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ABSTRACT

Trace Cache Design

for Wide-Issue Superscalar Processors

by

Sanjay Jeram Patel

Chair: Yale N. Patt

To maximize the performance of a wide-issue superscalar processor, the fetch mechanism

must be capable of delivering at least the same instruction bandwidth as the execution

mechanism is capable of consuming. Fetch mechanisms consisting of a simple instruction

cache are limited by diÆculty in fetching a branch and its taken target in a single cycle.

Such fetch mechanisms will not suÆce for processors capable of executing multiple basic

blocks' worth of instructions.

The Trace Cache is proposed to deal with lost fetch bandwidth due to branches. The

trace cache is a structure which overcomes this partial fetch problem by storing logically

contiguous instructions|instructions which are adjacent in the instruction stream|in phys-

ically contiguous storage. In this manner, the trace cache is able to deliver multiple non-

contiguous blocks each cycle.

This dissertation contains a description of the trace cache mechanism for a 16-wide

issue processor, along with an evaluation of basic parameters of this mechanism, such as

relative size and associativity. The main contributions of this dissertation are a series of

trace cache enhancements which boost instruction fetch bandwidth by 34% and overall

performance by 14% over an aggressive instruction cache. Also included is an analysis

of two important performance limitations of the trace cache: branch resolution time and

instruction duplication.
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CHAPTER 1

Introduction.

1.1 The Instruction Supply Problem

General applications possess large amounts of instruction level parallelism (ILP). Several

basic studies on ILP con�rm that within a contiguous window of a thousand instructions,

on order of twenty instructions can be found to execute in parallel each cycle [1, 38]. This

potential parallelism is the driving force behind the current design trend of building more

and more execution units on a processor.

In order to make e�ective use of these execution units, instructions and the data needed

by these instructions must be supplied at a suÆciently high rate. If ten instructions can be

executed by the machine in a single cycle, then, on average, at least ten instructions must

be fetched in a cycle. To do otherwise would limit performance to below the maximum

potential of the hardware.

The general problem of high performance divides into three sub-problems: that of high-

bandwidth instruction delivery, that of high-bandwidth data delivery, and that of high-

bandwidth execution. This thesis deals with the �rst.

Delivering instructions at a high rate is not a straightforward task; several factors pre-

vent the fetch engine from delivering its maximum capability. First, cache misses cause

the fetch engine to stall and supply no instructions until the miss is resolved. Second,

branch mispredictions cause the fetch engine to fetch instructions which will later be dis-

carded. Third, changes in control ow inhibit the fetch engine from producing a full width

of instructions. Due to the physical layout of instruction caches, taken control instructions

(branches, jumps, subroutine calls and returns instruction) cause the remainder of fetched
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cache lines to be discarded. With an instruction cache, it is diÆcult to fetch both a taken

branch and its target in the same cycle.

Table 1.1 shows the average number of dynamic instructions between all branches and

between taken branches (i.e., taken conditional branches, jumps, subroutine calls, returns

and traps) for the SPECint95 benchmarks. The benchmarks were generated with a compiler

performing standard optimizations. Evident from this table is that if partial fetches due

to branches are not dealt with, then fetch bandwidth will be limited to an average upper

bound of 10.52 instructions per cycle.

cps gcc go ijpeg li m88k perl vrtx avg

insts per branch 9.15 5.34 6.21 15.59 5.54 4.24 6.06 6.57 7.34
per taken branch 13.07 8.46 9.11 19.14 8.41 5.78 9.13 11.05 10.52

Table 1.1: Instruction run lengths when terminating fetches on branches.

1.2 The Trace Cache

A straightforward technique for dealing with this limitation, called the partial fetch

problem, is to construct an instruction cache where multiple fetches can be initiated at the

same time. To do this, multiple addresses need to be generated, one for each block to be

fetched. These addresses index into the instruction cache via multiple read ports. After

the instructions are read, they must be properly aligned and merged before being supplied

for execution. Such a solution adds logic complexity in a very critical execution path of the

processor. Either cycle time will be a�ected or extra pipeline stages will be required.

This dissertation proposes the trace cache as a technique that overcomes this bandwidth

hurdle without requiring excessive logic complexity in the instruction delivery path. By

placing logically contiguous instructions in physically contiguous storage, the trace cache

is able to supply multiple fetch blocks each cycle. A fetch block roughly corresponds to a

compiler basic block: it is a dynamic sequence of instructions starting at the current fetch

address and ending at the next control instruction.

Because it addresses a critical issue in high performance computer design, the trace cache

has been developed concurrently and independently by several researchers [37, 41, 43].

Like the instruction cache, the trace cache is accessed using the starting address of the
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next block of instructions to be fetched. Unlike the instruction cache, a line of the trace

cache contains blocks as they appear in execution order, as opposed to the static order

determined by the compiler. Two adjacent instructions in a trace cache line need not be

at adjacent addresses in the executable image. A trace cache line stores a segment of the

dynamic instruction stream| up to n instructions containing up tom conditional branches.

The trace cache works in concert with a branch predictor capable of sequencing through

multiple control points each cycle. The predictor must be able to predict as many con-

ditional branches each cycle as the trace cache is capable of supplying. Furthermore, the

overall accuracy of this multiple branch predictor must not be signi�cantly lower than a cor-

responding single branch predictor, otherwise gains in fetch bandwidth made by increasing

the fetch size will be o�set by more discarded fetches.

The basic objective behind this research is to increase the delivered instruction band-

width by increasing the e�ective fetch rate. The e�ective fetch rate is the average width of

each fetch, i.e., the average number of correct instructions issued for each fetch that returns

on-path instructions. It is a direct measurement of the impact of the partial fetch problem.

1.3 The Signi�cance of Fetch Rate

Figure 1.1 is a graph showing the relationship between e�ective fetch rate and overall

performance, measured in instructions retired per cycle (IPC). The intent of this graph is

to demonstrate a general trend. Aggressive execution hardware demands aggressive fetch.

The graph contains performance curves for three di�erent microarchitectures as their

fetch rate is arti�cially constrained. All three use the HPS execution paradigm in which

issued instructions await operands in an instruction window. Instructions whose operands

are available are scheduled for execution. The three con�gurations represent di�erent levels

of aggressiveness of the execution hardware, as indicated by their labels. All three mecha-

nisms are capable of 16-wide issue. The Conservative model has a 2-cycle data cache and

clustered execution units. The Aggressive model has a 1-cycle data cache, has no value

bypass delays, and has ideal memory dependence detection. The Ideal model has an un-

limited number of execution units and an ideal data cache. Each data point represents the

harmonic mean of performance and of fetch rate for all eight SPECint95 benchmarks on a

particular hardware con�guration.
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Figure 1.1: IPC as a function of fetch rate for several machine con�gurations.

For all con�gurations, performance increases as the fetch rate increases. However, the

more aggressive hardware has more signi�cant improvement. The fewer structural delays

associated with instruction processing, the more pronounced the performance increase. This

e�ect is due to the interaction of performance-inhibiting bottlenecks within the system. As

one bottleneck is reduced (i.e., fetch rate), another starts to limit performance (e.g., data

bandwidth).

The pursuit of high performance requires the simultaneous improvement of the processor

system on many fronts. Not only must the e�ective fetch rate be improved, but in order

for fetch rate improvements to be worthwhile, the execution hardware must be made as

aggressive as possible.

Figure 1.2 demonstrates the signi�cance of fetch rate from a slightly di�erent viewpoint.

The three curves represent the same three con�gurations as in the previous graph. Here,

each curve shows the percent of retired instructions that could have executed earlier if they

had been fetched earlier, i.e., those instruction which were fetch-limited. As the fetch rate

is increased, this percentage drops. The ideal situation is one where no instructions are

fetch-limited.
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4. The trace cache contains on average 7 copies of an instruction. Of these, about 6

contribute to the overall delivered bandwidth of the trace cache.

5. An implementation for next-generation processor microarchitectures is described. This

scheme delivers high fetch rates at high branch prediction accuracy.

1.6 Organization

This dissertation begins with a description of the instruction supply problem (this chap-

ter, Chapter 1), shows what the partial fetch problem contributes to it, and demonstrates

the signi�cance of e�ective fetch rate on processor performance. The proposed method for

dealing with the partial fetch problem is the trace cache and it is described in Chapter 2.

Other techniques for high bandwidth instruction fetch are described in Chapter 3. The ex-

perimental framework for evaluating the trace cache is described in Chapter 4. Using this

framework, the basic trace cache is evaluated in Chapter 5. An analysis presented in this

chapter reveals several shortcomings of the basic scheme. In Chapter 6, several enhance-

ments that address these shortcomings are proposed and evaluated. In Chapter 7, several

con�guration parameters (such as latencies and associativity) are varied to determine trace

cache sensitivity on basic design factors. In Chapter 8, two e�ects which degrade trace cache

performance are analyzed. First, as fetch rate is increased, the number of lost cycles due

to branch mispredictions increases. Second, instruction duplication decreases the caching

eÆciency of the trace cache. In Chapter 9, a low-latency, high-bandwidth trace cache fetch

mechanism applicable to next-generation superscalar processors is proposed. Chapter 10

concludes this dissertation.
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CHAPTER 2

The Trace Cache Fetch Mechanism.

2.1 Overview

The basic concept behind the trace cache is that logically contiguous instructions are

placed in physically contiguous storage. As blocks of instructions are fetched and executed

by the processor, they are also grouped into trace segments and cached together on the same

cache line. Each trace cache line contains a group of pre-processed instructions which, when

fetched, can be easily formed into a packet for issue into the dynamic instruction window.

The trace cache fetch mechanism consists of four major components: the trace cache,

the �ll unit, the multiple branch predictor, and a conventional instruction cache. The trace

cache is the main source of instruction supply and is �lled with trace segments by the �ll

unit. The multiple branch predictor provides enough predictions per cycle to sequence from

one trace segment to the next. The instruction cache plays an important but supporting

role, handling cases where the requested instructions are not found in the trace cache.

Figure 2.1 is a high-level diagram showing the four components and their relationship to

each other and the other parts of the processor. Each of the four components is described

in detail in this chapter. The mechanics of fetching and forming trace segments are also

described.

2.2 The Trace Cache

The trace cache stores segments of the dynamic instruction stream, exploiting the fact

that many branches are strongly biased in one direction. If block A is followed by block B
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Figure 2.1: A trace cache-based processor.

which in turn is followed by block C at a particular point in the execution of a program,

there is a strong likelihood that they will be executed in the same order again. After the

�rst time they are executed in this order, they are stored in the trace cache as a single entry.

Subsequent fetches of block A from the trace cache provide blocks B and C as well.

Figure 2.2 shows an example of a trace cache fetch. The address of block A is presented

to the trace cache. In this example, the trace cache responds with a hit and drives out the

selected segment composed of the blocks A, B, and C. The prediction structures are accessed

concurrently with the trace cache. At the end of the cycle, the segment is matched with

the prediction. The diagram depicts a situation where the predictor selects the sequence

ABD. Since only blocks A and B match the predicted path, only A and B are supplied for

execution. This is called Partial Matching. Its performance implications will be examined

in Section 6.2.

2.2.1 Trace cache organization

In general, each trace cache segment consists of up to n instructions m of which may

be conditional branches. The number of instructions is limited by the physical size of each

trace cache line; the number of branches depends on the capability of the branch predictor.

For example, if the branch predictor is able to predict three branches per cycle, then each

trace segment can contain at most three conditional branches. The particular trace cache
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cache only contains ABC. AB is supplied.

implementation evaluated in this dissertation is oriented towards a 16-wide superscalar

processor. The trace segments are a maximum of 16 instructions, with up to 3 conditional

branches.

The organization of the trace cache is similar to that of a conventional instruction cache.

The trace cache contains lines of instructions, which may be arranged in a set-associative

manner. A fetch address indexes into the trace cache and selects a set of lines. A match is

determined by comparing the tag of each line in this set with the tag portion of the fetch

address. However, unlike an icache, the instructions of the matching line are not shifted,

realigned, or merged (with instructions from another line) in order to form a packet after

being fetched. In a trace cache, the matching line is ready for the next stage of processing

(i.e., register renaming).

A trace segment is written into the trace cache only if the trace cache does not contain

a longer trace segment along the same path starting at the same address. For instance, if

segment ABC were resident in the cache, the new segment AB would not be added. However,

if ABC were resident in the cache, the segment ABD would overwrite it. To facilitate this,

the path information is included in the tag entry of each line. Path information encodes
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the directions of all internal branches within the trace segment. If the tag indicates that

a line with the same starting address already exists in the cache and the path information

indicates that the line contains a larger segment along the same path, then the incoming

write is not committed to the trace cache. To implement this with nominal performance

impact, either a second read port is needed on the trace cache tag store or tag information

is kept for each block after a trace segment is fetched. The performance impact of this trace

cache write policy is evaluated in Section 7.2.

An important design option of the trace cache is whether or not to allow multiple

segments starting at the same address to be resident concurrently in the cache. Allowing

only one simpli�es the trace segment selection logic. The implications of this design option

are discussed in Section 6.3.

For the 16-wide trace cache evaluated in this dissertation, each line of the trace cache

contains:

� 16 slots for instructions. Instructions are stored in decoded form and occupy approx-

imately �ve bytes each for a typical ISA. Up to three branches can be stored per line.

Each instruction is marked with a two-bit tag indicating to which block it belongs.

� Four target addresses. With three basic blocks per segment and the ability to fetch

partial segments, there are four possible targets from a segment. The four addresses

are explicitly stored allowing immediate generation of the next fetch address, even for

cases where only part of the segment matches the predicted path.

� Path information. This �eld encodes the number and directions of branches in the

segment and includes bits to identify whether a segment ends in a branch and whether

that branch is a return from subroutine instruction. In the case when a segment ends

with a return instruction, the return address stack (RAS) provides the next fetch

address. For the reasons mentioned above, this information is stored in the tag store.

The total size of a line is around 97 bytes for a typical 32-bit ISA: 5x16 bytes of instruc-

tions, 4x4 bytes of target addresses, and 1 byte of path information.

2.2.2 Instructions are stored in decoded form

Instruction dependencies within a segment are pre-analyzed before the segment is stored

in the trace cache. Each source operand identi�er of each instruction includes a two-
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bit tag indicating whether the source value is produced by an instruction internal to the

segment or is produced by an external instruction issued in a previous cycle. If the value is

produced internally, then the tag indicates which block within the segment the producing

instruction belongs to. With this information, the register renaming logic can quickly

determine whether the renamed tag for the source operand is supplied by the register

alias table (RAT) or can be constructed without a RAT access. The destination operand

identi�er for each instruction is augmented with a one-bit tag indicating whether its value

lives beyond its basic block, i.e., is live-out of its basic block. All values that are live-out

are renamed and given a physical register. This allows the checkpoint repair mechanism,

which has to create up to three checkpoints per cycle, to recover from branch mispredictions

that occur in the middle of a segment without having to discard the entire segment. The

concept of explicitly marking internal/external register values within a basic block was �rst

described by Sprangle and Patt [50] and later adapted for use with the trace cache by

Vajapeyam and Mitra [53].

With this additional information, each segment that is retrieved from the trace cache

requires minimal renaming before being merged into the instruction window. Only instruc-

tions that have a source operand produced by an instruction outside the segment require

a lookup in the RAT and only instructions that produce a value that is live-out require

a physical register. Since the dependencies are explicitly indicated, complex dependency

analysis of 16 instructions does not need to be performed after the segment is fetched.

Finally, instructions can be stored in an order that permits quick issue. Because the

segment is pre-analyzed and the dependencies are explicitly marked, the ordering of in-

structions within the trace cache line carries no signi�cance. Instructions within the cache

line can be ordered to mitigate the routing required to send instructions into execution unit

reservation stations. Microarchitectures may arrange the instructions within a segment to

reduce the communications delays associated with incomplete bypass networks. Such a

concept was evaluated by Friendly et al. [17]

2.3 The Fill Unit

The job of the �ll unit is to collect instructions as they are issued by the processor and

combine them into segments to be written into the trace cache. Conceptually, instructions
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are presented to the �ll unit as blocks in the order they were fetched. The �ll unit merges

the arriving blocks with awaiting blocks latched in a previous cycle. The merge process

involves maintaining dependency information and reordering instructions. The process

continues until the segment becomes �nalized, at which point it is enqueued to be written

into the trace cache.

Dependency information is maintained by recalculating the two-bit source operand de-

pendency tag on each arriving instruction. This tag is changed to reect whether an awaiting

instruction generates the value needed by the incoming instruction.

A segment is �nalized when

1. it contains 16 instructions, or

2. it contains 3 conditional branches, or

3. it contains a single indirect jump, return, or trap instruction, or

4. merging the incoming block would result in a segment larger than 16 instructions.

Rule 1 is implied by the size of the trace cache line and rule 2 by the capability of

the predictor. Because their targets vary, return instructions and indirect jumps cause

�nalization (rule 3). Unconditional branches and subroutine calls are not a factor in trace

segment �nalization.

The default �ll unit strategy treats fetch blocks as atomic entities (rule 4). A fetch

block is not split across two segments unless the block is larger than 16 instructions. The

rationale for this strategy and the implications of relaxing it are examined in Section 6.7.

Three outcomes are possible with the arrival of each new block of instructions: (1) The

arriving block is merged with the un�nalized segment and the new, larger segment is not

�nalized. (2) The entire arriving block cannot be merged with the awaiting segment. The

awaiting segment is �nalized and the arriving block now occupies the �ll unit. (3) The

arriving block is completely merged with the awaiting segment and the new, larger segment

is �nalized.

The �ll unit can collect blocks as they are issued into the instruction window or as they

are retired. If blocks are collected at retire time, segments due to speculative execution are

not added to the cache, potentially reducing misses. On the other hand, creating segments

on the wrong path may generate segments that may be useful later. The additional lag time
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in generating segments after retirement might also have negative e�ect on performance: the

�rst few iterations of a tight loop will miss until the �rst iteration is retired and written

into the trace cache. The e�ects of this design issue are examined in Section 7.6.1.

2.4 The Branch Predictor

The branch predictor is a critical component of a high bandwidth fetch mechanism.

To maintain a high instruction bandwidth, the branch predictor needs to make multiple

accurate branch predictions per cycle. Predicting only a single branch would introduce a

one branch per cycle bottleneck. In the case of the trace cache mechanism presented here,

three predictions per cycle are required.

Two-level adaptive branch prediction has been demonstrated to achieve high prediction

accuracy over a wide set of applications [55]. In a two-level scheme, the �rst level of history

records the outcomes of the most recently executed branches. The second level of history,

stored in the pattern history table (PHT), records the most likely outcome when a particular

pattern in the �rst level history is encountered. In typical schemes, the pattern history table

consists of saturating 2-bit counters.

The trace cache branch predictor uses the two-level scheme called gshare (see McFar-

ling [29]). The global branch history is XORed with the current fetch address, forming an

index into the PHT. Gshare has been shown to be e�ective in reducing negative interference

in commonly accessed PHT entries. McFarling has demonstrated the increased accuracy of

gshare over other global history based prediction schemes.

To make three predictions per cycle, we expand each PHT entry from a single two-bit

counter into three two-bit counters, each two-bit counter providing a prediction for a single

branch. Variations of this scheme are presented in Section 7.7. A diagram of this predictor

is presented in Figure 2.3.

2.5 The Instruction Cache

A conventional instruction cache supports the trace cache by supplying instructions

when the trace cache does not contain the requested segment. If hitting in the trace cache

is the frequently occurring case, then the supporting fetch mechanism need not be designed

for higher bandwidth. In Section 7.5, several instruction cache con�gurations of varying
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Table

History

Pattern Fetch Address

Global History

prediction for 1st branch

prediction for 3rd branch

Three 2-bit counters

prediction for 2nd branch

XOR

Figure 2.3: The multiple branch predictor supplies 3 predictions per cycle

using a variant of the gshare scheme developed by McFarling.

aggressiveness are evaluated to test this hypothesis.

Regardless of the aggressiveness of the instruction cache, the instructions fetched from

it must be properly aligned and merged in order to form an issue packet. The packet must

then be decoded and renamed before it is added to the instruction window.

In the case of the trace cache fetch mechanism, the instruction cache supplies up to one

fetch block per cycle. The instruction cache has two read ports to allow adjacent cache

lines to be retrieved each cycle. By fetching two cache lines and realigning instructions, the

icache mechanism overcomes partial fetches due to cache line boundaries.

2.6 The Fetch Cycle

At the beginning of the cycle the fetch address, determined in the previous cycle, is

presented to both the trace cache and the instruction cache. The fetch address is also used

by the branch predictor, along with global branch history, to index into the predictor's

pattern history table. Some time into the cycle, the trace cache will respond with either a

hit and the matching cache line, or a miss. The branch predictor will respond with three

predictions. The instruction cache will produce the matching cache line(s), along with a
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hit/miss signal.

In the case of a trace cache tag hit, the selection logic determines which portion of

the matching line to issue. It does so based on a comparison of the path information

of the matching line and the branch predictions produced that cycle. Selection can be

conservative: if the entire path of the fetched trace segment does not match the predicted

path, then nothing is issued (i.e., it is equivalent to a trace cache miss). The technique

can be more aggressive: only the matching portion is issued. This selection technique is

evaluated in Section 6.2.

The branch predictions also select which of the four possible fetch addresses to use for

the following cycle. If the fetched segment ends in a return, the next fetch address is supplied

by the return address stack. The branch predictor's history register is updated, shifting in

the appropriate predictions for the speculatively fetched branches. Several alternatives for

managing the timing problem associated with selecting the next fetch address are discussed

in Section 6.2.1.

Selecting the proper next fetch address and updating the global history register are the

critical operations which need to be completed in the fetch cycle. If only a portion of the

provided segment matches, unwanted instructions can be invalidated in the next stage of

processing.

