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[57] ABSTRACT 
An improved cache and organization particularly suit 
able for superscalar architectures. The cache is orga 
nized around trace segments of running programs 
rather than an organization based on memory addresses. 
A single access to the cache memory may cross virtual 
address line boundaries. Branch prediction is integrally 
incorporated into the cache array permitting the cross 
ing of branch boundaries with a single access. 
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DYNAMIC FLOW INSTRUCTION CACHE 
MEMORY ORGANIZED AROUND TRACE 
SEGMENTS INDEPENDENT OF VIRTUAL 

ADDRESS LINE 

This is a continuation of application Ser. No. 
07/846,257, ?led Feb. 27, 1992, now abandoned. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The invention relates to the ?eld of cache memories, 

particularly instruction cache memories. 
2. Prior Art 
For many years digital computers have used cache 

memories for storing instructions. Typically, these 
memories use faster static memories as compared to the 
slower dynamic memories used for the computer’s main 
memory. Through use of well-known mechanisms, such 
as replacement algorithms, a relatively small cache 
memory (compared to the size of the main memory) 
provides a relatively high hit rate and consequently 
speeds up the ?ow of instructions to the execution unit 
of the computer. 
Most often an execution unit of a central processing 

unit (CPU) fetches each instruction from the cache 
memory by addressing the cache memory with a physi 
cal or virtual address. If the instruction is found in cache 
memory (hit) the instruction is provided to the execu 
tion unit directly from the cache memory. There is 
often a one-to-one relationship between each address 
from the execution unit and an instruction from the 
cache memory. This is discussed in more detail in the 
Detailed Description of the Invention. 

If the instruction requested by the execution unit is 
not found in the cache memory (miss), the physical 
address or the virtual address after translation to physi 
cal address accesses the main memory. An entire line of 
instructions (as determined by address) which includes 
the requested instruction is transferred from main mem 
ory into the cache memory and the requested instruc 
tion is sent to the execution unit of the CPU. Cache 
memories are typically organized by these lines with the 
tag and index bits of the address pointing to the entire 
line of instructions and with the offset bits selecting 
instructions from within the line. 
As will be seen, the present invention provides a 

method for organizing instructions in a cache memory 
which departs from the prior art as is discussed in the 
Detailed Description of the Invention. As will be seen 
with the present invention, the lines of cache memory 
do not necessarily store instructions organized by their 
addresses, rather traces of instructions as de?ned by the 
running program determine what is put in each line of 
cache memory. The integration of branch prediction 
data into the cache memory allows, in a single access, 
the crossing of branch boundaries with the present in 
vention. Consequently, a plurality of instructions in 
cluding instructions crossing a predicted branch bound 
ary may be fetched from the cache memory with only 
one address/ access. ' 

SUMMARY OF THE INVENTION 

A method and apparatus is described for storing data 
in a cache memory. The method comprises the steps of 
identifying trace segments of instructions in a computer 
program in the order that they are executed. Once these 
trace segments are identi?ed, the cache is organized 
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2 
based on these trace segments. Most typically, each 
instruction trace segment comprises blocks of instruc 
tions, the ?rst instruction of each block being one which 
follows a branch instruction and the last instruction of 
each block being a branch instruction. The trace seg 
ment is associated in the cache memory with the ad 
dress of the first instruction in the trace segment. The 
offset bits are used along with the tag bits in the tag 
array to locate the ?rst instruction of each trace seg 
ment in the cache memory, since the trace segment may 
not begin on a line boundary. 

In the currently preferred method and apparatus, a 
trace segment comprising two blocks is stored in each 
line of cache memory along with branch prediction data 
and the address for the next instruction trace segment 
predicted to be executed based on the branch prediction 
data. Other data is stored for each line as will be de 
scribed in the Detailed Description of the Invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram showing the cache memory 
of the present invention with its accompanying line 
buffer connected to a CPU and main memory. 
FIG. 2 is a diagram used to describe a static sequence 

of computer program instruction and the branching that 
occurs in the sequence. 
FIG. 3 illustrates a sequence of computer program 

instructions and the control flow changes that occur at 
branches. 
FIG. 4 illustrates a line of cache memory and the data 

stored for the line in accordance with the currently 
preferred method and embodiment of the present inven 
tion. 
FIG. 5A illustrates a static sequence of computer 

program instructions and the ?ow that may occur dur 
ing execution of the instructions. 
FIG. 5B illustrates the order of execution of blocks of 

the instruction for the ?ow of FIG. 5A. 
FIG. 6 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the ?rst block of instructions of FIG. SA has been 
executed. 
FIG. 7 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the second block of instructions of FIG. SA has 
been executed. 
FIG. 8 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the third block of instructions of FIG. SA has been 
executed. 
FIG. 9 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the fourth block of instructions of FIG. SA has 
been executed. 
FIG. 10 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the ?fth block of instructions of FIG. SA has been 
executed. 
FIG. 11 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the sixth block of instructions of FIG. SA has been 
executed. 
FIG. 12 illustrates the contents of the line buffer of 

