Reactive NUCA: Near-Optimal Block Placement
and Replication in Distributed Caches

Nikos Hardavellas'-2, Michael Ferdman'-3, Babak Falsafi® and Anastasia Ailamaki*2
1Computer Architecture Lab (CALCM), Carnegie Mellon University
2Computer Science Department, Carnegie Mellon University
3Parallel Systems Architecture Lab (PARSA), Ecole Polytechnique Fédérale de Lausanne
4Data-Intensive Application and Systems Lab (DIAS), Ecole Polytechnique Fédérale de Lausanne

ABSTRACT

Increases in on-chip communication delay and the large working
sets of server and scientific workloads complicate the design of the
on-chip last-level cache for multicore processors. The large
working sets favor a shared cache design that maximizes the
aggregate cache capacity and minimizes off-chip memory requests.
At the same time, the growing on-chip communication delay
favors core-private caches that replicate data to minimize delays on
global wires. Recent hybrid proposals offer lower average latency
than conventional designs, but they address the placement
requirements of only a subset of the data accessed by the
application, require complex lookup and coherence mechanisms
that increase latency, or fail to scale to high core counts.

In this work, we observe that the cache access patterns of a range
of server and scientific workloads can be classified into distinct
classes, where each class is amenable to different block placement
policies. Based on this observation, we propose Reactive NUCA
(R-NUCA), a distributed cache design which reacts to the class of
each cache access and places blocks at the appropriate location in
the cache. R-NUCA cooperates with the operating system to
support intelligent placement, migration, and replication without
the overhead of an explicit coherence mechanism for the on-chip
last-level cache. In a range of server, scientific, and multi-
programmed workloads, R-NUCA matches the performance of the
best cache design for each workload, improving performance by
14% on average over competing designs and by 32% at best, while
achieving performance within 5% of an ideal cache design.

Categories & Subject Descriptors
B.3.2 [Memory Structures]: Design Styles — cache memories,
interleaved memories, shared memory

General Terms
Design, Experimentation, Performance

1. INTRODUCTION

In recent years, processor manufacturers have shifted towards pro-
ducing multicore processors to remain within the power and cool-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

1SCA°09, June 20-24, 2009, Austin, Texas, USA.

Copyright 2009 ACM 978-1-60558-526-0/09/06...$5.00.

184

ing constraints of modern chips, while maintaining the expected
performance advances with each new processor generation.
Increasing device density enables exponentially more cores on a
single die, and major manufacturers already ship 8-core chip multi-
processors [25] with plans to scale to 100s of cores [1,32]. Special-
ized vendors already push the envelope further, with Cisco CRS-1
featuring 188 processing cores, and Azul Vega 3 with 54 out-of-
order cores. The exponential increase in the number of cores results
in a commensurate increase in the on-chip cache size required to
supply all these cores with data. At the same time, physical and
manufacturing considerations suggest that future processors will be
tiled: the last-level on-chip cache (LLC) will be decomposed into
smaller slices, and groups of processor cores and cache slices will
be physically distributed throughout the die area [1,43]. Tiled
architectures give rise to varying access latencies between the
cores and the cache slices spread across the die, naturally leading to
a Non-Uniform Cache Access (NUCA) organization of the LLC,
where the latency of a cache hit depends on the physical distance
between the requesting core and the location of the cached data.

However, growing cache capacity comes at the cost of access
latency. As a result, modern workloads already spend most of their
execution time on on-chip cache accesses. Recent research shows
that server workloads lose as much as half of the potential perfor-
mance due to the high latency of on-chip cache hits [20]. Although
increasing device switching speeds results in faster cache-bank
access times, communication delay remains constant across tech-
nologies [8], and access latency of far away cache slices becomes
dominated by wire delays and on-chip communication [24].

From an access-latency perspective, an LLC organization where
each core treats a nearby LLC slice as a private cache is desirable.
Although a private organization results in fast local hits, it requires
area-intensive, slow and complex mechanisms to guarantee the
coherence of shared data, which are prevalent in many multicore
workloads [3,20]. At the same time, the growing application work-
ing sets render private caching designs impractical due to the inef-
ficient use of cache capacity, as cache blocks are independently
replicated in each private cache slice. At the other extreme, a
shared organization where blocks are statically address-interleaved
in the aggregate cache offers maximum capacity by ensuring that
no two cache frames are used to store the same block. Because
static interleaving defines a single, fixed location for each block, a
shared LLC does not require a coherence mechanism, enabling a
simple design and allowing for larger aggregate cache capacity.
However, static interleaving results in a random distribution of
cache blocks across the LLC slices, leading to frequent accesses to
distant cache slices and high average access latency.

An ideal LLC enables the fast access of the private organization
and the design simplicity and large capacity of the shared organiza-
tion. Recent research advocates hybrid and adaptive mechanisms
to bridge the gap between the private and shared organizations.
However, prior proposals require complex, area-intensive, and
high-latency lookup and coherence mechanisms [4,7,10,43], waste
cache capacity [4,43], do not scale to high core counts [7,19], or
optimize only for a subset of the cache accesses [4,7,11]. In this
paper we propose Reactive NUCA (R-NUCA), a scalable, low-
overhead, and low-complexity cache architecture that optimizes
block placement for all cache accesses, at the same time attaining
the fast access of the private organization and the large aggregate
capacity of the shared organization.

R-NUCA cooperates with the operating system to classify accesses
at the page granularity, achieving negligible hardware overhead
and avoiding complex heuristics that are prone to error, oscillation,
or slow convergence [4,7,10]. The placement decisions in
R-NUCA guarantee that each modifiable block is mapped to a sin-
gle location in the aggregate cache, obviating the need for com-
plex, area- and power-intensive coherence mechanisms of prior
proposals [4,7,10,43]. R-NUCA utilizes Rotational Interleaving, a
novel lookup mechanism that matches the fast speed of address-
interleaved lookup, without pinning blocks to a single location in
the cache [10,43]. Rotational interleaving allows read-only blocks
to be shared by neighboring cores and replicated at distant ones,
ensuring low access latency while balancing capacity constraints.

In this paper we make the following contributions:

* Through execution trace analysis, we show that cache accesses
for instructions, private data, and shared data exhibit distinct
characteristics, leading to different replication, migration, and
placement policies.

* We leverage the characteristics of each access class to design
R-NUCA, a novel, low-overhead, low-latency mechanism for
block placement in distributed caches.

» We propose rotational interleaving, a novel mechanism for fast
nearest-neighbor lookup with one cache probe, enabling repli-
cation without wasted space and without coherence overheads.

* Through full-system cycle-accurate simulation of multicore
systems, we show that R-NUCA provides performance stabil-
ity across workloads, matching the performance of the best
cache design for each workload. R-NUCA attains a maximum
speedup of 32%, and an average speedup of 14% over the pri-
vate design (17% for server workloads) and 6% over the
shared design (15% for multi-programmed workloads), while
achieving performance within 5% of an ideal cache design.

The rest of this paper is organized as follows. Section 2 presents
background on distributed caches and tiled architectures. Section 3
presents our classification and offers a detailed empirical analysis
of the cache-access patterns of server, scientific, and multi-pro-
grammed workloads. We describe R-NUCA in Section 4 and eval-
uate it in Section 5. We summarize prior work in Section 6 and
conclude in Section 7.

2. BACKGROUND

2.1 Non-Uniform Cache Architectures

The exponential increase in the cache sizes of multicore processors
(CMPs) renders uniform access latency impractical, as capacity
increases also increase access latency [20]. To mitigate the rising

185

PO O|PL OJP2 OJP3 O
gﬁ Olr = = — — — 4
; = | @:»RE I
P4 ADIPS 4DIP6 ABIPT ADI | p6 Tite I |,
I @I
P8 4D[P9 dD[P10ADIPLIdD| | i
% | L2 slicg |
PlZ%" P13dD[P 144D Pls% =

FIGURE 1. Typical tiled architecture. Tiles are interconnected
into a 2-D folded torus. Each tile contains a core, L1 instruction
and data caches, a shared-L2 cache slice, and a router/switch.

access latency, recent research [24] advocates decomposing the
cache into slices. Each slice may consist of multiple banks to opti-
mize for low access latency within the slice [5], and all slices are
physically distributed on the die. Thus, cores realize fast accesses
to nearby slices and slower accesses to physically distant ones.