In the case of a trace cache miss and an instruction cache hit, up to a single fetch block

is supplied to the decoder at the end of the cycle. If both the trace cache and instruction

cache miss, then a request for the missing instruction cache line is made to the second level

cache. The fetch mechanism stalls until the missing line arrives.
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CHAPTER 3

Related Work

3.1 Overview

The trace cache is a hardware-based scheme for increasing the instruction fetch rate. In

this chapter, the history of the trace cache is described, along with more recent research in

expanding the role of the trace cache.

However, the trace cache is not the only means of high-bandwidth fetch. The problem

of high fetch rate has been attacked on two fronts. First, several hardware-based schemes

have been proposed, most of which address the problem by using a multi-ported or inter-

leaved instruction cache to which multiple independent requests are made. Second, several

compiler-based schemes have also been proposed, most of which use pro�ling to determine

the likely direction of branches and then build large sequential blocks by laying out the

likely path as the fall-through path. In this chapter, these other hardware schemes and

compiler schemes are described.

3.2 The History of the Trace Cache

The roots of the trace cache can be traced back to the original introduction of the �ll

unit by Melvin at al. in 1988 [32]. Although not explicitly intended to create segments of

the dynamic instruction stream, the proposed �ll unit saves the work done by the decoder

of an HPS [40] implementation of the VAX architecture. In this manner the �ll unit (and

associated caching structure) overcomes the decoder bottleneck associated with decoding a

complex instruction set such as the VAX architecture. In a subsequent paper published in
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1989, Melvin and Patt [31] �rst propose using the �ll unit mechanism to store two or more

basic blocks worth of instructions in an entry in the associated cache. Since Melvin and

Patt were investigating 4-wide machines at the time, for which high-bandwidth fetch is not

a necessary component, the concept was not pursued further.

The basic concepts described by Melvin et al. were explored further by Smotherman and

Franklin. In their �rst paper [15], they applied the original �ll unit concept to dynamically

create VLIW instructions out of RISC-type operations. They reworked the �ll unit �nal-

ization strategy by restricting the type of instruction dependencies allowed in a �ll unit line

and by �lling both paths beyond a conditional branch. Their second paper [48] describes

how a �ll unit can help overcome the decoder bottleneck of a Pentium Pro processor.

The �rst documented evaluation of the trace cache appeared as a US patent �led in 1994

by `Intel Corporation, with Peleg and Weiser as inventors [41]. They called the caching

structure the Dynamic Flow Instruction Cache, and each line of it contains two blocks from

the dynamic instruction stream, along with a prediction for each branch. They propose using

each dynamic block as a starting point for each trace segment created. This is di�erent from

the current trace cache schemes where a new segment begins where the previous segment

ended.

Johnson developed the Expanded Parallel Instruction Cache (EPIC) in 1994 [26]. The

Expansion Cache in his scheme is very similar to the trace cache concept, but targeted

for a statically scheduled microarchitecture. Each line of the Expansion Cache contains

instructions in dynamic order, across a single branch. These instructions are stored in a

manner to make processing them easier once they have been fetched: they are decoded,

pre-analyzed, and pre-routed to execution units, similar to the trace cache proposed in this

dissertation. The objective of the Expansion Cache is that of moving processing complexity

to the cache �ll pipeline. The resulting machine is a statically-scheduled machine which can

adapt to run-time variations.

Rotenberg et al. [43] evaluated the trace cache concept in 1996 as a mechanism to deliver

high instruction bandwidth to a wide-issue machine. They demonstrated the trace cache's

lower latency (because of lower complexity) than other hardware based schemes for high-

bandwidth instruction fetch. They demonstrated that the trace cache was more e�ective

than the Branch Address Cache and the Collapsing Bu�er (both described in section 3.4.1)

at instruction supply. Their mechanism consisted of a large instruction cache and a small,
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supporting trace cache.

Patel et al. concurrently developed the trace cache concept in 1996 and published their

�ndings in [37]. In this initial work, they demonstrate some techniques which signi�cantly

increase the instruction bandwidth delivered by the trace cache. Furthermore, they describe

an e�ective multiple branch predictor design. They show that a large trace cache con�g-

uration can signi�cantly outperform an instruction cache, even if the instruction cache is

equipped with state-of-the-art branch prediction.

3.3 Trace Cache Extensions

Since its introduction into mainstream microarchitecture research in 1996, the trace

cache has been extended in both application and performance by several researchers.

Patel et al. [16, 35{37] have signi�cantly increased the delivered fetch rate of the basic

trace cache proposing enhancements which systematically address limitations to its perfor-

mance. Partial Matching and Inactive Issue were �rst explored in 1997 [16], and Branch

Promotion and Trace Packing in 1998 [35].

Rotenberg et al. [44] have pursued an equally important, and complementary line of

trace cache research. They have explored the superscalar processor implications of using a

trace cache. They demonstrate how hardware complexity can be greatly reduced with the

trace cache without signi�cant compromise in performance. Their microarchitectural model

is trace-centric, and the basic unit of processing is a trace segment. The basic ideas behind

their approach are (1) fast value communication is most important within a trace segment,

so one trace segment is allocated within a cluster of execution units where communication

between instructions can be done without extra latency, and (2) speculative sequencing

is best performed at the trace level i.e., individual branches need not be predicted, only

next traces. To go along with their trace processor approach, a next trace predictor was

developed by Jacobson et al. [24]

The concept of dynamic trace optimizations was �rst explored by Friendly et al [17].

With dynamic trace optimizations, the �ll unit optimizes a trace segment by applying

aggressive compiler-style optimizations (such as constant reassociation) and microarchitec-

tural targeting (such as smarter scheduling of instructions to avoid communications delays).

Similar concepts were concurrently investigated by Jacobson and Smith [25].
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Along the lines originally developed by Johnson and the Expansion Cache, Nair and

Hopkins explore the idea of using a mechanism to build and cache statically scheduled

instruction groups [34]. The concept, called the Dynamic Instruction Formatting (DIF)

cache, contains dynamically created VLIW-like instructions which can then be fed to a

high-speed statically-scheduled engine without instruction set support.

Several researchers have also proposed auxiliary extensions to the trace cache. Va-

japeyam and Mitra [53] adopt a scheme for explicitly naming register dependencies to the

trace cache and suggest a scheme for dynamically creating vector-like instructions out of

loops which are completely encoded within a trace segment.

3.4 Other Techniques for High-Bandwidth Instruction Fetch

3.4.1 Hardware-based techniques

One of the simplest forms of hardware-based high bandwidth fetch mechanisms is a se-

quential block scheme where fetching continues past branches which are predicted to be not

taken. With this scheme, fetch bandwidth is limited by taken branches and predictor band-

width. When this scheme is coupled with an optimizing compiler which performs pro�le-

guided code layout to reduce taken branches, the delivered fetch bandwidth is considerably

high, at a low hardware cost. Since this scheme o�ers high performance at low-complexity,

it is evaluated as a comparison to the trace cache in this dissertation.

One of the earliest hardware-based multiple block fetch schemes was proposed by Yeh

et al. [54]. Their scheme, called the branch address cache, was a technique for generating

multiple fetch addresses each cycle. These multiple addresses index into a multiported

(or multi-banked) instruction cache, resulting in several fetch blocks worth of instructions

available each cycle. The branch address cache requires instructions to be shifted, aligned,

and merged in order to form a packet for issue. Two of the biggest concerns with the

Branch Address Cache is its hardware complexity and its amenability to aggressive branch

prediction.

Seznec et al. [45] propose a slight, but important, modi�cation to the Branch Address

Cache pipeline, thereby enabling the use of more aggressive prediction techniques. Their

scheme, called the Multiple-Block Ahead Predictor, associates fetch addresses to target

addresses to be fetched n steps ahead, essentially allowing target generation to be pipelined.
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For example, consider the dynamic sequence of blocks ABCD. If blocks A and B are being

fetched this cycle, then the target entry for block A is associated with next fetch address

C, and block B is associated with fetch address D. In the subsequent cycle, blocks C and

D are fetched. In both cases, the addresses A and B are associated with targets 2 blocks

ahead.

The Collapsing Bu�er, proposed by Conte et al. [11] in 1995, boosts fetch rate by

addressing a commonly occurring limitation. It collapses taken short forward branches and

their targets into a single block. In order for the mechanism to work, the target block

must be within the same cache line. Since codes often contain short forward branches, the

collapsing bu�er is successful at boosting fetch rate.

The trouble with all of the proposed hardware schemes is that they add extra logic

in a very critical section of a processor pipeline: between fetch and issue. As will be

demonstrated in this dissertation, the trace cache delivers high fetch bandwidth and allows

logic complexity to be moved out of this critical processing path, and into a section of the

pipeline where latency does not a�ect performance.

3.4.2 Compiler-based techniques

Compiler-based techniques for increasing fetch bandwidth center around increasing se-

quential runs of instructions by reducing the dynamic occurrence of taken branches. Such

techniques were initially developed to increase the scope for compiler-based code optimiza-

tions, particularly for VLIW machines, as groups of basic blocks which are likely to be

executed together could be optimized as a single unit. These techniques have the side ben-

e�t of boosting fetch rate on hardware capable of exploiting sequential runs of instructions.

Trace scheduling [14] is a technique used by the compilers for the Multiow VLIW

machines. With trace scheduling, code is pro�led to determine the most frequently executed

path, or trace, through a portion of a program (usually a subroutine). This trace is treated

as a unit, as if all internal branches were removed, giving the compiler a larger scope on

which to apply optimizations and scheduling. Fix-up code is added to repair the cases where

an internal branch did not behave as expected.

Superblocks [7, 8, 19] build upon the trace scheduling concept by dividing the sub-

program along most-likely paths called superblocks, each composed of multiple basic blocks.

Each superblock has only one entry point, but can have multiple exit points. Superblock
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formation allows certain basic blocks to be duplicated in order to enforce the single entry

point semantic. Doing so enables aggressive compiler optimization of each superblock.

Hyperblocks [28] are enhancements to superblocks. Hyperblock formation uses predi-

cation [21] to increase the exibility of block formation by allowing blocks to incorporate

both paths of statically oscillating branches.

A technique similar to superblock formation was developed by Pettis and Hansen for

arranging basic blocks to increase instruction cache eÆciency and to reduce the penalty

of taken branchs [42]. Since their objective was to increase cache e�ectiveness and not to

increase the compiler's optimization scope (as with superblocks), they were not limited to

forming sequential blocks with no side entrances. Calder and Grunwald [4] present a further

enhancement to this scheme by eliminating replication outright.

Though these schemes potentially increase fetch rate, their reliance on static predictions

for block formation make them vulnerable to run-time variations in branch behavior. The

Block-Structured Instruction Set Architecture (BS-ISA) [30], proposed by Melvin and Patt,

is an instruction set which is amenable to block-enlargement without a strong reliance on

static prediction. Hao et al. [20] demonstrate e�ective block-enlargement techniques and

describe a dynamic prediction scheme for use with the BS-ISA.

In this dissertation, an optimizing production compiler that performs code layout similar

to the Pettis and Hansen algorithm is used as a baseline for comparison. The algorithm for

block enlargement is slightly di�erent from the one used for superblock formation, as side

entrances are not explicitly eliminated, but code replication is minimized. See Section 4.3

for more details.
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CHAPTER 4

Experimental Model

4.1 Simulation Environment

The experiments in this dissertation were conducted on a microarchitectural simulator

developed using the SimpleScalar 3.0 tool suite [2]. The SimpleScalar 3.0 tool suite provides

simulation support for the Alpha AXP ISA [46] via routines for Alpha ISA emulation, system

call support, and loader functionality. In addition, SimpleScalar provides general simulation

support for cache, memory, and translation lookaside bu�er simulation.

The simulator models the pipeline behavior of an out-of-order processor.

The simulator also models o�-path behavior. The branch predictor generates predictions

and fetch addresses while the processor is both on and o� the correct execution path. Thus

the path followed by the simulated processor when it is executing o�-path instructions is

consistent with that of a real processor. The simulator does not simulate system calls. They

are however behaviorally emulated using the host machine upon which the simulations are

executed.

4.2 Benchmarks and Input Sets

The SPECint95 [51] benchmarks along with �ve common C applications were used

in the experiments performed in this dissertation. The SPECint95 benchmarks are a set

of applications representative of a technical workload. Since they are frequently used as a

performance metric, they provide a common means of comparison across microarchitectural

studies. To supplement the experimental benchmark suite, �ve UNIX C applications were
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added. These additional benchmarks increase the breadth of the benchmark suite, some

by adding new types of applications not found in SPEC, others by providing di�erent

characteristic behavior (e.g., cache footprints, instruction level parallelism, branch behavior)

than the SPECint95 benchmarks. All benchmarks in the experimental benchmark suite,

along with a brief description of each, are listed in table 4.1.

Benchmark Description

compress Lempel-Ziv based �le compression
gcc Optimizing C Compiler
go Array-based game playing program
ijpeg Image compression
li LISP interpreter
m88ksim M88100 pipeline simulator
perl Scripting language interpreter
vortex Object-oriented database transactor

chess Chess playing program
ghostscript (gs) Postscript interpreter
pgp Encryption program
plot Function plotting program
simplescalar (ss) Out-of-order pipeline simulator

Table 4.1: Brief descriptions of each benchmark in the experimental bench-

mark suite.

The input sets for each benchmark consisted of a training input and a measurement

input. The training input was used for pro�le-based compiler code layout (described in

section 4.3) while the measurement input was used to collect the performance data presented

in this dissertation. For the SPECint95 benchmarks, whenever possible, a SPEC-provided

input set was used. In some cases, however, the SPEC-provided inputs were too long or

consumed too much memory for feasible experimentation. Table 4.2 lists all the input sets

used in this dissertation. The SPECint95 inputs marked with a dagger (y) are modi�ed. All

benchmarks were simulated until completion, except for the benchmarks li and ijpeg on the

measurement input sets. These benchmarks were simulated for 500 million instructions.

4.3 Compiler Optimizations

The benchmarks were compiled using the Digital Unix C compiler version 3.5.

24



Benchmark Training Set Measurement Set

compress 35000 e 2231 y 30000 q 2131 y
gcc ref/dbxout.i ref/jump.i
go 27 8 train.in y 19 9 train/2stone9.in
ijpeg train/vigo.ppm ref/penguin.ppm
li 7queens.lsp y ref/*.lsp
m88ksim test/ctl train/ctl
perl train/primes.pl train/scrabbl.pl
vortex 35M y 230M y

chess train.in sim.in
gs graph.ps sigmetrics94.ps
pgp tasuki1.jpg IJPP97.ps
plot singulr.dem surface2.dem
ss -con�g regress.cfg random -con�g default.cfg test-fmath

Table 4.2: The input sets used in this dissertation. All benchmarks, except

li and ijpeg, were simulated to completion.

One particular optimization performed by this compiler that is important to instruc-

tion fetching is one which arranges basic blocks in the executable such that conditional

branches are likely to be not taken. This optimization, along with fetch hardware to exploit

it (described in Section 4.6.2), can provide a signi�cant gain in e�ective fetch rate with low

hardware complexity. Because it is a relevant alternative to the trace cache, this combi-

nation of hardware mechanism and compiler optimization is one of the fetching schemes

investigated in this dissertation.

This optimization of rearranging basic blocks requires pro�ling in order for the compiler

to determine likely outcomes for branches. The block rearrangement algorithm examines a

sub-program at a time (a function, for example). Internally, this sub-program is represented

as a group of basic blocks connected by edges. Each edge represents a branch outcome. The

compiler starts with the most frequent edge, determined by pro�ling, and then grows a trace

forward and backwards from this edge with a mutual most-likely heuristic. It then walks this

trace and converts it into an extended basic block by aligning each branch target to make

the fall-through the common branch outcome. Blocks at join points may get duplicated.

Block duplication is cut o� at some threshold of execution frequency. If a trace enters

a loop with an average iteration count of two or less, then it will continue copying as it

enters the loop and continue around the back edge. This has the e�ect of peeling o� one
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or two iterations of the loop to make an extended basic block. If a loop is not peeled and

the compiler can �nd a dominant path through the body, it will make the body a single

extended basic block and will typically unroll that loop by four [10].

The �rst level of block rearrangement is done by the compiler itself. Another level

is applied using the OM executable editor. Here, the �nal executable undergoes another

step of block rearrangement. Interprocedural rearrangement occurs within this step. More

importantly, blocks within statically-linked library routines and routines in objects not

generated by the compiler are also a�ected. OM uses a variation of the Pettis and Hansen

algorithm [42] for block enlargement.

Because of tool problems with using OM, not all benchmarks were fully optimized

using both levels of rearrangement. Some benchmarks, while being processed by OM,

caused OM to generate error messages and exit. The Table 4.3 lists the maximum level

of rearrangement for each benchmark. If both the C compiler (cc) and OM were able to

optimize the benchmark, then OM is indicated, whereas if only the compiler was able to

optimize, then cc is indicated. Instruction counts while running the measurement input set

are also provided.

Rearrangement Instruction
Benchmark Level Count

compress OM 119M
gcc OM 178M
go OM 145M
ijpeg OM 500M
li cc 500M
m88ksim OM 110M
perl cc 44M
vortex cc 242M

chess OM 243M
gs cc 235M
pgp OM 167M
plot cc 254M
ss cc 114M

Table 4.3: The maximum rearrangement optimization level of each bench-

mark along with its instruction count while running the mea-

surement input set.
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4.4 Microarchitectural Model

The simulated microarchitecture is a 16-wide implementation of the HPS execution

model [39, 40] which performs out-of-order execution using the Tomasulo Algorithm [52].

In the HPS model, instructions are issued into a dynamic instruction window (consisting

of node tables). In the window, instructions wait for their operands to be generated. Once

generated, an instruction is ready to be dispatched to an execution unit for execution. In

this manner, instructions are fetched and issued in program order, but can execute and

complete out-of-order.

E�ective use of the dynamic instruction window requires that the issuing of instructions

be able to slip ahead of their execution. Speculative execution via branch prediction is an

essential component of out-of-order execution. In order to recover from incorrect predictions

(and exceptions in general), a scheme called Checkpoint/Recovery [22] is used to back up

processor state to the point of the misprediction. The checkpointing scheme used in this

dissertation creates up to three checkpoints per cycle since up to three conditional branches

are fetch per cycle.

In the execution model, instructions undergo six stages of processing: Fetch, Decode,

Rename, Window, Execute, Retire. Each stage takes at least one cycle. Each stage is

described in the subsections below.

4.4.1 Fetch

The trace cache, icache, branch predictor, branch target bu�er, and instruction TLB are

all accessed in the fetch stage using a fetch address. The output of this stage is either (1)

an aligned packet of up to 16 instructions ready for the decoder, if the packet was fetched

from the icache, OR (2) a decoded packet of up to 16 instructions ready for renaming, if

the packet was fetched from the trace cache, OR (3) nothing, if both caches miss. Also

produced in the fetch stage is a next fetch address for use in the following cycle.

The fetch mechanisms used in this dissertation consists of 128KB of instruction storage

and approximately 24KB of branch predictor. In total, �ve di�erent fetch mechanisms are

evaluated, the speci�cs of each described in the next two sections (Sections 4.5 and 4.6).

For all fetch mechanisms studied, the return address stack (RAS) is �xed at 32 entries

and the instruction TLB is �xed at 64 entries. Misses in the Level 1 (L1) instruction cache
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initiate a lookup in a 1MB Level 2 (L2) instruction cache with a line size of 128 bytes. The

L2 icache latency (from lookup until �rst line of instructions) is 6 cycles. Misses in the

L2 icache access the memory system via a pipelined system bus. Memory accesses take 50

cycles from access until �rst data, but a new request which matches an in-ight request gets

serviced along with the in-ight request, thus does not incur the full memory latency.

If a fetch is serviced by the instruction cache, a Branch Target Bu�er (BTB) provides

the next fetch address, whereas when a fetch is serviced by the trace cache, the fetch address

is selected from the target addresses encoded directly in the trace cache line.

4.4.2 Decode

Recall that instructions are stored in the trace cache in decoded form so only instructions

which are fetched from the instruction cache need to be decoded. The process of decoding

involves analyzing dependencies across the issue packet (up to 16 instructions). After the

dependency analysis, each source operand from each instruction is categorized as either

generated by an instruction in a previous issue packet (externally de�ned) or is generated

within the packet (internally de�ned). Similarly, each destination operand is categorized as

persisting beyond the basic block in which is was created or not. The process of decoding

16 instructions from the icache can be possibly overlapped with other operations along the

fetch-issue path such as instruction alignment and merging. Also, instructions can be stored

in the icache in decoded form, minimizing the amount of processing required after fetch.

For these reasons, the decode stage is only modeled as requiring a single cycle.

4.4.3 Rename

When a packet is latched into the rename stage, all source operands are marked indicat-

ing whether the operand is externally or internally de�ned. In the rename stage, all source

operands marked as externally generated receive an operand tag via a lookup in the Register

Alias Table (RAT). The RAT is a recoverable mapping between architected registers and

physical registers [3]. Internal values, on the other hand, require no RAT lookup. Their

operand tag can be generated immediately via information encoded within the instruction.

Destination operands which persist beyond their blocks require a physical register and

thus require an update to the RAT. Destinations which are overwritten within their blocks,

on the other hand, are not allocated a physical register.
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The register rename stage was conceptually modeled as ideal: up to 32 sources could be

renamed each cycle and up to 16 destinations given physical mappings. Thus, the latency

of this stage is always one cycle.

4.4.4 Window

The dynamic instruction window is essentially a large bu�er capable of storing 512 in-

ight instructions. Instructions are renamed and then issued into the window. They sit

in the window monitoring the tags of values generated by executing instructions. Values,

when generated, broadcast their unique tags across distribution buses. An instruction is

considered ready for scheduling when all its operand values have been generated. Instruc-

tions which are ready are scheduled, oldest �rst, for execution. Up to 16 ready instruction

each cycle are dispatched to appropriate functional units.

