviceMem
ory in Figure 3(b). We observe that for each value of memory 
bandwidth, increase in compute throughput does not lead to 

improved performance beyond a hardware ops/byte of around 

4.0. This is because performance is eventually limited by the 

memory bandwidth as we increase compute throughput by 

increasing the number of CUs and CU frequency. Hardware 
configurations with normalized ops/byte of ,,-,4.0 are balanced 
configurations where compute throughput just saturates the 
available memory bandwidth. Each memory configuration 

has a different balance point (the knee of the curve) corre
sponding to a specific compute configuration. The optimiza

tion problem is the selection of the specific balance point that 

maximizes power and energy efficiencies with minimal im
pact on performance. Any other combination of compute and 

memory configurations either wastes power and/or leaves ad
ditional performance gains unexploited. 

Finally, in Figure 3(c) we show the behavior of LUD. 
The application may be compute-bound or memory-bound 
depending on the choice of compute and memory configu

rations. For higher values of memory bandwidth, the ap
plication remains compute bound across all configurations. 
For such applications, the best hardware balance point cor

responds to the configuration that is the highest and right

most. For LUD, this is achieved when normalized hardware 
ops/byte is at around 15, where compute throughput most ef

fectively matches memory bandwidth demands. 

In general, the optimal hardware balance point varies 

across applications and application phases. It also varies 
across different hardware platforms. The techniques we pro
pose in this paper dynamically adapt the hardware platform 
characteristics to match the runtime ops/byte behavior of the 
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Figure 3: Hardware balance points for: (a) MaxFlops, (b) Dev;ceMemory, and (c) LUD. 

applications. The result is reduction of unnecessary power 
(i.e., power that has little impact on performance). 

3.3. Power Reduction Opportunities 

We characterize the power reduction opportunities by examin

ing the effect of changing the platform ops/byte by: i) chang
ing the compute configuration for a fixed memory (band
width) configuration, and ii) changing the memory configura

tion for a fixed compute (throughput) configuration. We mea

sure total power of the graphics card using the setup described 
in Section 6. Results are normalized to the power of a min

imum hardware configuration with 4 active CUs, 300MHz 
compute frequency, and 90GB/s memory bandwidth. 

In Figure 4, the X-axis indicates the available ops/byte 

in hardware under a constant maximum memory bandwidth 
of 264GB/s (i.e., fixed memory configuration). The Y-axis 

shows the impact of changes in compute configuration on 
overall board power for the memory-intensive DeviceMemory 
benchmark. Each set of points represents a CU count (4 to 32) 
and each point in a set shows increasing CU frequency. We 
see that normalized board power varies by about 70% across 

all compute configurations. This could be greater when oper
ating at less power intensive memory configurations. 

Figure 5 shows variation of board power across mem

ory configurations for a maximum compute configuration 

(32 CUs and 1 GHz frequency) for the compute-intensive 

MaxFlops benchmark. Each point corresponds to one value 
of memory bandwidth. We see about a lO% power variation 
between operating at the lowest memory bus frequency of 

475MHz (90GB/s) compared to the memory bus frequency 
of 1375MHz (264 GB/s). Note that the memory bandwidth 

variation is perfonned at a fixed voltage as the memory sys

tem voltage could not be controlled in our experimental setup. 

Therefore, the differences would actually be greater if we are 
able to scale memory bus voltage according to bus frequency. 

The potential percentage power savings would also be greater 
for less power intensive compute configurations. 

3.4. Metrics 

We note that HPC applications demand minimal degradations 

in execution time. Consequently, our goal is to minimize en

ergy expenditure while keeping execution time constant (at 
best). This can be achieved by improving energy efficiency 

(ops/joule). Under a fixed execution time constraint it is 
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Figure 5: MaxFlops's GPU card power across memory band

width configurations at 32CUs and 1 GHz compute frequency. 

equivalent to improving power efficiency. To capture this 
relative importance of both time and energy, we can utilize 
metrics of energy-delay (ED) and energy-delay square (ED2). 
The latter in particular is commonly used in HPC application 

analysis [30, 49]. Here D means the actual time of kernel ex

ecution. In current technologies where leakage power can be 
a significant fraction of the total power, ED2 captures effects 
of changes in both performance (Delay) and voltage. 