Just as cache slices are distributed across the entire die, processor
cores are similarly distributed. Economic, manufacturing, and
physical design considerations [1,43] suggest tiled architectures,
with cores coupled together with cache slices in tiles that commu-
nicate via an on-chip interconnect. Tiled architectures are attractive
from a design and manufacturing perspective, enabling developers
to concentrate on the design of a single tile and then replicate it
across the die [1]. They are also economically attractive, as they
can easily support families of products with varying number of
tiles and power/cooling requirements. Finally, their scalability to
high core counts make them suitable for large-scale CMPs.

2.2 Tiled Architectures

Figure 1 presents a typical tiled architecture. Multiple tiles, each
comprising a processor core, caches, and network router/switch,
are replicated to fill the die area. Each tile includes private L1 data
and instruction caches and an L2 cache slice. Each L1 cache miss
probes an on-chip L2 cache slice via an on-chip network that inter-
connects the tiles. Depending on the L2 organization, the L2 slice
can be either a private L2 cache or a portion of a larger distributed
shared L2 cache. Also depending on the cache architecture, the tile
may include structures to support cache coherence such as L1
duplicate tags [2] or sections of the L2-cache distributed directory.

Private L2 organization. Each tile’s L2 slice serves as a private
second-level cache for the tile’s core. Upon an L1 miss, the L2 slice
located in the same tile is probed. On a write miss in the local L2
slice, the coherence mechanism (a network broadcast or access to
an address-interleaved distributed directory) invalidates all other
on-chip copies. On a read miss, the coherence mechanism either
confirms that a copy of the block is not present on chip, or it
obtains the data from an existing copy. With a directory-based
coherence mechanism, a typical coherence request is performed in
three network traversals. A similar request in token-coherence [27]
requires a broadcast followed by a response from the farthest tile.

Enforcing coherence requires large storage and complexity over-
heads. For example, a full-map directory for a 16-tile CMP with
64-byte blocks, IMB L2 slices, and 64KB split I/D L1 caches
requires 288K directory entries, assuming two separate hardware

structures to keep the L1 caches and the L2 slices coherent. With a
42-bit physical address space, and a 16-bit sharers bit-mask and 5-
bit state per block to account for intermediate states, the directory
size per tile is 1.2MB, exceeding the L2 capacity. Thus, full-map
directories are impractical for the private L2 organization. Limited-
directory mechanisms are smaller, but may require complex, slow,
or non-scalable fall-back mechanisms such as full-chip broadcast.
In this work, we optimistically assume a private L2 organization
where each tile has a full-map directory with zero area overhead.

Shared L2 organization. Cache blocks are address-interleaved
among the slices, which service requests from any tile through the
interconnect. On an L1 cache miss, the miss address dictates the
slice responsible for caching the block, and a request is sent
directly to that slice. The target slice stores both the block and its
coherence state. Because each block has a fixed, unique location in
the aggregate L2 cache, the coherence state must cover only the L1
cache tags; following the example above, a full-map directory for a
shared L2 organization requires only 152KB per tile.

2.3 Requirements for Intelligent Block Placement
A distributed cache presents a range of latencies to each core, from
fast access to nearby slices, to several times slower access to slices
on the opposite side of the die. Intelligent cache block placement
can improve performance by placing blocks close to the requesting
cores, allowing fast access.

We identify three key requirements for intelligent block placement
in distributed caches. First, the block address must be decoupled
from its physical location, allowing to store the block at a location
independent of its address [9]. Decoupling the physical location
from the block address complicates lookup on each access. Thus,
the second requirement for intelligent block placement is a lookup
mechanism capable of quickly and efficiently locating the cached
block. Finally, intelligent block placement must optimize for all
accesses prevalent in the workload. A placement policy may bene-
fit some access classes while penalizing others [44]. To achieve
high performance, an intelligent placement algorithm must react
appropriately to each access class.

3. CHARACTERIZATION OF L2 REFERENCES
3.1 Methodology

We analyze the cache access patterns using trace-based and cycle-
accurate full-system simulation in FLEXUS [39] of a tiled CMP exe-
cuting unmodified applications and operating systems. FLEXUS

extends the Virtutech Simics functional simulator with timing mod-
els of processing tiles with out-of-order cores, NUCA cache, on-
chip protocol controllers, and on-chip interconnect. We simulate a
tiled CMP similar to Section 2.2, where the LLC is the L2 cache.
We summarize our tiled architecture parameters in Table 1 (left).

Future server workloads are likely to run on CMPs with many
cores [14], while multi-programmed desktop workloads are likely
to run on CMPs with fewer cores that free die area for a larger on-
chip cache [7]. We run our multi-programmed mix on an 8-core
tiled CMP, and the rest of our workloads on a 16-core tiled CMP.
To estimate the L2 cache size for each configuration, we assume a
die size of 180mm? in 45nm technology and calculate component
sizes following ITRS guidelines [33]. We account for the area of
the system-on-chip components, allocating 65% of the die area to
the tiles [14]. We estimate the area of the cores by scaling a micro-
graph of the Sun UltraSparc II processor. We model the 16-core
configuration with 1MB of L2 cache per core, and the 8-core con-
figuration with 3MB of L2 cache per core.

We simulate systems running the Solaris 8 operating system and
executing the workloads listed in Table 1 (right). We include a
wide range of server workloads (online transaction processing,
decision support systems, web server), a multiprogrammed work-
load, and one scientific application as a frame of reference. With
one exception, we focus our study on the workloads described in
Table 1. To show the wide applicability of our L2 reference cluster-
ing observations, Figure 2 includes statistics gathered using a
larger number of server workloads (TPC-C on DB2 and Oracle,
TPC-H queries 6, 8, 11, 13, 16, and 20 on DB2, SPECweb on
Apache and Zeus), scientific workloads (em3d, moldyn, ocean,
sparse), and the multi-programmed workload from Table 1.

3.2 Categorization of Cache Accesses

We analyze the L2 accesses at the granularity of cache blocks along
two axes: the number of cores sharing an L2 block and the percent-
age of blocks with at least one write request during the workload’s
execution (read-write blocks). Each bubble in Figure 2 represents
blocks with the same number of sharers (1-16). For each workload,
we plot two bubbles for each number of sharers, one for instruction
and one for data accesses. The bubble diameter is proportional to
the number of L2 accesses. We indicate instruction accesses in
black and data accesses in yellow (shared) or green (private), draw-
ing a distinction for private blocks (accessed by only one core).

TABLE 1. System and application parameters for the 8-core and 16-core CMPs.

CMP Size 16-core for server and scientific workloads

8-core for multi-programmed workloads
UltraSPARC III ISA; 2GHz, 00O cores

8-stage pipeline, 4-wide dispatch/retirement
96-entry ROB and LSQ, 32-entry store buffer

split I/D, 64KB 2-way, 2-cycle load-to-use, 3 ports
64-byte blocks, 32 MSHRs, 16-entry victim cache
16-core CMP: 1MB per core, 16-way, 14-cycle hit
8-core CMP: 3MB per core, 12-way, 25-cycle hit
64-byte blocks, 32 MSHRs, 16-entry victim cache

3 GB memory, 8KB pages, 45 ns access latency

Processing Cores

L1 Caches

L2 NUCA Cache

Main Memory

Memory Controllers one per 4 cores, round-robin page interleaving

2D folded torus (4x4 for 16-core, 4x2 for 8-core)
32-byte links, 1-cycle link latency, 2-cycle router

Interconnect

186

OLTP — Online Transaction Processing (TPC-C v3.0)

IBM DB2 v8 ESE,
100 warehouses (10 GB), 64 clients, 2 GB buffer pool

Oracle 10g Enterprise Database Server
100 warehouses (10 GB), 16 clients, 1.4 GB SGA

Web Server (SPECweb99)
Apache HTTP Server v2.0.

