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High-Level Summary of Last Lecture

Enabling High Bandwidth Memories
Main Memory System: A Broad Perspective
DRAM Fundamentals and Operation



Agenda for Today

DRAM Operation Continued
Memory Controllers
Memory Latency



ILab 1 1s Out

Data Cache

Implement a Data Cache in a Pipelined Processor
A lot of extra credit opportunity.

It should be a lot of fun.

Due 18 October.



The Main Memory System
and DRAM




Required Readings on DRAM

= DRAM Organization and Operation Basics

o Sections 1 and 2 of: Lee et al., "Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.

https://people.inf.ethz.ch/omutlu/pub/tidram hpcal3.pdf

o Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/salp-dram iscal2.pdf

= DRAM Refresh Basics

o Sections 1 and 2 of Liu et al., "RAIDR: Retention-Aware
Intelligent DRAM Refresh,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh iscal2.pdf



https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

Reading on Simulating Main Memory

= How to evaluate future main memory systems?
= An open-source simulator and its brief description

= Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator”
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]



http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Review: DRAM Subsystem Organization

= Channel

= DIMM

= Rank

= Bank

= Row/Column
= Cell




Review: Generalized Memory Structure

cache line
column
row
Memory channel
Controller
Memory channel
Controller




Review: Generalized Memory Structure

Rank Rank Rank Rank
Bank D Bank _j Bank D Bank D
Processor i
: Channel —cmd bus— i
i —a ddr bus—»
\$-data bus—>

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
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The DRAM Subsystem
The Top Down View




DRAM Subsystem Organization

= Channel

= DIMM

= Rank

= Bank

= Row/Column
= Cell
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The DRAM subsystem

“Channel” DIMM (Dual in-line memory module)
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Processor

Memory channel Memory channel




Breaking down a DIMM

SIDE

| 4.00 | ‘_‘_

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

00 = D00 0000 0000

OO DTy ] LT T T T




Breaking down a DIMM

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

TCTITE 100K




Rank

Rank O (Front) Rank 1 (Back)

Addr/Cmd CS <0:1> Data <0:63>

\—'—I

Memory channel




Breaking down a Rank

<56:63>

Data <0:63>



Breaking down a Chip




Breaking down a Bank

2kB
<€ >
1B (column) \
<>

row 16k-1

row 0O




DRAM Subsystem Organization

= Channel

= DIMM

= Rank

= Bank

= Row/Column
= Cell
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Example: Transferring a cache block

Physical memory space

OXFFFF...F

Channel O

0x40

!
|

64B
cache block

0x00



Example: Transferring a cache block

Physical memory space
Chip 0 Chip 1 Chip 7

OXFFFF...F

<0:7>
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648 Data <0:63>
cache block
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Example: Transferring a cache block

Physical memory space
Chip 0 Chip 1 Chip 7
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Example: Transferring a cache block

Physical memory space
Chip 0 Chip 1 Chip 7

[T T [T T
Row O | e *
Col1l
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cache block

8B

0x00 v



Example: Transferring a cache block

Physical memory space
Chip 0 Chip 1 Chip 7

[T T [T T
Row O | e *
Col1l

OXFFFF...F

<0:7>

0x40

64B
cache block

Data <0:63>

8B

8B

0x00 v



Example: Transferring a cache block

Physical memory space

Chip 0 Chip 1 Chip 7
OxFFFF...F
L 1T 11 L 1T 11
Row 0 | ] j e e* ; j
Col1l
A
™
(=)
Vv
0x40 A
8B 64B Data <0:63>
cache block
8B
0x00 v

A 64B cache block takes 8 1/0 cycles to transfer.

During the process, 8 columns are read sequentially.



