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Abstract—Large and sparse small-world graphs are ubiquitous
across many scientific domains from bioinformatics to computer
science. As these graphs grow in scale, traversal algorithms such
as breadth-first search (BFS), fundamental to many graph pro-
cessing applications and metrics, become more costly to compute.
The cause is attributed to poor temporal and spatial locality
due to the inherently irregular memory access patterns of these
algorithms. A large body of research has targeted accelerating
and parallelizing BFS on a variety of computing platforms,
including hybrid CPU-GPU approaches for exploiting the small-
world property. In the same spirit, we show how a single-
die FPGA-CPU heterogeneous device can be used to leverage
of the varying degree of parallelism in small-world graphs.
Additionally, we demonstrate how dense rather than sparse
treatment of the BFS frontier vector yields simpler memory access
patterns for BFS, trading redundant computation for DRAM
bandwidth utilization and faster graph exploration. On a range
of synthetic small-world graphs, our hybrid approach performs
7.8x better than software-only and 2x better than accelerator-
only implementations. We achieve an average traversal speed
of 172 MTEPS (millions of traversed edges per second) on the
ZedBoard platform, which is more than twice as effective as the
best previously published FPGA BFS implementation in terms of
traversals per bandwidth.

I. INTRODUCTION

Graphs as data representations and algorithms that operate
on graphs are ubiquitous throughout most scientific domains.
Breadth-first search (BFS) is a key building block for exploring
graphs, and is fundamental to a variety of graph metrics
such as counting connected components, calculating graph
diameter and radius [1]. Special cases of BFS such as the
independent cascade model (ICS) are used to simulate the
spread of information or disease across networks [2].

In order to meet the demand for analysis of ever-larger
graphs brought by the Big Data trend, high-performance graph
processing is of vital importance. Two key characteristics of
BFS (and many other graph algorithms) are irregular memory
accesses due to data-driven computations on the vertex and
edge structure of the graph [3], and low computation-to-
memory ratio. Thus, BFS performance is commonly memory
bandwidth limited. These characteristics make accelerating and
parallelizing BFS a major challenge, which has motivated a
large body of research on different platforms (Section V).

With the increased focus in recent years on energy efficient
computing systems, heterogeneous processing with reconfig-
urable logic and FPGAs is gaining popularity, including in
datacenters [4]. Prior work by Betkaoui et al. [3] and Attia

et al. [5] showed that reconfigurable logic for accelerating
BFS on large graphs is performance-competitive with multi-
core CPUs and GPGPUs. There are two main reasons that
reconfigurable logic is suitable for energy efficient BFS. First,
the memory architecture can be customized to effectively deal
with the irregular memory access patterns. Additionally, BFS
performance on large graphs is bound by accesses to high-
latency external memory, which is a good fit for achieving high
performance on FPGAs via ample parallelism and relatively
low clock speeds.

However, this suitability is dependent on the availability of
parallel work in BFS to offer high performance, which can lead
to significant waste of execution resources. Large real-world
graphs often have the small-world property, where the amount
of parallelism available changes significantly during BFS (see
Section II-B). Our work explores how this change in paral-
lelism can be exploited in the context of a single-chip FPGA-
CPU heterogeneous processor to offer high-performance BFS
on large graphs. Through observations on the Boolean matrix-
vector representation for BFS, we propose an FPGA BFS
accelerator architecture with a stall-free datapath. We describe
two architectural variants that treat the BFS frontier as sparse
or dense to show how redundant computations can be traded
for bandwidth and increase BFS performance in hybrid execu-
tion. Our experimental results on the ZedBoard with synthetic
real-world networks indicate that this scheme can utilize up to
78% of the available DRAM bandwidth and achieve over twice
as many traversals per unit bandwidth compared to previous
work.

Specifically, our work makes the following contributions:

• A fast FPGA-CPU hybrid BFS architecture with high
DRAM bandwidth utilization;

• An analysis of BFS memory request structure and
bandwidth utilization for sparse and dense BFS fron-
tier treatment;

• A stall-free BFS datapath using FPGA on-chip RAM
to buffer the node visit status;

• A method for decoupling BFS level computation from
the traversal to keep the node visit status data small.