16K connections, fastCGI, worker threading model
DSS — Decision Support Systems (TPC-H)
Qry 6,8, 13 | IBM DB2 v8 ESE, 480 MB buffer pool, 1GB database
Scientific

DB2

Oracle

Apache

em3d | 768K nodes, degree 2, span 5, 15% remote
Multi-programmed (SPEC CPU2000)
MIX | 2 copies from each of gec, twolf, mcf, art; reference inputs

@ Instructions © Data-Private O Data-Shared

3 120%

- % L2
100% @ s © °

E % @?:';”?.?i?é accesses

c o | i :

% 8050;_...,”'.,,

S 6o% | , e}

£ 40% . :

‘é 20%% .

e 0% +*————— t

< 0 2 4 6 8 10 12 1 18 20

Number of Sharers

(a) Server Workloads

@ Instructions @ Data-Private OData-Shared

] % L2 accesses

4 6 8 10 12 14 16 18 2

% Read-Write Blocks in Bubble

Number of Sharers

(b) Scientific and Multi-programmed Workloads

FIGURE 2. L2 Reference Clustering. Categorization of accesses to L2 blocks with respect to the blocks’ number of sharers, read-write
behavior, and instruction or data access class.

We observe that, in server workloads, L2 accesses naturally form
three clusters with distinct characteristics: (1) instructions are
shared by all cores and are read-only, (2) shared data are shared by
all cores and are mostly read-write, and (3) private data exhibit a
varying degree of read-write blocks. We further observe that scien-
tific and multi-programmed workloads access mostly private data,
with a small fraction of shared accesses in data-parallel scientific
codes exhibiting producer-consumer (two sharers) or nearest-
neighbor (two to six sharers) communication. The instruction foot-
prints of scientific and multi-programmed workloads are eftec-
tively captured by the L1 instruction caches.

The axes of Figure 2 suggest an appropriate L2 placement policy
for each access class. Private data blocks are prime candidates for
allocation near the requesting tile; placement at the requesting tile
achieves the lowest possible access latency. Because private blocks
are always read or written by the same core, coherence is guaran-
teed without requiring a hardware mechanism. Read-only univer-
sally-shared blocks (e.g., instructions) are prime candidates for
replication across multiple tiles; replicas allow the blocks to be
placed in the physical proximity of the requesting cores, while the
blocks’ read-only nature obviates coherence. Finally, read-write
blocks with many sharers (shared data) may benefit from migration
or replication if the blocks exhibit reuse at the L2. However, migra-
tion requires complex lookup and replication requires coherence
enforcement, and the low reuse of shared blocks does not justify
such complex mechanisms (Section 3.3.3). Instead, shared blocks
benefit from intelligent block placement on chip.

HInstructions [MData-Private B Data-Shared-RW [JData-Shared-RO

100%

80%

60%

40%

Total L2 Accesses

20%

0% T T 1

OLTP OLTP Apache DSS DSS DSS em3d MIX
DB2 Oracle Qry6 Qry8 Qry13

FIGURE 3. L2 Reference breakdown. Distribution of L2
references by access class.

Although server workloads are dominated by accesses to instruc-
tions and shared read-write data, a significant fraction of L2 refer-
ences are to private blocks (Figure 3). The scientific and multi-
programmed workloads are dominated by accesses to private data,
but also exhibit some shared data accesses. The varying importance
of the cache accesses categories underscores a need to react to the
access class when placing blocks at L2, and emphasizes the oppor-
tunity loss of addressing only a subset of the access classes.

3.3 Characterization of Access Classes

3.3.1 Private Data

Accesses to private data, such as stack space and thread-local stor-
age, are always initiated by the same processor core. As a result,
replicating private data at multiple locations on chip only wastes
cache capacity [42]. Although some private data are read-write,
having only one requestor eliminates the need for a cache coher-
ence mechanism for private blocks. Therefore, the only require-
ment for private data is to be placed close to its requestor, ensuring
low access 1atency1. R-NUCA places private data into the L2 slice
at the tile of the requesting core, ensuring minimum latency.

Although the private-data working set for OLTP and multi-pro-
grammed workloads (Figure 4, left) may fit into a single, local L2
slice, DSS workloads scan multi-gigabyte database tables and sci-
entific workloads operate on large data sets, both exceeding any
reasonable L2 capacity. To accommodate large private data work-
ing sets, prior proposals advocate migrating (spilling) these blocks
to neighbors [11]. Spilling may be applicable to multi-programmed
workloads composed of applications with a range of private-data
working set sizes; however, it is inapplicable to server or scientific
workloads. All cores in a typical server or balanced scientific
workload run similar threads, with each L2 slice experiencing sim-
ilar capacity pressure. Migrating private data blocks to a neighbor-
ing slice is offset by the neighboring tiles undergoing an identical
operation and spilling in the opposite direction. Thus, cache pres-
sure remains the same, but requests incur higher access latency.

3.3.2 Instructions
Instruction blocks are typically written once when the operating
system loads an application binary or shared library into memory.

1. The operating system may migrate a thread from one core to
another. In these cases, coherence can be enforced by the OS
by shooting down the private blocks upon a thread migration.

Total L2 Accesses (CDF)
Total L2 Accesses (CDF)

-=-OLTP DB2
=6-OLTP Oracle
Apache
-=-DSS Qry6
-+ DSS Qry8
—-DSS Qry13
em3d
MIX

Total L2 Accesses (CDF)

Private Data (KB)

Instructions (KB)

Shared Data (KB)

FIGURE 4. L2 working set sizes. CDF of L2 references to private data, instructions, and shared data vs. the footprint of each access class
(in log-scale). References are normalized to total L2 references for each workload.

Once in memory, instruction blocks remain read-only for the dura-
tion of execution. Figure 2 indicates that instruction blocks in
server workloads are universally shared among the processor
cores. All cores in server workloads typically exercise the same
instruction working set, with all cores requiring low-latency access
to the instruction blocks with equal probability. Instruction blocks
are therefore amenable to replication. By caching multiple copies
of the blocks on chip, replication enables low-latency access to the
instruction blocks from multiple locations on chip.

In addition to replication, in Figure 5 (left) we examine the utility
of instruction-block migration toward a requesting core. We
present the percentage of L2 accesses which constitute the 1st, 2nd,
and subsequent instruction-block accesses by one core without
intervening L2 accesses for the same block by a different core. The
grey and higher portions of the bars represent reuse accesses that
could experience a lower latency if the instruction block was
migrated to the requesting core after the first access. The results
indicate that accesses to L2 instruction blocks are finely inter-
leaved between participating sharers, with minimal opportunity of
instruction block migration. On the contrary, migration may reduce
performance, as it increases contention in the on-chip network.

Figure 4 (middle) shows that the instruction working set size for
some workloads approximates the size of a single L2 slice. Indis-
criminate replication of the instruction blocks at each slice creates
too many replicas and increases the capacity pressure and the off-
chip miss rate. At the same time, replicating a block in adjacent L2
slices offers virtually no latency benefit, as multiple replicas are
one network hop away from a core, while having just one copy
nearby is enough. Thus, replication should be done at a coarser
granularity: R-NUCA logically divides the L2 into clusters of
neighboring slices, replicating instructions at the granularity of a
cluster rather than in individual L2 slices. While an application’s
working set may not fit comfortably in an individual L2 slice, it fits
into the aggregate capacity of a cluster. Each slice participating in a
cluster of size n should store //n of the instruction working set. By
controlling the cluster size, it is possible to smoothly trade off
instruction-block access latency for cache capacity: many small
clusters provide low access latency while consuming a large frac-
tion of the capacity of each participating slice; a few large clusters
result in higher access latency but with a small number of replicas.

For our system configurations and workloads, clusters of 4 slices
are appropriate. Clusters of size 4 ensure that instruction blocks are
at most one network hop away from the requesting core while stor-
ing only a quarter of the instruction working set at each slice.