Latency Components: Basic DRAM Operation

CPU — controller transfer time

Controller latency

o Queuing & scheduling delay at the controller
o Access converted to basic commands
Controller — DRAM transfer time

DRAM bank latency

a Simple CAS (column address strobe) if row is “open” OR
o RAS (row address strobe) + CAS if array precharged OR
o PRE + RAS + CAS (worst case)

DRAM — Controller transfer time
o Bus latency (BL)
Controller to CPU transfer time
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Multiple Banks (Interleaving) and Channels

Multiple banks

o Enable concurrent DRAM accesses

o Bits in address determine which bank an address resides in
Multiple independent channels serve the same purpose

o But they are even better because they have separate data buses
a Increased bus bandwidth

Enabling more concurrency requires reducing

o Bank conflicts

a Channel conflicts

How to select/randomize bank/channel indices in address?
o Lower order bits have more entropy

o Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help

Addr

Bus

DRAM I Wait for DRAM access ' Wait for DRAM access ‘Wait... I
Data / \ / \

Bus \ Dy ) \ D/

Before: No Overlapping
Assuming accesses to different DRAM rows

Addr
Bus

DRAM Wait{for DRAM bank 0

Wait for DRAM bajnk 1 |

After: Overlapped Accesses
Assuming no bank conflicts

Data
Bus

30




Address Mapping (Single Channel)

Single-channel system with 8-byte memory bus
o 2GB memory, 8 banks, 16K rows & 2K columns per bank

Row interleaving
o Consecutive rows of memory in consecutive banks

| Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |

o Accesses to consecutive cache blocks serviced in a pipelined manner

Cache block interleaving

Consecutive cache block addresses in consecutive banks
64 byte cache blocks

| Row (14 bits) | High Column | Bank (3 bits) | Low Col. | Byte in bus (3 bits) |
8 bits 3 bits

Accesses to consecutive cache blocks can be serviced in parallel
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Bank Mapping Randomization

DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

| ! ! |  3bits | Column (11 bits) | Byte in bus (3 bits) |

Bank index
(3 bits)

Reading:
o Rau, “"Pseudo-randomly Interleaved Memory,” ISCA 1991,
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Address Mapping (Multiple Channels)

[c| Row (14 bits) | Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |
| Row (14 bits) |c| Bank (3 bits) | Column (11 bits) | Byte in bus (3 bits) |
| Row (14 bits) | Bank (3 bits) |c| Column (L1 bits) | Byte in bus (3 bits) |
| Row (14 bits) | Bank (3 bits) | Column (11 bits) |c| Byte in bus (3 bits) |

= Where are consecutive cache blocks?

ICI Row (14 bits) I High Column I Bank (3 bits) I Low Col. I Byte in bus (3 bits) I
8 bits 3 bits
I Row (14 bits) ICI High Column I Bank (3 bits) I Low Col. I Byte in bus (3 bits) I
8 bits 3 bits
I Row (14 bits) I High Column ICI Bank (3 bits) I Low Col. I Byte in bus (3 bits) I
8 bits 3 bits
| Row (14 bits) [ High Column | Bank (3 bits) |C| Low Col. | Byte in bus (3 bits) |
8 bits 3 bits
| Row (14 bits) I High Column I Bank (3 bits) | Low Col. Byte in bus (3 bits) |
8 bits 3 bits
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Interaction with Virtual=> Physical Mapping

= Operating System influences where an address maps to in
DRAM

Virtual Page number (52 bits) I Page offset (12 bits) I VA
I Physical Frame number (19 bits) I Page offset (12 bits) I PA
| Row (14 bits) | Bank (3 bits) Column (11 bits) | Byte in bus (3 bits) | PA

= Operating system can influence which bank/channel/rank a
virtual page is mapped to.

= It can perform page coloring to
o Minimize bank conflicts
o Minimize inter-application interference [Muralidhara+ MICRO'11]
o Minimize latency in the network [Das+ HPCA’13]
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More on Reducing Bank Conflicts

= Read Sections 1 through 4 of:

o Kim et al., “A Case for Exploiting Subarray-Level Parallelism in
DRAM,"” ISCA 2012.

T h‘ L
. row . FSUHDaHTaY }m%
T 2 E local row-buffer
) o o L4
W el = .
D = E C .
E ™ i;‘ FSUparray }E%
L - L
-Bank ) local row-buffer
NENENRENNNNENENEEEE INNNRANNNRENENENIENE
global row-buffer
(a) Logical abstraction (b) Physical implementation

Figure 1. DRAM bank organization
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Required Reading on DRAM

= Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

= Sections 1-2 are required

A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM

Yoongu Kim Vivek Seshadri Donghyuk Lee Jamie Liu Onur Mutlu

Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

DRAM Retresh (I)