Figure 6 shows the following analysis of the behavior of 

these metrics. We perform an exhaustive design space explo
ration across all 450 hardware configurations for LUD and 
DeviceMemory searching for the configurations that: i) mini

mize energy, ii) minimize ED2, or iii) maximize performance, 
as indicated by the three bars in each group of columns. For 

each of these three configurations, we note the correspond
ing measured performance, energy, ED2, and ED. All results 



2.00 

1.50 

1.00 

0.50 

0.00 

2.00 

1.50 

1.00 

0.50 

0.00 

• best energy • best ED"2 • best performance 

WD 

higher is better lower is better 

11 1.1 
Performance Energy 

DeviceMemory 

higher is better lower is better 

11 11 
Performance Energy 

5.75 

lower is better 

Energy·Delay"2 Energy·Delay 

4.21 

ower is better 

11 11 
Energy·Delay"2 Energy·Delay 

Figure 6: Performance, energy, energy-delay2
, and energy

delay comparisons for LUD and DeviceMemory. Energy op

timality leads to significant performance impact. 

are normalized relative to the best performing configuration. 

We find that the configuration optimizing for energy (1st bar) 
would result in 69% and 66% performance loss for LUD and 
DeviceMemory, respectively, compared to the best perform

ing configuration (3rd bar). On the other hand, the configura

tion optirnizing for ED2 (2nd bar) has only 1 % performance 
penalty, but still realizes 60% and 38% reduction in energy 
compared to the energy optimized case. For the rest of the pa
per, we use ED2 as the main metric for evaluation motivated 
by its wide usage in HPC application analysis [30, 49] and 
note that using ED here yields similar conclusions. 

3.5. Compute & Memory Bandwidth Sensitivity Analysis 

The preceding subsections describe the scope of impact of 
hardware tunables on power and performance. To develop 

an online technique to effectively set these tunables we must 
understand the sensitivity of performance metrics to changes 
in values of these tunables. The sensitivity of performance 
to a hardware tunable is computed as the ratio of the relative 

change in the performance metric to the relative change in 

the corresponding values of the hardware tunable. Due to 
space limitation, we only present the most relevant data from 
a few representative applications and their kernels which have 
a variety of phases within a GPGPU application. 

Kernel Occupancy and Latency Hiding. Kernel occu

pancy is a measure of concurrent execution and the utiliza

tion of the hardware resources (e.g., LDS, SGPRs and VG
PRs), as discussed in Section 2.2). Figure 7 shows mem
ory bandwidth sensitivity of kernel occupancy measured on 
HD7970 for Sort.BottomScan from the SHOC benchmark 
suite, and CoMD.AdvanceVelocity from the exascale proxy 

applications [22]. Here, Sort.BottomScan has a kernel oc

cupancy of only 30%. The limiting factor is the number of 
VGPRs used. The VGPRs needed per wavefront is more 

than 25% (66) of the total number of available VGPRs (256), 
hence only 3 simultaneous wavefronts per SIMD unit (instead 
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Figure 8: Impact on compute frequency sensitivity from load 

imbalance (branch divergence) and no. of instructions. 

of a maximum 10) or 12 per CU can be in-flight concurrently. 

This leads to less sensitivity to memory bus frequency due 
to less degree of parallelism for Sort.BottomScan. On the 

other hand, CoMD.AdvanceVelocity has 100% kernel occu
pancy because the VGPR is not a limiting resource, leading 

to increased memory level parallelism and sensitivity to mem
ory bandwidth. 

Load Imbalance Due to Branch Divergence and Ker

nel Complexity. Control divergence causes thread seri
alization which can severely degrade performance. Prior 

works [36, 42] have shown that performance is sensitive to 

compute frequency for such workloads since it speeds up se
rial thread execution and shortens the overall execution time. 

However, frequency sensitivity cannot be inferred by branch 
divergence measures alone. Low divergence in large ker

nels can have a significant impact, while large divergence 

in small kernels (i.e., less number of dynamic instructions) 

may have little impact. Figure 8 shows compute frequency 
sensitivity for SRAD.Prepare and Sort.BottomScan, from Ro
dinia and SHOC benchmark suites respectively. The first set 

of bars indicates branch divergence and the second set in
dicates measured compute frequency sensitivity. While the 

SRAD.Prepare kernel has about 75% branch divergence, it 
has only 8 ALU instructions, making this kernel's impact 

on application performance less sensitive to compute fre
quency and more dominated by other overheads. However, 
Sort.BottomScan has only 6% branch divergence across over 
2 million instructions, leading to significant thread serializa

tion effects and load imbalances, and thus high sensitivity to 

compute frequency. 