FIG. 1 and the contents of the cache memory of FIG. 1 
after the seventh block of instructions of FIG. SA has 
been executed. 
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DETAILED DESCRIPTION OF THE 
INVENTION 

A dynamic ?ow instruction cache memory, its orga 
nization and method of operation are described. In the 
following description, numerous speci?c details are set 
forth such as speci?c number of bits in order to provide 
a thorough understanding of the present invention. It 
will be obvious to one skilled in the art that the present 
invention may be practiced without these speci?c de 
tails. In other instances, well-known methods and struc 
tures are not described in detail in order not to unneces 
sarily obscure the present invention. 
Departure of the Present Invention from the Prior Art 
Typical prior art instruction cache memories are 

organized by lines, each of which stores a predeter 
mined number of bytes corresponding to a line of vir 
tual address from a program. For instance, in some 
microprocessors, 32 bytes are stored on each line of 
cache memory. Each line in cache memory is associated 
with the virtual addresses of the instructions in that line. 
The tag and index bits locate an entire line in cache 
memory with the offset bits used to select particular 
?elds from each line when a hit occurs. When a miss 
occurs, an entire line of instructions which contains the 
requested instruction is fetched from main memory and 
written into cache memory. Often in a computer pro 
gram, a line of instructions as de?ned by virtual ad 
dresses, contains several branch instructions. With prior 
art instruction cache memories, when a branch is taken, 
the next requested instruction may be on another line. 
Therefore, some of the instructions stored in the cache 
memory may never be used and moreover, the organi 
zation on each line is independent of branching. In con 
trast, with the present invention, the organization of the 
cache memory is dynamically built on the order of 
execution of the instructions. Considering that in a com 
puter program it is not uncommon to ?nd that every 
?fth or sixth instruction is a branch instruction, it can be 
important to mitigate the diversions caused when a 
branch is taken. 
The present invention differs from the prior art cache 

memories also in the way instructions are fetched from 
the cache memory. With the prior art cache memories, 
there is a one-to-one relationship between the addresses 
and instructions. That is, the execution unit of the CPU 
provides an address and generates a cache access for 
each instruction it requests. Newer designs of prior art 
caches provide in one access, a predetermined number 
of sequential instructions from the cache line, per one 
address supplied by the execution unit of the CPU. 
Typically, taken branch instructions will be in the in 
structions provided in response to the access. In the case 
that a taken branch instruction is not the last instruction 
provided, the instructions following the taken branch 
were futilely supplied, because they will not be exe 
cuted. Therefore, the number of access to the cache 
memory is a limiting factor in determining the rate at 
which instructions may be fed to the CPU. As will be 
seen with the present invention, the instructions are 
organized in trace segments, each of which comprises 
basic blocks of instructions. As will be described, the 
instructions in the basic blocks are supplied to the CPU 
after the ?rst instruction in the block is addressed (with 
out addressing the other instructions in the line) since it 
is known that the other instructions in at least one of the 
blocks will be requested. Moreover, since branch pre 
diction data is stored with each block, instructions 
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4 
crossing taken branch boundaries from several blocks 
can be used without an additional address access from 
the CPU. , 

Basic Blocks and Trace Segments of Instructions used 
in the Present Invention 

In accordance with the present invention, storage in 
the cache memory is organized around basic blocks of 
instructions on a ?rst level and then on trace segments 
of instructions comprising a plurality of such blocks on 
a second level. 
A basic block comprises instructions in a computer 

program which are unconditionally and consecutively 
executed. A basic block starts with the ?rst instruction 
following a branch instruction and its last instruction is 
a branch instruction. (Branch instructions include both 
unconditional branches (e.g., call, return) and condi 
tional branches.) There are no instructions in the basic 
block, the execution of which may change the control 
flow in the program. Once the ?rst instruction in a basic 
block is executed, all the remaining instructions in the 
basic block will for certain be executed since there is no 
instruction in the block that goes beyond a branch in 
struction. 

In FIG. 2, a static sequence of instructions is illus 
trated along the line 37. The instructions are ordered by 
their virtual addresses. For purposes of discussion, as 
sume that ANis the virtual address for an instruction 38 
and that instruction 38 is a branch instruction. Further 
assume that a plurality of instructions lie between the 
addresses AN and AN+12 and that these are instructions 
which will be executed once instruction 38 is executed 
since they contain no branch instructions. The instruc 
tion at the address A1v+12, instruction 39, is assumed to 
be the next branch instruction in the sequence of in 
structions. A basic block (BBN) starts with the instruc 
tion following instruction 38 and ends with instruction 
39. The next branch instruction in the sequence of in 
struction is instruction 40 at address AN+50. A basic 
block (B BM. 1, numbered 41 ,) starts with the instruction 
following instruction 39 and ends with instruction 40. If 
we assume that branch instructions on the remainder of 
line 37 only occur at AN+55, AN+62 and Alt/+93 then 
additional basic blocks EBA/+2, BBN+3 and BBN+4 are 
shown on line 37. The basic blocks are numbered BBN, 
BBN+1, BBN+2 . . . to indicate the order of the blocks 
in the static program. As will be seen later, the blocks 
are numbered BB1, B2, BB3 . . . to indicate the order in 
which they are executed. 
As mentioned, basic block begins with the ?rst in 

struction which follows a branch instruction and end 
with a branch instruction. Note that the branch instruc 
tion itself is unconditionally executed; what is not cer 
tain is which instruction will be executed following the 
branch. 