DRAM capacitor charge leaks over time

The memory controller needs to read each row periodically
to restore the charge

WL BL

o Activate + precharge each row every N ms L
o Typical N = 64 ms ae — :
Implications on performance? 1 vss

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

Burst refresh: All rows refreshed immediately after one
another

Distributed refresh: Each row refreshed at a different time,
at regular intervals
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DRAM Retresh (1)

e O O I O

reon - INNACNA LI
Refresh e '

y Time ——————-

Each pulse represents Required time to
a refresh cycle complete refresh of all rows

Distributed refresh eliminates long pause times

How else we can reduce the effect of refresh on
performance?
o Can we reduce the number of refreshes?
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Downsides of DRAM Refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

CAP —_— —

SENSE

V

Liu et al., "RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.
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Memory Controllers




DRAM versus Other Types ot Memories

Long latency memories have similar characteristics that
need to be controlled.

The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

a Flash memory

o Other emerging memory technologies
Phase Change Memory
Spin-Transfer Torque Magnetic Memory

o These other technologies can place other demands on the
controller
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Flash Memory (SSD) Controllers

= Similar to DRAM memory controllers, except:
a They are flash memory specific

o They do much more: error correction, garbage collection,
page remapping, ...

..................................................................................................................

Flash Translation Layer SSD Controller
Flash Error Management :
: 1
(Correctand refresh) Chonnalt |
Y —X
: SSD Processor \ B
: Host L Flash :
-y O3 Mux/ Raw Data
: |Interface ‘ -‘ [
= Demux [
) Buffer
. ) s Manager . ) Flash Memory
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 42

Lifetime”. ICCD 2012.



Another View of the SSD Controller

i Controller

i DRAM

i Manager (.4 —
and Buffers
Ll
Processors Channel -
(Firmware) Processors

(b)

ion

Compress

HOST
Host Interface
(PCle, SATA, SAS)

Channel h—1] Channel 1}|Channel O

Fig. 1. (a) SSD system architecture, showing controller (Ctrl)
and chips. (b) Detailed view of connections between controller
components and chips.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.
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DRAM Types

DRAM has different types with different interfaces optimized
for different purposes

o Commodity: DDR, DDR2, DDR3, DDRS4, ...

Low power (for mobile): LPDDR1, ..., LPDDRS5, ...
High bandwidth (for graphics): GDDR?2, ..., GDDRS5, ...
Low latency: eDRAM, RLDRAM, ...

3D stacked: WIO, HBM, HMC, ...

o o 0O 0O O

Underlying microarchitecture is fundamentally the same
A flexible memory controller can support various DRAM types

This complicates the memory controller
a Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) |

Low-Power LPDDR3 (2012) [17]: LPDDR4 (2014) [

Graphics GDDRS5 (2009) [15]

Performance eDRAM [2¢], [22]; RLDRAM3 (2011) |

WIO (2011) [16]; WIO2 (2014) [21]; MCDRAM (2015) |

3D-Stacked  ppng(2013) [19]: HMCL.0 (2013) [10]: HMCL1 (2014) |
SBA/SSA (2010) [3]: Staged Reads (2012) [%]: RAIDR (2012) [27]:
rcademic  SALP (2012) [21]: TL-DRAM (2013) [2]; RowClone (2013) [37]

Half-DEAM (2014) [*V]; Row-Buffer Decoupling (2014) |
SARP (2014) [0]: AL-DRAM (2015) |

Table 1. Landscape of DRAM-based memory

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.
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DRAM Controller: Functions

Ensure correct operation of DRAM (refresh and timing)

Service DRAM requests while obeying timing constraints of
DRAM chips

o Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

o Translate requests to DRAM command sequences

Buffer and schedule requests to for high performance + QoS
o Reordering, row-buffer, bank, rank, bus management

Manage power consumption and thermals in DRAM

o Turn on/off DRAM chips, manage power modes
46



DRAM Controller: Where to Place

In chipset

+ More flexibility to plug different DRAM types into the system
+ Less power density in the CPU chip

On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

More information can be communicated (e.g. request’ s
importance in the processing core)
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A Modern DRAM Controller (I)

DRAM memory controller
queue

cpu pool

—_——’
cpu arbiter i
Vo request \

streams
- - - - > -
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A Modern DRAM Controller