Architectural Clock Domains. Finally, we note that chip

scale global interactions between multiple clock domains can 
create non-obvious sensitivities. In our case, the GPU L2 
cache (using the compute clock) and the on-chip memory 
controller (using the memory clock) are in different clock 
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Figure 9: Impact of clock domains on compute frequency sen

sitivity for memory-intensive workloads. 

domains. Reducing compute frequency reduces the rate at 
which requests are delivered from the L2 cache to the mem

ory controller clock domain. For extremely memory-bound 
benchmarks with very poor L2 hit rates, slowing down the 
compute frequency can hurt overall performance. The left 

column in Figure 9 shows off-chip interconnect activity (icAc
tivity) for DeviceMemory. This application has an ops/byte 
demand of '"'-'4.0 with poor cache hit rate in the L2, which 

would otherwise make this kernel memory bound. However, 

the right column in Figure 9 indicates its high sensitivity to 
compute frequency, especially when compute frequency is 
low since the effective bandwidth to the DRAM is reduced. 

In summary, achieving hardware balance requires periodi

cally assessing the sensitivity of performance to the hardware 

tunables accompanied by proportional changes to the values 

of the hardware tunables. The next section describes the de

velopment of sensitivity predictors for this purpose. 

4. Compute and Memory Sensitivity Predictors 

We develop models to predict the sensitivity of the application 

to compute throughput (set by active CV count and CV fre
quency) and memory bandwidth (set by memory frequency) 

configurations. The predictors are developed based on mea

surement data from a wide range of simple and complex appli

cations with one or many kernels for a total of 25 application 
kernels representing a variety of behaviors common in the do

main of HPC and scientific computing (see Section 6). 

4.1. Performance Sensitivity Measurements 

We execute the kernels and applications multiple times for 

multiple iterations across the entire design space of compute 
and memory configurations states described in Section 3.1. 

For each hardware configuration, we measure average execu
tion time for each kernel across all the iterations. Sensitivity 

is computed for each hardware configuration. CV sensitiv
ity is computed as the ratio of: i) relative change in execu

tion times, to ii) relative change in number of active CVs. 
CV frequency and memory bandwidth are set to their max

imum possible values in the hardware so that they are not the 
limiting factors. Sensitivities to CV frequency and memory 

bandwidth are similarly computed. Finally, the sensitivity to 

the number of CVs and CV frequency are aggregated into a 
single compute throughput sensitivity metric. The sensitivity 

models are then derived from these measurements as follows. 
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4.2. Performance Counter Correlation 

Together with performance, we record an average of 50+ per
formance counters over all iterations of each kernel and appli

cation, resulting in one data point for every counter for each 
kernel at every hardware configuration. The counter selec
tion is motivated by insights from Section 3.5. We normalize 

all counter values to a percentage of its maximum possible 

value in order to ensure proper weighted representation of all 
events in the training data. For a total of 25 kernels, this re

sults in a total of 11250 vectors of performance counter values 

(25x450). We find that among multiple application kernels 

the performance counters vary quite a bit as expected. How
ever, for the same kernel in an application with the same input 

set across multiple hardware configurations, there are gener
ally only small variations around the nominal values. There

fore, each performance counter value for a kernel is replaced 
by its average value across all hardware configurations. This 

enables us to reduce the total training data set to 2000 points 
across all kernels. Each such vector is associated with its 
corresponding compute throughput sensitivity and memory 

bandwidth sensitivity. 

1 Counter or Metric 1 Description 

V ALUUtilization Percentage of active vector ALU threads in a 
wave, indicates branch divergence 

MemUnitBusy Percentage of total GPU time the memory 
fetch/read unit is active, including stalls and 
cache effects 

MemUnitStalled Percentage of total GPU time the memory 
fetch/read unit is stalled 

WriteUnitStalled Percentage of total GPU time memory 
write/store unit is stalled 

NormVGPR Number of general purpose vector registers 
used by the kernel, normalized by max 256 

NormSGPR Number of general purpose scalar registers 
used by the kernel, normalized by max 102 

icActivity Off-chip interconnect bus utilization between 
GPU L2 and DRAM 

Compute-to-Memory Ratio of the time the vector ALU unit 
Intensity (C-to-M is busy processing active threads (VAL-
Intensity) UBusy*V ALUUtilization) to the time the 

memory unit is busy (MemUnitBusy), nor-

malized to 100 

Table 2: Performance counters and metrics. 

Bandwidth Sensitivity 11 Compute Sensitivity 

Counter or Metric Coefficient Counter or Metric 

Intercept -0.42 Intercept 

VALUUtilization 0.003 C-to-M Intensity 

WriteUnitStalled 0.011 NormVGPR 

MemUnitBusy 0.01 NormSGPR 

MemUnitStalled -0.004 

icActivity l.003 

NormVGPR 1.158 

NormSGPR -0.731 

Table 3: Sensitivity model parameters. 