If it is assumed that a typical prior art cache memory 
stores 32 bytes in each line, and that the line begins with 
the address A N, two such lines 43 and 44 are also shown 
in FIG. 2. Note that lines 43 and 44 each contain branch 
instructions and that the boundary between these lines 
(AN+32) is not coincident with a basic block boundary. 
There is not necessarily any correlation between basic 
blocks and the instruction in a prior art line of cache 
memory. 

In FIG. 3, another static sequence of instructions are 
shown along line 47. The instructions along line 47 are 
similarly arranged to those along line 37 of FIG. 2, with 
basic blocks 49 (BEN), 50 (BBN+ 1), 51 (BBN+2), 52 
(BBN+3) and 53 (BBN+4) being shown. These basic 
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blocks are again numbered B N, BN+ 1, B N+2 to indicate 
their virtual address order as they appear in the pro 
gram. While it is certain that once the ?rst instruction in 
a basic block is executed, the remaining instructions‘ will 
be executed, there is no certainty that once, for instance, 
basic block 49 is executed that basic block 50 will follow 
because of the branch instruction between them. 

Trace 55 of FIG. 3 shows what may occur in the 
execution of a typical computer program. If we assume 
that basic block 49 (BB 1) is executed and at the end of 
this basic block, a branch is taken to the basic block 51 
(BB2) the basic block 50 is skipped. If at the end of BB; 
the branch is not taken, basic block 52 (BB3) is next 
executed. The order of execution therefore, of the basic 
blocks BB1, BB2, and BB3 is not the same as their virtual 
address order. 
Overall Structure of the Present Invention 

Referring now to FIG. 1, a computer 20 is illustrated 
which is coupled to a main memory 24 through a data 
bus 28 and address bus 27. The computer 20 includes a 
central processing unit (CPU) 21. The CPU 21 may be 
an ordinary CPU well-known in the art which includes 
an execution unit for executing instructions. The cache 
memory of the present invention is particularly useful 
when the CPU 21 employs superscalar architecture 
which may speculatively and simultaneously execute a 
plurality of instructions out-of-order. In such CPUs at 
some stage in the processing, there is a commit mecha 
nism that determines which ones of the speculatively 
executed instructions were in fact needed. The commit 
mechanism organizes the output of the computer such 
that the output is oblivious of the out-of-order execution 
and devoid of the unneeded executions, which may 
have occurred during the speculative executions of 
instructions beyond mispredicted branches. Bus 30 of 
FIG. 1 represents an output of the CPU 21 which pro 
vides executed instructions and their address. (As used 
in this speci?cation, the term “executed” refers to in 
structions the execution of which was needed, as op 
posed to speculatively executed instructions which 
were not needed.) The precise information provided on 
bus 30 will be apparent from the description of the line 
buffer 22. 
The cache memory 23 may employ ordinary cache 

memory circuitry such as static memory cells. In the 
currently preferred embodiment, the memory 23 is a 
dual port memory having a tag array, cache instruction 
storage section and other sections for storage as will be 
described. One port of the memory 23 is accessed by 
addresses on bus 27 with instructions and other data 
from the cache memory coupled to the CPU 21 on bus 
29. The other port of the cache memory 23 is accessed 
by addresses on bus 33 with instructions and other data 
stored in the cache memory being coupled to the cache 
memory from the line buffer 22 over bus 31. In general, 
the data coupled on bus 31 comprises the instruction 
blocks organized by traces (“I”), branch prediction data 
(“P”) and the next address (“NA”) all illustrated in 
FIG. 1 by “I+P+NA”. 

It should be noted in FIG. 1 that in the currently 
preferred embodiment, instructions are not coupled to 
the cache memory directly from the main memory 24. 
Rather, all cache memory inputs are from the line buffer 
22. Therefore, only instructions which have been exe 
cuted by the CPU 21 are coupled to the cache memory 
23 for storage. 

In the currently preferred embodiment the cache 
memory 23 has a set associativity of four or greater. 