In HPS terminology, the instruction window is organized into node tables. A node table,

also called reservation stations, stores schedulable operations called nodes. With the Alpha

ISA, each instruction is considered a node, thus the terms are used interchangeably. The

particular implementation used here divides the window into 16 separate node tables, each

containing 32 slots for instructions. Each node table is associated with an execution unit,

and instructions placed in a particular node table will only execute on the execution unit

associated with that table.

Loads and stores have an extra requirement for scheduling beyond those of non-memory

instructions. A memory instruction must wait for all previous stores to its address to com-

plete before accessing memory. The memory scheduling algorithm used is perfect memory

dependence prediction. Any memory instruction which is dependent on an in-ight store

waits for its address, as well as the store's address and data to be generated before it is

dispatched to the cache. Any memory instruction which is not dependent on an in-ight

store (determined by the perfect detection mechanism) progresses to the caches whenever its

address is known. A hardware mechanism which performs this type of memory dependence

detection is described in [9].

4.4.5 Execute

Non-memory instructions and the address generation component of memory instructions

execute on 16 execution units, each capable of performing all operations. The execution
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latencies for instructions is provided in table 4.4.

Operation Latency

Integer ALU 1
Integer Multiply 3
Integer Divide 20
Address Calculation 1
Floating-point Add 2
Floating-point Multiply 4
Floating-point Divide 12

Table 4.4: The execution latencies of various instructions groups

Up to 10 load or store instructions can be started each cycle, i.e., the Level 1 data cache

has 10 ports, each port capable of a read or write. The L1 data cache is 64KB, 4-way set

associative, with 32 byte lines. Accesses to the L1 data cache take 1 cycle. Misses are

passed to the 1MB L2 data cache and take 6 cycles from request to data. Like with L2

instruction cache misses, L2 data cache misses are passed to the memory system take 50

cycles to complete unless they match an in-ight request.

A value generated by one execution unit is available at the inputs of itself and any of

the other 15 in the subsequent cycle. In other words, there is no additional latency for

bypassing values between execution units.

A 128 entry 4-way data TLB is used for data accesses.

4.4.6 Retire

The processor is capable of retiring up to 16 instructions each cycle. Retirement hap-

pens on the granularity of issue packets when all instructions within an issue packet have

completed without generating an exception and predicted branch directions and targets

have all been con�rmed.

4.4.7 Final note on aggressiveness

The execution model used is similar to the aggressive con�guration of the Figures 1.1

and 1.2. This dissertation surveys possible trace cache designs for 5 to 8 years in the

future. While a 16-wide superscalar machine with a 128KB 1-cycle instruction cache and 10-

ported 64KB data caches with no bypass latency and perfect memory dependence detection
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seem unlikely with today's technology, microarchitectural research between now and the

time these machines will be feasible to build will have matured possibly beyond what is

modeled here. The argument and data presented in Chapter 1 state that gains in execution

bandwidth must accompany a corresponding e�ective fetch rate (via the trace cache) in

order for performance to be realized.

4.5 Trace Cache Baseline Con�gurations

In order to give a broad assessment of trace cache design, three di�erent trace cache

mechanisms and two di�erent conventional mechanisms are evaluated throughout this dis-

sertation. The objective here is to show the e�ects and relative performance of the enhance-

ments presented.

The three trace cache con�gurations di�er in the amount of storage allocated to the trace

cache versus the amount allocated to the instruction cache. The �rst con�guration consists

of a 128KB trace cache and a 4KB instruction cache. The second con�guration consists of

equally sized 64KB trace and instruction caches. The last trace cache con�guration consists

of a 4KB trace cache and a 128KB instruction cache.

For all trace cache con�gurations, a 24KB multiple predictor described in section 2.4

is used. In the case of a fetch serviced by the instruction cache, a branch target bu�er

provides the next fetch address.

The instruction cache for these con�guration is capable of supplying two adjacent cache

lines each cycle, i.e., a fetch to address X will supply both the line containing X and the

line containing X+n (where n is the line size). In this manner, packet size is not limited by

cache line boundaries. These two fetched lines are aligned and merged so that up to one

fetch block is supplied each cycle by the icache. This technique of fetching two adjacent

lines to form a fetch block is known as split-line fetching [18].

Finally, the baseline trace cache con�gurations implement a conservative, low-complexity

path matching policy: the trace segment selected with the fetch address must exactly match

the path selected by the branch predictor, otherwise a trace cache miss is signaled.
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4.6 ICache Baseline Con�gurations

The two conventional mechanisms consist of only instruction caches. They di�er in their

ability to fetch beyond branches, and subsequently have di�erent branch predictor designs.

Both consist of a 128KB instruction cache where two sequential lines are capable of being

fetched each cycle.

4.6.1 Single-Block ICache

The Single-Block instruction cache uses the split-line fetch technique to supply up to

one fetch block per cycle|at most one branch is fetched per cycle{but no more than 16

instructions. With this technique, the alignment and merge logic is relatively simple. Two

ports are required to the instruction cache, but since these requests are to adjacent lines,

low-degree interleaving is suÆcient. Since only one branch is supplied per cycle, a single

branch predictor can be used. The research into single branch predictors is more mature

than that of multiple branch predictors, and as a result, their accuracy is higher.

The predictor used in the single block fetch mechanism is a hybrid predictor [6, 12, 29]

consisting of a gshare component predictor and a PAs component and is similar to the

one used on the Digital/Compaq Alpha 21264 [27]. A selector dynamically determines, per

branch, which component predictor is performing better and selects that predictor to supply

the prediction for that branch. The accuracy of hybrid predictors has been demonstrated to

be higher than equivalently sized single-component predictors. The hybrid predictor used

for this con�guration is also 24KB: 8KB allocated to the gshare component, 8KB to the PAs

component, and 8KB allocated to the selector. In addition to the 24KB in the predictor,

the 20KB BTB contains both target addresses and 2K 15-bit per-branch histories used by

the PAs predictor. The size of the BTB is chosen to be on-par with the next fetch address

information stored on each trace cache line for the trace cache con�gurations.

4.6.2 Sequential-Block ICache

The Sequential-Block instruction cache allows fetching beyond branches which are pre-

dicted not taken. Like the Single-Block Icache, the Sequential-Block Icache uses the split-

line scheme. Two adjacent lines are fetched. In this manner, the sequential icache provides

up to 16 instructions as long as they are physically sequential in memory. This mechanism
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takes advantage of the compiler optimization of block rearrangement to reduce the number

of taken branches, increasing the average sequential run length.

In order to accomplish this, however, multiple branches need to be predicted each cycle

(in order to determine which are not taken). Thus the predictor also places a limitation in

that up to 3 conditional branches can be fetched. The same 24KB multiple branch predictor

used by the trace cache con�gurations is used for this con�guration. In addition, a 16KB

BTB is used to generate fetch addresses.

Table 4.5 list the �ve con�gurations and the basic parameters of each.

Con�guration TCache ICache Blocks Br Pred BTB
Name Size Size per Fetch Type Size

TC.ic 128KB 4KB 3 Multiple 1KB
TC.IC 64KB 64KB 3 Multiple 8KB
tc.IC 4KB 128KB 3 Multiple 16KB

Single { 128KB 1 Hybrid 20KB
Sequential { 128KB 3 Multiple 16KB

Table 4.5: The �ve fetch mechanisms evaluated in this dissertation.
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CHAPTER 5

Basic Experiments

The �ve baseline con�gurations are evaluated in this chapter. First, the overall perfor-

mance data in instructions retired per cycle (IPC) is presented for each con�guration on the

13 benchmarks. Next, individual factors which a�ect performance of these con�gurations

are analyzed. The objective of this chapter is to identify the particular weaknesses of the

trace cache that motivate the improvements presented in the next chapter.

5.1 Measurements

The performance of the �ve baseline con�gurations on the experimental benchmark

suite is shown in the two �gures below: Figure 5.1 shows performance on the SPECint95

benchmarks and Figure 5.2 shows performance on the additional UNIX applications. The

legend for both �gures is displayed on the second.

For many benchmarks (gcc, go, li, perl, gs, pgp, plot, ss) the Sequential-Block ICache

performs best. The compiler is e�ectively able to layout the executable, minimizing the

occurrences of taken branches. Of the con�gurations with a trace cache, splitting the

instruction storage equally across the trace cache and instruction cache provides the most

signi�cant performance. Here, the e�ect of a high miss rate in the trace cache (which

will be discussed in Section 5.2.3) is lessened by the instruction cache, providing a good

compromise between high fetch rate and low miss rates. The average performance across all

13 benchmarks is listed in Table 5.1. The Sequential-Block ICache o�ers a 2% improvement

over the best trace cache con�guration and a 16% improvement over the Single Icache.
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Benchmark TC.ic TC.IC tc.IC Single Sequential

Average IPC 4.79 5.08 4.71 4.48 5.18

Table 5.1: Average performance of the baselines on the 13 benchmarks.
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Figure 5.1: The performance in IPC of the �ve con�gurations on SPECint95.
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Figure 5.2: Performance of the �ve con�gurations on the UNIX applications.
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5.2 Analysis

To gain deeper understanding of the phenomena behind these performance trends, one

must examine the individual factors which a�ect performance. Figures 5.3 and 5.4 display

a cycle-by-cycle accounting for each benchmark, where each cycle is categorized into one of

six categories viewed from the perspective of the fetch mechanism:

1. fetch cycles that result in instructions on the correct execution path (Useful Fetch),

2. fetch cycles that result in instructions o� the correct execution path (Branch Misses),

3. fetch cycles that produce no instructions because of a cache miss (Cache Misses),

4. cycles where the machine is stalled due to a full instruction window (Full Window),

5. cycles where the machine is stalled due to trap instructions (Traps), and

6. fetch cycles where the wrong fetch address was generated (Misfetches) 1.

5.2.1 E�ective Fetch Rate

The number of cycles required to fetch the program (Useful Fetches) decreases as the

e�ective fetch rate is increased. For most benchmarks, the fetch rate of the Sequential-

Block ICache is highest. The average e�ective fetch rates in instructions per fetch across all

the benchmarks are listed in Table 5.2. For the trace cache con�gurations, the larger the

trace cache, the bigger the fetch rate, indicating that a trace cache is able to deliver more

instructions per fetch than an instruction cache.

Benchmark TC.ic TC.IC tc.IC Single Sequential

E� Fetch Rate 9.65 9.62 8.44 6.50 9.74

Table 5.2: Average e�ective fetch rates for the 13 benchmarks.

5.2.2 Branch Misses

For many benchmarks, a signi�cant number of cycles are spent on the wrong execution

path because of branch mispredictions. These cycles are labeled Branch Misses in the

1Pipeline bubbles due to the di�erent lengths of the trace cache pipeline and icache pipeline are categorized

as Misfetches
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Figure 5.3: Cycle breakdown, SPECint95 benchmarks
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Figure 5.4: Cycle breakdown, UNIX applications

�gure. Branch miss cycles are a product of the number of branches mispredicted and the

average number of cycles between the prediction of a branch and the eventual decision of

its outcome. This time is referred to as the average branch resolution time. Because of

a phenomenon which will be discussed in Section 8.2, the average branch resolution time

grows as the e�ective fetch rate of the fetch mechanism grows.

Note that absolute number of cycles of Branch Misses is lower for the Single-Block ICache

con�gurations on almost all benchmarks. The hybrid predictor used in the Single-Block

ICache is an advanced prediction scheme that is more accurate than the multiple branch
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predictor used for the other con�gurations. The multiple branch predictor is geared towards

predicting multiple branches per cycle whereas the hybrid is not. The multiple branch

predictor su�ers degradation in performance because branch information is ineÆciently

stored within its structures to accommodate the multiple prediction capability. The branch

misprediction rates for the individual benchmarks and con�gurations are listed in Table 5.3.

Benchmark TC.ic TC.IC tc.IC Single Seqntl

compress 8.33 8.33 8.34 5.00 8.49
gcc 7.61 7.69 8.03 5.98 7.39
go 17.09 17.07 17.33 14.29 16.32
ijpeg 9.33 9.28 9.33 8.46 9.14
li 4.20 4.20 4.20 2.72 4.26
m88ksim 1.89 1.89 2.02 0.79 2.00
perl 2.66 2.60 2.80 1.24 2.76
vortex 1.65 1.52 1.92 0.74 1.34

chess 2.33 2.32 2.42 1.83 2.25
gs 5.49 5.53 5.64 4.16 5.44
pgp 5.26 5.24 5.27 4.35 5.27
plot 2.59 2.60 2.66 1.53 2.63
ss 4.70 4.72 4.93 3.36 4.61

Average 5.63 5.61 5.76 4.19 5.53

Table 5.3: The conditional branch misprediction rates (in percentage) of

the �ve baseline con�gurations.

The average resolution time, in cycles, for a mispredicted branch is listed in Table 5.4.

There is a complex interaction between two main factors a�ecting resolution time: pipeline

length and fetch rate. First, branch resolution time increases as more fetches are supplied

from the instruction cache. Recall that the icache path (even with the trace cache) requires

an additional pipeline stage to accommodate the alignment and decoding required to form a

packet. Any branch fetched from the icache will require an extra cycle for resolution. There-

fore, the icache-based schemes su�er from higher resolution times. Second, as mentioned

earlier, resolution times increase as the e�ective fetch rate is increased. The phenomenon

behind this is subtle and will be examined more thoroughly in Section 8.2|basically, as

fetch rate is increased, more instructions upon which the branch is dependent are fetched

along with the branch, thus the branch waits longer in the instruction window before it

executes. Since the Sequential-Block ICache and the TC.IC con�gurations have high fetch

40



rates and a high number of fetches from the icache, they su�er from higher resolution times.

Finally, notice from Table 5.3 that the Sequential-Block ICache su�ers from roughly the

same misprediction rate as the trace cache con�gurations. Also, notice in Table 5.4 that it

su�ers from the highest resolution times. These two factors account for the large branch

miss penalties associated with this con�guration (see Figures 5.3 and 5.4).

Benchmark TC.ic TC.IC tc.IC Single Sequential

Ave mispredicted
brn resolution time 8.82 9.07 8.83 9.53 10.40

Table 5.4: Average branch resolution time, in cycles, for mispredicted

branches.

5.2.3 Trace Cache Misses

The fetch rate for the trace cache is highly dependent on frequently hitting in the trace

cache. The trace cache miss rates in misses per 1000 instructions for the three trace cache

con�gurations are listed in the left portion of Table 5.5. In the right portion, the overall

misses per 1000 instructions for the entire fetch mechanism (i.e., misses in both the trace

cache and the instruction cache) are listed. The average for each con�guration is provided

to identify the general trends in miss rate. A trend of importance is that the trace cache

miss rate remains high, even if the trace cache is large. In order for an increase in e�ective

fetch rate to be realized, a signi�cant number of fetches must come from the trace cache.

Therefore, a high trace cache miss rate is not acceptable.

The trace cache involves trading o� eÆcient caching of the executable for caching it in a

manner suited for wide fetch. Instructions can be cached multiple times in the trace cache;

this duplicate storage can degrade cache hit rates. The e�ects of duplication and techniques

to control it will be discussed in Section 8.3. Primarily due to duplication, an instruction

cache will su�er from fewer misses than a trace cache of comparable size.

However, for some benchmarks (compress, ijpeg, pgp), the trace cache miss rate does

not change signi�cantly as the size of the trace cache is increased. These benchmarks have

small instruction working sets (compress can e�ectively be cached in 4KB) so it is expected

that these benchmarks should not su�er signi�cantly from misses since they will not be
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a�ected by any lack of space in a 128KB trace cache.

Since capacity misses can be ruled out for these benchmarks, two other sources of misses

can account for this behavior. First, conict misses could be a factor. Even though the trace

and instruction caches were modeled as 4-way associative, it could be that the trace cache

indexing scheme creates many hot spots and thus requires a higher degree of associativity

to be e�ective. This factor is examined in 7.1. Second, hits to the trace cache are signaled

only if both the tag matches the tag portion of the fetch request AND the path predicted

by the branch predictor completely matches the path encoded within the trace segment.

Recall that the baseline trace cache con�gurations do not implement Partial Matching.

Benchmark TC.ic TC.IC tc.IC TC.ic TC.IC tc.IC Single Seqntl

compress 16.80 16.80 17.62 0.02 0.00 0.00 0.00 0.00
gcc 37.28 43.49 113.03 14.90 2.18 1.00 0.97 0.95
go 46.24 50.53 81.80 11.14 3.81 1.03 0.97 1.04
ijpeg 11.25 10.00 16.39 0.04 0.00 0.00 0.00 0.00
li 54.58 52.37 71.96 0.70 0.00 0.00 0.00 0.00
m88ksim 16.02 15.97 70.55 4.25 0.01 0.00 0.00 0.00
perl 34.58 33.62 112.48 16.38 0.06 0.04 0.03 0.04
vortex 23.68 28.13 93.33 5.85 0.93 0.45 0.45 0.43

chess 75.31 75.13 100.27 2.91 0.03 0.00 0.00 0.00
gs 17.08 38.05 57.94 4.99 1.45 0.53 0.52 0.51
pgp 35.93 17.37 17.93 0.06 0.01 0.00 0.00 0.01
plot 25.04 23.26 56.13 4.17 0.03 0.01 0.01 0.01
ss 27.49 27.88 98.87 14.35 0.05 0.02 0.01 0.02

Average 33.69 34.08 63.21 4.15 0.53 0.20 0.19 0.19

Table 5.5: The left half of this table lists the trace cache misses per 1000

instructions retired. The right half lists icache misses (for the

trace cache con�gurations, this implies a tcache miss as well) per

1000 instructions retired.

5.3 Conclusions

The preliminary performance data indicate that the Sequential-Block instruction cache

works best amongst the �ve baseline con�gurations. This con�guration delivers the highest

fetch rate coupled with low icache miss rates, but su�ers from a larger loss due to branch

misses.
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The trace cache con�gurations su�er severely from trace cache misses. The TC.ic

(128KB trace cache, 4KB icache) con�guration su�ered an average of 33.69 trace cache

misses in delivering 1000 instructions. Of the trace cache con�gurations, the TC.IC (64KB

trace cache, 64KB icache) con�guration had the highest overall performance because it cou-

pled the high fetch rate possible with the trace cache with the high hit rate possible with

an icache.
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CHAPTER 6

Enhancements

6.1 Overview

In the previous chapter, it was noted that trace cache performance was severely degraded

by trace cache misses. Furthermore, since it requires several branch predictions per cycle,

the trace cache su�ered from a high penalty due to conditional branch mispredictions. In

this chapter, several enhancements are proposed to address both of these concerns. Partial

Matching increases the trace cache hit rate by allowing the trace cache to signal a hit even

when only a portion of the selected path matches the trace segment. Inactive Issue allows

the trace cache to hedge against a branch misprediction by allowing issue of the path of the

branch that was not selected by the predictor.

Performance of the trace cache can also be enhanced by making it more e�ective at

delivering instructions. The two �nal enhancements proposed in this chapter directly boost

the e�ective fetch rate. Branch Promotion converts highly biased branches into assertion-

like instructions which act like unconditional branches. Trace Packing relaxes the atomic

treatment of basic blocks during segment creation.

All the enhancements, directly or indirectly, increase the e�ective fetch rate of the trace

cache. The primarily role of the trace cache is to boost the fetch rate without compromising

the hit rate or the branch prediction rate, thereby achieving an overall increase in instruction

fetch bandwidth.
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6.2 Partial Matching

As noted in the previous section, a large fraction of trace cache misses may be due to

the fact that the entire predicted path must match the selected trace segment in order to

signal a trace cache hit. For this experiment, a new hit strategy called Partial Matching

is evaluated. With Partial Matching, the predictor selects which blocks encoded on the

matching trace cache line are fetched and which are discarded.

Figure 6.1 (which is the same as Figure 2.2) demonstrates Partial Matching. A request

is made for block A. The trace cache responds with ABC. The predictor predicts the control

ow to go from A to B to D. With Partial Matching, the partial segment AB is supplied.

A B C

Address of A
A

B

D C

T

TNT

A B

Selection Logic

Trace Cache

T/NT/T

Predictions

Predictor
Branch
Multiple

Figure 6.1: The trace cache and branch predictor are indexed with the ad-

dress of block A. The inset �gure shows the control ow from

block A. The predictor selects the sequence ABD. The trace
cache only contains ABC. AB is supplied.

6.2.1 Implementation issues

Partial Matching comes at a cost, however. To implement Partial Matching as simulated

here, four target addresses must be stored in each trace cache entry. Figure 6.2 shows the

possible next fetch addresses with and without Partial Matching. With no Partial Matching,

only two possible targets exist for each trace segment. Selection between four as opposed
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to two will likely increase the critical access path of the fetch stage. The selection of the

next target address is essential to complete in one cycle; the selection of instructions can be

pushed into the next cycle as unwanted blocks can be invalidated as the instructions within

the packet are renamed.

X YW Z

B

A

CX

W

Y Z

Y Z

Next Target

Prediction for
final branch

Without Partial Matching

Next Target

Prediction for
all branches

With Partial Matching

Figure 6.2: Part of the implementation cost of Partial Matching is the se-

lection between four target address as opposed to two.