4.3. Sensitivity Predictor Creation 

Coefficient 

0.06 

0.007 

0.452 

0.024 

Across the 2000 points, we perform a correlation analy
sis between measured sensitivities and performance counters 

across all kernels using linear regression. Coefficient values 



greater than 0.5 or less than -0.5 are considered a strong posi
tive or negative correlation, respectively [4]. From correlation 

analysis, we select a few counters to capture behaviors identi

fied in Section 3.5 that have a substantive impact on sensitivi
ties, as shown in Table 2. These are used to construct a linear 
regression model for compute throughput and memory band
width sensitivity. The correlation coefficient using this com

bination of metrics is 0.91 for compute throughput sensitivity 
and 0.96 for bandwidth sensitivity respectively. Accuracies 

of these predictors are discussed in Section 7.2. Table 3 rep

resents the coefficients of the linear regression models. Two 

metrics are not directly available in hardware performance 
counters, and are calculated as follows. 

Read Write Mem BW 
icActivitity = - - - , where (1) 

Peak_Mem_BW 

Peak_Mem_BW = Mem_Frequency * Bus_Width 

* #Mem_Channels 

* CDDR5_Transfer _Rate (2) 

To determine C-to-M intensity of an application online, we 
use the following metric: 

C 
. % time CPU is busy processing active ALU operations 

- to - M lntenslly = --------'--'------=--------''-----...,-
% time CPU is busy processing memory operations) 

(V ALU Busy * V ALU U t ilizat ion) / 100 

MemUnitBusy 
(3) 

We believe principles of hardware balance and coordinated 
management are portable across platforms. Therefore, we ex
pect the methodology is portable since most platforms pro

vide similar classes of counters. 

5. Harmonia: Two-Level Power Management 

Based on the preceding analysis, we find that an effective 

approach to achieving hardware balance involves two steps: 

i) employing sensitivities to the hardware tunables to make 
larger adjustments to the hardware configurations, and ii) fine 

tuning the configurations based on performance feedback to 
further improve hardware balance. We refer to the former as 
coarse-grain (CG) tuning and the latter as fine-grain (FG) tun

ing. As the number of hardware power configurations grows 
in future processors we expect such coarse-fine schemes will 

be increasingly effective. Algorithm 1 specifies Harmonia. 

5.1. Harmonia: Structure 

Harmonia operates as a system software policy overlaid on 

top of the baseline HD7970 power management system. As 
described in Section 2, the baseline policy manages power 
to just the power states mentioned in Section 2.3. Our 

implementation is organized into: i) a monitoring block 
that samples the performance counters at application kernel 

boundaries, ii) a coarse-grain decision block CG that calcu
lates memory bandwidth and compute throughput sensitivi

ties based on Table 3 and brings the hardware configuration 
to the "vicinity" of the balance point, and iii) a fine-grain tun

ing block FG that fine-tunes configurations to further improve 
balance, based on real time performance feedback. Although 
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the monitoring and decision blocks of Harmonia can operate 
at periodic small intervals, due to performance counter limi

tations in the current device, we monitor and calculate sensi

tivities at kernel boundaries and use each kernel's historical 
data from previous iterations to predict hardware configura
tions for the same kernel in the next iteration. For applica
tions that use iterative convergence algorithms and invoke the 

entire application with multiple kernels multiple times, Har

monia records the last best hardware configuration for all ker
nels within that application. This state is the initial state for 

the subsequent iteration. Such iterative behaviors are quite 

conunon in HPC and scientific applications. 

5.2. Harmonia: Algorithm 

Within the CG block, all three tunables are concurrently ad
justed in SetCU-Freq-MemBW (). Sensitivity is computed for 

each tunable using weighted linear equation per Table 3, and 
binned into three bins of high, medium, and low. Each bin is 

associated with a specific empirically fixed high, medium, or 

low value of the tunable sensitivity (i.e., core-frequency, CV, 

memory-BW). In our case, the three bins are set to <30%, 
30%-70%, and >70%. The change in actual values of the 

hardware tunables is proportional to the sensitivity value. Pe
riodic enforcement of hardware configurations can artificially 

change sensitivities and dampen natural workload behavior. 

To prevent this and isolate sensitivity changes due to work

load from those due to changes in the hardware tunables, we 
only execute CG when there have been no changes in the hard

ware tunables prior to the sensitivity change. 