Preprint, to appear in FPL 2015 (www.fpl2015.org)



function BREADTHFIRSTSEARCH(graph, root)
dist[∀u ∈ V ] ← −1; currentQ, nextQ ← ∅
step ← 0; dist[root] ← step
ENQUEUE(nextQ,root)
while nextQ �= ∅ do

currentQ ← nextQ;nextQ ← ∅
step ← step + 1
while currentQ �= ∅ do

u ← DEQUEUE(currentQ)
for v ∈ Adj[u] do

if dist[v] == −1 then
dist[v] ← step
ENQUEUE(nextQ, v)

return dist

(a) Pseudocode
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Fig. 1: Three representations of the breadth-first search algorithm.
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Fig. 2: A typical frontier profile for BFS on a small-world
graph. Exposed parallelism increases with the frontier size,
which approaches the total number of nodes in the graph for
the intermediate levels (here 3, 4) of the BFS algorithm.

II. BACKGROUND

A. Breadth-first search

We consider undirected, unweighted graphs of the form G =
(V,E) with sets of |V | vertices (nodes) V and |E| edges
E. A breadth-first search begins at a root node vr contained
within the largest connected component vr ∈ Vc, Vc ⊂ V
and traverses each edge erj for every neighbor vj . As such,
the graph is traversed in levels, where all nodes at each level
are explored before the next level is processed. In line with
previous work exploring BFS performance ( [3], [5], [6]), we
consider the variant of the kernel that produces the distance
array (dist in the pseudocode of Figure 1a), which is the
distance (in terms of BFS steps) of each visited node from the
root node.

B. Sparsity and the Small-World Property

A small-world graph is one in which the diameter is small,
e.g., “six degrees of separation”, and for social graphs such
as Facebook has been shown to be as low as four [7]. Small-
world graphs generally exhibit scale-free degree distributions
of the form y = xa, i.e., consisting of very few high-degree
central “hubs” and very many low-degree nodes that form the
periphery [8]. This means that when BFS starts there is a high
probability that the root node will only be connected to a
few neighboring nodes, and those neighbors connected to a
few, and so on. Thus, the first iterations of BFS visit a small
percentage of the graph. However, as more and more edges are
traversed, the frontier size increases dramatically (see Figure
2), constituting a large percentage of the network. As the BFS
frontier size is correlated with available parallelism [9], the
same figure is representative for how amenable the different
steps are for parallelization.

Large small-world networks are generally sparse, meaning that
most nodes are not neighbors. To take advantage of this, the
graph is typically stored in a sparse adjacency matrix form
such as Compressed Sparse Column (CSC)1, as illustrated in
Figure 1b.

C. BFS in the Language of Linear Algebra

Choosing a different representation for an algorithm may
expose algorithmic characteristics that can be exploited for
accelerator design. Towards this end, we will be using the
“matrices over semirings” concept [10] to express BFS as a
linear algebra operation. The core idea is to substitute the
number data type and the operators for multiplication and
addition in linear algebra to express a variety of algorithms
as matrix-vector operations.

Specifically, we will make use of the matrix-times-vector oper-
ation on the Boolean semiring to perform BFS. In practice, this
operation “multiplies” a binary matrix and a binary vector, with
the regular multiply and add operations substituted with the
Boolean AND and OR operators, respectively. To disambiguate
from regular matrix-vector multiply over real numbers, we will
use � to denote this operator. As illustrated in Figure 1c, each
yt = A� xt operation corresponds to a breadth-first step, and
each result vector yt is the representation of the visited nodes
in the graph after step t. The matrix A in the operation is the
adjacency matrix of the graph, while the initial input vector x0

is initialized to all zeroes, except a single 1 at the location of
the root node. The result vector yt is used as the input vector
xt+1 of the next step, which in turn generates more visited
nodes in its result vector until the result converges (i.e., no
more nodes can be visited).

We note that the properties of the Boolean semiring can be
exploited here to perform less work: xt elements that are
zeroes can be simply skipped since AND operation with a
0-input will always return a 0. Furthermore, only a subset of
the 1-entries (those that were produced in the previous step)
in xt may actually produce new 1-entries in yt. From a BFS
standpoint, these observations correspond to only the newly-
visited (frontier) nodes doing useful work. In terms of linear
algebra, we can say that the xt vector can be treated as sparse,
though dense treatment is functionally correct.