188

3.3.3 Shared Data

Shared data comprise predominantly read-write blocks containing
data and synchronization structures. Replication or migration of
shared blocks can provide low-latency access for the subsequent
references to the same block from the local or nearby cores. How-
ever, on each write, complex coherence mechanisms are necessary
to invalidate the replicas or to update the migrating blocks.
Figure 5 (right) shows the number of L2 accesses to a shared data
block issued by the same core between consecutive writes by other
cores. In most cases, a core accesses a block only once or twice
before a write by another core. Thus, an invalidation will occur
nearly after each replication or migration opportunity, eliminating
the possibility of accessing the block at its new location in most
cases, and rendering both techniques ineffective for shared data.

Not only do the access characteristics shown in Figure 5 (right)
indicate a small opportunity for the replication or migration of
shared data, the complexity and overheads of these mechanisms
entirely overshadow their benefit. The replication or migration of
shared data blocks at arbitrary locations on chip require the use of
directory- or broadcast-based mechanisms for lookup and coher-
ence enforcement, as each block is likely to have different place-
ment requirements. However, to date, there have been only few
promising directions to provide fast lookup [31], while the area and
latency overheads of directory-based schemes (Section 2.2) dis-
courage their use, and broadcast-based mechanisms do not scale
due to the bandwidth and power overheads of probing multiple
cache slices per access. Also, replicating or migrating shared data

M 1st access M2nd access [13rd-4th access M5th-8th access [9+ access

100%
80%
60%
40%
20%

0%

Total L2 Accesses

OLTP DB2
OLTP Oracle
DSS Qry13
OLTP DB2
OLTP Oracle
DSS Qry13

Shared Data

Instructions

FIGURE 5. Instruction and shared data reuse. Reuse of
instructions and shared data by the same core.

would increase the cache pressure and the off-chip requests due to
the shared data’s large working sets (Figure 4, right).

Placing shared read-write data in a NUCA cache presents a chal-
lenging problem because their coherence requirements, diverse
access patterns, and large working sets render migration and repli-
cation policies undesirable for these data. The challenge has been
recognized by prior studies in NUCA architectures. However, the
problem remained largely unaddressed, with the best proposals
completely ignoring shared read-write blocks [4] or ignoring them
once their adverse behavior is detected [10].

Instead of relying to migration or replication, R-NUCA places the
shared read-write data close to the requestors by distributing them
evenly among all participating sharers. Shared data blocks in server
workloads are universally accessed (Figure 2), with every core
having the same likelihood to be the next accessor [35]. Therefore,
R-NUCA distributes shared data across all tiles using standard
address interleaving. By placing the blocks at the address-inter-
leaved locations, R-NUCA avoids replication. Thus, it eliminates
wasted space and obviates the need for a coherence mechanism by
ensuring that, for each shared block, there is a unique slice to which
that block is mapped by all sharers. At the same time, R-NUCA uti-
lizes a trivial and fast lookup mechanism, as a block’s address
uniquely determines its location. Because the access latency
depends on the network topology, accesses to statically-placed
shared data benefit most from a topology that avoids hot spots and
affords best-case (average) access latency for all cores (e.g., torus).

3.4 Characterization Conclusions

The diverse cache access patterns of server workloads make each
access class amenable to a different placement policy. R-NUCA is
motivated by this observation, and its design is guided by the char-
acteristics of each class. More specifically, we find that:

* An intelligent placement policy is sufficient to achieve low
access latency for the major access classes.

* L2 hardware coherence mechanisms in a tiled CMP running
server workloads are unnecessary and should be avoided.

* Private blocks should be placed in the local slice of the
requesting core.

* Instruction blocks should be replicated in clusters (groups) of
nearby slices.

* Shared data blocks should be placed at fixed address-inter-
leaved cache locations.

4. R-NUCA DESIGN

We base our design on a CMP with private split L1 I/D caches and
a distributed shared L2 cache. The L2 cache is partitioned into
slices, which are interconnected by an on-chip 2-D folded torus
network. We assume that cores and L2 slices are distributed on the
chip in tiles, forming a tiled architecture similar to the one
described in Section 2.2. This assumption is not a limitation, as the
mechanisms we describe apply to alternative organizations, for
example, groups of cores assigned to a single L2 slice.

Conceptually, R-NUCA operates on overlapping clusters of one or
more tiles. R-NUCA introduces fixed-center clusters, which con-
sist of the tiles logically surrounding a core. Each core defines its
own fixed-center cluster. For example, clusters C and D in Figure 6
each consist of a center tile and the neighboring tiles around it.
Clusters can be of various power-of-2 sizes. Clusters C and D in

189

B C

o~ /

00 | o1 | 10 /11
10 [11 J00 J o1
.00 40110 11
£.10...11...00.} 01
D

FIGURE 6. Example of R-NUCA clusters and Rotational
Interleaving. The array of rectangles represents the tiles. The
binary numbers in the rectangles denote each tile’s RID. The lines
surrounding some of the tiles are cluster boundaries.

Figure 6 are size-4. Size-1 clusters always consist of a single tile
(e.g., cluster B). In our example, size-16 clusters comprise all tiles
(e.g., cluster A). As shown in Figure 6, clusters may overlap. Data
within each cluster are interleaved among the participating L2
slices, and shared among all cores participating in that cluster.

4.1 Indexing and Rotational Interleaving
R-NUCA indexes blocks within each cluster using either standard
address interleaving or rotational interleaving. In standard address
interleaving, an L2 slice is selected based on the bits immediately
above the set-index bits of the accessed address. In rotational inter-
leaving, each core is assigned a rotational ID (RID) by the operat-
ing system. The RID is different from the conventional core ID
(CID) that the OS assigns to each core for process bookkeeping.

RIDs in a size-n cluster range from 0 to n-1. To assign RIDs, the
OS first assigns the RID 0 to a random tile. Consecutive tiles in a
row receive consecutive RIDs. Similarly, consecutive tiles in a col-
umn are assigned RIDs that differ by log,(n) (along rows and col-
umns, n-/ wraps around to 0). An example of RID assignment for
size-4 fixed-center clusters is shown in Figure 6.

To index a block in its size-4 fixed-center cluster, the center core
uses the 2 address bits <a;, ay> immediately above the set-index
bits. The core compares the bits with its own RID <c;, ¢)> using a
boolean function; the outcome of the comparison determines which
slice caches the accessed block!. In the example of Figure 6, when
the center core of cluster C accesses a block with address bits
<0, I>, the core evaluates the indexing function and access the
block in the slice to its left. Similarly, when the center core of clus-
ter D accesses the same block, the indexing function indicates that
the block is at the slice above. Thus, each slice stores exactly the
same [/n-th of the data on behalf of any cluster to which it belongs.

Rotational interleaving allows clusters to replicate data without
increasing the capacity pressure in the cache, and at the same time
enable fast nearest-neighbor communication. The implementation
of rotational interleaving is trivial, requiring only that tiles have
RIDs and that indexing is performed through simple boolean logic
on the tile’s RID and the block’s address. Although for illustration

1. The general form of the boolean indexing function for size-n
clusters with the address-interleaving bits starting at offset £ is:

R = (Addr[k+logy(n)~1 : k] + RID+ 1) A (n—1)

For size-4 clusters, the 2-bit result R indicates that the block is
in, to the right, above, or to the left of the requesting tile, for
binary results <0,0>, <0,1>, <I,0> and </, > respectively.

purposes we limit our description to size-4 clusters, rotational
interleaving is simply generalized to clusters of any power-of-two.

4.2 Placement

Depending on the access latency requirements, the working set, the
user-specified configuration, or other factors available to the OS,
the system can smoothly trade off latency, capacity, and replication
degree by varying the cluster sizes. Based on the cache block’s
classification presented in Section 3.2, R-NUCA selects the cluster
and places the block according to the appropriate interleaving
mechanism for this cluster.

In our configuration, R-NUCA utilizes only clusters of size-1,
size-4 and size-16. R-NUCA places core-private data in the size-1
cluster encompassing the core, ensuring minimal access latency.
Shared data blocks are placed in size-16 clusters which are fully
overlapped by all sharers. Instructions are allocated in the most
size-appropriate fixed-center cluster (size-4 for our workloads),
and are replicated across clusters on chip. Thus, instructions are
shared by neighboring cores and replicated at distant ones, ensur-
ing low access latency for surrounding cores while balancing
capacity constraints. Although R-NUCA forces an instruction clus-
ter to experience an off-chip miss rather than retrieving blocks
from other on-chip replicas, the performance impact of these “com-
pulsory” misses is negligible.