25 

30 

35 

40 

45 

65 

6 
With the preferred embodiment of the present inven 
tion, the ?rst instruction for each executed basic block is 
addressable by the CPU. As illustrated in FIG. 2, there 
can be close static address mapping for the basic blocks 
and therefore, for the ?rst instruction in each block. 
Speci?cally, as shown in FIG. 2, the ?rst instruction of 
several blocks can be mapped into the same index, thus 
a higher associativity is used to enable hits for these 
close static addresses. 
The data stored in the cache memory generally re 

ferred to as I+P+NA is organized within the line 
buffer 22. The line buffer 22 contains three lines of data, 
the content and operation of which is described in detail 
in conjunction with FIGS. 6-12. The physical construc 
tion of the line buffer 22 may employ ordinary circuits. 
Organization of Data in the Cache Memory In Accor 
dance with the Present Invention 
FIG. 4 shows a single line of cache memory with the 

data stored in this line in accordance with the present 
invention. A cache memory contains many such lines, 
for example, 1024 lines each storing 32 bytes of instruc 
tions plus other data. Each line of instructions is associ 
ated with an address which includes a tag ?eld stored in 
a tag army as is typically the case with prior art cache 
memories. However, with the present invention the 
offset bits are also stored in the tag array. By way of 
example, the tag and offset bits for the ?rst instruction 
in BB1 are stored in the tag array as shown by ?eld 60. 
The tag and offset bits of an address from the CPU or 
line buffer are compared to the tag and offset bits in the 
tag array. The offset bits are needed in the tag array 
since the address of the ?rst instruction of BB1 may not 
fall on a memory line boundary. 
The ?rst ?eld 61 stored in the line 69 of FIG. 4 is the 

basic block BB1. For purposes of discussion, it is as 
sumed that BB1 is 10 bytes wide. The next ?eld 62 
stored in the line 69 of cache memory is the BB; which 
is assumed to be 20 bytes wide. In the execution of a 
computer program, BB2 was the block of instructions 
which was actually executed following the execution of 
the instructions in BB1. This is illustrated in FIG. 3 by 
the trace 55. Field 63 of the line of data comprises two 
bytes which, for the illustrated example, contain no 
valid data. If we assume that the line 69 of cache mem 
ory has the capacity to store 32 bytes of instruction and 
further, that at most, two basic blocks are stored per 
line, then there are 2 bytes of memory not used for the 
particular example shown in FIG. 4. In fact, in the 
currently preferred embodiment of the present inven 
tion, at most two basic blocks are stored per line of 
cache memory. Only the ?rst block in any given line is 
addressable in the ordinary sense through association 
with the address of its ?rst instruction. (It is believed 
that two or three blocks per line are most useful for the 
described cache memory although, in theory, any num 
ber of blocks per line may be stored). 
The remaining data stored in line 69 includes the 

?elds 64, 65, 66 and 67 shown in FIG. 4 discussed be 
low; other well-known data such as valid bits not shown 
and those bits associated with replacement algorithms 
may also be stored but are not shown in FIG. 4. 
The currently preferred embodiment of the invention 

is used with the “X86” instruction set. This instruction 
set has instructions of variable lengths although all the 
instruction boundaries fall on byte boundaries. The ?eld 
64 stores one bit of data for each instruction byte stored 
in the line 69. For the illustrated example, where 32 
bytes of instruction are stored in a line, ?eld 64 is 4 bytes 
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wide. Each bit in ?eld 64 is used to indicate the bound 
aries for the instructions. For instance, if BB2 contains 
six instructions which begin at bytes 11, 12, 18, 19, 25 
and 30 then, bits 11, l2, 18, 19, 25 and 30 in the 32 bits 
of ?eld 64 will indicate an instruction boundary. The 
data in the ?eld 64 is determined by the CPU 21 since 
the instructions are decoded for execution. This data is 
coupled to the cache memory 23 through the line buffer 
22. When instructions are read from cache memory by 
CPU 21, this data is coupled to the CPU and enables 
quicker execution of the code since the CPU 21 does 
not have to determine the instructions’ boundaries. 
Note the ?eld 64 is not needed where, as is often the 
case, the instructions are of the same length. 
The ?eld 65 contains the branch prediction data for 

the branch instruction which is at the end of BB1 and 
data to indicate the length of BB1. Similarly, the ?eld 62 
contains the branch prediction data for the branch in 
struction at the end of BB2 and data to indicate the 
length of BB2. The branch prediction information may 
be the ordinary history bits (e.g., 4 bits) indicating 
whether the branch is taken or not taken, or a single bit 
may be used for each of the blocks to indicate whether 
a branch is taken or not. If the 4 history bits are used, a 
hard-wired shift register may be used for each line in the 
cache memory to keep track of the history bits. The 
branch prediction data is coupled to the cache memory 
from the line buffer 22. The CPU 21 provides this infor 
mation over the bus 30. 
The ?eld 67 contains the address for the basic block 

which is predicted to be used next. For instance, refer 
ring to FIG. 3, if the branch prediction data indicates 
that BB3 (see FIG. 3) is to follow BB1, then ?eld 67 will 
contain the address for the ?rst instruction in BB3. 

If a particular basic block has more than 32 bytes (for 
the illustrated example), the next address ?eld 67 identi 
?es the line in cache memory which contains the next 
instruction in the basic block. For instance, if a basic 
block has 50 bytes, the next address points to the line 
storing the remaining 18 bytes. 