As we will show in Section III-B, this representation enables us
to view BFS in a way that permits trading redundant computa-
tions for higher memory bandwidth. Additional advantages of

1For an undirected graph, the Compressed Sparse Row (CSR) representa-
tion is equivalent to CSC. Our work assumes CSC and column-major traversal.



this approach include the potential for easier integration with
software that use linear algebra as a building block, as well
as the ability to apply memory system optimizations designed
for iterative sparse linear algebra (e.g., [11], [12]).

III. HYBRID BFS ON AN FPGA-CPU HYBRID

Our accelerator system specifically targets in-memory small-
world graphs, where breadth-first search exhibits a character-
istic profile in terms of the frontier size explained in Section
II-B. Since the amount of parallelism available during BFS
is closely correlated with the frontier size, the opportunity
for heterogeneous mapping onto different types of processing
elements presents itself. A single CPU core can be used for the
steps with small frontiers, while a high-throughput accelerator
can be used for the steps with large frontiers. Following the
example of [6] for a CPU-GPGPU system, we adopt the
hybrid approach for a single-chip FPGA-CPU heterogeneous
processor. The primary advantage of this platform is the low
cost of switching execution modes back and forth, effectively
adapting to the amount of parallelism available in small-world
BFS. As justified by our results in Section IV-B, our strategy
is to start the BFS kernel on the CPU, switch to the FPGA
accelerator after a few steps to rapidly explore most of the
graph, then switch back to the CPU for the last few steps.

In the following sections, we will first develop several ideas
around implementing BFS on the Boolean semiring, and
afterwards describe the architecture of our accelerator system.

A. Decoupled Distance Generation

The Boolean semiring matrix-vector representation of BFS
given in Section II-C is very lean in terms of storage require-
ments, which makes it suitable for a hardware accelerator im-
plementation. Specifically, the x and y vectors require only one
bit of storage per graph node. Since y will be random-accessed
due to matrix sparsity, keeping the range and volume of the
data to be random-accessed to a minimum is advantageous
for performance. Unfortunately, iteratively invoking � is not
sufficient2 for BFS as it only generates the node visited status
and not the dist array.

We address this shortcoming by introducing a separate distance
generation (or DistGen) step after each � invocation. A node
i has distance t if it was visited during the BFS step t, and we
know that a node cannot go from being visited to unvisited.
Thus, we can conclude that the node has distance t if it is
unvisited in xt and visited in yt, or dist [i] = t ⇐⇒ (xt[i] ==
0 ∧ yt[i] == 1). To generate the distance information, it is
sufficient to examine the input and output vectors of each BFS
step, after each step is finished. This array compare operation
is decoupled from the regular BFS step and can be easily
parallelized or implemented in hardware (Section III-C4) to
reduce its performance overhead. The complete BFS algorithm
expressed with � and DistGen is listed in Algorithm 1.

B. Trading Redundant Computation for Bandwidth

As traversal of sparse graphs involves little actual computation
and is known to be a memory-bound problem, delivering

2Although using the tropical semiring (R∪{∞},min,+) would remedy
this, each vector element in the tropical semiring is a number and loses the
leanness/storage advantages of the Boolean representation.

Algorithm 1 BFS with � and DistGen.
function DISTGEN(dist[], level, x, y)

updates ← 0
for i ← 0..N − 1 do

if x[i] == 0 & y[i] == 1 then
dist[i] ← level
updates ← updates+ 1

return updates

function BFSASLINEARALGEBRA(A, root)
x, y ← [0, 0, ..0]; dist ← [−1,−1, ..− 1]
x[root], y[root] ← 1; dist[root] ← 0
level ← 1; converged ← 0
while !converged do

y ← A � x
converged ← DISTGEN(dist, level, x, y)
y ← x; level ← level + 1

return dist
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Fig. 3: Structure of memory requests for sparse xt.

graph data with high bandwidth is critical for accelerator
performance. Therefore, a careful analysis of memory access
patterns is a critical step for designing a BFS hardware
accelerator. In our accelerator as with many other systems, the
BFS inputs are stored in and accessed from DRAM. Due to the
inherent latency and three-dimensional organization of modern
DRAM chips, three features are key to achieving a substantial
portion of available DRAM bandwidth: high request rate to
mitigate latency, large bursts, and a sequential access pattern
to maximize row buffer hits.