4.3 Page Classification

R-NUCA classifies memory accesses at the time of a TLB miss.
Classification is performed at the OS-page granularity, and com-
municated to the processor cores using the standard TLB mecha-
nism. Requests from L1 instruction caches are immediately
classified as instructions and a lookup is performed on the size-4
fixed-center cluster centered at the requesting core. All other
requests are classified as data requests, and the OS is responsible
for distinguishing between private and shared data accesses.

To communicate the private or shared classification for data pages,
the operating system extends the page table entries with a bit that
denotes the current classification, and a field to record the CID of
the last core to access the page. Upon the first access, a core
encounters a TLB miss and traps to the OS. The OS marks the
faulting page as private and the CID of the accessor is recorded.
The accessor receives a TLB fill with an additional Private bit set.
On any subsequent request, during the virtual-to-physical transla-
tion, the requesting core examines the Private bit and looks for the
block only in its own local L2 slice.

On a subsequent TLB miss to the page, the OS compares the CID
in the page table entry with the CID of the core encountering the
TLB miss. In the case of a mismatch, either the thread accessing
this page has migrated to another core and the page is still private
to the thread, or the page is shared by multiple threads and must be
re-classified as shared. Because the OS is fully aware of thread
scheduling, it can precisely determine whether or not thread migra-
tion took place, and correctly classify a page as private or shared.

If a page is actively shared, the OS must re-classify the page from
private to shared. Upon a re-classification, the OS first sets the
page to a poisoned state. TLB misses for this page by other cores
are delayed until the poisoned state is cleared. Once the Poisoned
bit is set, the OS shoots down the TLB entry and invalidates any
cache blocks belonging to the page at the previous accessor’s tile.!

190

When the shoot-down completes, the OS classifies the page as
shared by clearing the Private bit in the page table entry, removes
the poisoned state, and services any pending TLB requests.
Because the Private bit is cleared, any core that receives a TLB
entry will treat accesses to this page as shared, applying the stan-
dard address interleaving over the size-16 cluster (entire aggregate
cache) to locate the shared block.

If a page is private but the thread has migrated from one core to
another, a procedure similar to re-classification is employed. The
only difference being that after invalidation at the previous acces-
sor, the page retains its private classification, and the CID in the
page table entry is updated to the CID of the new owner.

4.4 Extensions

Although our configuration of R-NUCA utilizes only clusters of
size-1, size-4 and size-16, the techniques can be applied to clusters
of different types and sizes. For example, R-NUCA can utilize
fixed-boundary clusters, which have a fixed rectangular boundary
and all cores within the rectangle share the same data. The regular
shapes of these clusters make them appropriate for partitioning a
CMP into equal-size non-overlapping partitions, which may not
always be possible with fixed-center clusters. The regular shapes
come at the cost of allowing a smaller degree of nearest-neighbor
communication, as tiles in the corners of the rectangle are farther
away from the other tiles in the cluster.

The indexing policy is orthogonal to the cluster type. Indexing
within a cluster can use standard address interleaving or rotational
interleaving. The choice of interleaving depends on the block repli-
cation requirements. Rotational interleaving is appropriate for rep-
licating blocks while balancing capacity constraints. Standard
address interleaving is appropriate for disjoint clusters. By desig-
nating a center for a cluster and communicating it to the cores via
the TLB mechanism in addition to the Private bit, both interleaving
mechanisms are possible for any cluster type of any size.

Our configuration of R-NUCA employs fixed-center clusters only
for instructions; however, alternative configurations are possible.
For example, heterogeneous workloads with different private data
capacity requirements for each thread (e.g., multi-programmed
workloads) may favor a fixed-center cluster of appropriate size for
private data, effectively spilling blocks to the neighboring slices to
lower cache capacity pressure while retaining fast lookup.

5. EVALUATION

5.1 Methodology

For both CMP configurations, we evaluate four NUCA designs:
private (P), ASR (A), shared (S), and R-NUCA (R). The shared
and private designs are described in Section 2.2. ASR [4] is based
on the private design and adds an adaptive mechanism that proba-
bilistically allocates clean shared blocks in the local L2 slice upon
their eviction from L1. If ASR chooses not to allocate a block, the

1. Block invalidation at the previous accessor is required to guar-
antee coherence when transitioning from a private to shared
classification. The invalidation can be performed by any shoot-
down mechanism available to the OS, such as scheduling a
special shoot-down kernel thread at the previous accessor’s
core; instructions or PAL code routines to perform this opera-
tion already exist in many of today’s architectures.

block is cached at an empty cache frame in another slice, or
dropped if no empty L2 frame exists or another replica is found on
chip. ASR was recently shown to outperform all prior proposals for
on-chip cache management in a CMP[4].

Although we did a best-effort implementation of ASR, our results
did not match with [4]. We believe that the assumptions of our sys-
tem penalize ASR, while the assumptions of [4] penalize the shared
and private cache designs. The relatively fast memory system (90
cycles vs. 500 cycles in [4]) and the long-latency coherence opera-
tions due to our directory-based implementation ([4] utilizes token
broadcast) leave ASR with a small opportunity for improvement.
We implemented six versions of ASR: an adaptive version follow-
ing the guidelines in [4], and five versions that statically choose to
allocate an L1 victim at the local slice with probabilities 0, 0.25,
0.5, 0.75 and 1, respectively. In our results for ASR, we report, for
each workload, the highest-performing of these six versions.

For the private and ASR designs, we optimistically assume an on-
chip full-map distributed directory with zero area overhead. In real-
ity, a full-map directory occupies more area than the aggregate L2
cache, and yet-undiscovered approaches are required to maintain
coherence among the tiles with a lower overhead. Such techniques
are beyond the scope of this paper. Similarly, we assume that ASR
mechanisms incur no area overhead. Thus, the speedup of
R-NUCA compared to a realistic implementation of the private or
ASR designs will be higher than reported in this paper.

Our on-chip coherence protocol is a four-state MOSI protocol
modeled after Piranha [2]. The cores perform speculative load exe-
cution and store prefetching [12,18,30]. We simulate one memory
controller per four cores, each controller co-located with one tile,
assuming communication with off-chip memory through flip-chip
technology. Tiles communicate through the on-chip network. We
list other relevant parameters in Table 1 (left).

We simulate a 2-D folded torus [13] on-chip interconnection net-
work. While prior research typically utilizes mesh interconnects
due to their simple implementation, meshes are prone to hot spots
and penalize tiles at the network edges. In contrast, torus intercon-
nects have no edges and treat nodes homogeneously, spreading the
traffic across all links and avoiding hot spots. 2-D tori can be built
efficiently in modern VLSI by following a folded topology [37]
which eliminates long links. While a 2-D torus is not planar, each
of its dimensions is planar, requiring only two metal layers for the
interconnect [37]. With current commercial products already fea-
turing 11 metal layers, and favorable comparisons of tori against
meshes with respect to area and power overheads [37], we believe
2-D torus interconnects are a feasible and desirable design point.

We measure performance using the SimFlex multiprocessor sam-
pling methodology [39]. Our samples are drawn over an interval of
10 to 30 seconds for OLTP and web server applications, the com-
plete query execution for DSS, one complete iteration for the scien-
tific application, and the first 10 billion instructions after the start
of the first main-loop iteration for MIX. We launch measurements
from checkpoints with warmed caches, branch predictors, TLBs,
on-chip directories, and OS page tables, then warm queue and
interconnect state for 100,000 cycles prior to measuring 50,000
cycles. We use the aggregate number of user instructions commit-
ted per cycle (i.e., committed user instructions summed over all
cores divided by total elapsed cycles) as our performance metric,
which is proportional to overall system throughput [39].

191

HMBusy OL1-to-L1 @EL2 MOffchip DOther MRe-classification

Normalized CPI

Oracle

Shared-averse
workloads

Private-averse workloads

FIGURE 7. Total CPI breakdown for L2 designs. The CPI is
normalized to the total CPI of the private design.