In operation, assume that the CPU 21 of FIG. 1 re 
quests the ?rst instruction of BB1. A hit occurs and the 
cache memory begins transferring to the CPU 21 all the 
instructions in the line beginning with BB1. These in 
structions are provided without additional addresses 
/accesses from the CPU since it is certain that once the 
?rst instruction in BB1 is requested the other instruc 
tions in at least BB1 will be needed. 

If the CPU determines that at the end of BB1 the 
branch is taken, as illustrated in FIG. 3, then the CPU 
continues to execute the remaining instructions in the 
line (BB2). If the CPU implements, for example, out-of 
order execution of multiple instructions, it can start 
executing instructions from and speculatively start exe 
cuting predicted instructions from BB2. When the CPU 
determines that the branch at the end of BB1 was pre 
dicted correctly, it ‘decides that the instructions specula 
tively executed from BB2 are valid. Note that the 
branch prediction data from ?eld 65 lets the CPU know 
that the block following BB1 is the one for the “branch 
taken” condition. Thus, the CPU can continue to con 
sume instructions in this second block without address 
ing this block. It is the storage of the prediction data 
that allows transition from one block to another even 
when the block crosses ordinary memory line bound 
aries. The length data in the ?eld 66 lets the CPU know 
how many bytes in the line are valid and prevents the 
execution of invalid instruction from ?eld 63. 
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If the branch was not taken at the end of BB1, al 

though predicted taken CPU 21 would know not to use 
the code following BB1. Again, the prediction data 
from ?eld 65 allows this to be determined. In this case 
the length data for BB1 from ?eld 65 points to the end of 
valid instructions in the transfer of the line of cache 
memory to the CPU. The CPU 21 in this case fetches 
BBN+1~ 

If BB; is executed by the CPU 21, then the next ad 
dress selects BB3 for transfer to the CPU. Again, the 
branch prediction data is used. Here the data from ?eld 
66 tells the CPU that BB3 is being transferred next. If 
the branch was not taken as predicted, BB3 is used by 
the CPU. If at the end of BB2 the branch is taken, the 
CPU 21 discards BB3, discontinues the transfer of in 
structions from the line containing BB3, (if the transfer 
is not complete) and seeks the correct instruction from 
the cache memory or main memory. 
Operation of CPU, Line Buffer and Cache Memory 

Referring now to FIG. 5A, another static sequence of 
instructions is shown along line 70. A plurality of basic 
blocks are identi?ed along the line 70 beginning with 
BBN through BEA/+6. Again, these are the basic blocks 
along the static sequence of instructions as they appear 
sequentially based on their virtual address, not their 
order of execution. The address of the ?rst instruction 
in each of the blocks is shown. For instance, the address 
of the ?rst instruction in BB N+2 is As. This instruction 
is the instruction which follows a branch instruction. 
Assume that the program represented along line 70 is 

executed by the computer of FIG. 1 and that the trace 
of instructions that results is shown by the line 71. More 
speci?cally, the ?rst block executed is BBN (BB1). The 
branch at the end of this block is taken and the next 
block executed is BB N+3 beginning at A12 (BB2). At the 
end of this block the branch is taken and BBN+1 is next 
executed (BB3). At the end of BB3 the branch is not 
taken and BB4 is executed. At the end of BB4 the branch 
is not taken and BB2 is again executed. This time, at the 
end of BB2, the branch is not taken and BB5 is executed. 
At the end of BB5 the branch is taken and BB5 is exe 
cuted. The order of execution is shown in FIG. 5B, 
speci?cally BB1, BB2, BB3, BB4, BB2, BB5 and BB5. 
The instructions contained in the line buffer 22 and 

their transfer to the cache memory 23 for the trace of 
FIG. 5B is shown in FIGS. 6-12. The other data stored 
with the instructions (e. g., addresses, bit/byte data, etc.) 
is not shown in order not to overly complicate the ?g 
ures, however, this other data is discussed below. 
Assume that the CPU 20 of FIG. 1 begins the execu 

tion of the program shown along 70 by requesting the 
instruction stored at A1. Assuming that the cache mem 
ory is empty/invalid, a miss occurs when A1 is commu 
nicated to the cache memory 23 and the instruction is 
obtained from main memory 24. (The conversion from 
virtual to physical address is ignored for purposes of 
explanation, as well as the fact a line of instructions may 
be sent to the CPU 21 upon requesting the instruction 
stored at the virtual address A1). The other instructions 
in BB1 are similarly not found in cache memory and 
obtained from the memory 24 and executed. Typically 
the CPU 21, particularly if it is doing speculative execu 
tions, will be obtaining the instructions in BBN+1 and 
BBN+2, etc. and begun execution of these instructions 
in an out-of-order basis. 
When the branch instruction at the end of BB1 is 