Harmonia's FG block fine-tunes each of the hardware tun

ables based on performance feedback through the gradient of 

core utilization. The idea is to reduce power when the gra
dient is positive or zero and increase power when the gradi

ent is negative so as to eventually settle at the balance point 

(minimum configuration with zero gradient). To prevent os
cillation, the configuration is set to the last best state after a 

certain number of oscillations to enable convergence prior to 
the next workload phase. We found that changes in the VAL
UBusy performance counter (i.e., percentage of time process
ing vector-ALV instructions) are a good proxy for changes 

in "overall" performance. If sensitivity for any tunable does 
not change between two subsequent iterations, the FG step 

is invoked to change that tunable by one step-size at a time 

(core step=lOOMHz, memory BW step=30GB/s, CV step=4, 
defined in Section 3.1). All tunables can be fine-tuned con

currently. FG adjustments occur continuously as long as per

formance improves or stays same (as evidenced by changes 

in VALUBusy). If performance starts to degrade, FG isolates 
the responsible tunable and reverts it to previous value. The 
control-loop seeks to settle at the minimum value of the tun

abies minimizing power without hurting performance. 

6. Experimental Setup 

We use an AMD Radeon HD7970 discrete graphics card with 
32 compute units as the baseline for all our experiments and 

analysis. The possible hardware configurations are provided 
in Section 2.3. In our analysis, there are 450 possible combi-



while TRUE do 
IIMonitoring Loop 

end 

liOn line Sensitivity Computation Loop 
Compute Throughput Sensitivity = model!; 

Bandwidth Sensitivity = model2; 

Bin sensitivities to HIGH, MED, LOW; 

IICoarse-Grained Thning (CG Block) 
if sensitivity changed then 

end 
else 

end 

if CU or compJreq or memJreq changed in previous iterations then 

I 
Revert_prev_decisionO; Ilsensitivities artificially changed due to 
configuration change 

end 
else 

I 
IIApplication phase change 
SeICU_Freq_MemBW(sensitivity_bin); 

end 

IICase of same sensitivities 
IIFine-Grained Thning (FG Block) 
if VALUBusy gradient >= 0 then 

I Decrement state; IICU, CU_Freq, or Mem_BW 
end 
else 

end 

if VALUBusy gradient < 0 then 
Increment state; 
CountDitheringO; 

end 

if dithering> max then 
I converge to last state with zero gradient; 

end 

Run at config identified; 
Sleep,time(SAMPLING_INTERVAL); 

Algorithm 1: Pseudo Code of Harmonia, 

nations of the number of active CUs, compute frequency, and 

memory bus frequency as described in Section 3,1, When 

varying compute frequency, voltage is also scaled as noted 
in Table 1, When scaling memory bus frequency, voltage 
is fixed at the hardware default value due to platform con
straints, All inactive CUs are power gated, Hardware perfor
mance counters are monitored using the GPU performance 

counter library CodeXL running in Red Hat Linux OS [10], 

We implement Harmonia as a run-time system software pol
icy by layering it on top of the baseline AMD HD7970 power

management system, 

We select 14 applications with many kernels, covering a 

wide range of typical applications to reflect the needs of 
the HPC and scientific computing community, Targeting the 

HPC community and the ability to stress compute or memory 
motivated our selections. They include Exascale HPC proxy 

apps ( CoMD, XSBench, miniFE) [5] [22], Graph500 [37], 

B+ Tree (BPT) [11], CFD, LUD, SRAD and Streamcluster 
from Rodinia [6, 7], and Stencil, Sort, SPMV, MaxFlops and 
DeviceMemory from SHOC [12], We run each application 
multiple times and recorded the average to eliminate run-to

run variance in our hardware measurements, 

We measure performance as the total execution time of the 
application running on the GPo' Power is profiled using a 

National Instruments data acquisition (DAQ) card (NI PCIe-
6353), with a sampling frequency of 1KHz, Total GPU card 

power (GPUCardPwr) is measured at the PCI-e connector in
terface between the motherboard and the GPU card and it in

cludes power of the GPU chip, its on-chip memory controller, 
DDR bus transceivers (PHY s), off-chip GDDR5 memory, fan, 
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voltage regulators, and other miscellaneous components on 
the card, We also separately measure the GPU chip power 

(GPUPwr) which includes power of the GPU compute, inte

grated memory controller, but not the phys. Through detailed 
measurements and evaluation under idle conditions, we char

acterize the "rest of the card power" (OtherPwr) as power due 
to the fan, voltage regulators, board trace losses, and other 
minor discrete components. To ensure a constant OtherPwr, 
we fix the fan speed to the highest RPM at all times, inde

pendent of the workload. Based on these measurements, we 

derive memory power (MemPwr) as the power consumed by 

off-chip memory and DDR PHY s that are integrated within 

the GPU chip, Due to platform measurement constraints, 
memory controller power is not included in measured mem

ory power, instead it is part of GPUPwr, but it accounts for 
only about 3% of the overall memory power in our case, 

MemPwr = GPUCardPwr- GPUPwr- OtherPwr (4) 

7. Results 

All results are obtained from cOlmnodity hardware and are 
normalized to the baseline HD7970 power management sys
tem discussed in Section 2,3, All averages represent the geo
metric mean across the applications. Finally, we also com

pare Harmonia with an oracle scheme optimized for ED2 

based on exhaustive online profiling of every iteration of each 

kernel across all of the 450 possible hardware configurations 

(see Section 3.1). While the oracle technique provides a use
ful basis for evaluation, it is impractical to implement. 