5.2 Classification Accuracy

Although in Section 3 we analyzed the workloads at the granularity
of cache blocks, R-NUCA performs classification at page granular-
ity. Pages may simultaneously contain blocks of multiple classes;
part of a page may contain private data, while the rest may contain
shared data. For our workloads, 6% to 26% of L2 accesses are to
pages with more than one class. However, the accesses issued to
these pages are dominated by a single class; if a page holds both
shared and private data, accesses to shared data dominate. Classify-
ing these pages as shared-data effectively captures the majority of
accesses. Overall, classification at page granularity results in the
misclassification of less than 0.75% of L2 accesses.

5.3 Impact of R-NUCA Mechanisms

Because different workloads favor a different cache organization,
we split our workloads into two categories: private-averse and
shared-averse, based on which design has a higher cycles-per-
instruction (CPI). The private design may perform poorly if it
increases the number of off-chip accesses, or if there is a large
number of L1-to-L1 or L2 coherence requests. Such requests occur
if a core misses in its private L1 and L2 slice, and the data are trans-
ferred from a remote L1 (LI-to-LI transfer) or a remote L2 (L2
coherence transfer). The private and ASR designs penalize such
requests, because each request accesses first the on-chip distributed
directory, which forwards the request to the remote tile, which then
probes its L2 slice and (if needed) its L1 and replies with the data.
Thus, such requests incur additional network traversals and
accesses to L2 slices. Similarly, the shared design may perform
poorly if there are many accesses to private data or instructions,
which the shared design spreads across the entire chip, while the
private design services through the local and fast L2 slice.

Figure 7 shows the CPI (normalized to the private design) due to
useful computation (busy), L1-to-L1 transfers, L2 loads and
instruction fetches (L2), off-chip requests, other delays (e.g.,
front-end stalls), and the CPI due to R-NUCA page re-classifica-
tions. We account for store latency in other due to the existence of
recent proposals to minimize store latency [6,38]. Figure 7 con-
firms that the re-classification overhead of R-NUCA is negligible.
R-NUCA outperforms the competing designs, lowering the L2 hit
latency exhibited by the shared design, and eliminating the long-
latency coherence operations of the private and ASR designs.

04 4 OL1-to-L1

WL2 shared load coherence
OL2 shared load
o 0314
(&]
- —
N
= 024
©
£
=
o
Z 0.1
0
P‘A‘S‘R P‘A‘S‘R P‘A‘S‘R‘ PA‘S‘R‘ P‘A‘S‘R P‘A‘S‘R P‘A‘S‘R P‘A‘S‘R
OLTP | |Apache DSs DSS DSS em3d OLTP MIX
DB2 Qry6 Qry8 Qry13 Oracle
Private-averse workloads Shared-averse
workloads

FIGURE 8. CPI breakdown of L1-to-L1 and L2 load accesses.
The CPI is normalized to the total CPI of the private design.

Impact of L2 coherence elimination. Figure 8 shows the portion
of the total CPI due to accesses to shared data, which may engage
the coherence mechanism. Shared data in R-NUCA and in the
shared design are interleaved across all L2 slices, with both designs
having equal latency. The private and ASR designs replicate
blocks, alternating between servicing requests from the local slice
(L2 shared load) or a remote slice (L2 shared load coherence).
Although local L2 slice accesses are fast, remote accesses engage
the on-chip coherence mechanism, requiring an additional network
traversal and two additional tile accesses compared to the shared or
R-NUCA designs. Thus, the benefits of fast local reuse for shared
data under the private and ASR designs are quickly outweighed by
long-latency coherence operations. On average, eliminating L2
coherence requests in R-NUCA results in 18% lower CPI contribu-
tion of accesses to shared data. Similarly, the private and ASR
designs require accessing both local and remote L2 slices to com-
plete an L1-to-L1 transfer, whereas the shared and R-NUCA
designs use only one access to an L2 slice before requests are sent
to an L1. By eliminating the additional remote L2 slice access,
R-NUCA lowers the latency for L1-to-L1 transfers by 27% on
average. Overall, eliminating coherence requirements at L2 lowers
the CPI due to shared data accesses by 22% on average compared
to the private and ASR designs.

Impact of local allocation of private data. Similar to the private
and ASR designs, R-NUCA allocates private data at the local L2
slice for fast access, while the shared design increases latency by
distributing private data across all L2 slices. Figure 9 shows the
impact of allocating the private data locally. R-NUCA reduces the
access latency of private data by 42% compared to the shared
design, matching the performance of the private design.

Impact of instruction clustering. R-NUCA’s clustered replication
distributes instructions among neighboring slices. Replication
ensures that instruction blocks are only one hop away from the
requestor, and rotational interleaving ensures fast lookup that
matches the speed of a local L2 access. In contrast, the shared
design spreads instruction blocks across the entire die area, requir-
ing significantly more cycles for each instruction L2 request
(Figure 10). As a result, R-NUCA obtains instruction blocks from
L2 on average 40% faster than the shared design. In OLTP-Oracle
and Apache, R-NUCA even outperforms the private design by
20%, as the latter accesses remote tiles to fill some requests.

0.56
0.4 -
o 03
) .
?
N 02
©
£
=
<]
Z 0.1
0
P‘A‘S‘R P‘A‘S‘R P‘A‘S‘R‘ P‘A‘S‘R‘ P‘A‘S‘R P‘A‘S‘R P‘A‘S‘R PA[S|R
OLTP | |Apache DSS DSS DSS em3d OLTP MIX
DB2 Qry6 Qry8 Qry13 Oracle
Private-averse workloads Shared-averse
workloads

FIGURE 9. CPI contribution of L2 accesses to private data.
The CPI is normalized to the total CPI of the private design.

While the private design enables fast instruction L2 accesses, the
excessive replication of instruction blocks causes evictions and an
increase in off-chip misses. Figure 11 compares the performance of
instruction clusters of various sizes. We find that storing instruc-
tions only in the local L2 slice (size-1) increases the off-chip CPI
component by 62% on average over a size-4 cluster, resulting in
reduced performance. At the same time, clusters larger than size-4
spread instruction blocks to a larger area, increasing instruction
access latency by 34% to 69% for size-8 and size-16 clusters
respectively. We find that, for our workloads and system configura-
tions, size-4 clusters offer the best balance between L2 hit latency
and off-chip misses.

5.4 Performance Improvement

R-NUCA lowers the CPI contribution of L2 hits by 18% on aver-
age compared to the private design, and by 22% on average com-
pared to the shared design. At the same time, like the shared
design, R-NUCA is effective at maintaining the large aggregate
capacity of the distributed L2. The CPI due to off-chip misses for
R-NUCA is on average within 17% of the shared design’s for
server workloads, while the private design increases the off-chip
CPI by 72%. Thus, R-NUCA delivers both the fast local access of
the private design and the large effective cache capacity of the
shared design, bridging the gap between the two. R-NUCA attains
an average speedup of 14% over the private and 6% over the shared

0.4

0.3

Normalized CPI

PIA|SIR| |P|AISIR| [PA|S|R| |P|A[SIR P‘A‘S‘R P‘A‘S‘R P|A[SR P‘A‘S‘R
DsSs DSS em3d MIX
Qry8 Qry13

Shared-averse
workloads

Private-averse workloads

FIGURE 10. CPI contribution of L2 instruction accesses. The
CPI is normalized to the total CPI of the private design.

HMBusy [OPeerl1 @mL2 ®Offchip [OOther MPurge

Normalized CPI
o o
S ()]

o
)

o

Shared-averse
workloads

FIGURE 11. CPI breakdown of instruction clusters with
various sizes. The CPI is normalized to size-1 clusters.

Private-averse workloads

designs, and a maximum speedup of 32%. Figure 12 shows the cor-
responding speedups, along with the 95% confidence intervals pro-
duced by our sampling methodology.

In Figure 12, we also show an Ideal design (I) that offers to each
core the capacity of the aggregate L2 cache at the access latency of
the local slice. The ideal design assumes a shared organization with
direct on-chip network links from every core to every L2 slice,
where each slice is heavily multi-banked to eliminate contention.
We find that R-NUCA achieves near-optimal block placement, as
its performance is within 5% of the ideal design.