Several options exist for dealing with this increase in implementation cost. If cycle time

is the concern, then two of the four targets can be preselected as most likely and the branch

predictor can select between these two. If the real target is one of the other two, then a

misfetch penalty is su�ered. If storage costs are a concern, then the target storage can be

decoupled from the trace cache storage. This separate trace target bu�er is more adaptive

and can take advantage of the property that many trace segments will likely require fewer

than all four possible targets. A miss in the trace target bu�er will incur the same small

misfetch penalty as picking an incorrect target. Finally, a coupled predictor such as the

Next Trace Predictor [24] can be used. With this scheme, the pattern history table of the

branch predictor is replaced with a table containing target addresses. Instead of predicting

individual branches, and then using these predictions to select a target, the process is

coupled into a single table lookup. The branch (or path, as Jacobsen et al. propose) history

indexes into a table which then provides the next target to fetch from. With this scheme,

target addresses which are never accessed are never allocated storage.
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6.2.2 Measurements

The data plotted in Figures 6.3{6.5 show the implications on performance of Partial

Matching versus requiring a full match. Each �gure represents a di�erent baseline trace

cache con�guration. In the last �gure in this sequence, Figure 6.6, the three con�gurations

with Partial Matching are plotted on the same graph. With the addition of Partial Match-

ing, the large trace cache, small icache con�guration TC.ic performs about the same as an

evenly split TC.IC con�guration. The average IPC for TC.ic is 5.61, TC.IC is 5.59, and

tc.IC is 4.95.
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Figure 6.3: The TC.ic con�guration with and without Partial Matching.
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Figure 6.4: The TC.IC con�guration with and without Partial Matching.

48



comp gcc go ijpeg li m88k perl vor ch gs pgp plot ss
Benchmarks

0

1

2

3

4

5

6

7

8

9

In
st

ru
ct

io
ns

 P
er

 C
yc

le

tc.IC
tc.IC w/Partial Matching

Figure 6.5: The tc.IC con�guration with and without Partial Matching.

6.2.3 Analysis

Table 6.1 lists the trace cache misses per 1000 instructions for the three con�gurations

with Partial Matching added. The average trace cache miss rate for the TC.ic con�guration

drops from 33.69 misses every 1000 instructions without Partial Matching (as reported in

Table 5.5) to 1.52 misses every 1000 instructions. The additional exibility of Partial

Matching e�ectively addresses the trace cache miss problem observed with the baseline

comp gcc go ijpeg li m88k perl vor ch gs pgp plot ss
Benchmarks

0

1

2

3

4

5

6

7

8

9

In
st

ru
ct

io
ns

 P
er

 C
yc

le

TC.ic w/Partial Matching
TC.IC w/Partial Matching
tc.IC w/Partial Matching

Figure 6.6: All three trace cache con�gurations with Partial Matching. The

TC.ic con�guration performs slightly better than the evenly

split TC.IC con�guration.
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con�guration in Section 5.1.

Benchmark TC.ic TC.IC tc.IC

compress 0.01 0.01 4.64
gcc 6.56 14.51 96.92
go 15.84 22.14 63.43
ijpeg 0.01 0.01 10.15
li 0.02 0.08 28.29
m88ksim 0.04 0.30 59.28
perl 0.14 0.83 94.59
vortex 1.19 4.81 83.69

chess 0.19 1.14 31.93
gs 1.65 4.78 33.32
pgp 0.04 0.05 5.84
plot 0.43 0.88 41.92
ss 0.39 1.74 81.70

Average 1.52 3.11 40.01

Table 6.1: The trace cache miss rates in misses per 1000 instructions are dis-

played for the three con�gurations with Partial Matching added.

Partial Matching also boosts the e�ective fetch rate of these con�gurations. For the

fetch rate to go up, the number of instructions fetched from the trace cache on a partially

matched hit must be larger on average than the number which could be delivered from

the icache, i.e., larger than one fetch block's worth. The e�ective fetch rate of the TC.ic

con�guration with Partial Matching is 11.20 instruction per fetch as opposed to 9.62 for the

same con�guration without Partial Matching. So even on partially matched hits, the trace

cache often delivers more than a single block.

6.3 Path Associativity

Path Associativity relaxes the constraint that di�erent segments starting from the same

fetch block cannot be stored in the trace cache at the same time. Path Associativity allows

segments ABC and ABD to reside concurrently in the cache whereas a non-path-associative

trace cache allows only one segment starting at A to be resident in the trace cache at any

instant in time.
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6.3.1 Implementation issues

A path associative trace cache datapath is shown in �gure 6.7.

DBA

Trace Cache set

A D

Address of A

A B C B

path selection logic

Multiple
Branch

Predictor

Trace Cache

A

B

CD

NT

NTT

NT/T/NT

Figure 6.7: The trace cache drives out all segments in the set. The predic-

tion is used to select the longest matching segment.

All segments starting at the same address are stored in the same set of the cache.

In the same manner as the non-path-associative case, the fetch address is used to index

into the trace cache and a tag match is performed to �nd the matching line. The tag

matching processes of a path-associative cache and a non-path-associative cache have a

slight but crucial di�erence. Both require a tag match of the upper bits of address and

both require using the branch prediction to select the proper next fetch address. However,

the path associative cache requires that the longest matching path be determined before

the matching line is selected. Finding the longest matching path requires completing the

address match �rst. Only after the address match is complete, can the longest matching

path and thus the next fetch address and instructions to supply be selected. It is likely

that the line selection time for the path associative cache will be longer, possibly impacting

cycle time.
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6.3.2 Measurement

The data plotted in Figure 6.8 indicate that Path Associativity has little e�ect on the

performance of the baseline trace cache. Adding Path Associativity increases the number of

segments that map into a particular set; thus additional misses may occur due to increased

set conicts. This e�ect can be seen for the benchmarks li and vortex, where enabling path

associativity causes performance to drop slightly. Therefore the experiment was conducted

on a path-associative trace cache with set-associativity of 4 and of 8. In both cases, the

performance gain from Path Associativity is very small.
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Figure 6.8: Performance of Path Associativity on the TC.ic con�guration.
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Figure 6.9: Performance of Path Associativity on the TC.IC con�guration.
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Figure 6.10: Performance of Path Associativity on the tc.IC con�guration.

6.3.3 Analysis

Partial Matching and Path Associativity are di�erent approaches for increasing perfor-

mance by decreasing the trace cache miss rate. The performance data from the previous

section suggest that Path Associativity does a rather poor job at it. The trace cache miss

data (in misses per 1000 instructions) presented in Table 6.2 support this observation.

Even though the caching policy is made more exible with Path Associativity, allowing bet-

ter adaptability to dynamic program behavior, the overall trace cache miss rates are only

slightly lower than the trace cache miss rates of the baseline con�gurations (provided in the

last row). The resulting average e�ective fetch rates are 9.56 for the TC.ic con�guration,

9.72 for the TC.IC con�guration, and 8.48 for tc.IC.

Though Path Associativity has the potential to increase performance, several factors

combine to reduce its e�ectiveness. Path Associativity increases the number of items which

map into the trace cache. So for a trace cache of a particular size, the number of capacity

misses increases when Path Associativity is added. Since all these new items all map to the

same set as the corresponding original items, the number of conict misses also increases. So

in order for Path Associativity to be a performance win, both the size and set-associativity

of the trace cache must be increased. Furthermore, Path Associativity addresses trace

segments which oscillate between two or more paths. The further these oscillations are

spaced apart in time, then the less e�ective Path Associativity becomes. Partial Matching

is a better policy for dealing with these oscillating trace segments.
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Benchmark TC.ic TC.IC tc.IC

compress 11.39 12.22 17.51
gcc 28.94 37.13 111.56
go 37.58 42.78 79.09
ijpeg 10.51 9.02 15.67
li 49.98 49.08 78.90
m88ksim 11.06 15.79 65.17
perl 27.54 27.60 112.03
vortex 19.62 26.34 93.18

chess 30.01 10.43 58.07
gs 28.14 30.68 56.99
pgp 20.25 19.78 19.73
plot 24.06 23.88 55.24
ss 22.18 24.06 98.30

Average 26.32 26.06 60.11

Ave w/o Path Assoc 33.69 34.08 63.21

Table 6.2: The trace cache miss rates in misses per 1000 instructions with
Path Associativity added.

6.4 Inactive Issue

Partial Matching increases the number of instructions that are issued each cycle but

it does not take advantage of the entire segment of instructions fetched from the trace

cache. Blocks within the trace cache segment which do not match the predicted path are

discarded. As long as the prediction is correct, this does not impact the e�ective fetch rate.

If the prediction is incorrect however, an opportunity to issue a greater number of correct

instructions has been missed.

With Inactive Issue [16] all of the blocks within a trace cache line are issued into the

processor whether or not they match the predicted path. The blocks that do not match

the prediction are said to be issued inactively. Although these inactive instructions are

renamed and receive physical registers for their destination values, the changes they make to

the register mapping (i.e., the Register Alias Table) are not considered valid for subsequent

cycles. Thus instructions along the predicted path view the speculative state of the processor

exactly as if the inactive blocks had not been issued. When the branch that ended the last

active block resolves, if the prediction was correct, the inactive instructions are discarded

and their physical registers deallocated. If the prediction was incorrect, the processor has
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already fetched, issued, and possibly executed some instructions along the correct path.

This technique has a few advantages. Primarily, it reduces the impact of branch mispre-

dictions. Inactive Issue is able to hide a portion of the branch resolution latency by making

some correct path instructions (which follow a mispredicted branch) available for process-

ing earlier. When the mispredicted branch resolves, the recovery state of the processor is

further along the correct path than it would have been if the inactive instructions had not

been issued. Furthermore, if any inactively issued branches have resolved, the predictions

made for them are not used. Their actual outcomes are known.

Inactive Issue also has the potential to reduce the amount of block duplication within

the trace cache. Without Inactive Issue, when a mispredicted branch resolves, the next fetch

might correspond to an address that is already within the trace cache but is not accessible,

as it could be an interior block (i.e., blocks B and C of the segment ABC.) With Inactive

Issue however, the block no longer has to be refetched, and need not be rewritten to the

trace cache into a new entry (though is may be already duplicated for other reasons). Block

duplication is therefore reduced and the trace cache storage is used more e�ectively. This

e�ect also reduces the pressure on the multiple branch predictor, causing a reduction in

interference.

Figure 6.11 illustrates the blocks issued from a fetched cache line by the three di�erent

policies: no Partial Matching, Partial Matching, and Inactive Issue.

B

C D

Predicted path: ABC
Fetched segment: ABD

A

Inactive Issue: AB (active) D(inactive)

Partial Matching: AB
No Partial Matching: miss

Figure 6.11: An example of the di�erent issue policies.

6.4.1 Implementation issues

To implement Inactive Issue, modi�cations must be made to the renaming and recovery

structures. The HPS execution model uses a checkpointed register alias table to maintain
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both the architectural and speculative state of the processor. The changes needed to im-

plement Inactive Issue include adding an active bit to each checkpoint in the table. As

the checkpoints are created, this bit is set if the instructions in the corresponding block

are issued actively and the bit is cleared if the instructions are issued inactively. The most

recent active checkpoint is used as the speculative state of the machine when new instruc-

tions are issued. When a branch resolves and is determined to be mispredicted, the inactive

checkpoints immediately following the resolved checkpoint become active and all subse-

quent checkpoints, corresponding to instructions along the incorrect path, are ushed from

the pipeline and the instruction window. The fetch proceeds from the (possibly predicted,

possibly actual) target of the newly activated checkpoint. If the branch resolves correctly

predicted, the inactive checkpoints are simply invalidated.

6.4.2 Measurement

Figures 6.12{6.14 present the performance bene�ts of Inactive Issue. Since Inactive Issue

is a further enhancement to Partial Matching, the Partial Matching results from Section 6.2

are provided for reference. Inactive Issue is a hedge against mispredicted branches, there-

fore the value of Inactive Issue (over simple Partial Matching) is greater when the branch

predictor performs poorly; Inactive Issue is more helpful for programs with a higher mispre-

diction rate as demonstrated by the boost in performance on benchmarks gcc and go. On

the TC.ic con�guration, the performance of gcc is improved by 4% and the performance of

go by 7% over that of Partial Matching. The performance di�erential, in general, between

Inactive Issue and Partial Matching would be expected to increase if a smaller, less e�ective

branch predictor were used.

6.4.3 Analysis

The cycle breakdown for the benchmarks gcc and go on the TC.ic con�guration is

presented in Figure 6.15. In this �gure, the baseline TC.ic is compared with TC.ic plus

Partial Matching and TC.ic plus Inactive Issue. Only gcc and go are shown because of their

high branch misprediction rates. The main feature to observe in this �gure is that Inactive

Issue reduces the number of cycles lost due to branch mispredictions for both benchmarks.

While Inactive Issue reduces the number of cycles to resolve a branch by making correct-

path instructions following a mispredicted branch available before the resolution of that
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Figure 6.12: Performance of Inactive Issue on the TC.ic con�guration. The

con�guration with Partial Matching is shown for contrast.
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Figure 6.13: Performance of Inactive Issue on the TC.IC con�guration. The

con�guration with Partial Matching is shown for contrast.

branch, there is a negative factor which causes resolution time to increase. Inactive Issue

increases the number of instructions competing for resources at any time. Many instruc-

tions issued by this policy will eventually be discarded (i.e., if the corresponding branch is

correctly predicted) but they still compete with real instructions for functional units and

memory ports. The loss in performance observed on some benchmarks, such as perl, is due

to this e�ect. Table 6.3 below quanti�es the average number of cycles that ready instruc-

57



comp gcc go ijpeg li m88k perl vor ch gs pgp plot ss
Benchmarks

0

1

2

3

4

5

6

7

8

9

In
st

ru
ct

io
ns

 P
er

 C
yc

le

tc.IC
tc.IC w/Partial Matching
tc.IC w/Inactive Issue

Figure 6.14: Performance of Inactive Issue on the tc.IC con�guration. The

con�guration with Partial Matching is shown for contrast.

tions wait for functional units with Partial Matching compared to with Inactive Issue for

the TC.ic con�guration, broken down per benchmark. While this absolute number of cy-

cles is fairly small, this increase accumulates across all instructions in a dependency chain,

potentially increasing branch resolution time.

Benchmark Partial Matching Inactive Issue

compress 0.13 0.14
gcc 0.13 0.14
go 0.08 0.10
ijpeg 0.48 0.50
li 0.16 0.19
m88ksim 0.24 0.26
perl 0.22 0.24
vortex 0.25 0.26

chess 0.09 0.10
gs 0.18 0.18
pgp 0.19 0.21
plot 0.34 0.37
ss 0.26 0.27

Table 6.3: The average number of cycles a ready instruction waits for a

functional unit.

To deal with the e�ect of inactive instructions competing for resources with active
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Figure 6.15: Cycle breakdown for the TC.ic con�guration, without Partial

Matching, with Partial Matching, and with Inactive Issue.

instructions, the scheduling policy was modi�ed to always give priority to active instructions.

With this policy, if an active instruction and an inactive instruction are both requesting the

same execution unit, then the active instruction will win, regardless of whether the inactive

instruction is older. Figure 6.16 compares the performance of the TC.ic con�guration with

Partial Matching, with Inactive Issue, and with Inactive Issue with the modi�ed scheduling

policy. The benchmarks where lots of instructions are issued inactively (gcc and go) bene�t

slightly with this policy. The percentages over the bars indicate the performance di�erence

between Partial Matching and Inactive Issue with the new policy. None of the benchmarks

drop in performance.
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Figure 6.16: The performance of Inactive Issue with a new scheduling policy.
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6.5 Dual Path Trace Segments

The trace caches explored in [37, 41, 43] contain trace segments which are dynamic se-

quences of blocks. Each subsequent block in a segment is a target of the previous block.

Partial Matching enables another option: a trace segment need not consist of blocks from a

single path of execution. The segment can be a multipath tree. The multiple branch predic-

tor selects which path to issue from the fetched segment. If Inactive Issue is implemented,

then the blocks on the non-selected paths are issued inactively.

In its simplest form, the multipath trace segment contains two separate paths, where

the paths do not merge. Two cases of these simple dual path trace segments (along with

normal single path segment) are shown in �gure 6.17. The type-A segment is an example of

a trace segment considered by the previous work on trace caches. The type-B and type-C

segments are the new simple dual-path cases. Here, the selected path is issued actively and

the other path is issued inactively. If the selected path was incorrect and the inactive path

was correct, then the inactive instructions need not be refetched.

A

B

C

Type-A

A

B C

Type-B

A

D

B

C

Type-C

Figure 6.17: Three types of simple trace segments are shown here. Type-A

contains only one path. Type-B and type-C trace segments

encapsulate two paths.

6.5.1 Implementation issues

Type-A segments can be trivially constructed by the �ll unit. To create type-B and

type-C segments requires an enhancement to the �ll algorithm: if an inactive (or discarded,

if �lling at retire) block �ts into the pending segment, add it. Any subsequent inactive

(discarded) blocks are ushed. The next active block will share the same predecessor block

as the inactive (discarded) block. If the active block �ts, add it and �nalize. A simple dual

path trace segment is created. If it doesn't �t, ush the inactive (discarded) block and add
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the active block as normal.

Each trace cache line must now contain �ve target addresses, since the type-C segment

has �ve possible successors. Furthermore, the fetch mechanism must be able to distinguish

which instructions belong to which path thereby allowing the instructions along the pre-

dicted path to be actively issued. This requires that each instruction contain a two-bit �eld

indicating the directions of the previous branches in the segment. This �eld is compared

with the prediction to decide whether the instruction should be actively or inactively issued.

6.5.2 Measurement

The measurements done for this enhancement were performed using an older version

of the simulator. The older simulator was based on the SimpleScalar ISA, as opposed to

the Alpha AXP ISA supported by the newer simulator. While the absolute performance in

IPC between the two simulator environments are likely to be di�erent, the relative �ndings

presented here are expected to be similar for both environments. Both the Inactive and

Dual Path con�gurations were simulated on the SimpleScalar ISA.

The performance in percent speedup in IPC over Inactive Issue of a fetch mechanism

which allows type-A, type-B, and type-C segments is shown in Table 6.4. Only the TC.ic

con�guration was measured. The performance of compress, go, gcc, and ijpeg is slightly

boosted over the Inactive Issue case. While some benchmarks bene�t from the Dual Path

segments, others do not. The benchmarks li and m88ksim su�er a degradation in perfor-

mance. If branches within a segment are strongly biased, then it is better to have more

blocks on the likely path than to have blocks from each path. Forks within a segment are

most useful when the corresponding branch oscillates, or is hard-to-predict.

6.5.3 Analysis

The Type-B segment is more commonly created than the Type-C segment. However,

creating a Type-B segment potentially results in fewer instruction being fetched if the

internal branch is biased towards one direction. If it is biased, then having both paths does

not o�er bene�t; in this situation, it would be more advantageous to have a regular Type-A

segment along the more likely path.

To make e�ective use of dual path segments, the �ll unit must decide when a path

should contain a fork and when it should not. Forks should appear when the adjoining
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Benchmark Dual Path Speedup
over Inactive Issue

compress 1.0%
gcc 1.3%
go 1.0%
ijpeg 1.2%
li -0.9%
m88ksim -2.8%
perl 0.0%
vortex 0.0%

Table 6.4: The percent speedup in IPC of using Dual Path segments over

Inactive Issue alone, measured on the TC.ic con�guration using

the SimpleScalar ISA.

branch oscillates over a very short span or if the branch is hard to predict. Hardware

schemes, such as a con�dence mechanism proposed by Jacobsen [23], can assist the �ll unit

by identifying branches which the branch predictor is not predicting well. Whenever such

a branch is encountered, the pending segment is a possible candidate for a Dual Path.

6.6 Branch Promotion

The central bene�t of the trace cache is its ability to boost the e�ective fetch rate

beyond a single fetch block. With Partial Matching and Inactive Issue, the trace cache

delivers approximately 12 instructions per cycle, or about two fetch blocks. Figure 6.18 is

a histogram in which instruction fetches on the correct execution path are categorized by

size. The data for this histogram was collected on the TC.ic con�guration implementing

Partial Matching and Inactive Issue and running the benchmark gcc. The conditions which

limit the size of each fetch and their frequencies are identi�ed on the graph.

There are seven conditions which can limit a fetch:

1. Partial Match. The path predicted by the branch predictor di�ered from the path of

the trace segment and only a portion of the segment was subsequently issued.

2. Atomic Block. The �ll unit was forced to create a segment smaller than maximum size

because the subsequent block in the retire stream was larger than the space remaining

in the pending segment. Here the �ll unit is treating fetch blocks atomically.
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3. ICache. The fetch was serviced by the icache and it was terminated by a control

instruction or a cache line boundary 1 before 16 instructions were fetched.

4. Mispred BR. A mispredicted branch terminated the fetch. All inactively issued in-

structions within the segment after the branch also contribute to the size of the current

fetch.

5. Max Size. The trace segment or icache fetch contained 16 instructions.

6. Ret, Indir, Trap. Returns, indirect jumps, and traps cause the pending segment to

be �nalized.

7. Maximum BRs. The �ll unit created a segment containing three branches and all

three were on path and issued actively from the current fetch.

Figure 6.18 shows that a large number of fetches are limited in size by the maximum

branch limit of 3.
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Figure 6.18: The fetch width breakdown for gcc on the TC.ic con�guration.

In order to address this limitation in an e�ective manner, a frequently reported charac-

teristic of conditional branches is drawn upon: during execution, over 50% of conditional

branches are strongly biased [6]. When such a branch is detected, the branch will be con-

verted by the �ll unit into a branch with a built-in static prediction. This process is called

1The instruction cache implements split-line fetching, however cache line boundaries can still terminate

a fetch if the request for the second line misses in the cache.
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Branch Promotion. The concept is similar to branch �ltering proposed by Chang et al [5].

A promoted branch requires no dynamic prediction and therefore need not consume branch

predictor bandwidth when it is fetched. Its likely target instruction is either included within

the trace segment or will be fetched in the subsequent fetch cycle. Two types of promoted

conditional branches can be dynamically created|ones that are strongly biased towards

not taken and ones strongly biased towards taken. With two bits, the �ll unit can encode

a branch as promoted and designate its likely outcome.