7.1. Performance , Power, and Energy Efficiency 

Figures 10 through 12 illustrate improvements in ED2, energy, 

and power respectively relative to the baseline and the oracle. 

In addition, we also demonstrate the performance of just CG 

tuning. Harmonia is represented by the "FG+CG" bars. Due 
to the consistent availability of thermal headroom, the base

line power management always runs at the boost frequency 

of IGHz for all applications. We show two geometric means 
to ensure results are not skewed by the stress benchmarks 

MaxFlops and DeviceMemory, which represent extreme cases 
of compute and memory limiting respectively, Geomean_2, 

which is the last set of bars, excludes those two stress bench
marks, Harmonia realizes an average ED2 improvement of 
12% compared to the baseline, with up to 36% savings in BPT. 
Of this 12% ED2 savings, about 6% is due to CG tuning, with 
the remaining from the fine-grain tuning, In addition, Har

monia is typically within 3% of the oracle. Interestingly, we 
observe that the energy savings is almost identical between 

the CG and FG+CG schemes, with a contribution of only 2% 
coming from the FG loop. However, FG tuning is important 

for preserving performance as described next. 

We observe an average power savings of 12% across the 
entire GPU card, with a maximum savings of 19% for Sten
cil, During application phases less sensitive to memory band
width such as EAM_Force_l in CoMD, reducing memory bus 

frequency just enough without increasing memory-related 
stalling and exposing memory access latency results in reduc-
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Figure 1 1 :  O verall energy gain from Harmonia. 

tion of memory bus power and thereby savings of the overall 

board power-GPUCardPwr. Notice that more memory power 

saving would be possible if HD7970's memory interface sup

ports multiple voltages. On the other hand, AdvanceVelocity 
in CoMD is memory intensive with moderate compute de
mands and Harmonia finds the balance points by reducing 
compute power without performance loss. Similarly, due to 

poor thread-level parallelism (kernel occupancy of 30%) in 

BottomScan, the main kernel in Sort, the memory bus fre
quency can be reduced down to 475MHz without hurting per

formance with a 12% overall GPU card power savings. In 

some cases, power savings can be a bit worse in FG+CG than 
in CG, as Harmonia puts more emphasis on performance. 

In Figure l3 we see an average loss in performance of 
0.36% across all the applications using Harmonia (FG+CG) 

excluding MaxFlops and DeviceMemory, with up to 3.6% 
maximum slow-down in Streamcluster due to the edge effect 

of sensitivity binning (i.e., narrowly missing the HIGH bin). 

This illustrates the efficacy of Harmonia in optirnizing energy 
efficiency under performance constraints by pushing the hard
ware to operate at its balance for each application's kernel. 
We also note that employing CG tuning alone results in an 

average performance loss of 2.2% compared to the baseline, 
with up to 27% maximum slow-down for Streamcluster. This 

is due to the lack of any performance feedback in CG tun

ing. Thus, while the use of CG tuning alone achieves energy 
savings comparable to Harmonia, the performance-driven FG 

tuning loop ensures much better performance across all appli
cations and avoids outliers resulting in better overall ED2. 

There are three applications that are worth noting here. 

They are BPT, CFD, and XSBench. These applications see 
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Figure 1 3: Overall performance from Harmonia. 

an improvement in performance with Harmonia. BPT sees an 

11 % performance gain, while CFD and XSBench each real
ize 3% performance improvement. In the baseline hardware 
configuration, we observe heavy cache thrashing and pollu

tion accompanied by significant memory divergence. Thus, 

lowering the number of active CUs via power gating also im
proves performance by reducing interference in the L2 cache. 

Harmonia captures the optimal compute to memory balance 
point via the sensitivity to CU count for these applications. 

7.2. Adaptation Behavior 

In this section, we explain the adaptation behavior of Harmo

nia in response to workload changes. 

Intra-kernel Phase Changes: Figure 14 illustrates the 
time-varying workload behavior of the main kernel Bottom
Step up in Graph500. The Y-axis indicates the total number of 

compute instructions (VALUInsts), memory reads (VFetchIn
sts) and memory writes (VWriteInsts) executed in eight suc
cessive iterations, each iteration lasting anywhere from 0.9 to 
5.6 seconds. This kernel is performing a breadth-first search. 
Note that the raw total number of instructions across itera
tions can vary significantly. 