5.5 Impact of Technology

As Moore’s Law continues and the number of cores on chip con-
tinue to grow, the on-chip interconnect and the aggregate cache
will grow commensurately. This will make the shared design even
less attractive, as cache blocks will be spread over an ever increas-
ing number of tiles. At the same time, the coherence demands of
the private and private-based designs will grow with the size of the
aggregate cache, increasing the area and latency overhead for
accesses to shared data. R-NUCA eliminates coherence among the
L2 slices, avoiding the private design’s overheads, while still
exhibiting fast L2 access times. Moreover, by allowing for the local
and nearest-neighbor allocation of blocks, R-NUCA will continue
to provide an ever-increasing performance benefit over the shared
design. Finally, we believe that the generality of R-NUCA’s clus-
tered organizations will allow for the seamless decomposition of a
large-scale multicore processor into virtual domains, each one with
its own subset of the cache, where each domain will experience fast
and trivial cache lookup through rotational interleaving with mini-
mal hardware and operating system involvement.

6. RELATED WORK

To mitigate the access latency of large on-chip caches, Kim pro-
posed Non-Uniform Cache Architectures (NUCA) [24], showing
that a network of cache banks can be used to reduce average access
latency. Chishti proposed to decouple physical placement from log-
ical organization [9] to add flexibility to the NUCA design.
R-NUCA exploits both proposals.

Beckmann evaluated NUCA architectures in the context of
CMPs [5], concluding that dynamic migration of blocks within a
NUCA can benefit performance but requires smart lookup algo-
rithms and may cause contention in the physical center of the

193

60% A
50% -
40% -
30% -
20% -

Speedup

10% -

0% ~
-10% +
-20%

pllsl| hlsl| [Plskl| PlisRi| [pliskli| sk [phiskli| Pask
OLTP | |Apache| | DSS DSS DSS em3d OLTP MIX
DB2 Qry6 Qry8 Qry13 Oracle

Shared-averse
workloads

Private-averse workloads

FIGURE 12. Performance Improvement. Speedup is
normalized over the private design.

cache. Kandemir proposed migration algorithms for the placement
of each cache block [23], and Ricci proposed smart lookup mecha-
nisms using Bloom filters [31]. In contrast to these works,
R-NUCA avoids block migration in favor of intelligent block
placement, avoiding the central contention problem and eliminat-
ing the need for complex lookup algorithms.

Zhang observed that different classes of accesses benefit from
either a private or shared system organization [44] in multi-chip
multi-processors. Falsafi proposed to apply either a private or
shared organization by dynamically adapting the system on a page
granularity [16]. R-NUCA similarly applies either a private or
shared organization at page granularity, however, we leverage the
OS to properly classify the pages, avoiding reliance on heuristics.

Huh extended the NUCA work to CMPs [21], investigating the
effect of sharing policies. Yeh [41] and Merino [29] proposed
coarse-grain approaches of splitting the cache into private and
shared slices. Guz [19] advocated building separate but exclusive
shared and private regions of cache. R-NUCA similarly treats data
blocks as private until accesses from multiple cores are detected.
Finer-grained dynamic partitioning approaches have also been
investigated. Dybdahl proposed a dynamic algorithm to partition
the cache into private and shared regions [15], while Zhao pro-
posed partitioning by dedicating some cache ways to private oper-
ation [45]. R-NUCA enables dynamic and simultaneous shared and
private organizations, however, unlike prior proposals, without
modification of the underlying cache architecture and without
enforcing strict constraints on either the private or shared capacity.

Chang proposed a private organization which steals capacity from
neighboring private slices, relying on a centralized structure to
keep track of sharing. Liu used bits from the requesting-core ID to
select the set of L2 slices to probe first [26], using a table-based
mechanism to perform a mapping between the core ID and cache
slices. R-NUCA applies a mapping based on the requesting-core
ID, however this mapping is performed through boolean operations
on the ID without an indirection mechanism. Additionally, prior
approaches generally advocate performing lookup through multi-
ple serial or parallel probes or indirection through a directory struc-
ture; R-NUCA is able to perform exactly one probe to one cache
slice to look up any block or to detect a cache miss.

Zhang advocated the use of a tiled architecture, coupling cache
slices to processing cores [43]. Starting with a shared substrate,

[43] creates local replicas to reduce access latency, requiring a
directory structure to keep track of the replicas. As proposed, [43]
wastes capacity because locally allocated private blocks are dupli-
cated at the home node, and offers minimal benefit to workloads
with a large shared read-write working set which do not benefit
from replication. R-NUCA assumes a tiled architecture with a
shared cache substrate, but avoids the need for a directory mecha-
nism by only replicating blocks known to be read-only. Zhang
improves on the design of [43] by migrating private blocks to avoid
wasting capacity at the home node [42], however this design still
can not benefit shared data blocks.

Beckmann proposed an adaptive design that dynamically adjusts
the probability by which read-only shared blocks are allocated at
the local slice [4]. Unlike [4], R-NUCA is not limited to replicating
blocks to a single cache slice, allowing for clusters of nearby slices
to share capacity for replication. Furthermore, the heuristics
employed in [4] require fine-tuning and adjustment, being highly
sensitive to the underlying architecture and workloads, whereas
R-NUCA offers a direct ability to smoothly trade off replicated
capacity for access latency. Marty studied the benefits of partition-
ing a cache for multiple simultaneously-executing workloads [28]
and proposed a hierarchical structure to simplify handling of coher-
ence between the workloads. The R-NUCA design can be similarly
applied to achieve run-time partitioning of the cache while still pre-
serving the R-NUCA access latency benefits within each partition.

OS-driven cache placement has been studied in a number of con-
texts. Sherwood proposed to guide cache placement in
software [34], suggesting the use of the TLB to map addresses to
cache regions. Tam used similar techniques to reduce destructive
interference for multi-programmed workloads [36]. Jin advocated
the use of the OS to control cache placement in a shared NUCA
cache, suggesting that limited replication is possible through this
approach [22]. Cho used the same placement mechanism to parti-
tion the cache slices into groups [11]. R-NUCA leverages the work
of [22] and [11], using the OS-driven approach to guide placement
in the cache. Unlike prior proposals, R-NUCA enables the dynamic
creation of overlapping clusters of slices without additional hard-
ware, and enables the use of these clusters for dedicated private,
replicated private, and shared operation. Fensch advocates the use
of OS-driven placement to avoid the cache-coherence
mechanism [17]. R-NUCA similarly uses OS-driven placement to
avoid cache-coherence at the L2, however, R-NUCA does so with-
out placing strict capacity limitations on the replication of read-
only blocks or requiring new hardware structures and TLB ports.

7. CONCLUSIONS

Wire delays are becoming the dominant component of on-chip
communication; meanwhile, the increasing device density is driv-
ing a rise in on-chip core count and cache capacity, both factors
that rely on fast on-chip communication. Although distributed
caches permit low-latency accesses by cores to nearby cache slices,
the performance benefits depend on the logical organization of the
distributed LLC. Private organizations offer fast local access at the
cost of substantially lower effective cache capacity, while address-
interleaved shared organizations offer large capacity at the cost of
higher access latency. Prior research proposes hybrid designs that
strike a balance between latency and capacity, but fail to optimize
for all accesses, or rely on complex, area-intensive, and high-
latency lookup and coherence mechanisms.

194

In this work, we observe that accesses can be classified into distinct
classes, where each class is amenable to a different block place-
ment policy. Based on this observation, we propose R-NUCA, a
novel cache design that optimizes the placement of each access
class. By utilizing novel rotational interleaving mechanisms and
cluster organizations, R-NUCA offers fast local access while main-
taining high aggregate capacity, and simplifies the design of the
multicore processor by obviating the need for coherence at the
LLC. With minimal software and hardware overheads, R-NUCA
improves performance by 14% on average, and by 32% at best,
while achieving performance within 5% of an ideal cache design.