In Section II-C, we observed how the input vector xt could
be treated as sparse to avoid redundant work. But more
importantly, the linear algebra notation tells us that we can
treat xt as dense and still get a correct BFS result. In a hybrid
accelerator, this seemingly unorthodox idea of treating the BFS
input frontier as dense and performing redundant work can
be actually beneficial for overall performance due to simpler
DRAM access patterns. How we treat the xt vector influences
how the matrix A data will be accessed, and in turn, with how
much bandwidth.

Figure 3 depicts how treating xt as sparse influences the
memory requests to the matrix data. The accelerator must first
obtain a node index that is a member of the frontier by reading
dist, then obtain this node’s start and end pointers, and
finally obtain the list of adjacent edges using these pointers.
Visible here is the dependency of requests on responses to
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previous requests; this is typical of applications with indirect
accesses, and sparse treatment of xt leads to two levels of
indirection. More concretely, the effects are three-fold. The
first is the limitation of the request rate by the response rate.
Secondly, the length of read bursts to the elems array are
limited by the number of edges in the node. Finally, even
though the reads to the elems array are sequential, there may
be large gaps in between the used portions of the array due
to frontier nodes being far apart, causing parts of the DRAM
row buffer to go unused. This becomes especially prominent
with several accelerators requesting different parts of the edges
array in parallel. Although this method avoids doing redundant
work, these three effects can dramatically decrease DRAM
bandwidth utilization, especially for platforms whose memory
systems cannot handle a large number of outstanding requests.

In contrast, if we treat xt as dense and consider every node
of the graph, the access pattern of A becomes significantly
simpler. In particular, we can simply read out the entire
matrix, which can be done with maximum-length burst read
operations and without having to wait for responses from
previous requests. This is a much simpler and more suitable
access pattern for achieving high DRAM bandwidth. Memory
bandwidth is, of course, only half the story; the amount of
redundant work performed by treating xt as dense is nontrivial
– the smaller the frontier, the more redundant work will be
performed. However, since we are building a hybrid CPU-
FPGA system where the accelerator handles the BFS steps
with large frontiers, the overhead of redundant work is less
significant. In fact, as described in Section IV, our experiments
on the Zynq platform with scale-free graphs show that the
dense xt treatment always outperforms the sparse treatment in
this hybrid approach.

C. Processing Element Architecture

Based on the ideas from Sections III-A and III-B, we now
describe a hardware architecture for BFS. To compare the
effects of sparse and dense xt treatment described in Section
III-B, we consider two processing element (PE) variants.

1) Dense x variant: The architectural overview of a dense xt

processing element (PE) is illustrated in Figure 4. The archi-
tecture is organized in a data-flow manner, and modularized
into three main components: a backend, which connects to the
DRAM via the system interconnect, a frontend for performing
the � operator, and a distance generator. The backend is re-
sponsible for all interaction with main memory, which includes
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Fig. 5: Backend architecture for sparse xt variant.

reading out the matrix and vector data, and writing updates to
the distance vector. The matrix and vector data are requested by
the backend in large bursts and made available to the frontend,
which performs the BFS step operation and updates the result
vector memory. Concretely, the frontend simply writes 1s to
result memory addresses indicated by the edges whenever the
input vector is 1. The edge counts data is used to determine
when to read a new input vector element. An input vector value
of 0 implies edges from a yet-unvisited node, and this data
is simply dropped without further operation. The control and
status interface of the accelerator is provided through memory-
mapped registers, which are not shown in the figure.

2) Sparse x variant: In terms of the overall architecture, the
sparse xt variant is identical to the dense one except that it
does not need the input vector FIFO (since the sparse treatment
implies all xt values are ones). However, as illustrated in
Figure 5, the internals of the backend are substantially different
from the dense variant. The sparse input vector (or frontier
indices) is generated internally by a frontier filter, which scans
the values of the distance array and emits the indices whole
values were written in the previous BFS step. Afterwards, the
start- and end-pointers of each generated index are requested.
These pointers are used to request the edge data for this
node, and also to produce the edge count information for the
frontend.