The memory fetch unit is active anywhere from 40% to 
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Figure 1 4: Behavior of Graph500.BottomStepUp over time. 
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Figure 1 6: Residency of the hardware tunables in Graph500. 

80% of the total kernel execution time. The compute sensitiv
ity is high 9S% of the time and branch divergence is signif
icant. As a result Harmonia mostly utilizes all 32 CUs and 

IGHz compute frequency to speed up execution of threads se
rialized by branch divergence. However, bandwidth sensitiv

ity changes frequently between medium and low as the predic

tor adapts to input argument changes and consequent changes 

in demand for memory bandwidth. Thus, through CG and 
FG tuning, memory frequency dithers between 92SMHz and 

77SMHz. Figure IS shows the distribution of time spent at 
the different memory bus frequencies in Harmonia over the 

kernel's entire execution. 

Inter-kernel Phase Changes: We observe that the 

ops/byte value of GraphSOO varies from 0.64 to 264. Fig

ure 16 shows the fraction of time each hardware tunable 
spends in each power state as Harmonia moves the hard
ware towards the right balance point. For this application 

due to high branch divergence, Harmonia tunes to the max
imum compute frequency (single state in CUFreq column). 
This is accompanied by tuning of the CU count and mem

ory bandwidth that reduces power. The #CUs column shows 

that about 90% of the time 32 CUs are used; the remain

ing time is spent in dithering between 4, 8, 12, and 16 CUs 
based on time-varying ops/byte. The memory bus frequency 
varies between 137SMHz (2S% of the time), 92SMHz (23%), 

77SMHz (42%), and 47SMHz (8%) as the operational in

tensity of the three kernels in GraphSOO varies from 0.64 

ops/byte to bursts of 264 ops/byte. 

Coordinated Power Sharing: Figure 17 shows the GPU 

and memory power consumption across a subset of the ap
plications with both baseline and Harmonia (HM), relative to 
the measured total power for GPU and memory. Here the to-
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Figure 1 7: Relative GPU and memory power consumption. 

tal power is normalized with respect to the baseline. Power 
due to remaining elements on the board are not shown since 

they are roughly constant. We observe that out of the average 
12% power savings, 64% of the savings comes from varying 

the GPU compute configuration. The remaining 36% comes 

from changing the memory bus frequencies. We believe that 
it is feasible to achieve far more power savings from mem
ory configuration changes if voltage scaling is applied while 

lowering bus speeds. In our current setup we are not able to 
scale voltage of the memory bus interface. Harmonia seeks 

a balance of core and memory power, i.e. just enough core 

power is expended to utilize all requested memory bandwidth 

and vice versa. 

Another interesting observation is that most often Harmo
nia adjusts CU counts and memory bus frequencies rather 

than the full range of compute frequencies. This behavior is 

consistent across all applications. In fact compute frequency 
and voltage scaling alone achieve only an average ED2 gain 

of 3% with a 1 % performance loss compared to the base

line. The reason is two-fold: i) parallel execution and data 
movement demands are inherent to the application and gov

ern demanded ops/byte values which vary widely across ap
plications, thus making available hardware resources in ex
cess of these demands is not helpful, and ii) as explained 

in Section 3.S, architectural clock domain crossings reduce 
opportunities for compute frequency to improve energy effi

ciency for memory intensive applications. 

Algorithm Convergence and Relative Impact of CG ver

sus FG Tuning: Figure 18 shows the relative contributions 
from CG and FG tuning for energy efficiency improvement 
across a subset of applications. In most applications CG tun
ing requires only one iteration. Even in applications with a 
small number of iterations (insufficient for feedback driven 
FG tuning), CG is very effective in rapidly reaching a lower 
power operation point often in a single iteration. An example 

is XSBench which executes only 2 iterations for each of its 

kernels. Even here, Harmonia is able to save 4% overall GPU 
card power while improving overall application performance 
by 2%, resulting in 9% energy efficiency gain. However, in 
certain cases such as LUD. SPMV, due to prediction outliers 

or lack of performance feedback, CG can leave out additional 

power savings opportunities or degrade performance. In such 

cases, FG tuning plays a crucial role. The FG step typically 
takes an additional 3 to 4 iterations to converge. In HPC ap

plications, many kernels represent iterative computations that 
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Figure 1 8: Relative contributions of CG versus FG in Harmo

nia. 

typically execute several times to converge with minimal al

gorithmic error. For such kernels, the overhead of FG tuning 

is amortized over successive kernel invocations. Therefore, 
both steps are necessary in order to have Harmonia cover a 

broad range of workloads. 