6.6.1 Implementation issues

Candidate branches can be detected via a hardware mechanism similar to the mecha-

nism used for branch �ltering. A table, indexed by branch address, called the branch bias

table, is shown in Figure 6.19. It contains the previous outcome of the branch and the

number of consecutive times the branch has had that same outcome. The bias table is

updated whenever a branch is retired. The �ll unit indexes into the bias table whenever a

conditional branch is added to the pending segment. If the number of consecutive outcomes

of the branch is beyond a threshold, the branch is promoted. For the experiments involving

promoted branches presented here, the size of the bias table was �xed at 8K entries. A

tagged bias table is modeled.

n-bit saturating counter

# Consecutive occurrencesPrevious outcome

n

Branch Address

dir

Promote

Branch Bias Table

Figure 6.19: Diagram of the branch bias table.

A promoted branch that is mispredicted is said to fault, meaning that the block contain-

ing the branch must be undone. Processor state is reverted back to the previous branch, and

execution proceeds from there with the promoted branch following the correct direction.
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A faulting promoted branch is only demoted back to a normal conditional branch if there

are two consecutive outcomes in the other direction or if there is a miss in the bias table 2.

The rationale for requiring two opposite outcomes is to inhibit the �nal iteration of a loop

branch from demoting an otherwise strongly biased branch.

The baseline multiple branch predictor is not well utilized if branches are promoted.

Most of trace segments will use only the �rst counter, leaving the remaining counters unuti-

lized. To adjust for this, the pattern history table is restructured into three separated tables,

each producing a single prediction. The �rst table contains 64K 2-bit counters and pro-

vides the prediction for the �rst branch. The second table contains 16K 2-bit counters and

provides the prediction for the second branch. The third table contains 8K 2-bit counters

and provides the prediction for the third branch. The total size of this predictor is 22KB.

6.6.2 Measurement

Figures 6.20{ 6.22 show the performance measurements on the three trace cache con-

�gurations. Each �gures shows the baseline con�guration, the baseline con�guration with

Inactive Issue (and therefore Partial Matching), and a con�guration with Inactive Issue

and Branch Promotion. The threshold for Promotion for these measurements was set to

64. For the TC.ic con�guration, the average IPC for the baseline is 4.79. For the Inactive

Issue con�guration, the average performance is 5.67 IPC. With Branch Promotion added,

the performance goes to 5.76 IPC.

2Branch demotion actually occurs when two or more consecutive opposite outcomes are detected on a

faulting promoted branch. This is because multiple copies of a branch can exist in the trace cache, and

promoted copies are demoted only after they are fetched
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Figure 6.20: Performance of Branch Promotion on the TC.ic con�guration.

The con�guration with Inactive Issue is shown for contrast.
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Figure 6.21: Performance of Branch Promotion on the TC.IC con�guration.

The con�guration with Inactive Issue is shown for contrast.
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Figure 6.22: Performance of Branch Promotion on the tc.IC con�guration.

The con�guration with Inactive Issue is shown for contrast.
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6.6.3 Analysis

The e�ect on fetch rate

Table 6.5 shows the average e�ective fetch rate for Branch Promotion with various

values for the threshold using the TC.ic con�guration. Included are the e�ective fetch rates

delivered with the Inactive Issue con�guration described in section 6.4 as well as the two

baseline icache con�gurations. The promoted branch con�gurations add Branch Promotion

on top of Inactive Issue. For a threshold value of 64, the e�ective fetch rate is increased by

a very slight average of 4% over the Inactive Issue con�guration.

Con�guration Ave e�ective fetch rate

Single 6.50
Sequential 9.74
Basic TC.ic 9.65
Partial Matching 11.20
Inactive Issue 11.35

threshold = 8 11.70
threshold = 16 11.72
threshold = 32 11.72
threshold = 64 11.73
threshold = 128 11.70
threshold = 256 11.67

Table 6.5: The average e�ective fetch rate with Promotion. All trace cache

con�gurations are based on the TC.ic model.

With Branch Promotion, many fewer fetches are limited by branch predictor bandwidth.

Figure 6.23 is similar to �gure 6.18 and shows a histogram of fetch sizes on the benchmark

gcc annotated with reasons for fetch termination. The threshold for Branch Promotion is

64 consecutive occurrences. Compared to �gure 6.18, there are fewer fetches terminated

because of the maximum branch limit. For this benchmark, the e�ective fetch rate is 10.56

instructions per cycle, a 5% increase over using Inactive Issue alone.

Notice, however, that fetch size for gcc is being limited now by Atomic Blocks. Trace

Packing, introduced in the next section, deals with this limitation.
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Figure 6.23: The fetch width breakdown for gcc on the TC.ic con�guration

with Branch Promotion.

The e�ect on branch prediction

Figure 6.24 displays the dynamic frequency of promoted branches, regular branches,

and promoted branches which fault (threshold = 64). A signi�cant number (about 60%)

of dynamic branches are converted into promoted branches. Of these, a very insigni�cant

number ever fault.

Branch Promotion removes a large number of easily predictable branches from the do-

main of the dynamic predictor. Since these branches do not update the predictor's pattern

history table, interference [56] is reduced in a manner similar to branch �ltering. Their

outcomes, however, are added to the global branch history to maintain the integrity of

the predictor's information. Because interference is reduced, prediction accuracy improves

overall.

However, the benchmark executables have been optimized to reduce the incidence of

taken branches, as mentioned in section 4.3. One bene�cial side e�ect of this optimization is

that global branch interference is reduced via an \agree" e�ect [49]. Since branch outcomes

are likely to be not-taken, a certain amount of negative interference in the branch predictor's

Pattern History Table is converted to positive interference. This happens because branches

which collide in the PHT are more likely to force the counter into a not-taken state. If

this optimization were not used to generate the executables, then the interference-reducing
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Figure 6.24: The frequency of promoted branches and how often they fault.

e�ect of Branch Promotion would be more pronounced.

Figure 6.25 shows the percent change in the number of conditional branches on the

correct execution path which are mispredicted for three con�gurations (threshold 32, 64,

and 128) compared to using Inactive Issue. In most con�gurations, the number of mispre-

dictions is reduced, in some cases signi�cantly. For go, Promotion at threshold=64 reduces

the number of mispredicted conditional branches to about 92% of the Inactive Issue case.

Overall, the branch misprediction rate drops from 6% on the con�guration with inactive

issue to 5% for threshold=64. However, premature Promotion can lead to frequent fault-

ing (faults also count as mispredictions), as is the case with the benchmarks li, pgp, and

plot. Increasing the threshold for Promotion reduces the e�ect of premature Promotion, as

branches that pass the larger threshold are more likely to remain biased.

Creating Large Execution Units

Branch Promotion e�ectively enlarges the execution atomic unit (EAU) from the per-

spective of the trace cache. An EAU is a unit of instructions in which all instructions

execute or none execute. Conditional branches terminate an execution atomic unit whereas

promoted branches need not. If a promoted branch faults, the machine is backed up to the

previous checkpoint (the end of the previous block) and then resumes with the promoted

branch executing in the correct direction. The implications and measurement of EAUs will
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Figure 6.25: The percent change, relative to the Inactive Issue case, in

the number of mispredicted branches when branches are pro-
moted.

be covered in Section 8.4

Another result of Promotion is that fewer non-promoted branches are encountered per

fetch of 16 instructions. Previous trace cache studies measured that at least three branches

were required to e�ectively deliver bandwidth for a 16-wide machine. The data in Table 6.6

shows that with Promotion on average 91% of all fetches require only one dynamic branch

prediction.

Con�guration 0 1 2 3
predictions predictions predictions predictions

Inactive Issue 30% 32% 21% 17%
threshold = 64 63% 28% 7% 2%

Table 6.6: The number of predictions required each fetch cycle, averaged

over all benchmarks.

Branch Promotion can be done statically, as well. The ISA must allow for extra encod-

ings to communicate strongly biased branches to the hardware. However, branches which

switch outcomes during execution but remain biased or are sensitive to input data may be

missed during static analysis. There are a few advantages. Branches need not go through
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a warm-up phase before being detected as promotable and branches which have irregular

behavior but are strongly biased can be more easily detected statically.

6.6.4 Extensions

The concept of Branch Promotion can also be applied to returns and indirect jumps.

Here, the bias hardware monitors these instructions to determine if their outcomes are �xed

to a single target address. When a particular indirect jump is detected as going to the same

target a threshold number of times, it is promoted into static jump to that target. The

semantics of the new promoted instruction ensure that if the target is di�erent, then a fault

will direct execution to the correct target. Table 6.7 provides evidence that such Promotion

(return promotion, in particular) may be worthwhile. The table shows the percentage of

all dynamic return and indirect jumps which have gone to the same target for 16 or more

consecutive outcomes. Using this classi�cation, almost 60% of all return instructions are

pinned to the same target. Using Promotion for these cases will increase trace segment

length, thus e�ective fetch rate, and reduce the pressure on the return address stack.

Benchmark RETURN INDIR JMP

compress 83.84% 43.56%
gcc 41.71% 12.43%
go 45.66% 7.09%
ijpeg 9.20% 96.45%
li 53.89% 7.38%
m88ksim 74.32% 0.67%
perl 54.84% 6.89%
vortex 47.82% 19.21%

chess 76.15% 2.73%
gs 80.58% 50.87%
pgp 82.91% 38.16%
plot 35.62% 46.24%
ss 55.54% 65.32%

Average 57.08% 30.54%

Table 6.7: The percentage of RETURNs and INDIR JMPs which have the

same target for 16 or more consecutive previous occurrences.
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6.7 Trace Packing

Branch Promotion results in a 5% percent increase in overall e�ective fetch rate over

Inactive Issue. However from the fetch termination histogram in �gure 6.23, it is evident

that by promoting branches, fetch bandwidth is slightly increased, and quickly limited by

the fact that fetch blocks are atomic entities within the �ll unit. If fetch blocks are atomic,

the �ll unit will not divide a block of newly retired instructions across trace segments

(unless the block is larger than 16 instructions). If the pending trace segment contains 13

instructions, then a block of 9 instructions will cause the segment of 13 instructions to be

written and the block of 9 will begin a new segment.

There is a strong rationale for treating fetch blocks as atomic entities. Figure 6.26 shows

a loop composed of three fetch blocks. If blocks are treated atomically, three trace segments

containing the loop blocks are formed in the steady state: AB, CA, BC. But if the �ll unit

is allowed to fragment a block, a process called Trace Packing, then six segments could

potentially be created. 3 The problem gets signi�cantly worse if there are di�erent control

paths within the loop.

A

B

6 instructions

5 instructions

6 instructions

C

Figure 6.26: A loop composed of 3 fetch blocks.

On the positive side, this duplication potentially increases the delivered fetch rate, e.g.,

loops will be dynamically unrolled so that a maximum number of blocks can be fetched per

cycle. But the primary cost of this duplication is increased contention for trace cache lines.

With non-atomic treatment of blocks, trace segments can be packed with more instructions,

3The six segments are A6B5C5, C1A6B5, C6A6B4, B1C6A6, B5C6A5, A1B5C6. The subscripts denote

the number of instructions of each block included in the segment. Notice that even with trace packing, no

instructions beyond the third branch are added to the pending segment
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but at the cost of increased duplication within the trace cache.

6.7.1 Measurement

Figures 6.27{6.29 show the performance of Trace Packing. In all experiments performed,

Trace Packing was added on top of Inactive Issue. Overall, Trace Packing yields a 2%

performance improvement over Inactive Issue on the TC.ic con�guration.
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Figure 6.27: Performance of Trace Packing on the TC.ic con�guration. The

con�guration with Inactive Issue is shown for contrast.

6.7.2 Analysis

E�ect on fetch rate

Both Branch Promotion and Trace Packing are limited by the problem the other is

solving. The key to unlocking the fetch potential of the trace cache is to use both techniques.

Figure 6.30 compares the e�ective fetch rate for four TC.ic con�gurations: with Inactive

Issue, with Inactive Issue and Branch Promotion, with Inactive Issue and Trace Packing,

and with all three. The threshold for Branch Promotion is set to 64. With both Branch

Promotion and Trace Packing in place, the fetch bandwidth is boosted by an average of 17%

across all the benchmarks simulated over Inactive Issue alone. The percentages above the

bars indicate the increase with both Packing and Promotion over the Inactive Issue case. In

many cases, the total increase is more than the sum of the individual increases, most notably
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Figure 6.28: Performance of Trace Packing on the TC.IC con�guration.

The con�guration with Inactive Issue is shown for contrast.
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Figure 6.29: Performance of Trace Packing on the tc.IC con�guration. The

con�guration with Inactive Issue is shown for contrast.

with the benchmarks li, perl, chess, pgp, and, simplescalar, and on the overall average. With

the benchmark go, the average fetch size only increases by 4%. Since this benchmark su�ers

from both a high number of trace cache misses and poor branch prediction, many fetches

are limited by the delivery rate of the icache and by mispredicted branches.
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Figure 6.30: The e�ective fetch rates for all techniques.

E�ect on cache miss rate

Due to a large increase in duplication, the downside of Trace Packing is that it increases

the number of fetch requests which miss in the trace cache. Table 6.8 contrasts the trace

cache misses per 1000 instructions for the Inactive Issue scheme with that of Trace Packing.

Both were measured on the TC.ic con�guration. With Trace Packing, the miss rate, on

average, increases by 76%. The benchmarks vortex and ghostscript, which su�er a signi�-

cant number of misses to begin with, more than double their miss rate with Trace Packing.

Some benchmarks (ijpeg, chess, ss) su�er fourfold to �vefold more misses with Trace Pack-

ing. This increase in cache miss rate is the primary reason why some benchmarks su�er a

loss of performance with Trace Packing (gcc, go, ch, gs, ss. See Figure 6.27)

As will be demonstrated in Section 8.3, Trace Packing increases the number of copies

of an instruction which are resident in the trace cache concurrently. The measurements

indicate that Trace Packing increases the average number of copies per instruction from

about three to about eleven.

6.7.3 Extensions

As mentioned, a serious drawback to Trace Packing is the e�ect block fragmentation has

on trace cache contention. The increased cache contention problem stems from the fact that

trace segments now can begin at any instruction. In con�gurations where blocks are treated

atomically, trace segments are naturally synchronized at fetch block boundaries. Either an
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Benchmark Inactive Trace
Issue Packing

compress 0.01 0.01
gcc 6.00 9.21
go 14.59 22.75
ijpeg 0.01 0.06
li 0.02 0.04
m88ksim 0.13 0.32
perl 0.26 0.67
vortex 1.15 3.31

chess 0.18 0.88
gs 1.49 3.35
pgp 0.04 0.06
plot 0.41 0.36
ss 0.35 1.44

Average 1.41 2.48

Table 6.8: The trace cache miss rates in misses per 1000 instructions for the

TC.ic con�guration with Inactive Issue and with Trace Packing.

entire block is replicated or nothing from that block is replicated. With Trace Packing,

trace segments are no longer synchronized at fetch block boundaries and the instruction

duplication grows signi�cantly. To deal with this problem, two schemes where the �ll unit

only packs n instructions at a time are examined. For example, if n=2 and the entire block

doesn't �t, then only an even number of instructions are added to the pending segment.

Blocks now fragment at half the number places as compared to unregulated trace packing.

Another scheme only packs traces if the pending trace segments are less than (or equal

to) half full OR the pending segment contains a backwards branch with displacement of 32

or fewer instructions. First, Trace Packing is most important when the number of unused

instruction slots in a trace segment is large. Not only will valuable space on the cache line

go unused when such a segment is stored in the cache, but whenever this segment is fetched,

fetch bandwidth will be wasted. By only packing a trace when the amount of unused space

is high, fragmentation costs are incurred only when the potential payo� is high. Second, the

potential payo� is higher for small tight loops. Since dynamic unrolling may signi�cantly

boost fetch bandwidth for a small loop, the bene�t may overcome the costs of fragmentation,

particularly if the number of iterations is high. This scheme is referred to as cost-regulated

Trace Packing.
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The percentage change in cache misses for unregulated Trace Packing, regulating at

every other instruction (n=2) and every fourth instruction (n=4) and the cost-regulated

scheme is provided in Table 6.9 on the TC.ic con�guration. Also listed in this table is the

average e�ective fetch rate attained for each form of Trace Packing. The cost-regulated

scheme provides a good middle ground, providing high fetch rates with low miss rates.

Trace
Benchmark Packing n = 2 n = 4 cost-reg

compress 0.01 0.01 0.01 0.01
gcc 9.21 6.88 6.72 7.04
go 22.75 16.52 16.34 16.60
ijpeg 0.06 0.01 0.01 0.01
li 0.04 0.02 0.03 0.02
m88ksim 0.32 0.08 0.19 0.10
perl 0.67 0.58 0.38 0.65
vortex 3.31 1.58 1.65 1.81

chess 0.88 0.25 0.25 0.35
gs 3.35 1.92 1.85 2.04
pgp 0.06 0.04 0.04 0.08
plot 0.36 0.13 0.15 0.10
ss 1.44 0.64 0.65 0.67

Average 2.48 1.63 1.62 1.73

Ave E� Fetch Rate 12.56 12.16 12.07 12.22

Table 6.9: The trace cache miss rates in misses per 1000 instructions for
various avors of Trace Packing.

The techniques for regulating instruction duplication within the trace cache are crucial

if the size of the fetch mechanism is smaller than 128KB. The experiments presented in

this section are done on a fetch mechanism of 128KB and simulated on benchmarks which

may not be representative, in terms of size, to commercial applications. The lost fetch

bandwidth due to cache misses is fairly minor. If the fetch mechanism is smaller, or if the

latency to the second level instruction cache is higher, or if the applications have larger icache

footprints, such techniques to regulate duplication may be necessary for higher performance.

In Section 8.3, precise measurements of instruction duplication within the trace cache are

provided, along with techniques for limiting it by exploiting good synchronization points at

which to terminate trace segment expansion.
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6.8 All Enhancements Combined

In this section, the four fetch rate enhancements which impacted bottom-line performance|

Partial Matching, Inactive Issue, Branch Promotion, and Trace Packing|are combined and

overall performance is measured and analyzed. These four enhancements represent an ag-

gressive implementation of the trace cache mechanism. The objective of this section is to

demonstrate the performance of this implementation in relation to the instruction cache

baselines.

6.8.1 Measurement

Figures 6.31 and 6.32 show the measured performance of the �ve con�gurations, di-

vided in two graphs. The �rst graph shows the SPECint95 benchmarks and the second the

UNIX applications. These two �gures are similar to Figures 5.1 and 5.2 from the previous

chapter|the basic di�erence is that the trace cache con�gurations measured here are en-

hanced with the techniques presented in this chapter. Without the techniques, as reported

in Section 5.1, the Sequential-Block ICache performs best by 2% over the best trace cache

con�guration. With the techniques, however, the trace cache con�guration TC.ic performs

consistently best and outperforms the Sequential-Block ICache by 14% and the Single-Block

ICache by 33%.
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Figure 6.32: Performance of the �ve con�gurations on the UNIX benchmarks.

6.8.2 Analysis

An analysis of the new, enhanced mechanism is provided in this section to help identify

positive and negative factors on performance. The analysis is focused around the three

factors which a�ect fetch engine performance: fetch rate, branch misses, and cache misses.

In Chapter 8 global analysis of the trace cache mechanism is presented.
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E�ect on fetch rate

As demonstrated in the various sections of this chapter, the main bene�t of the trace

cache enhancements is that they boost e�ective fetch rate. These enhancements allow the

trace cache to service more requests (e.g., Partial Matching), and to deliver more instruc-

tions for each request it does service (e.g., Trace Packing). Figure 6.33 shows the increase

in e�ective fetch rate with the Enhanced TC.ic con�guration versus the baseline TC.ic con-

�guration and versus the Sequential-Block ICache. The percentage di�erence between the

Enhanced TC.ic and ICache con�gurations are displayed on top of the bars. Overall, the

enhanced trace cache attains a 34% increase in fetch rate over the ICache and a 35% boost

over the baseline TC.ic con�guration.
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Figure 6.33: The e�ective fetch rate of the Enhanced TC.ic con�guration

versus the baseline TC.ic and Sequential-Block ICache.

E�ect on cache miss rate

A secondary, but still signi�cant, bene�t provided by the combined enhancements is a

reduction in trace cache misses. For example, the Partial Matching enhancement relaxed

the trace cache hit policy increasing the number of requests serviced by the trace cache.

Table 6.10 is similar to Table 5.5. The left-hand side of the table lists the trace cache

misses per 1000 instructions, and the right-hand side lists both trace cache and icache

misses combined. Comparing the averages of this table and Table 5.5, it is notable that
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the trace cache miss rate drops by a factor of 18 for the TC.ic con�guration. Furthermore

for the same con�guration, the number of overall fetch misses drops by a factor of 4. The

rates are lower overall despite the duplication e�ect from the cost-regulated Trace Packing.

Not only is the trace cache being used more e�ectively, but the small supporting instruction

cache is better at ful�lling requests which are not in the larger cache. Overall, the trace

cache con�gurations have larger fetch miss rates than the icache con�gurations but the rates

are signi�cantly low that the e�ect on bottom-line performance is small.

Benchmark TC.ic TC.IC tc.IC TC.ic TC.IC tc.IC Single Seqntl

compress 0.01 0.01 3.94 0.00 0.00 0.00 0.00 0.00
gcc 7.20 15.79 100.45 4.03 1.99 0.92 0.97 0.95
go 17.00 22.52 64.08 5.69 3.37 1.05 0.97 1.04
ijpeg 0.01 0.02 13.44 0.00 0.00 0.00 0.00 0.00
li 0.04 0.09 29.04 0.00 0.00 0.00 0.00 0.00
m88ksim 0.05 0.42 59.27 0.04 0.00 0.00 0.00 0.00
perl 0.43 2.36 102.13 0.30 0.05 0.04 0.03 0.04
vortex 1.73 6.27 88.59 1.27 1.04 0.42 0.45 0.43

chess 0.45 2.01 33.00 0.23 0.02 0.00 0.00 0.00
gs 2.25 5.63 58.27 1.38 1.33 0.27 0.52 0.51
pgp 0.04 0.06 8.67 0.01 0.01 0.00 0.00 0.01
plot 0.51 0.78 40.82 0.05 0.03 0.01 0.01 0.01
ss 0.71 2.66 81.66 0.42 0.05 0.02 0.01 0.02

Average 1.77 3.53 42.45 0.81 0.50 0.16 0.19 0.19

Table 6.10: The left half of this table lists the trace cache misses per

1000 instructions. The right half lists total fetch misses

(tcache+icache) per 1000 instructions.