3) Stall-free y Writes: To keep the accelerator running without
stalls, it is important that the frontend is able to consume data
as fast as the backend is producing it. The result vector yt
is random-accessed by the frontend during the � operation,
since the accessed node locations depend on the visited graph
edges. Thus, we can abstract the functionality of the frontend
as handling a stream of writes to random addresses. If the
result vector is stored in DRAM, the write request buffers of
the interconnect and memory controller can fill up and stall
the entire accelerator. To avoid this, our solution exploits the
leanness of vector representations. Since our approach requires
us to keep only a single bit per graph node, we can effectively
utilize dual-port FPGA on-chip RAM to provide two very
fast, fine-grained random accesses per cycle. Although this
limits the largest graph size we can process, the on-chip RAM
capacity of modern FPGAs is quite large and graphs with
millions of nodes can still be processed in this manner. Another
option is to explore a single BFS step of a large graph across
more than one execution by pre-partitioning, which we do not
explore in this work.

4) Distance Generator: After each BFS step is finished, the
distance generator is invoked to implement DistGen as



CPU core Dual ARM Cortex-A9, 666 MHz
CPU cache 32 KB L1D+L1I, 512 KB L2
DRAM and bandwidth3 512 MB DDR3, 3.2 GB/s
FPGA logic resources 13300 logic slices, 53200 slice LUTs
FPGA on-chip RAM 560 KB (BRAM)

3DDR controller max is ~75% of the theoretical max of 4.2 GB/s [13]

TABLE I: Characteristics of the ZedBoard.
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described in Section III-A. This involves comparing the input
and result vectors and finding the nodes that went from being
unvisited to visited. The indices of these nodes is passed to the
backend for actually writing the current BFS distance to the
corresponding memory locations, and also for updating the x
vector for the next BFS step for the dense variant.

D. Accelerator System Implementation

Our accelerator system is built and deployed on the ZedBoard
platform with the Xilinx Zynq Z7020 FPGA-CPU hybrid [13],
whose characteristics are shown in Table I. The accelerator
components were first built in Chisel [14]. Verilog descriptions
were then generated using the Verilog backend, and imported
into Vivado as IP blocks. Vivado IP integrator (version 2014.4)
was used afterwards to build the accelerator system, includ-
ing Xilinx-provided IP blocks for the result memory block
RAM (BRAM) and AXI interconnect. The 64-bit AXI high-
performance (HP) slave ports, which are capable of utilizing
about 80% (3.2 GB/s) of the DRAM bandwidth, are used to
feed the accelerators with data.

1) Parallelism and Rate-Balancing: As parallelism is key
to achieving high performance with FPGA accelerators, we
explore the graph with parallel PEs in our system. We use row-
wise partitioning of the input matrix to ensure that the random-
access range of each partition fits within the result vector
memory of one PE. The entire input vector is read from DRAM
by all PEs during a step. After the step, each PE updates a
portion of the input vector with its result (during the DistGen
operation). We use the rate-balancing ideas for FPGA sparse
matrix-vector multiplication from [11] to estimate the number
of PEs required to consume the available DRAM bandwidth
in the platform. Every cycle, each PE backend can fetch
a maximum of 8 bytes through the interconnect, and each
frontend can process up to two edges of 4 bytes each by issuing
writes to dual-port result memory. Assuming Fclk ≥ 100 MHz,
we can obtain a rate-balanced design by attaching one PE to
each of the four AXI HP ports, as shown in Figure 6.

2) Software BFS Implementation and FPGA-CPU Switching:
The software BFS variant runs on a single Cortex-A9 core
inside the Zynq system with caches enabled, and uses the
bitmap optimization [15] to track node visit status for better
performance. Since the visit status bitmap corresponds to an
input vector, it makes switching between CPU and FPGA
easier. Switching from CPU to FPGA execution requires

updating the PE result memories with the node visit status.
The accelerator itself can be used to do this switching by using
an identity matrix as the graph, and the visit status bitmap
as the input vector. Switching back to the CPU after FPGA
execution requires a frontier queue to be reconstructed from the
distance vector, which is also a highly data-parallel task (i.e.,
search through an array to find indices with a given value). We
include a simple hardware accelerator to keep the performance
overheads from the switching to a minimum.