reached, the branch is taken and the instruction located 
at A12 is obtain from main memory 24 since it is not in 
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cache memory. At this point, the CPU 21 has identi?ed 
a basic block since it reached a branch instruction. 
Moreover, when all instructions in the basic block ?nish 
execution, the CPU can commit to this block. The in 
structions in BB1 are communicated to the line buffer 22 
and stored in the ?rst line 73 of the buffer as shown in 
FIG. 6. The address associated with the ?rst instruction 
of this block is also stored in the buffer, although not 
speci?cally shown in FIG. 6. At this time no informa 
tion is transferred to the cache memory. 
Even though the CPU 21 may have completed the 

execution of BBN+1 since the branch at the end of BB1 
was taken, BB 1v+1 is not communicated to the line 
buffer. Rather, after BB; is executed, it is communicated 
to the line buffer 22. This block of instructions (BB2) is 
placed in the ?rst line 73 of the buffer after BB1 and in 
the second line 74 of the bu?er. The address of the ?rst 
instruction in BB; (A12) is stored in conjunction with 
the second line 74. Also stored in the line buffer is the 
fact that the branch was taken at the end of BB1, length 
data for both BB1 and BB2, and the bit/byte data (?eld 
64 of FIG. 4). 

Since the branch at the end of BB; is also taken, the 
CPU 21 next executes and commits to the instructions in 
BB3. Once again since these instructions are not found 
in the cache memory, they are obtained from main 
memory 24. As shown in FIG. 8, BB3 is now stored in 
the line 74 following BB; and in the beginning of the 
third line 75. The address associated with the ?rst in 
struction of BB3 (A3) is stored in conjunction with line 
75. In the currently preferred method and embodiment 
only two, at most, basic blocks are stored on each line of 
the buffer and cache memory. Moreover, each block is 
placed at the beginning of a line so that it may be ac 
cessed through the address of its ?rst instruction. 
As shown in FIG. 8, the instructions stored in line 73 

are transferred to the cache memory. This is done once 
a line in the buffer has two blocks. The tag and offset 
?elds associated of A1 are moved into the tag array and 
the instructions in BB1 and BB; are stored in ?elds 61 
and 62, respectively referring back to FIG. 4. While not 
speci?cally shown, the bit/byte data for ?eld 64 is also 
transferred from the buffer to the cache memory. The 
length data for BB1 and BB2 is now placed into ?elds 65 
and 66. The fact that branches were taken at the end of 
BB1 and the end of BB; is indicated in the ?elds 65 and 
66, respectively. The next predicted address (A3), the 
beginning address for BB3 is stored in the next address 
?eld 67. Once the contents of a line in the line buffer is 
transferred to the cache memory, that line is cleared as 
shown for line 73 in FIG. 8. 

Referring back to FIG. 7, if BB2 had more instruc 
tions than can be stored on the line 73, the remaining 
instructions of BB; are stored on another line and the 
?rst address for the ?rst byte in that other line is the 
next address used for ?eld 67. In this case a flag is stored 
in the cache memory to indicate that a block has been 
separated into a plurality of lines and this information is 
coupled to the CPU. 

Referring again to FIG. 8, after BB3 is executed it is 
transferred to the line buffer and stored on line 74 after 
BB2 and on line 75. Since line 74 is now ?lled as indi 
cated in FIG. 9, BB2 and BB3 are transferred into an 
other line in the cache memory and the address (tag and 
offset bits) of the ?rst instruction of BB; (A12) is placed 
in the tag array. The next address ?eld and other data 
(bit/byte, branch prediction, etc.) are also transferred to 
the cache memory. 
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It should be noted from FIG. 9 that the blocks are 

placed into the cache memory such that the ?rst in 
struction in each block is addressable. For this reason, 
blocks are stored twice in the array. This assures that 
the CPU can access a block in cache even where the 
branching is different than predicted. 
As shown in FIG. 9, after BB4 is executed it is trans 

ferred into the line 75 in a position after BB3 and into the 
beginning of line 73. As shown in FIG. 10, BB3 and 
BB4 are transferred to the array along with the address 
A3 and the next address A12. 

After execution of BB4, the CPU will request the 
instruction at A12. When it does, a hit will occur as 
shown in FIG. 10. This causes BB; and BB3 residing in 
the same cache line to be coupled from the cache mem 
ory to the CPU. Following BB2, the branch is not taken, 
although predicted to be taken, thus, BB3 is discarded 
and BB5 is next used as shown in FIG. 5B. The length 
data stored for BB; lets the CPU know when BB2 ends 
and from where to discard instructions belonging to 
BB3. The branch prediction data for the end of BB; lets 
the CPU know that the block that follows BB; is for the 
taken branch, namely BB3. BB5 is fetched from main 
memory. 
As shown in FIG. 11, BB4 and BB2 are transferred to 

the cache memory along with the address for the first 
instruction in BB4 (A3) and the next address A24. BB5 as 
shown in FIG. 11, is transferred to line 74 and placed in 
a position after BB; and at the beginning of line 75. Line 
73 is cleared. BB6 is fetched from main memory and 
after execution transferred to lines 73 and lines 75 as 
shown in FIG. 12. When the line buffer attempts to 
transfer BB2 and BB5 to the cache memory, a hit occurs 
for the address A12 since that address was previously 
used for the storage of BB; and BB3. However, since the 
prediction information indicates that after the last use of 
BB2,~BB3 was not used, BB2 and BB3 are replaced with 
BB2 and BB5. This assumes that a single bit is used for 
the branch prediction ?eld which simply indicates taken 
or not taken. When a plurality of history bits are used 
BB2 and BB3 may not necessarily be replaced after a 
single execution of BB2 and BB5. 