8. ACKNOWLEDGEMENTS

The authors would like to thank B. Gold and S. Somogyi for their
technical assistance, and T. Brecht, T. Strigkos, and the anonymous
reviewers for their feedback on earlier drafts of this paper. This
work was partially supported by equipment donations from Intel; a
Sloan research fellowship; an ESF EurYI award; and NSF grants
CCF-0702658, CCR-0509356, CCF-0845157, CCR-0205544,
11S-0133686 and 1IS-07134009.

9. REFERENCES

[1] M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar,
P. Kundu, S. Park, I. Schoinas, and A. S. Vaidya. Integration
challenges and trade-offs for tera-scale architectures. Intel
Technology Journal, 11(3):173-184, Aug. 2007.

L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Pi-
ranha: A scalable architecture base on single-chip multipro-
cessing. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, Jun. 2000.

L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In Pro-
ceedings of the 25th Annual International Symposium on
Computer Architecture, Jun. 1998.

B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR:
Adaptive selective replication for CMP caches. In Proceed-
ings of the 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Dec. 2006.

B. M. Beckmann and D. A. Wood. Managing wire delay in
large chip-multiprocessor caches. In Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, Dec. 2004.

L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulk en-
forcement of sequential consistency. In Proceedings of the
34th Annual International Symposium on Computer Archi-
tecture, Jun. 2007.

J. Chang and G. S. Sohi. Cooperative caching for chip multi-
processors. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, Jun. 2006.

G. Chen, H. Chen, M. Haurylau, N. Nelson, P. M. Fauchet,
E. G. Friedman, and D. H. Albonesi. Electrical and optical
on-chip interconnects in scaled microprocessors. In Proceed-
ings of the 2005 IEEE International Symposium on Circuits
and Systems, May 2005.

Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance as-
sociativity for high-performance energy-efficient non-uni-
form cache architectures. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture,
Dec. 2003.

Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing
replication, communication, and capacity allocation in
CMPs. In Proceedings of the 32nd Annual International Sym-
posium on Computer Architecture, Jun. 2005.

[11] S. Cho and L. Jin. Managing distributed, shared L2 caches

[12]

[16]

[17]

(21]

[22]

(24]

(25]

[26]

through OS-level page allocation. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, Dec. 2006.

Y. Chou, L. Spracklen, and S. G. Abraham. Store memory-
level parallelism optimizations for commercial applications.
In Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture, Nov. 2005.

W. J. Dally and C. L. Seitz. The torus routing chip. Distribut-
ed Computing, 1(4):187-196, Dec. 1986.

J. D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP
throughput with mediocre cores. In Proceedings of the 14th
International Conference on Parallel Architectures and Com-
pilation Techniques, Sep. 2005.

H. Dybdahl and P. Stenstrom. An adaptive shared/private
NUCA cache partitioning scheme for chip multiprocessors.
In Proceedings of the 13th International Symposium on High-
Performance Computer Architecture, Feb. 2007.

B. Falsafi and D. A. Wood. Reactive NUMA: A design for
unifying S-COMA and CC-NUMA. In Proceedings of the
24th Annual International Symposium on Computer Archi-
tecture, Jun. 1997.

C. Fensch and M. Cintra. An OS-based alternative to full
hardware coherence on tiled CMPs. In Proceedings of the
14th International Symposium on High-Performance Com-
puter Architecture, Feb. 2008.

K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. In Proceedings of the 1991 International Conference
on Parallel Processing (Vol. I Architecture), Aug. 1991.

Z. Guz, I. Keidar, A. Kolodny, and U. C. Weiser. Utilizing
shared data in chip multiprocessors with the Nahalal architec-
ture. In Proceedings of the 20th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, Jun. 2008.

N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,

A. Ailamaki, and B. Falsafi. Database servers on chip multi-
processors: limitations and opportunities. In Proceedings of

the 3rd Biennial Conference on Innovative Data Systems Re-
search, Jan. 2007.

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A NUCA substrate for flexible CMP cache sharing.
In Proceedings of the 19th Annual International Conference
on Supercomputing, Jun. 2005.

L. Jin, H. Lee, and S. Cho. A flexible data to L2 cache map-
ping approach for future multicore processors. In Proceed-
ings of the 2006 ACM SIGPLAN Workshop on Memory
System Performance and Correctness, Oct. 2006.

M. Kandemir, F. Li, M. J. Irwin, and S. W. Son. A novel mi-
gration-based NUCA design for chip multiprocessors. In Pro-
ceedings of the 2008 ACM/IEEE Conference on
Supercomputing, Nov. 2008.

C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uni-
form cache structure for wire-delay dominated on-chip cach-
es. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, Oct. 2002.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded SPARC processor. IEEE Micro,
25(2):21-29, Mar.-Apr. 2005.

C. Liu, A. Sivasubramaniam, and M. Kandemir. Organizing
the last line of defense before hitting the memory wall for
cmps. In Proceedings of the 10th International Symposium on
High-Performance Computer Architecture, Feb. 2004.

M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence:
Decoupling performance and correctness. In Proceedings of
the 30th Annual International Symposium on Computer Ar-
chitecture, Jun. 2003.

195

[28]

[29]

[31]

[36]

[39]

[42]

[43]

M. R. Marty and M. D. Hill. Virtual hierarchies to support
server consolidation. In Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture, Jun. 2007.

J. Merino, V. Puente, P. Prieto, and J. ’Angel Gregorio. SP-
NUCA: a cost effective dynamic non-uniform cache architec-
ture. ACM SIGARCH Computer Architecture News,
36(2):64-71, May 2008.

P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso. Performance of database workloads on shared-
memory systems with out-of-order processors. In Proceed-
ings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, Oct. 1998.

R. Ricci, S. Barrus, D. Gebhardt, and R. Balasubramonian.
Leveraging bloom filters for smart search within NUCA
caches. In Proceedings of the 2006 Workshop on Complexi-
ty-Effective Design, Jun. 2006.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,

R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan. Larra-
bee: a many-core x86 architecture for visual computing. In
Proceedings of the ACM SIGGRAPH 2008, Aug. 2008.

Semiconductor Industry Association. The International Tech-
nology Roadmap for Semiconductors (ITRS).
http://www.itrs.net/, 2007 Edition.

T. Sherwood, B. Calder, and J. Emer. Reducing cache misses
using hardware and software page placement. In Proceedings
of the 13th Annual International Conference on Supercom-
puting, Jun. 1999.

S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim,

A. Ailamaki, and B. Falsafi. Memory coherence activity pre-
diction in commercial workloads. In Proceedings of the 3rd
Workshop on Memory Performance Issues, Jun. 2004.

D. Tam, R. Azimi, L. Soares, and M. Stumm. Managing
shared L2 caches on multicore systems in software. In Pro-
ceedings of the Workshop on the Interaction between Operat-
ing Systems and Computer Architecture, Jun. 2007.

B. Towles and W. J. Dally. Route packets, net wires: On-chip
interconnection networks. In Proceedings of the 38th Design
Automation Conference, 0:684—689, Jun. 2001.

T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for store-wait-free multiprocessors. In Proceed-
ings of the 34th International Symposium on Computer Ar-
chitecture, Jun. 2007.

T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: statistical sampling of
computer system simulation. IEEE Micro, 26(4):18-31, Jul-
Aug. 2006.

T.Y. Yehand G. Reinman. Fast and fair: data-stream quality
of service. In Proceedings of the 2005 International Confer-
ence on Compilers, Architectures and Synthesis for Embed-
ded Systems, Sep. 2005.

M. Zhang and K. Asanovic. Victim migration: Dynamically
adapting between private and shared CMP caches. Technical
Report MIT-CSAIL-TR-2005-064, MIT, Oct. 2005.

M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiproces-
sors. In Proceedings of the 32nd Annual International Sym-
posium on Computer Architecture, Jun. 2005.

Z. Zhang and J. Torrellas. Reducing remote conflict misses:

Numa with remote cache versus coma. In Proceedings of the
3rd International Symposium on High-Performance Comput-
er Architecture, Feb. 1997.

L. Zhao, R. Iyer, M. Upton, and D. Newell. Towards hybrid
last-level caches for chip-multiprocessors. ACM SIGARCH
Computer Architecture News, 36(2):56—63, May 2008.