3) Method Switching in Hybrid: After each BFS step is
finished, the software uses a simple model to decide which
method3 should be used for the next step. The hybrid BFS
starts execution in software, and switches to FPGA execution
when the predicted BFS step time for the FPGA is shorter. We
exploit the predictability of the dense variant (see Figure 7) to
model its execution clock cycles with the following formula:

Tstep = TDistGen + T� = · 1
β

�
nodes

#PE

�
+

1

β

�
nodes +

edges

2 ·#PE

�

where β is the fraction of utilized bandwidth. The FPGA
execution continues until the frontier size drops to below θ%
of all graph nodes. Afterwards, the software BFS takes over
until the search is terminated. β, θ are determined empirically.

IV. RESULTS

We now present the results from the experimental evaluation
of our accelerator system. For BFS performance testing, we
use synthetically generated RMAT graphs with the Graph500
benchmark parameters (A=0.57, B=0.19, C=0.19) in line with
previous work [3], [5]. We refer to an RMAT graph with scale
S (2S nodes) and edge factor E (E · 2S edges) as RMAT-S-
E. To avoid reporting results from trivial searches, we only
consider nodes which are in the largest connected component
in the graph, whose size is O(N) for RMAT graphs. Due to
the limited amount of BRAM available on the Zynq, we were
unable to evaluate our approach for graphs larger than scale
21 (two million nodes), but our technique can be applied to
larger graphs on bigger FPGAs (e.g., up to scale 29 on the
largest UltraScale+ Virtex 7).

A. FPGA Resource Utilization and Clock Frequency

The area and timing results from Vivado 2014.4 for both the
dense and sparse variants are similar. For a 4 PE design, the
accelerator system can run at up to 150 MHz and uses about
39% of the FPGA logic resources, and 97% of the FPGA on-
chip RAM (BRAM). 82% of the BRAM is used for result
vector memory, and about 15% for the FIFOs in the memory
system and inside the PEs.

B. Comparing Software, Sparse and Dense BFS

To motivate the hybrid BFS solution, we start by comparing the
performance of the sparse and dense accelerator variants with
software BFS. We perform BFS on RMAT-19-32 with equal
number of PEs (4) and clock frequency (100 MHz) for both
accelerator variants, and plot the number of clock cycles taken
for each BFS step (including distance generation) in Figure
7. Our first observation here is that there is no single best

3As our results in Section IV-B indicate that the dense variant outperforms
the sparse, we only consider software-dense hybrid BFS.
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method; as expected, the fastest method differs from step to
step. The goal of the hybrid scheme would be to choose the
fastest method for each step, which can be deduced from this
plot. We can see that exploring steps 1 and 2 with the CPU,
switching to the dense x accelerator for steps 3 and 4, then
switching back to the CPU for the last two steps gives the
fastest execution. The dense variant outperforming the sparse
implies that the benefits from the increase in DRAM bandwidth
is larger than the cost of redundant data fetches for the middle
steps.

To better understand why the dense variant outperforms the
sparse during the large-frontier steps, we plot the aggregate
read bandwidth utilization (compared to the memory link
capacity of 32 bytes/cycle) for the BFS steps 3 and 4, for
both variants with increasing PE counts. The reason we vary
the PE count is to reveal the effects of increased memory
pressure from more parallel requests. For the sparse variant,
we actually observe that the total utilized bandwidth decreases
by adding more PEs. The particularly low utilization in step 4
is likely caused by the frontier being larger ( 3x) than the step
3 frontier, causing parallel PE requests all across the edges
array and leading to many DRAM bank conflicts and row
buffer misses. On the other hand, the bandwidth utilization for
the dense variant is much better than the sparse and increases
almost linearly with PE count, peaking at 78% for 4 PEs,
and does not vary between the two steps. Adding more than
4 PEs requires the AXI HP ports to be shared and decreases
bandwidth utilization and performance. Even when we account
for the significant cost of redundant data fetches in the dense
variant (see annotations in Figure 8), we can see that the dense
variant has better bandwidth utilization than the sparse variant.
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Fig. 9: BFS performance on a range of RMAT graphs.

It is important to keep in mind that the tradeoffs between these
methods will depend on the particular platform, graph and
number of PEs being used. However, the performance depicted
in Figure 7 is representative of all our experiments on the
ZedBoard with RMAT graphs; the software solution is best for
the start and the end, and the dense variant always outperforms
the sparse variant for the middle steps. We will therefore omit
results for the sparse variant from the rest of our discussion.