E�ect on branch misses

Table 6.11 lists the conditional branch misprediction rates for the �ve test con�gura-

tions, similar to Table 5.3 from the previous chapter. As with the baseline con�gurations

of the previous chapter, the Single-Block Icache has a signi�cantly lower branch mispre-

diction rate due to the ability of the hybrid predictor to advantage of both per-address

and global branch correlation. Compared with the baseline miss rates, the enhanced TC.ic

con�guration has a slightly lower misprediction rate primarily due to the interference re-

duction of Branch Promotion. Most benchmarks bene�t from Promotion, whereas some
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su�er from frequent faulting due to bad Promotions, such as the benchmarks li and plot.

Some benchmarks also su�er from the negative e�ects of duplication brought on by Trace

Packing, such as the benchmark gcc. The absence of duplication enables the Sequential-

Block ICache to outperform the TC.ic con�guration with respect to prediction accuracy.

With the Sequential-Block ICache, each branch is coupled to fewer fetch groups, therefore

each branch \touches" fewer counters in the pattern history table.

Benchmark TC.ic TC.IC tc.IC Single Seqntl

compress 8.00 8.00 8.15 5.00 8.49
gcc 7.81 8.01 8.24 5.98 7.39
go 16.45 16.49 16.63 14.29 16.32
ijpeg 9.02 9.02 9.35 8.46 9.14
li 5.70 5.78 4.57 2.72 4.26
m88ksim 1.81 1.79 2.50 0.79 2.00
perl 2.34 2.36 2.67 1.24 2.76
vortex 1.43 1.53 2.43 0.74 1.34

chess 2.47 2.50 2.57 1.83 2.25
gs 5.16 5.25 6.07 4.16 5.44
pgp 5.04 5.04 5.83 4.35 5.27
plot 2.80 2.79 3.01 1.53 2.63
ss 4.33 4.40 5.23 3.36 4.61

Average 5.57 5.61 5.94 4.19 5.53

Table 6.11: The conditional branch misprediction rates (in percentage) of

the �ve con�gurations.

Cycle breakdown

Finally, a cycle breakdown is presented for each of the benchmarks running on the

enhanced TC.ic con�guration. Figure 6.34 is similar to the Figures 5.3 and 5.4 from the

previous chapter. Each fetch cycle is categorized into one of six categories viewed from the

perspective of the fetch engine. See Section 5.2.

The basic observation from this diagram is that a number of benchmarks are a�ected by

more full window stalls. Either the execution backend is unable to consume instructions at

a fast enough rate due to structural bottlenecks OR the application has regions of limited

parallelism where a larger window is required to bu�er the incoming instructions.
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Figure 6.34: A fetch cycle breakdown for each of the benchmarks on the

enhanced TC.ic con�guration.

6.9 Summary

In this chapter, several trace cache enhancements were described, measured, and ana-

lyzed.

Partial Matching is a technique which relaxes the trace cache hit criterion allowing

partial segments to be supplied in response to a request. Partial Matching was determined

to be a signi�cant impact on performance.

Path Associativity allows multiple trace segments starting at the same address, but con-

taining di�erent paths, to be stored concurrently in the trace cache. The branch prediction

is used select which of potentially several trace cache lines to supply. Path Associativity

was found to not a�ect performance signi�cantly because of the limited number of trace

segments which bene�t from this enhancement.

Inactive Issue is a hedge against branch mispredictions. Inactive Issue allows the issue

of instructions on a trace cache line but not on the path selected by the branch predictor.

These instructions are issued \inactively". They execute but their results remain invisible

until it is determined that they indeed should have been on the correct execution path.

Inactive Issue is a optimization of Partial Matching and o�ers a performance advantage on

benchmarks with poor branch prediction performance.
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Branch Promotion is a technique which converts highly biased branches into uncondi-

tional branches with a faulting semantic. Promoted branches produce a hardware fault

when they are detected to behave contrary to their promoted direction. Branch Promotion

increases the number of instruction which can be put into a trace segment.

Trace Packing is the generic technique of placing instructions into a pending trace seg-

ment while ignoring fetch block boundaries. With Branch Promotion, Trace Packing sig-

ni�cantly increase the trace cache's e�ective fetch rate.

Enhanced with the techniques of Partial Matching, Inactive Issue, Branch Promotion,

and Trace Packing, the trace cache performance jumps by 22% over a simple trace cache.

The enhanced TC.ic con�guration attains a 14% performance increase over the Sequential-

Block ICache.
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CHAPTER 7

Sensitivity Studies

The objective of this chapter is to examine the sensitivity of the high performance

mechanism developed in the previous chapter to changes in several basic design parameters

of both the trace cache and of the other components of the fetch mechanism. A range of

studies were performed, from the set-associativity of the trace cache, to the aggressiveness

of the instruction cache pipeline, to the design and latency of the �ll unit. Also included

is an examination of the impact of simple variations in branch predictor design on overall

performance. For all studies in this chapter, the trace cache con�gurations use Partial

Matching, Inactive Issue, Branch Promotion, and cost-regulated Trace Packing, as described

in the previous chapter.

7.1 Set-Associativity of the Trace Cache

For the following experiment, the set associativity of the enhanced TC.ic con�guration

is varied from 1 to 16. The results are presented in Figure 7.1. Even with the large capacity

of the 128KB trace cache, there is a considerable performance boost from increasing set

associativity. The percentages above the 4-way bars indicate the performance boost of a

4-way trace cache over a direct-mapped one.

This high reliance on set-associativity (in contrast to an equivalently large icache) is due

to the manner in which the trace cache is indexed and is organized. With a 2K entry trace

cache, two traces which are 2048 instructions apart will map to the same trace cache set.

With a similarly sized instruction cache, instructions must be 32K instructions apart before

they map to the same set. The mapping of the trace cache is more susceptible to thrashing
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Figure 7.1: The TC.ic performance with varying degrees of trace cache as-

sociativity.

due to the natural spatial behavior of programs|branch targets are more likely to be

nearby. A study performed by Smith [47] has con�rmed this sensitivity to set-associativity

in Branch Target Bu�ers, which are indexed similarly to trace caches.

The average trace cache miss rate per 1000 instructions (averaged over all benchmarks)

is given in Table 7.1. Notice that trace cache associativity has a very strong e�ect on miss

rate.

direct 2-way 4-way 8-way 16-way

Ave Miss Rate 7.76 2.63 1.77 1.59 1.50

Table 7.1: The e�ect of set-associativity of trace cache miss rate.

Finally, several benchmarks exhibit a drop in performance as associativity is increased.

The benchmark li, for example, drops in performance as the associativity of the trace cache

is increased beyond 2-way. Two factors are at work here. First, the benchmark li su�ers

from a signi�cant amount of duplication in the trace cache. Second, the benchmark su�ers

from a higher rate of faulting of promoted branches. The duplication causes several copies

of a promoted branch to be cached concurrently. If a copy of a promoted branch is fetched

and subsequently faults and is demoted, it will be written back as a regular conditional

branch. However, the other copies of that branch, some of which are likely to be promoted,

remain unchanged. As a result, if they are fetched, they are likely to fault. An increase in
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set-associativity increases the likelihood that several copies of these branches will remain

resident. At lower associativities, promoted branches are more likely to get displaced, and

thus be treated as normal conditional branches.

7.2 Trace Cache Write Policy

When the �ll unit generates a trace segment to write into the trace cache, if the trace

cache already contains a segment starting at the same fetch address, several options are

possible. Recall that without path associativity, the trace cache can store only one trace

segment starting at a particular address. The �rst policy blindly overwrites the existing

trace segment with the newer one. The second policy keeps the existing version, discarding

the newer one. The third policy only writes the newer segment if it contains a di�erent path

or is a longer version of the existing segment. Referred to as the keep-longest policy, this is

the policy used in all the experiments conducted thus far. Figure 7.2 shows the performance

of the three policies. For all policies, if a segment contains a newly promoted or demoted

branch, then the segment is always written into the cache.
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Figure 7.2: The e�ect of the trace cache write policy on performance.

Over all but two benchmarks (li and perl), the keep-longest policy performs best, and

over all but one benchmark (go), the never-overwrite policy performs worst. The never-

overwrite policy hinders the adaptability of the trace cache to long term changes in likely

trace segments through the program. The keep-longest policy works well because it allows
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for this adaptability, while not forcibly removing an otherwise equivalent trace which con-

tains more instructions. Such situations occur because mispredicted branches terminate

trace segments.

In order to implement any of these policies, either an extra read port of the trace cache

tags is required or the tag information is kept along with each segment after it is fetched.

The tag indicates if a trace segment beginning at the same fetch address exists within the

cache, and in which element of the set it exists. In order to implement the keep-longest

policy, each trace segment's path information also needs to be kept in the tag store (doing

so may make other policies such as Partial Matching easier to implement, anyways). By

comparing the existing tags and paths with the new segment's tag and path, the write

policy logic can determine if the new segment is longer or encodes a di�erent path an

existing segment.

Another byproduct of the trace cache write policy is the number of trace segments

generated by the �ll unit that are actually written to the cache can be lowered. If every

generated trace segment is not written, then the trace cache update hardware potentially can

be tuned for lower bandwidth. The upper row of Table 7.2 shows the percent of generated

trace segments that are written into the trace cache, averaged over all the benchmarks. The

lower row show the percentage of total cycles in which a write to the trace cache must be

performed. The keep-longest policy attains both high performance while lowering the trace

cache write bandwidth requirements.

Never Always
Overwrite Overwrite Keep-longest

Percent Written 2.44% 100.00% 6.93%
Percent Write Cycles 1.12% 46.40% 3.13%

Table 7.2: Percentage of trace segments actually written with the three

write policies.

7.3 Trace Cache Latency

This experiment involves examining the e�ect of trace cache latency on overall perfor-

mance. For this experiment, the latency of the trace cache in the TC.ic con�guration is
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increased from one cycle to two cycles. In order to accomplish this without halving the

fetch bandwidth, the trace cache is pipelined: a new request can be started every cycle,

with each trace cache hit taking two cycles to complete.

Starting a request every cycle requires a new target address to be generated every cycle,

in the same manner that an instruction cache mechanism requires a Branch Target Bu�er

(BTB) to generate a taken branch target. For this experiment, a small Trace Target Bu�er

(TTB) stores the targets of recently accessed trace segments. This structure must have a one

cycle latency. At the beginning of the cycle it is accessed with the current fetch address. The

fetch address selects an entry within the TTB, with each entry containing the four possible

targets of a particular segment. At the end of the cycle, the branch predictions made by the

predictor select which of the four targets to use as the next fetch address for the next cycle.

Two cycles later, after the trace cache delivers the trace segment corresponding to this fetch,

the next fetch address determined from the TTB is con�rmed with the trace segment. If

the addresses match, then the fetch mechanism proceeds forward. If the addresses do not

match, then the fetch mechanism needs to be redirected to the correct target and a two

cycle pipeline bubble (called the misfetch penalty) is incurred. There is a subtle di�erence

between the Trace Target Bu�er and the Branch Target Bu�er. Even though an entry

exists in the TTB for a particular fetch address, the next fetch address can be incorrect and

a misfetch penalty incurred because the TTB entry and the corresponding trace segment

refer to di�erent paths.

Figure 7.3 shows a plot of four di�erent versions of the TC.ic con�guration. The baseline

is the enhanced TC.ic con�guration with a 1 cycle trace cache. The remaining three versions

all have a 2 cycle, pipelined trace cache with a trace target bu�er of 16KB, 8KB, and 4KB.

The percentages above the baseline con�guration indicate the drop in performance in going

from the baseline to the 2-cycle trace cache with 16KB TTB.

There are two factors that e�ect performance: an increase in branch resolution time

and an increase in misfetch penalty. First, as an extra cycle of latency is added to the

trace cache (i.e., from the baseline to 2-cycle trace cache with 16KB TTB), there is a drop

in performance due to the increase in branch resolution time which a�ects performance

whenever a branch is mispredicted. Second, as the size of TTB is reduced, more cycles are

spent recovering from misfetches.
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Figure 7.3: The e�ect of the trace cache latency on the performance of the
enhanced TC.ic con�guration.

7.4 Evaluating the Compiler Optimizations

In this section, the e�ect of the compiler code layout optimizations on trace cache

performance is measured. As mentioned in Section 4.3, pro�le-driven compiler optimizations

are performed to reduce the occurrence of taken branches. These optimizations have the

e�ect of increasing the instruction bandwidth of the Sequential-Block ICache. The objective

of this experiment is to determine whether there is a strong e�ect on trace cache performance

from these optimizations.

Figure 7.4 shows the performance of the Enhanced TC.ic con�guration on two versions

of each benchmark program. In the �rst version, the compiler code layout optimizations

were enabled (these are the same executables used throughout this dissertation). In the

second version, the optimizations are turned o�. Note that because the benchmarks have

been compiled into essentially di�erent programs which execute a di�erent number of in-

structions, measuring performance in terms of Instructions Per Cycle is no longer valid.

Instead performance is measured by total cycles required for execution. On a similar note,

the benchmarks li and ijpeg are omitted from consideration. With the input sets in the

benchmark suite, these benchmarks do not execute until completion but rather to the arbi-

trary limit of 500M instructions. A comparison of these benchmarks is likely to be erroneous

since the simulations will terminate at di�erent regions of these programs.

Based on the data presented for the trace cache, these optimizations are helpful, but
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not essential.

Figure 7.5 shows the performance of the Sequential-Block ICache with the same two

versions of each benchmark program. Here, the compiler optimizations are more of a factor

on performance. The programs gcc and m88ksim exhibit a signi�cant increase in perfor-

mance when the optimizations are enabled. The benchmark gs su�ers a loss in performance

with the optimizations, attributed to di�erences in behavior of critical branches between

the pro�ling run and the simulation run.
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Figure 7.4: The e�ect of compiler code layout optimizations on TC.ic per-

formance.
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Figure 7.5: The e�ect of compiler code layout optimizations on Sequential-

Block ICache performance.

Table 7.3 shows the growth in number of instructions between taken branches with and
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without the compiler optimizations. The compiler is able to increase sequential run length

by 35%.

Benchmark No Code Layout Code Layout

compress 14.25 26.07
gcc 9.69 13.94
go 11.34 15.05
ijpeg 18.69 31.64
li 8.14 10.85
m88ksim 9.76 13.92
perl 8.91 10.04
vortex 11.32 12.44

chess 19.24 21.94
gs 11.09 10.93
pgp 17.31 24.95
plot 12.41 15.33
ss 9.37 10.41

Average 12.42 16.73

Table 7.3: The increase in average number of instructions per taken branch

with and without compiler optimizations.

7.5 Fetch Pipeline Implications

In this section, the two design parameters of the icache are varied. First, the impact of

increasing the length of icache pipeline is examined. Second, the impact of converting the

supporting icache into a more aggressive Sequential-Block ICache is measured.

7.5.1 Sensitivity to icache path latency

As instructions are fetched from the instruction cache in response to a trace cache miss,

they must be aligned, merged, and decoded before they are latched into the renaming stage.

Furthermore, if additional processing is pushed into the �ll unit, such as instruction routing

and placement, then the icache path must include these steps in processing as well.

To simulate the e�ects of these additional steps, the number of pipeline stages in the

icache path is increased from two cycles to three cycles, as presented in Figures 7.6{7.8.

The results are not surprising: if the trace cache is large, then the mechanism is insensitive
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to icache pipeline length.
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Figure 7.6: TC.ic perf. versus TC.ic with a 3-cycle icache pipeline.
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Figure 7.7: TC.IC perf. versus TC.IC with a 3-cycle icache pipeline.

7.5.2 Making the icache path more aggressive

In this experiment, the supporting icache is converted from a simple Single-Block ICache

to the more aggressive Sequential-Block ICache. Recall from Section 4.6 that the Sequential-

Block ICache delivers up until the �rst taken branch each cycle. For this experiment, both

the trace and instruction cache can provide multiple blocks per cycle.

Figures 7.9- 7.11 show the performance implications for using this scheme on the three
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Figure 7.8: tc.IC perf. versus tc.IC with a 3-cycle icache pipeline.

trace cache con�gurations. The e�ect of making the icache more aggressive for the TC.ic

con�guration is negligible, since the icache services a small fraction of fetches. As the

relative size of the icache grows, the importance of making it more aggressive grows. It is

a signi�cant factor on performance for the tc.IC con�guration.
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Figure 7.9: TC.ic perf. versus TC.ic with a Sequential-Block ICache.

7.5.3 Storing only non-sequential segments in the trace cache

Using the Sequential-Block ICache with the trace cache opens up another interesting

possibility. The trace cache can be used to store only non-sequential trace segments, and
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Figure 7.10: TC.IC perf. versus TC.IC with a Sequential-Block ICache.
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Figure 7.11: tc.IC perf. versus tc.IC with a Sequential-Block ICache.

the icache can be used to deliver sequential runs. Since the trace cache and instruction

cache would both, presumably, participate equally in instruction supply, the TC.IC con�g-

uration makes the most sense for this strategy. Dividing the caching between sequential

and non-sequential provides a capability similar to path associativity (see Section 6.3), as

the instruction caching structures can contain the sequential path and one non-sequential

path emanating from a particular instruction.

Precisely stated, the trace cache only accepts a trace segment from the �ll unit if the

segment contains an internal taken branch (conditional or otherwise) or contains a promoted
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branch. Each fetch request accesses both caches and if both caches respond with a hit, then

a selection must be made using the branch predictions on which of the fetches provides

more instructions. This complex selection is likely to lengthen the cache access time.

Furthermore, the trace cache contains decoded instructions, thus eliminating the decod-

ing step between the fetch of a packet from the trace cache and its subsequent issue into

the instruction window. On this basis, there is more value in fetching the instructions in

the trace cache than from the instruction cache. For this experiment, this extra pipeline

stage on the icache path is eliminated. Here the assumption is made that the icache, like

the trace cache, can supply decoded instructions.

Figure 7.12 shows the performance between two TC.IC con�gurations. Both con�gura-

tions have equal length trace cache and icache pipelines (i.e., the icache contains decoded

instructions) and the packet selection logic is assumed to not lengthen the cache access path.

In the con�guration labeled non-sequential, the trace cache only stores non-sequential traces

(as described above). The benchmarks compress, go, and li su�er a slight performance loss

due to a decrease in fetch rate and an increase in branch mispredictions.
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Figure 7.12: Performance of a trace cache which only stores non-sequential

segments with a Sequential Block ICache versus a standard

TC.IC con�guration.

While the performance of this con�guration measured in IPC is not substantial relative

to the baseline, there are elements of it that make it appealing. Ignoring the issues of longer

access time and the uneven pipeline lengths for the moment, the non-sequential trace cache
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demonstrates a lower fetch miss rate than the baseline. The average fetch request misses

per 1000 instructions are listed in Table 7.4. There is a 10% drop. E�ective fetch rate

and branch misprediction rates are slightly lower, enough to account for the slight loss in

performance for some benchmarks. The large cache sizes and small applications sizes used

in this dissertation may mask the e�ects of this. Smaller caches and larger applications may

bene�t from such split caching.

Baseline Non-Sequential

Ave Miss Rate 0.49 0.44

Table 7.4: Fetch request miss rates for the non-sequential trace cache.

7.6 Fill Unit Con�guration

In this section, two basic �ll unit experiments are conducted. The �rst experiment deals

with the placement of the �ll unit in the instruction processing path: should the �ll unit

collect blocks of instructions as they retire or as they are issued? The second experiment

measures the impact of �ll unit latency on the overall performance of the processor.

7.6.1 Block collection at retire or issue

The �ll unit collects blocks of instructions as they are processed and produces segments

to store into the trace cache. The �ll unit can collect these blocks at any point in the

processor pipeline. The objective of this experiment is to determine whether the blocks

should be collected as instructions are issued into the instruction window or when they are

retired.

Figures 7.13{7.15 shows that the di�erences in performance between the two schemes

are insigni�cant. A �ll unit collecting instructions at issue time generates more traÆc to the

trace cache because segments are collected while the processor is on a wrong execution path.

In some cases this prefetches useful segments, but in other cases it evicts useful segments

from the trace cache.

A �ll unit that collects at retirement time only writes segments from the correct exe-

cution path to the trace cache. However, it su�ers from an increased latency between the

initial fetch of a block and its collection into a segment and subsequent storage into the trace
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Figure 7.13: The TC.ic performance with �ll at retire versus �ll at issue.
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Figure 7.14: The TC.IC performance with �ll at retire versus �ll at issue.

cache. While this can potentially impact the �rst few iterations of a tight loop, which will

be fetched from the instruction cache until the �rst iteration retires, the next experiment

will demonstrate that this is not an important performance factor.

Although a �ll unit that collects at retire time has a slight advantage over one that collect

at issue time, collecting segments at retirement time requires a slightly higher hardware

investment. Implementing an issue time �ll unit is straight-forward, requiring blocks to be

latched into the node tables and �ll unit concurrently. For retire time collection either the

�ll unit must contain enough storage to maintain a copy of the instructions in the execution

window or blocks of instructions must be driven from the node table into the �ll unit as
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Figure 7.15: The tc.IC performance with �ll at retire versus �ll at issue.

they retire. In the former case, checkpoints are added to the �ll unit as they are issued but

are only eligible for merging after they retire. In the latter case routing must be added from

the node table to the �ll unit so that the checkpoints may be entered as they retire.