Sensitivity Predictors: The prediction errors between 
measured and estimated bandwidth and compute sensitivities 

are 3.03% and 5.71% respectively across all the applications 
used in this study. Since our goal is to develop simple, ef

fective, and practical sensitivity predictors that can be easily 
implemented in hardware, we find that simple linear regres

sion based sensitivity models, such as the ones proposed in 

this paper combined with an effective binning methodology 

can significantly help improve the accuracy of the predictors. 

7.3. Summary of Key Insights 

In this section, we summarize our main results and insights: 

1. Compute and memory behavior are fundamentally perfor

mance coupled. Optimizing only compute or memory be

havior has limited benefits. It is necessary to balance the 

time and energy costs of compute and memory to improve 
energy efficiency with minimal performance loss. 

2. Scaling parallelism (number of active CUs) and memory 
bandwidth is more effective than scaling CU frequency 

since it has a greater impact on ops/byte behaviors. Note 
that modern systems rely primarily on scaling compute fre
quency for energy efficiency gains. 

3. Clock domain crossings and interconnect sizing have a 

non-trivial impact on energy efficiency. 

4. Feedback driven fine-grained adjustments are effective in 
correcting coarse-grain tuning mispredictions or longer 
term changes in learned behaviors. 

5. Improving energy efficiency can lead to improvements in 

execution time due to reduction of interference in shared 

resources (e.g., cache or interconnect). 
6. With advanced packaging technologies, compute and 

memory will share tighter package power envelopes (e.g., 
compute with stacked memory) [43, 26, 38]. Coordinated 

power management and the concept of hardware balance 
will become increasingly important in such systems. 

8. Related Work 
In this section, we survey prior studies that consider in
teractions among CPU, GPU, and memory. The authors 
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in [2, 31, 34, 50] analyze interactions between CPU-GPU, 
and propose a power-efficient way of work distribution be
tween the CPU and GPU for throughput-computing applica

tions. [32, 33] investigate the impact of GPU core and fre

quency scaling and propose a GPU power-model to study 
power savings from core DVFS. Both use simulators. [44] 
employ whole-chip thermal-based power management. "En

ergy credits" are allocated to the CPU and/or GPU with 
awareness of the dependency of performance between the 
two. [41] take a step further by also considering thermal cou

pling between the CPU and GPU, in addition to performance 

coupling. There are also many existing studies investigat

ing main memory power management in CPU-memory sys
tems [14, 13, 17]. For example, Deng et al. in Memscale [17] 
apply DVFS to memory controllers and DFS to memory chan

nels and DRAM devices, evaluated using a simulation frame

work. [13] propose DVFS for main memory and presents 
evaluations on real hardware. [14] allocate a power cap to 

main memory with the aid of a runtime DRAM power model. 

In addition, several research works have focused on DVFS in 
cores for power and thermal management [24, 25, 27]. 

A few prior works also look at coordinated power man
agement between CPU and main memory. [48] is an in

sightful approach for multithreaded CPUs, but not for thou
sands of fine-grain bulk-synchronous threads. The authors 
in Coscale[ 15] propose runtime techniques to minimize total 

system energy within a performance constraint for a multi
CPU system, using a simulation framework. Deng et-al in 

MuItiscale [16] attempt to reduce system energy by apply
ing coordinated DFVS across multiple memory controllers 

(MCs), based on the observation of skewed traffic across 
MCs in multicore server processors. Chen et al. [8] study 

power capping for servers and control both processor and 
memory power. Diniz et al. [18] allocate a power cap to 
memory in a CPU-memory system. Other related work ex
amines policies [20] and analytic models [23] while we note 

that in the HPC community, there has been a considerable 

effort in tuning and managing power in CPU-memory archi
tectures [30, 49, 40, 45, 46]. 

Our work is distinctive in its focus on dynamically mon
itoring and managing GPU-memory interactions, which are 

quite distinct and therefore merit distinct solutions. Further, 
unlike many of these efforts, we seek to concurrently mini
mize performance impact rather than trade performance for 
improvements in energy efficiency. 

9. Conclusions 
This paper applies the notion of hardware balance to the de

velopment of a practical scheme for the coordinated manage
ment of compute and memory power in a high performance 
discrete GPU platform. By tracking the time-varying rela

tive compute and memory demands of applications, the cor
responding hardware power configurations of the core and 
memory system can be set to reduce overall platform power 

and thereby improve energy efficiency with minimal com

promises in performance. In the future, we plan to expand 
this work to manage an integrated CPU-GPU-memory sys
tem with stacked memory architectures. 
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