C. Hybrid BFS Performance

We now report performance results for software-only, dense
frontier accelerator-only and hybrid BFS approaches on a
range of RMAT grahs. The hybrid BFS works as described in
Section III-D3. We use β = 0.78 from Figure 8 and empirically
determine that θ = 5% performs close-to-ideal switching. We
measure performance in MTEPS (millions of traversed edges
per second), which is obtained by dividing the graph edge
count by the execution time. The results are averaged over
16 BFS operations started from randomly chosen root nodes
within the largest connected component for each graph.

Figure 9 summarizes the BFS performance for a range of
RMAT graphs. The software-only BFS has a performance
of 22 MTEPS on average. Since none of these graphs fit
into the CPU cache, a large number of data cache misses
(~%25 miss rate) degrade the performance. The accelerator
is 3.9x as fast on average as the software-only BFS. Given
the 4x frequency advantage of the CPU and large amounts of
redundant data fetches and work performed by the accelerator,
this speedup further supports the claim that slow-clocked but
parallel FPGA accelerators are suitable for irregular, memory-
bound applications. Finally, the hybrid method combines the
“best of both worlds” and outperforms both the accelerator-
only and software-only BFS with speedups of 2x and 7.8x,
respectively. The performance of the accelerator is correlated
with the graph edge factor, with the hybrid BFS achieving a
maximum of 255 MTEPS for edge factor 64.

D. Hybrid Execution Time Breakdown and Scaling

Figure 10 provides a breakdown of the execution time for the
hybrid BFS on scale 19 graphs with different edge factors. To
show how performance scales with parallel PEs, we provide
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Work Platform Avg. MTEPS BW (GB/s) MTEPS/BW

[3] Convey HC-2 ~1600 80 20
[5] Convey HC-2 ~1900 80 24.375
[6] Nehalem+Fermi ~800 128 6.25

This work ZedBoard 172 3.2 53.7

TABLE II: Comparison to prior work.

data points for 1, 2 and 4 PEs. We observe that the execu-
tion time of FPGA DistGen and � operations are almost
halved by doubling the PE count. This is consistent with the
bandwidth scaling in Figure 8. The FPGA ↔ CPU switching
overheads account for about 10% of the execution time on
average. The overhead of the DistGen operation decreases
with increasing graph edge factor, and ranges between 9%-
15% of the total execution time for 4 PEs. Since the CPU
execution time does not vary with increased PE count, we
observe an “Amdahl’s Law” trend in performance scaling. With
4 PEs on RMAT-19-32, the CPU execution time accounts for
30% of the total, and would eventually become a performance
bottleneck on a larger system with more bandwidth and PEs.
This can be remedied by using a faster CPU with a better
memory system.

E. Comparison to Prior Work

As most works targeting high-performance BFS use MTEPS as
a metric, comparing raw traversal performance is possible but
the available memory bandwidth in the hardware platform sets
a hard limit on achievable BFS performance. Our experimental
results are from a ZedBoard with much less (about 1/20th of
those in Table II) DRAM bandwidth than platforms in prior
work and thus is comparatively slow. However, as indicated by
our results in Sections IV-D and IV-B, the performance of our
method scales well as more bandwidth becomes available. Low
memory bandwidth is not an inherent problem with single-chip
FPGA-CPU solutions and we believe more powerful versions
of these devices, such as the Xilinx UltraScale+ Zynq and
Altera Stratix 10 SoCs, are likely to be deployed for high-
performance computing in the near future.

Taking into account the memory-bandwidth-bound nature of
BFS on sparse graphs, we use traversals per unit bandwidth as
a metric to enable fair comparison with prior work, which we
obtain by dividing traversal speed in MTEPS by external mem-
ory bandwidth in GB/s. Table II presents a comparison with
several related works on reported average BFS performance,
available DRAM bandwidth and traversals per bandwidth over
RMAT graphs similar to the ones we used. Our method is more

than twice as effective in terms of traversals per bandwidth
compared to the next-best solution, which is also on an FPGA.