7.6.2 Fill unit latency

One of the major advantages of the trace cache mechanism is that operations can be

moved o� the critical processing path of the machine and into the �ll unit path where

latency is an insigni�cant factor on performance. This experiment demonstrates that this

latency is indeed inconsequential. Presented in Figures 7.16 is the performance of the TC.ic

con�guration as the latency of the �ll unit is increased up to 10 cycles. There is a very minor

e�ect on performance. These results may seem counter-intuitive. There are two reasons

for this behavior. Most importantly, this latency is incurred after the initial demand for

the instructions has been satis�ed. Therefore a penalty is only paid if the execution path

loops back to these instructions before the segment has been written to the trace cache.

Furthermore, in the process of satisfying the original demand request, the blocks are brought

at least into the instruction cache. Therefore any subsequent requests that occur before the

full segment has been written into the trace cache can still be satis�ed by the instruction

cache. For some benchmarks (e.g., m88ksim and chess), a longer �ll unit latency results in

a slightly higher performance. A longer latency sometimes delays the update of a useful

trace cache segment with a less useful one.
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Figure 7.16: The TC.ic performance with various �ll unit pipeline lengths.

7.7 Branch Predictor Con�gurations

The objective of this section is to show the sensitivity of the enhanced trace cache

mechanism to simple changes to the branch prediction mechanism. The �rst experiment

examines several Pattern History Table (PHT) entry con�gurations. The second experiment

shows the e�ect on overall performance as the predictor is (arti�cially) made more accurate.

Since branch prediction is such a large topic, a comprehensive examination of multiple

branch predictors for use with trace caches would be beyond the scope of this disserta-

tion. Instead, some simple variations in predictor design are examined to demonstrate the

mechanisms sensitivity to branch predictor performance.

7.7.1 PHT organization

With global-history based two-level branch prediction, the �rst level of branch history

contains the recent outcomes of all branches. This �rst-level history is used to index into

the Pattern History Table, which stores the likely outcome when a particular pattern in the

�rst level is encountered. It has been demonstrated that for most global-based schemes, sat-

urating counters (e.g., 2-bit counters) are e�ective at maintaining these likely outcomes [47].

For multiple branch prediction, these PHT entries can be augmented to supply more than

one prediction for each PHT access. In this section, the performance of three di�erent types

of PHT entries are compared. The �rst is the baseline predictor used for the previous exper-

iments in this dissertation. The second is a PHT entry con�guration proposed in an older
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study [37]. The third is a likely path scheme proposed by Menezes et al. [33]. These PHT

schemes are three that have been proposed in the literature for multiple branch prediction.

As described in Section 2.4, the baseline predictor used for this study is a two-level

predictor capable of predicting three branches each cycle. Each PHT entry consists of

three 2-bit counters, each counter providing a prediction for a single branch. Since Branch

Promotion (see Section 6.6) signi�cantly decreases the occurrences of fetches which require

two or three predictions, the predictor can be optimized by decoupling the three counters

within each PHT entry into three separate PHTs. The �rst PHT contains the 2-bit counter

used to predict the �rst branch, the second, the second branch, and so forth. The size of

the �rst PHT is made much larger than the second, and the second larger than the third.

The second scheme expands the notion of the three counter scheme. Each entry consists

of seven 2-bit counters: the �rst counter supplies the prediction for the �rst branch and

selects one of two counters to supply the prediction for the second branch. The �rst two

predictions are then used to select one of four counters to provide the prediction for the

third branch. A diagram for this scheme is shown in Figure 7.17.

B0 B1 B2

From pattern history table

Figure 7.17: The multiple branch predictor supplies 3 predictions per cycle

using seven 2-bit counters per PHT entry.

The �nal scheme, the likely-path scheme, was presented by Menezes et al [33]. In this

scheme, each PHT entry holds the most likely path through a program subgraph containing

three branches. In this scheme, the PHT entries are four bits wide: three bits to encode the

likely path (eight paths are possible) and a fourth bit to record the likeliness of this path.

Figure 7.18 displays the overall performance and Figure 7.19 displays the branch mis-
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prediction rates for each of the three schemes. The optimized 3-counter is allocated 24KB

of storage, the 7-counter scheme is allocated 32KB of storage, and the likely path scheme

32KB. All were measured on the enhanced TC.ic con�guration. The changes in performance

due to the di�erent PHT schemes is insigni�cant. Generally, the 7-counter scheme su�ers

the highest misprediction rate, thus has the lowest overall performance than the other two

schemes because of it's poor allocation of counters among the branches in a packet. The

3-counter scheme performs well at the lowest hardware cost (in terms of bits of storage).
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Figure 7.18: The performance of the various PHT entry schemes.
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Figure 7.19: The branch misprediction rate for the various PHT entry

schemes.
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7.7.2 The E�ect of Branch Prediction Accuracy

In this experiment, the e�ect of branch prediction accuracy on overall performance is

measured on the gcc benchmark running on the enhanced TC.ic con�guration. Figure 7.20

is a plot of data points which demonstrates the relationship between prediction accuracy

and performance. The curve is not at. As the predictor becomes more accurate, the

absolute performance grows more rapidly.

Five of the data points in this graph correspond to real predictors. They are denoted on

the graph as solid circles, and they correspond to various sizes (6KB, 12KB, 24KB, 48KB,

and 96KB) of the 3-counter predictor optimized for branch promotion. To generate the

other points on this plot, these real predictors were synthetically made more accurate by

switching the prediction on randomly chosen incorrect predictions, i.e., incorrect predictions

were randomly made correct. The probability of switching a prediction is a parameter to

the simulation. When this probability is low, the synthetic predictor performs similar to

the underlying real predictor. When high, the synthetic predictor performs closer to the

ideal. With this methodology, the synthetically generated data points are based on a real

predictor. To generate a synthetic data point, three parameters are required: the underlying

real predictor, the probability of converting a real misprediction into a correct one, and a

seed for the random number generator. Various values of probability and seeds were used

to generate the points presented in the �gure.
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Figure 7.20: The e�ect of branch misprediction rate on overall performance.
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CHAPTER 8

Analysis

8.1 Overview

A global analysis of the trace cache mechanism is presented in this chapter. The �rst

section deals with the relationship between fetch rate and branch resolution time, bringing to

light the interplay between various bottlenecks in superscalar processors. The second section

deals with instruction duplication within the trace cache. In this section, an experimental

quanti�cation of duplication is presented, along with methods of reducing it. The �nal

section discusses the large Execution Atomic Units possible with the trace cache.

8.2 The Relationship Between Fetch Rate and Branch Res-

olution Time

Figure 8.1 shows an interesting trend. In this �gure, the SPECint95 benchmarks gcc and

go are simulated on three di�erent hardware con�gurations. The only di�erence between the

hardware con�gurations is the width of the fetch mechanism, which is varied from four to

eight to sixteen. All other parameters are kept constant: the size of the trace and instruction

caches, branch predictor, BTB, and all parameters of the execution engine (which is �xed at

16-wide issue and execute) remain unchanged. Changing the fetch width involves changing

the size of each trace cache line from four to eight to sixteen instructions.

As the fetch width is increased, the e�ective fetch rate increases, and the number of

execution cycles spent fetching the dynamic program decreases. Since all other parameters

are kept constant, one would expect the number of cycles lost due to cache misses and
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cluster of execution units to another. The 16 uniform execution units are clustered in

groups of four. The Aggressive engine is similar except it has a 1-cycle data cache, uses

dependence prediction (modelled as perfect) to allow memory operations with no in-ight

dependencies to proceed, and has no extra communication latency for bypassing values from

one execution unit to another. The Ideal engine has in�nite execution units and a perfect

data cache and uses perfect memory ordering.

Each point represents a single con�guration of frontend (i.e., trace cache fetch width) and

backend (i.e., Conservative, Aggressive, Ideal). The horizontal axis denotes the harmonic

mean e�ective fetch rate on the SPECint95 benchmarks and the vertical axis the arithmetic

mean branch resolution time.
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Figure 8.2: The e�ect of the increasing the e�ective fetch rate on mispre-

dicted branch resolution time.

All three curves demonstrate that average branch resolution time increases as the e�ec-

tive fetch rate is increased. There are two reasons for this: execution bandwidth and the

amount of exploitable instruction level parallelism within the applications. The inuence

of execution bandwidth is demonstrated by the sharp contrast in magnitude and slope be-

tween the three curves in Figure 8.2. The Conservative engine adds extra arti�cial delays in

the processing of instructions, as instructions are forced to wait for values to be communi-

cated, for cache ports, for execution units and distribution busses. The Aggressive Engine
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has fewer of these limitations, but arti�cial delays are incurred nonetheless. For the Ideal

engine, the increase is due purely to the fact that the instruction level parallelism within

the application delays the branch's execution.

To further quantify the limitation due to instruction level parallelism, the Ideal engine

was augmented to measure the depth of the dependence tree at fetch time for each branch

which was mispredicted. The depth of the dependence tree represents the longest chain of

instructions which remain to be executed before the branch can execute. If the depth of

a particular branch is, say, seven, then the earliest the branch can execute is seven cycles

after it is inserted into the instruction window. Since some instructions take more than a

cycle to execute, the depth (which is a count in number of instructions) is a lower bound.

Figure 8.3 shows the increase in average depth for mispredicted branches as the e�ective

fetch rate is increased. Each data point represents an average of all SPECint95 benchmarks.
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Figure 8.3: The e�ect of the increasing the e�ective fetch rate on mispre-

dicted branch depth.

The data presented in this section highlight the importance of branch prediction in light

of increased e�ective fetch rates. As the partial fetch bottleneck is mitigated, the branch

bottleneck becomes aggravated. Because of limitations in instruction level parallelism,

higher fetch rates cause branches to wait longer before execution (Figure 8.3). Furthermore,

arti�cial execution delays cause each of these steps to take additional cycles (Figure 8.2).
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8.3 Duplication in the Trace Cache

Because of the nature in which trace segments are created, a single instruction can

exist in several di�erent trace cache lines simultaneously. Some of these duplicately cached

copies may contribute to the trace cache's bottom line of delivering higher instruction

bandwidth, and some may not. On this basis, instruction duplication can be divided into

two categories: replication and redundancy. Instruction replications are useful copies, and

the have a positive impact despite increasing trace cache storage contention. Redundant

copies, on the other hand, increase cache contention without contributing to performance.

The objective of this section is to di�erentiate between, measure, and analyze replication

and redundancy in the trace cache. Based on this analysis, several modi�cations are made

to the trace segment �nalization strategy to lower instruction redundancy.

8.3.1 How does this duplication occur?

Because of the dynamic nature of trace creation, instructions may get cached in multiple

locations. It is this duplication that partly contributes to the trace cache's ability to deliver

instructions at a high rate. However, the resulting ineÆcient usage of the cache space results

in a higher miss rate for the trace cache than an instruction cache of the same size.

Figure 8.4 helps illustrate the point. It shows a simple loop composed of three blocks. If

blocks are treated atomically (i.e., no trace packing is performed), the �ll unit can potentially

create three combinations: AB, CA, BC, all three of which can be simultaneously resident

in the trace cache. Generally speaking, duplication is caused by blocks within a program

where multiple control paths merge, such as block A in the �gure.

With all these combinations in place, the trace cache can deliver, in the steady state,

two iterations every three cycles. On the negative side, the extra segments may displace

other useful cache lines. If duplication were inhibited by only allowing instructions to exist

in one trace segment (i.e., only the segment AB and segment C are formed in the steady

state), then only one iteration can be delivered every three cycles but the loop is expressed

with two fewer trace segments. The tradeo� here is between higher bandwidth from fetching

fuller segments versus bandwidth losses due to increased misses in the trace cache.

Trace packing, while boosting the fetch rate even further, also boosts duplication. The

example loop shown in �gure 8.4 would result in six unique segments being created (with
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Figure 8.4: A loop composed of 3 fetch blocks.

unregulated Trace Packing), but these six segments would allow the loop to issue at a rate of

2.5 iterations every three cycles. 1 Packing small, tight loops with many iterations is likely

to be a win because the cost of displacing cache lines is o�set by the burst in instruction

fetch bandwidth.

There is another form of this duplication which is entirely helpful. If several iterations

of a tight loop are peeled into a single trace segment (segment AAA, for example), then the

copies of the instructions only contribute to a higher fetch rate without causing extra trace

cache lines to be generated.

Duplication can be divided into two categories: useful copies and useless copies. Useful

duplication, called replication, contributes to the trace cache's bottom line of delivering

high e�ective fetch rates. Useless duplication, called redundancy, simply occupies cache

space without signi�cantly boosting fetch rate. To improve performance of the trace cache

mechanism, redundancy must be eliminated.

8.3.2 Measuring duplication

The �rst objective is to measure average instruction duplication. This is done by scan-

ning the trace cache with every instruction fetched and counting the number of other trace

segments that also contain that instruction. 2 Figure 8.5 shows the average number of copies

of an average instruction as it is fetched. This data was collect on the experimental bench-

mark set on three variations of the TC.ic con�guration. The �rst variation uses no Trace

Packing. The second uses cost-regulated Trace Packing (See Section 6.7). The �nal varia-

1The six segments are A6B5C5, C1A6B5, C6A6B4, B1C6A6, B5C6A5, A1B5C6. The subscripts denote

the number of instructions of each block included in the segment. Notice that even with trace packing, no

instructions beyond the third branch are added to the pending segment
2The experimental setup allowed for an eÆcient way to detect the number of copies of each instruction

fetched.
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tion uses unregulated Trace Packing, i.e., all trace segments not containing three branches,

or a return or indirect branch instruction are packed with 16 instructions. The average

duplication count per instruction is signi�cantly higher with unregulated trace packing.
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Figure 8.5: The average number of copies of an instruction fetched from

the trace cache for three trace cache packing strategies.

Another side e�ect of duplication is an increase in the number of unique trace segments

dynamically generated by the �ll unit. A trace segment is considered unique based on its

starting address and the sequence of instructions it contains. Table 8.1 lists the number of

unique traces generated by the Enhanced TC.ic con�guration (using cost-regulated trace

packing) for each benchmark.

8.3.3 Analyzing duplication

The duplication measured in the previous section is presented in Figures 8.6 and 8.7 as a

distribution of the individual duplications. As before, as an instruction is fetched from the

trace cache, a probe is performed to determine the number of copies of that instruction which

currently exist (i.e., the number of other cached trace segments in which that instruction

currently exists). The graphs in Figures 8.6 and 8.7 are histograms where each instruction

fetched from the trace cache is binned by duplication factor. For example, an instruction

fetched at, say, cycle 3102, having 3 total copies residing in the cache would increment bin

number 3. The sum of all the bins results in the percentage of dynamic instruction which

are fetched from the trace cache.
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Benchmark Number of Unique Traces

compress 1408
gcc 115904
go 52362
ijpeg 5110
li 4600
m88ksim 4725
perl 6172
vortex 26258

chess 18866
gs 47041
pgp 8145
plot 10065
ss 11479

Table 8.1: The number of unique traces created by the Enhanced TC.ic

con�guration.

There are two notable outliers: li and chess. Both of these benchmarks have a very high

amount of duplication and both have distributions where the most frequent duplication

factors are 16 or greater. The other benchmarks show more gradual duplication, where the

most smaller duplication factors are more frequent and the larger ones less frequent.

The next objective is to divide duplication into replication (useful duplication) and

redundancy (useless duplication). To judge whether a copy of an instruction is useful, a

methodology similar to pro�ling is used: a program is simulated on the Enhanced TC.ic

con�guration. During the simulation, a list of all trace segments generated and the number

of times each is requested (on-path) is maintained. At the end of the simulation, this entire

list is dumped into a �le. Next, the same program with the same input set is simulated

again on the same con�guration. This time, the trace segment list dumped to �le from the

previous simulation is read into an internal structure. The new simulation thereby has full

knowledge of the ending statistics of all trace segments generated as the program executes.

Now, as the program is simulated, duplication is measured as before. Each duplication

measurement is cross-checked with the trace segment list to determine if a particular copy

of an instruction is in a trace segment that will be read more than a threshold number of

times. If so, the copy is considered a useful replication. Duplicate copies which are in trace

segments accessed fewer then threshold times are considered redundant.
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Figure 8.6: Distribution of amount of duplication for the SPECint95 bench-

marks on the Enhanced TC.ic con�guration (cost-regulated

trace packing). The x-axis represents the number of copies res-

ident in the trace cache when an instruction is fetched.
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Figure 8.7: Distribution of amount of duplication for the UNIX benchmarks

on the Enhanced TC.ic con�guration (cost-regulated trace pack-

ing). The x-axis represents the number of copies resident in the

trace cache when an instruction is fetched.
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Figures 8.8{8.11 show for each benchmark the replication distribution for all instruc-

tions fetched from the trace cache. The left-hand �gure is a histogram for threshold=0

and the right-hand �gure is a histogram for threshold=10. Notice for threshold=10, there

are instructions fetched with a zero replication count: here, fetches are made from trace

segments which themselves are categorized as redundant, i.e., they will be accessed fewer

than 10 times in total.
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Figure 8.8: Replication distribution for with thresholds of zero and ten,
part 1.
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Figure 8.9: Replication distribution for with thresholds of zero and ten,

part 2.
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Figure 8.10: Replication distribution for with thresholds of zero and ten,

part 3.
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Figure 8.11: Replication distribution for with thresholds of zero and ten,

part 4.
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To summarize the data contained in the previous �gures, the combined average of all the

data is presented in following �gures. Figure 8.12 shows the average duplication over all the

benchmarks, Figure 8.13 shows the average replication, with threshold=0, and Figure 8.14

shows the average replication, with threshold=10. In the average case, there are 6.81 copies

of an average instruction each time it is read from the trace cache. Of those, only 6.57 copies

of it will ever be read, and 6.15 copies of it will be read more than 10 times. Table 8.2

presents these numbers per benchmarks in tabular form. The conclusion to be drawn from

this is that the trace cache mechanism creates many copies of an instruction, and relies on

most of these copies in delivering it's bandwidth.
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Figure 8.12: The average duplication over all benchmarks.
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Figure 8.13: The average replication over all benchmarks, threshold = 0
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Figure 8.14: The average replication over all benchmarks, threshold = 10.

Benchmark Duplication Replication Replication
threshold = 0 threshold = 10

compress 4.08 3.70 3.47
gcc 5.37 5.24 4.91
go 5.72 5.66 5.43
ijpeg 5.61 5.40 4.75
li 11.33 10.93 10.26
m88ksim 4.04 3.86 3.57
perl 6.38 5.80 4.76
vortex 5.51 5.44 5.29

chess 12.51 12.41 12.27
gs 8.19 8.08 7.74
pgp 6.43 5.86 5.31
plot 7.23 6.97 6.51
ss 6.17 6.07 5.73

Average 6.81 6.57 6.15

Table 8.2: The average number of copies of an instruction.

8.3.4 Filtering out redundancy

This experiment examines the �ltering of redundant trace segments. The objective

here is to examine the impact on performance by reducing the amount of redundantly

cached instructions. Trace segments which were deemed to be redundant based on the

trace segment pro�le of a previous run are prevented from being written into the trace

cache. As established in the previous subsection, trace segments which are accessed fewer
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than or equal to a threshold number of times in total are considered useless.

Figure 8.15 shows the performance implications of such write �ltering of the trace cache

at thresholds of zero and ten. With the threshold set to zero, trace segments which are never

going to be read are not written into the trace cache. Provided that the initial conditions

to the benchmark are the same, such a strategy has a slight bene�cial e�ect.
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Figure 8.15: The performance of the Enhanced TC.ic with write �ltering.

However, with the threshold set to ten, a very interesting phenomenon occurs. There is

a slight negative e�ect in that some trace segments which are read very infrequently are not

going to be resident in the trace cache, thus a slight amount of bandwidth will lost. There

is also a positive e�ect: fewer useful segment will be displaced by these useless segments.

But for some benchmarks (perl, li), a huge loss in performance is observed. By always

�ltering the write of these useless segments, the execution conditions are modi�ed in such a

way that the �ltered segments actually become necessary. For example, say segment ABC

is such a trace which is accessed fewer than ten times (but more than zero times). In the

initial run, it could have been resident each time it was accessed. In the measurement run,

it would have been not resident any time it was accessed, causing its �rst block to be fetched

from the instruction cache. Now, the sequence of fetch addresses between the initial run

and measurement run are di�erent and di�erent trace segments will be accessed. This shift

causes the �ltered segment to be frequently accessed. A similar situation also exists with

threshold=0, but on a scale too small to be observed in the �gure.
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One important impact of the elimination of redundancy is the e�ect on trace cache

misses. Since the benchmarks simulated are relatively small compared to the size of the

instruction and trace caches, this is not a major factor on performance for the con�gurations

simulated here but is important for con�gurations with smaller caches or larger round-

trip latencies to the second-level instruction cache. Table 8.3 lists the misses per 1000

instructions without �ltering and with �ltering at threshold=0.

Benchmark without with �ltering
�ltering threshold = 0

compress 0.00 0.00
gcc 4.04 4.00
go 5.69 5.63
ijpeg 0.00 0.00
li 0.00 0.00
m88ksim 0.04 0.03
perl 0.30 0.25
vortex 1.27 1.23

chess 0.22 0.22
gs 1.38 1.35
pgp 0.01 0.01
plot 0.05 0.05
ss 0.42 0.39

Average 1.77 1.73
Overall i-fetch 0.81 0.79

Table 8.3: Trace cache misses per 1000 instructions with and without trace

write �ltering.

8.3.5 A strategy to reduce redundancy

Duplication is a result of execution paths through a program which merge at certain

blocks. Examples of such blocks include the join blocks of if-then-else conditional structures,

blocks at the beginning of loops, and blocks at the beginning of subroutines. In order to

eliminate duplication, it would be suÆcient to terminate all trace segments at all merge

blocks. This would have the e�ect of synchronizing segment creation of all possible execution

paths. But, the cost of such a strategy would be detrimental to performance because such

points occur frequently.