Constructing lines in the line buffer in the above 
described fashion of having two basic blocks in a line, 
where the second is predicted to be executed after the 
?rst, is actually accessing the predicted instructions 
when constructing the line and transferring it to the 
cache memory. In prior art caches and branch predic 
tion mechanisms, the access of the predicted to be exe 
cuted instructions is done only when the branch is en 
countered during execution. Thus, this new scheme 
saves an access each time the branch at the end of the 
?rst basic block is correctly predicted. 
The process continues on as shown above. The above 

control flow demonstrates the manner in which the 
instructions are loaded into the cache memory and the 
manner in which they are replaced. 
The bene?t that can be obtained from the above 

described cache memory can be appreciated if one con 
siders what will now occur if the trace shown in FIG. 
5A or some subset of it is repeated many times. For 
instance, each time the blocks BB1 and BB; are consecu 
tively executed, the instructions in both blocks are 
available to the CPU with a single access consisting of 
a single address being transferred to the cache memory 
from the CPU. If a trace of say BB1, BB2, BB3 and BB4 
is repeatedly executed (in a loop), the instructions in the 
loop will be continuously supplied to the CPU with 
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only a single address being sent to the cache memory. 
The loop is broken when the branching changes. 
The precise structure discussed above need not be 

used. For example, if three basic‘ blocks are to be used in 
each line of cache memory, then each block is placed at 
the beginning .of each line. In this case, the line buffer 
will require four lines if implemented as shown above. 
Also, while in the presently preferred embodiment, 
basic blocks are identi?ed as they are executed by the 
CPU, alternately part of the blocks could be identi?ed 
by examining the program itself before it is supplied to 
the CPU. 
Performance Improvement with the Invented Cache 
Memory 
A major bottleneck of superscalar architectures is the 

fetch mechanism (i.e., the ability to supply multiple 
instructions from the correct execution path at each 
cycle). Complex instruction set computers (CISC) em 
ploying superscalar architectures may have the added 
dif?culty of dealing with variable length instructions. 
With the fetch mechanism of the present invention 
where the branch prediction is an integral part of the 
cache memory, increased bandwidth, and more effec 
tive utilization of it, is provided which is particularly 
useful for superscalar processors. 
The cache memory of the present invention was sim 

ulated with an out-of-order CISC superscalar processor 
and the performance was compared to the same out-of 
order CISC model which incorporated a standard in 
struction cache and a standard branch target buffer 
(BTB). The simulations were done assuming that both 
caches were four-way set associative and had line 
lengths of 32 bytes and were used in the execution of an 
X86 instruction set. For small cache arrays, (e.g., up to 
4K bytes) there was almost no performance difference 
between the standard fetch mechanism and the fetch 
mechanism of the present invention. This is due to the 
much lower hit rate in this size memory with the pres 
ent invention in comparison to the standard cache. 
However, as the cache memory size was increased to 
8-16K bytes the performance advantage of the present 
invention was seen. In this size range, the hit rates of a 
cache built in accordance of the present invention and 
the standard cache are both quite high and much closer. 
The cache of the present invention provided an advan 
tage in performance, however, since it can supply on 
each cycle, instructions crossing branch boundaries 
without having to break the fetch of two basic blocks 
into two cycles which is necessary with a standard 
cache when there is a wait for branch prediction. Also, 
with the present invention, lines of cache are consumed 
from their start, thus supplying the maximum number of 
instructions a line can hold. This is not always true for 
a standard cache where the target address can be any 
where in the line. 
The more unlimited the underlying processor, the 

higher the performance bene?ts obtained from the pres 
ent invention because then the processor can consume 
and utilize the higher instruction bandwidth provided 
by the present invention. For example, when a decoder 
and scoreboard unit of four instructions is used, the 
performance advantage is twenty-?ve percent, when 
this number is doubled the performance advantage in 
creases to thirty percent. If in comparison, the perfor 
mance of an ideal fetch mechanism is observed, it can be 
seen that the fetch mechanism is a bottleneck in the 
superscalar architectures. The performance difference 
between the ideal fetch mechanism and the standard 
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12 
cache and BTB is one hundred percent. The difference 
between the ideal mechanism and a cache built in accor 
dance with the present invention is only thirty-?ve 
percent. 