V. RELATED WORK

Fast graph traversal has been approached from a range of
architectural methods from general-purpose CPU and multi-
core/supercomputing approaches exposing parallelism [15]–
[20] to graphics processing units (GPUs) [21]–[24], as well
as hybrid CPU-GPU methods [6], to more recent methods
taking advantage of reconfigurable hardware [3], [5], [25],
[26]. Many principles are constant across architectures, for
example, the performance hit associated with irregular memory
accesses similarly affects GPU systems, single and multi-CPU
systems, and FPGAs. For brevity in the following text, we
focus primarily on FPGA-based related work.

Early reconfigurable hardware approaches attempted to solve
graph traversal problems on clusters of FPGAs [27], [28], but
were limited by graph size and synthesis times because the
reconfigurable logic was used to model the graph itself. Recent
works have implemented optimizations for BFS and other
irregular applications on multi-softcore processors in FPGAs,
yielding promising results [19], [26], [29]. More closely related
research to ours has explored highly parallelized processing
elements (PEs) and decoupled computation-memory [3], [5].
Observing that the execution time of BFS on small-world
networks is dominated by the intermediate levels, Betkaoui et
al. [3] decouple the communication and computation elements
in an FPGA to maintain throughput of irregular memory
accesses, arguing that on-chip memories in FPGAs are too
small for contemporary graphs. In the same vein, the authors of
[5] present optimizations to BFS that essentially merge the first
two request-response arrows in Figure 3 and report increased
performance due to fewer memory requests.

Parallel BFS implementations on GPUs are numerous [21]–
[24], with research typically focusing on level-synchronous
[6], [23] or fixed-point [16] methods. CPU and multiprocessor-
based approaches attempt to hide memory operation latencies
with caches, but for irregular algorithms such as BFS this is not
effective. Other techniques, such as using cache-efficient data
structures are often employed [17], [24]. A notable approach
by Agarwal et al. [15] makes locality optimizations on a quad-
socket system in order to reduce memory traffic and proposed
a bitmap to keep track of visited nodes in a compact format (1
bit per node). This study is widely cited for the latter aspect
[20], [22], [23], and in our work we adopt this optimization
as well. Beamer et al. [20] argue for reducing the number
of edges traversed through a direction-optimizing approach
that switches between parent-child and child-parent traversal
depending on frontier heuristics.

The CPU-GPU hybrid method of [6] is similar to our work
in that a switching approach is employed: a queue-based
method is efficient when the frontier size is small and a read-
based method that sequentially reads the adjacency list is
more efficient when the frontier size is large (as is typical
for small-world graphs). Our approach differs in two main
points: we can switch back to executing on the CPU owing
to tight CPU-FPGA integration (which is avoided in [6] due
to high overhead) and we exploit the frontier density in the
middle BFS steps for trading redundant computations for
increased bandwidth. Finally, the authors of [30] emphasize the



benefits of sequential patterns for achieving high storage device
bandwidth in graph algorithms, and propose an edge-centric
scatter-gather framework with streaming partitions. Although
it also exploits redundant work for increased bandwidth, this
approach sacrifices some efficiency (e.g., random accesses to
nodes) to achieve general applicability for in- and out-of-
memory graphs. It is also intended for cache-based multipro-
cessors, whose efficiency on BFS are limited. To the best of
our knowledge, ours is the first approach to consider redundant
work-bandwidth tradeoffs in BFS for a hybrid FPGA-CPU
system, or from a hardware-near perspective in general.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented a hardware-accelerated BFS
architecture for FPGA-CPU hybrid systems that can effectively
take advantage of the varying degree of parallelism in small-
world graphs. Viewing BFS as a matrix-vector operation on the
Boolean semiring, we showed how the volume of the random-
accessed data can be reduced significantly and kept in on-chip
RAM for a stall-free BFS datapath. Another revelation from
the representation, the idea of treating the input vector as dense
instead of sparse, allowed us to trade redundant computations
for increased DRAM bandwidth. Our experiments on the
ZedBoard platform suggest that the hybrid system performance
scales well with increased bandwidth and outperforms previous
techniques in terms of traversals per bandwidth.

Future work will include evaluating this technique on more
powerful FPGA-CPU platforms and exploring more graph
algorithms with the matrices-on-semirings idea. The source
code for our accelerator system can be obtained from
http://git.io/veGTL for further investigations.
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