In this experiment, a class of merge blocks force trace segment synchronization. Here,
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all blocks at the beginning of subroutines start a trace segment, i.e., call instructions force

a pending trace segment to �nalize. The result is that trace segments are created from a

uniform starting point for all subroutines, regardless of caller of the subroutine. Figure 8.16

shows the average duplication for three variations of the TC.ic con�guration. The �rst two

are the same as Figure 8.5|the �rst is without trace packing, the second is with cost-

regulated trace packing. The �nal scheme �nalizes trace segments on call instructions. For

the �nal scheme, average duplication is signi�cantly reduced. Figure 8.17 demonstrates the

performance impact of such a strategy. For some benchmarks, this reduction in duplication

comes at a minor cost.
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Figure 8.16: The e�ect of �nalizing on call instructions on average duplica-

tion.

8.3.6 Unused space

Similar to duplication, another e�ect that degrades the caching eÆciency of the trace

cache is the unused cache space due to incomplete trace cache lines. Since the trace segment

construction rules �nalize segments even if it is not full, e.g., when the third branch is added,

many trace segment often contain fewer than 16 instructions. The e�ect of this unused space

is higher miss rates and lower e�ective fetch rates. It should be noted that instruction caches

su�er from a similar problem: because long cache lines can contain several sequential basic

blocks, a cache line may contain a block of instructions that never gets executed but was

cached because of a fetch to another block on that same line.
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Figure 8.17: The performance implications of �nalizing on call instructions.

To gauge the amount of the unused space due to incompletely �lled trace cache lines, the

unused instruction slots on each line fetched from the trace cache are counted and averaged

over all trace cache fetches. These averages are presented in Table 8.4. The data are

gathered on two TC.ic con�gurations: no trace packing and cost-regulated trace packing.

Benchmark No Trace Cost-reg
Packing Packing

compress 3.48 2.03
gcc 4.18 3.29
go 3.93 3.20
ijpeg 2.49 1.26
li 3.49 2.20
m88ksim 3.82 2.64
perl 3.77 3.08
vortex 4.45 2.63

chess 2.91 1.11
gs 3.93 2.51
pgp 3.35 1.67
plot 3.76 2.27
ss 3.82 2.34

Average 3.64 2.33

Table 8.4: The number of unused trace cache instruction slots per fetch.
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8.4 Large Atomic Units

An execution atomic unit (EAU) [32] is a sequence of instructions in which all instruc-

tions execute or none do. A typical execution atomic unit can be sequence of instructions

delimited by a conditional branch or an by indirect branch or by a return instruction. How-

ever, a particular processor implementation may divide (or enlarge) that sequence based

on, for example, fetch width, issue width or execution resources.

Large EAUs are bene�cial to the underlying hardware because they allow resource al-

location on a larger unit of work. For example, an EAU only requires a single checkpoint.

Another example is that architectural registers need only be read and written on values

which cross EAU boundaries; internal communication can be explicitly encoded within the

EAU.

From the perspective of the instruction fetch mechanism, EAUs represent a block of

instructions fetched at the cost of one control decision. Since conditional and indirect

branches, and returns terminate an EAU, fetching a single EAU requires a single branch

(or target) prediction in order to determine the next EAU to be fetched. From the per-

spective of the fetch mechanism, large EAUs represent more instructions fetched for each

prediction made, implying that less e�ective bandwidth is required from the branch predic-

tion mechanism.

The trace cache, in general, and Branch Promotion, speci�cally, enable EAUs to be en-

larged by removing arti�cial terminations. The trace cache allows trace segments formation

beyond unconditional branches and subroutine calls. Branch Promotion allows for highly

biased conditional branches to be treated like unconditional branches. With these types

of control instructions removed from consideration, EAU size now is terminated by only

non-promoted conditional branches, indirect branches, and return instructions. The e�ects

of this are shown in Figure 8.18 which shows EAU size distribution averaged over all the

benchmarks, executed on the Enhanced TC.ic con�guration.
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Figure 8.18: The distribution of EAU sizes during execution on the En-

hanced TC.ic con�guration, averaged over all benchmarks.
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CHAPTER 9

Trace Cache Design for Next Generation Processors

9.1 Objective: a Fetch Mechanism for an 8-wide Machine

Section 8.4 demonstrates that the trace cache can transfer, on average, a large number

of instructions for each control transfer instruction. In this chapter, the trace cache, based

on this notion, is used to develop a high-bandwidth instruction delivery mechanism for a

next-generation 8-wide issue processor.

The fetch mechanism proposed for the next-generation consists of a 64KB trace cache

with Branch Promotion. The trace segments of this mechanism consist of 8 instructions

with at most 1 conditional branch or indirect jump or return. Since promoted branches

are not considered conditional branches, there is no limit on their number (except the

implicit maximum of 8). This design allows for two things. First, an aggressive single

branch predictor can be used, such as the hybrid predictor used in the Single-Block ICache

con�guration. Second, the design allows for a high frequency implementation. The selection

of next fetch address is simpler because at most one branch is fetched. This fetch mechanism

gets high instruction bandwidth via both a high fetch rate and a low branch misprediction

rate and is more nearly amenable to short cycle times.

In this chapter, this next-generation trace cache mechanism is described and compared

with a comparable Single-Block ICache and the Sequential-Block ICache (with multiple

branch predictor).
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9.2 Trace Cache with Promotion, 1 Branch Only

The fetch mechanism consists of a 64KB trace cache and a supporting 4KB icache.

The trace cache consists of lines of 8 instructions, each line containing up to one conditional

branch or indirect jump or return instruction. The �ll unit performs Branch Promotion, and

a line may contain multiple promoted branches. The threshold for Promotion is 64. Since

the trace cache only stores one (extended) block per trace segment, the other enhancements,

Partial Matching, Inactive Issue, and Trace Packing, do not apply.

9.3 Aggressive Single Branch Predictor

Since only a single branch prediction per cycle is required with this fetch mechanism,

a larger range of predictor options are available. One of the best performing predictors

documented in the branch prediction literature is a gshare/PAs hybrid [6, 12, 29] similar to

the one used on the Digital/Compaq 21264 [27] (See Section 4.6.1 for a description). This

type of predictor is able to predict both branches which exhibit global branch correlation

and branches which correlate best to themselves [13]. In the con�guration examined here,

the global component consists of an 8KB pattern history table, the per-address component

a consisting of an 8KB pattern history table and a set of 2K 15-bit branch histories (stored

in a Branch Target Bu�er), and an 8KB selector mechanism.

Because of the trace cache's dynamic nature, branch prediction with this mechanism

performs better if it is based on branch address rather than fetch address. With a trace

cache, a branch can be accessed using a large number of fetch addresses, due to the fact

that trace segments grow and shrink due to Branch Promotion and other factors which

vary trace segment construction. This increase in the mappings between fetch addresses

and branches decreases the eÆciency of the branch predictor, since information on the same

branch is now spread across multiple entries. To circumvent this problem, alongside each

next fetch address is stored a next branch ID (it need not be a full copy of the branch's

address). The fetch address is used to access the trace cache and instruction cache, whereas

the branch ID is used to access the branch prediction structures. In the case that the branch

ID is not correct (which can happen if branch ID is a subset of the address or if promotion

has changed the fetch-address-to-branch mapping), then branch ID is repaired.
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9.4 8-wide Execution Engine

This fetch mechanism is coupled to an 8-wide execution engine through a window of

256 instructions. The window is divided into 8 columns of 16 instructions, each column

feeding a multi-purpose execution unit. The machine contains a 32KB single-cycle data

cache with 5 read/write ports. All other parameters of the execution engine are similar to

those described in Section 4.4.

9.5 Comparison to Alternatives

Figure 9.1 demonstrates the performance advantage in Instructions Per Cycle of the 8-

wide trace cache mechanism over the Single-Block ICache and the Sequential-Block ICache.

The Sequential-Block ICache delivers up until the �rst taken branch, up to three branches

total. For these comparisons, both icache con�gurations were scaled back to 64KB. The

percentages above the bars indicate the performance di�erential between the Sequential-

Block ICache and the trace cache. On most benchmarks, the trace cache outperformed the

icache con�gurations. On gcc, the Sequential-Block ICache outperforms the trace cache.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot ss
Benchmarks

0

1

2

3

4

5

6

7

8

In
st

ru
ct

io
ns

 P
er

 C
yc

le

8-wide Single IC
8-wide Sequential IC
8-wide TC.ic

 10%

-12%
 -0%

  4%

  6%
  7%   6%

  3%
 -1%

  4%
  5%

  6%

  3%

Figure 9.1: The performance of the three 8-wide fetch mechanisms.

The trace cache gets its primary performance advantage over the Sequential-Block

ICache via highly accurate branch prediction. Table 9.1 lists the branch misprediction

rates of the three con�gurations tested.

Furthermore, the trace cache delivers a high e�ective fetch rate. Figure 9.2 shows the
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Benchmark Single-Block Sequential-Block Trace
ICache ICache Cache

compress 5.34 8.88 5.40
gcc 6.48 8.15 7.11
go 15.26 17.71 15.34
ijpeg 8.53 9.48 8.42
li 2.84 4.20 3.73
m88ksim 0.86 1.96 0.96
perl 1.26 3.06 1.44
vortex 0.95 1.85 1.11

chess 1.91 2.45 2.04
gs 4.27 5.56 4.33
pgp 4.24 5.49 4.19
plot 1.53 2.61 1.66
ss 3.49 5.31 3.68

Average 4.38 5.90 4.57

Table 9.1: The branch misprediction rates of the three 8-wide fetch mech-

anisms.

e�ective fetch rate in instructions per fetch. The trace cache con�guration delivers a slightly

higher fetch rate for most benchmarks than the Sequential-Block scheme. But because

of the low frequency of promoted branches and the prevalence of small basic blocks, the

benchmarks gcc and go fare poorly in terms of fetch rate with this trace cache con�guration.
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Figure 9.2: The e�ective fetch rate of the three 8-wide fetch mechanisms.

Finally, the trace cache con�guration su�ers from a larger number of fetch misses, due

primarily to the duplication e�ect discussed in Section 8.3. Table 9.2 lists the overall
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fetch misses (i.e., fetch requests which miss both caches in the case of the trace cache

con�guration) per 1000 instructions.

Benchmark Single-Block Sequential-Block Trace
ICache ICache Cache

compress 0.00 0.00 0.01
gcc 2.54 2.59 17.29
go 3.82 3.22 10.60
ijpeg 0.00 0.00 0.00
li 0.00 0.00 0.10
m88ksim 0.01 0.03 0.97
perl 0.06 0.18 5.19
vortex 2.25 2.25 11.37

chess 0.03 0.03 2.84
ghostscript 1.93 1.93 4.38
pgp 0.01 0.01 0.03
plot 0.03 0.03 0.97
sim-outorder 0.12 0.17 8.46

Average 0.71 0.69 3.73

Table 9.2: The fetch misses per 1000 instructions for the three 8-wide fetch

mechanisms.
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CHAPTER 10

Conclusion

The trace cache is a mechanism for overcoming the partial fetch problem by caching

logically contiguous instruction in physically contiguous storage. By caching instruction in

this dynamic manner, the trace cache is able to deliver instruction at a high e�ective fetch

rate|e�ective fetch rate is the number of good instructions fetched for each fetch that hits

in the caches. The primary objective of this dissertation is that of improving the e�ective

fetch rate of the trace cache mechanism.

The e�ectiveness of the trace cache is improved by a series of enhancements proposed

in this dissertation. As a result, the trace cache is able to outperform a Sequential-Block

ICache. This ICache is capable of fetching sequential runs of instructions and utilizes a

compiler optimization which increases run lengths. The enhanced trace cache outperforms

this ICache by 14% in IPC and by 34% in average fetch rate. The enhanced trace cache

outperforms a trace cache without these enhancements by 22% in IPC and by 35% in

fetch rate. In order for the trace cache to outperform the Sequential-Block ICache, the

enhancements are necessary.

The �rst enhancement evaluated is Partial Matching and it enables the trace cache

to deliver a portion of a cached trace segment, based on the path selected by the branch

predictor. This policy signi�cantly increases the number of fetches serviced by the trace

cache.

Inactive Issue is a further re�nement of Partial Matching in that blocks in a trace

segment not selected by the predictor are issued inactively as a hedge against a branch mis-

prediction. If the adjoining branch is later detected to be mispredicted, then the processor

can recover slightly further along the correct path because of the inactively issued instruc-
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tions. Inactive Issue boosts the performance of benchmarks which su�er a high degree of

branch mispredictions.

Of the factors which limit trace size, the maximum branch limit of three conditional

branches is most signi�cant. Branch Promotion was designed to address this limitation. It

does so by converting highly biased branches into unconditional branches which have the

capability to generate a fault if they change direction. Promoted branches do not require a

dynamic prediction and thus do not a�ect the three branch limit per trace segment. With

branch promotion, an average of 60% of dynamic conditional branches are removed from

the prediction stream. The result is lower interference in the predictor, less reliance on

multiple branch predictions per cycle, and more instructions per trace segment.

Branch Promotion increases fetch rate only slightly. The default trace construction

strategy used by the �ll unit is to not split blocks of instructions across trace segments.

Branch Promotion results in more fetches limited by this �ll unit policy. Trace Packing is a

scheme whereby the �ll unit can split blocks arbitrarily. With both Branch Promotion and

Trace Packing, trace cache fetch rate is boosted by 17%. Both enhancements are synergistic

in that each addresses the limitation su�ered by the other. The main drawback of Trace

Packing is that it signi�cantly increases the number of copies of an instruction cached in

the trace cache. A Trace Packing strategy which only packs segments if the potential payo�

is high is proposed and demonstrated to give high fetch rates with low cache miss rates.

Of the three trace cache con�gurations tested, the TC.ic scheme performs best. It is

slightly better than the scheme where storage is split between the two. As the e�ectiveness

of the trace cache is further improved with additional enhancements (such as a trace cache

where trace segments are optimized for fast execution), the relative performance of this

scheme is expected to increase.

The trace cache outperforms the alternative con�gurations and allows for logic com-

plexity to be moved out of the critical processing path of the machine. As demonstrated,

�ll unit latency does not a�ect processor performance. Some operations which typically are

placed between the fetch stage and the issue stage can be moved into the �ll unit pipeline.

Even though performance of the entire processor increases by a modest 14% over the

Sequential-Block ICache, the real problem addressed by the trace cache is that of fetch rate.

The fetch rate is demonstrated to increase by 34% with the enhanced trace cache. Other

factors, such as execution rate, limit the performance attainable with the machine modeled
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in this dissertation.

One of these other factors is branch resolution time. As fetch rate is increased, branch

resolution time increases causing more cycles to be lost due to branch mispredictions. This

increase is due to the accumulation of processing delays associated with the execution

hardware, such as resource contention, cache misses, etc. In addition, instruction level

parallelism plays a slight role in that as a branch is fetched earlier, it must wait longer for

the natural dataow to progress before being able to execute.

The caching of instructions in logical order opens the possibility of caching duplicate

copies of instructions. The measurements presented in Section 8.3 demonstrate that Trace

Packing increases the amount of duplication from an average of three copies of an instruction

to about eleven. Cost-regulated Trace Packing moderates duplication to about seven copies

per instruction. This duplication can be divided into useful replication, where a copy

is necessary for delivering high bandwidth, and useless redundancy, where a copy only

occupies cache space. Measurements indicate that about six of the seven cached copies of

the average instruction contribute to the fetch rate.

Finally, an implementation for next-generation processor microarchitectures is described.

The scheme outlined in this dissertation gets high fetch rates without compromising high

branch prediction accuracy. For most benchmarks, this 8-wide fetch scheme attains higher

performance than the 3-branch Sequential-Block ICache.
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APPENDIX A

Lessons Learned from the Trace Cache

Several techniques which boosted the trace cache's e�ectiveness were described in in

Chapter 6. Two of these techniques can be applied to the icache con�gurations as well. In

this appendix, Inactive Issue and Branch Promotion are adapted for use with the Sequential-

Block ICache.

A.1 Applying Inactive Issue to the Sequential ICache

The technique of Inactive Issue is not restricted to the trace cache. The concept can

be applied to any multi-block fetch mechanism. Blocks fetched but not selected by the

branch predictor can be issued inactively. In this experiment, the technique is applied to

the Sequential-Block ICache.

Here, the Sequential-Block ICache fetches up to three sequential fetch blocks. While the

icache is being accessed, the branch predictor is queried for three predictions. Based on the

predictions, the fetched blocks are issued actively or inactively. The active portion of the

fetch terminates with the �rst predicted taken branch. The subsequent blocks are issued

inactively.

Figure A.1 demonstrates the performance implications of adding Inactive Issue to the

standard Sequential-Block ICache. The numbers are not qualitatively di�erent than with

the trace cache. Many benchmarks exhibit little or no change in performance. However,

benchmarks which su�er more signi�cantly from branch mispredictions, such as the bench-

marks gcc and go, bene�t from Inactive Issue. Some benchmarks su�er slightly (compress,

ijpeg, pgp) because inactive instructions are also executed and thus compete with active
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instructions for execution bandwidth.
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Figure A.1: The Sequential-Block ICache with and without Inactive Issue.

A.2 Applying Branch Promotion to the Sequential-Block ICache

Branch Promotion can also be applied to the Sequential-Block ICache. By doing so, the

number of fetches limited by the 3 (not-taken) branch limit can be reduced. To implement

Branch Promotion with the icache, a mechanism must exist to mark and store branch

instructions which satisfy the promotion criterion as promoted. Because of the nature of

the Sequential-Block ICache, only not-taken promoted branches are helpful in boosting

fetch rate.
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A.2.1 ICache fetch terminations

Figure A.2 shows a fetch breakdown for the Sequential-Block ICache running the bench-

mark gcc. Here, there are �ve reasons which can limit a fetch:

1. Taken BR. The fetch was terminated by a taken branch (conditional, unconditional,

or jsr) or a cache line boundary 1 before 16 instructions were fetched.

2. Mispred BR. A mispredicted branch terminated the fetch.

3. Max Size. The fetch contained 16 instructions.

4. Ret, Indir, Trap. A return, indirect jump, or trap terminated the fetch.

5. Maximum BRs. The current fetch contained three not-taken conditional branches.

The number of fetches terminated by the maximum branch limit is sizable, but it is not

the only large factor causing partial fetch terminations. Many small fetches result because

of the taken branch limitation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ave Fetch Size  8.861

0.00

0.05

0.10

0.15

0.20

0.25

D
yn

am
ic

 F
re

qu
en

cy

TakenBR
MispredBR
MaxSize
Ret, Indir, Trap
MaximumBRs

Figure A.2: Fetch termination reasons for the Sequential-Block ICache on gcc.

A.2.2 Applying promotion

The concept of promotion is described in Section 6.6. With the Sequential-Block ICache,

conditional branches which are almost always fall-through are signaled for promotion and

1The instruction cache implements split-line fetching, however cache line boundaries can still terminate

a fetch if the request for the second line misses in the cache.
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are modi�ed in the icache as promoted branches. Promoted branches do not require a

branch prediction when they are fetched, instead they are statically predicted to be not

taken. If the branch behaves di�erently, a hardware fault is signaled and the branch is

corrected. With this mechanism, fewer fetches are limited by the three branch limit.

Figure A.3 shows the performance implications of performing Branch Promotion on the

Sequential-Block ICache con�guration. The threshold for promotion is set to 64 not-taken

occurrences. All benchmarks get a very slight performance boost from Promotion.
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Figure A.3: The Sequential-Block ICache with and without Branch Promo-

tion.

The boost is not signi�cant because promotion is not addressing the largest factor caus-

ing small fetches. Figure A.4 shows a fetch termination histogram for the Sequential-Block

ICache with Branch Promotion activated. Here, fewer fetches are limited by the three

branch limit as compared to Figure A.2, but a large fraction of smaller fetches are due to

the taken branch limitation. The essential problem with the Sequential-Block ICache is

that the large sequential runs of instructions created by the compiler are fragmented by the

fetch hardware. For instance, a sequential run of 17 instructions is fragmented into a fetch

of 16 instructions and a subsequent fetch of 1 instruction, resulting in an overall fetch rate

of 8.5.
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Figure A.4: Fetch termination reasons for the Sequential-Block ICache with

Promotion on gcc.

A.3 Enhanced Sequential-Block ICache

The Enhanced Sequential-Block ICache is created by adding both Inactive Issue and

Branch Promotion to the basic icache. Figure A.5 demonstrates performance of the Sequential-

Block ICache, the Enhanced Sequential-Block ICache, and the Enhanced Trace Cache

(TC.ic). Overall, the Trace Cache performs 12% better than the Enhanced Sequential-Block

ICache and 14% better than the icache without the enhancements. The numbers above the

bars indicate the performance improvement of the Trace Cache over the Enhanced ICache.

The enhancements are all about boosting the fetch rate. Figure A.6 demonstrates the

boost in fetch rate by adding these enhancements. Overall the trace cache has a 28% larger

fetch rate than the Enhanced ICache. The Enhanced ICache has a 5% larger fetch rate

than the ICache without the Enhancements.

The Enhanced ICache outperforms the Trace Cache on the benchmark go (See Fig-

ure A.5) even though the Trace Cache gets a higher fetch rate on it. The benchmark su�ers

a considerable number of cache misses with the Trace Cache{5.69 trace and icache misses

per 1000 instructions versus only 0.70 icache misses per 1000 instructions with the Enhanced

ICache. The boost in fetch rate with the enhancements is enough to boost the performance

of the Enhanced ICache beyond the Trace Cache on this benchmark.
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Figure A.5: The performance of the Sequential-Block ICache with both In-

active Issue and Branch Promotion.
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tive Issue and Branch Promotion.
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