Thus, an improved cache memory with its organiza 
tion and method of operation has been described. 
We claim: 
1. A method of loading computer program instruc 

tions into a cache memory, said cache memory being 
organized by addressable lines, comprising the steps of: 

identifying basic blocks of computer program instruc 
tions such that a ?rst instruction in each of said 
blocks follows a branch instruction and a last in 
struction in each of said blocks is a branch instruc 
tion; 

identifying a trace segment of a running computer 
program comprising a sequence of said basic blocks 
that are executed consecutively; and 

organizing storage in said cache memory by loading 
more than one of said basic blocks in at least one 
line of said cache memory in the sequence that said 
basic blocks occurred in said trace segment such 
that when the ?rst basic block in said one line is 
addressed, the remaining basic blocks in said line 
are accessed independent of virtual address line 
boundaries. 

2. The method de?ned by claim 1 including the step 
of storing with each basic block branch prediction data 
indicating whether said branch instruction of that re 
spective basic block will be taken. 

3. The method de?ned by claim 2 including the step 
of storing in said line of the cache memory the address 
of the ?rst instruction of the next in said sequence of 
said basic blocks following the last of said basic blocks 
stored in said line. 

4. The method de?ned by claim 1 wherein said line of 
cache memory is associated with the address of the ?rst 
instruction in the ?rst said basic blocks stored in said 
line of cache memory. 

5. The method de?ned by claim 4 wherein offset bits 
associated with the address of the ?rst instruction in 
said line of cache memory are stored with said address 
of said first instruction. 

6. The method de?ned by claim 1 including the addi 
tional step of storing a long basic block in said trace 
segment which is too long to be stored in a single line of 
cache memory by partitioning said long basic block into 
component blocks of instructions that ?t in a plurality 
Of said single lines of cache memory wherein ?rst said 
component block of the long basic block is storm in said 
single line of cache memory and remaining ones of said 
component blocks of the long basic block is storm in 
one or more additional lines of said cache memory. 

7. The method de?ned by claim 6 including the step 
of storing the address of the ?rst instruction of the re 
maining said component block of the long basic block in 
said single line of cache memory. 

8. In a computer system that supports speculative 
execution of instructions, said computer system com 
prising a cache memory having a plurality of lines, a 
main memory, and a CPU that reads a static sequence of 
addressable instructions from said main memory, a 
method of storing instructions in the cache memory, 
said cache memory being organized by lines, compris 
ing the steps of: 

running a computer program so as to ?nd committed 
instructions fetched from said main memory in 
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their order of execution, said order crossing virtual 
address boundaries; 

identifying basic blocks of said committed instruc 
tions that will be unconditionally executed in se 
quential order, 

loading onlyabasic blocks into said lines of said cache 
memory after said committed instructions are un 
conditionally executed; 

organizing storage in said cache memory by loading 
more than one of said basic blocks in at least one 
line of said cache memory so that all of the loaded 
basic blocks are fetched from the one line of cache 
memory with a single access; and 

associating each of said lines of cache memory by 
storing at least one of the basic blocks with a mem 
ory address of the ?rst of said committed instruc 
tions in said one of the basic blocks. 

9. The method de?ned by claim 8 wherein the associ 
ation of each said line includes associating each said line 
with offset bits of the memory address of said fast of 20 
said committed instructions in the basic block. 

10. The method de?ned by claim 8 including the step 
of dividing the basic blocks that are too long to be com 
pletely stored in a single line of cache memory into a 
sequence of basic block sections of said committed in 
structions wherein each said basic block section of said 
committed instructions in said sequence ?ts into the 
single line of cache memory. 

11. The method de?ned by claim 10 including the 
step of storing each said basic block section in separate 
said single lines of cache memory. 

12. The method de?ned by claim 11 including the 
step of storing the address of the ?rst of said committed 
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instructions of the next of said sequence of said basic 
block sections into said single line of cache memory. 

13. The method de?ned by claim 8 wherein at least 
one of the lines of cache memory stores the memory 
address of the ?rst of said committed instructions asso 
ciated with another said line of cache memory which 
contains the basic block that is predicted to be executed 
next. 

14. The method de?ned by claim 8 wherein each of 
the lines of cache memory stores more than one of said 
basic blocks where suf?cient storage capacity exists in 
the line of cache memory and wherein each said stored 
basic block has a starting location in the line of cache 
memory. 

15. The method de?ned by claim 14 wherein data is 
stored in the line of cache memory that indicates the 
starting location for each of the said stored basic blocks. 

16. The method de?ned by claim 8 wherein each of 
the basic blocks begins with a committed instruction 
that follows a branch instruction and each of the basic 
blocks ends with a branch instruction. 

17. The method de?ned by claim 16 wherein each 
said basic block is stored as a ?rst basic block in one of 
the lines of cache memory. 

18. The method de?ned by claim 17 wherein branch 
prediction data is stored in each line of cache memory 
storing said ?rst basic block. 

19. The method de?ned by claim 18 wherein said 
branch prediction data is generated as the branch in 
struction of each said basic block is executed and deter 
mined to be taken or not taken. 

* * * * ‘I 
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