To/From Cores

L2 Cache 0
Requests

L2 Cache N-1
Requests

To/From DEAM Banks

A ¢ ST
A '
ﬁ Crossbar
= . -
j; :_ o * _____________________________ J' _______ 1 Memory Request
f ! | Buffer
| |
= | BANK 0 BANK B-1 !
e - = = . . !
| REQUEST REQUEST :
_"': BUFFER BUFFER I
! I
! |
! |
CrToTooT i A . A
] ( + Memory Access
= Bank 0 .« . Bank B—1 ! Scheduler
= Scheduler Scheduler ;
= e/ N
= - Ll L S
o
% DRAM Bus Scheduler
L
Selected Address and DRAM Cominand
_______________________________________ et e
\ DEAM Address/Command Bus

To DRAM Banks

49



DRAM Scheduling Policies (I)

FCFS (first come first served)
o Oldest request first

FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate - maximize DRAM throughput

o Actually, scheduling is done at the command level

Column commands (read/write) prioritized over row commands
(activate/precharge)

Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation

Access Address:
(Row 0, Column 0)

(Row 0O, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address @ —

Row decoder

Columns

__________________________

__________________________

__________________________

——————————————————————————

Column address %—»\ Column mux/

l

Data

Row Buffer EONFLICT !
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DRAM Scheduling Policies (II)

A scheduling policy is a request prioritization order

Prioritization can be based on

Q

o O 0O 0O

Request age

Row buffer hit/miss status

Request type (prefetch, read, write)
Requestor type (load miss or store miss)

Request criticality
Oldest miss in the core?
How many instructions in core are dependent on it?
Will it stall the processor?

Interference caused to other cores
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Row Butfer Management Policies

Open row

o Keep the row open after an access
+ Next access might need the same row - row hit
-- Next access might need a different row = row conflict, wasted energy

Closed row

o Close the row after an access (if no other requests already in the request
buffer need the same row)

+ Next access might need a different row = avoid a row conflict
-- Next access might need the same row - extra activate latency

Adaptive policies

a Predict whether or not the next access to the bank will be to
the same row
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Open vs. Closed Row Policies

Policy

Open row
Open row

Closed row

Closed row

Closed row

Row 0
Row 0

Row 0O

Row 0

Row 0

Row 0 (row hit)

Row 1 (row
conflict)

Row 0 — access in
request buffer
(row hit)

Row 0 — access not
in request buffer
(row closed)

Row 1 (row closed)

Commands
needed for next
access

Read

Precharge +
Activate Row 1 +
Read

Read

Activate Row 0 +
Read + Precharge

Activate Row 1 +
Read + Precharge
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DRAM Power Management

DRAM chips have power modes
Idea: When not accessing a chip power it down

Power states

o Active (highest power)

o All banks idle

o Power-down

o Self-refresh (lowest power)

Tradeoff: State transitions incur latency during which the
chip cannot be accessed
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Ditticulty of DRAM Control




Why are DRAM Controllers Ditficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ...

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh
Need to manage power consumption

Need to optimize performance & QOS (in the presence of constraints)
o Reordering is not simple
o Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

Latency | Symbol | DRAM cveles || Latency | Symbol | DRAM cveles |
Precharge ‘RP 11 Activate to read/write *RCD 11
Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39
Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6
Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC'D 4
Activate to activate (different bank) | * RRD 6 Four activate windows tFAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,

April 2010.
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More on DRAM Operation

Kim et al., “"A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,"” ISCA 2012.

Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q N Q
15 5 = G P Table 2. Timing Constraints (DDR3-1066) [43]
< oc Qi q: o
tRC i i Phase Commands Name Value
——FtRAS— | < tRP—| ACT 5
: ’ time — REA
Subarray —[ 1. Activation 1. Activation ]—) 1 ACT — WRITE tRCD 15ns
! !
Peripheral & <tRCD=> s : | <tRCD~> 270 time ACT — PRE tERAS 37.5ns
I/O-Circuitry , — READ — data tCL 15ns
—tCL—> | i «~tCL—> P 2  WRITE = data  tCWL 11.25ns
time
| : : data burst tBL 7.5ns
. 'EBL| EBL| 3 PRE — ACT tRP 15ns
¢«—first access latency— | ! CRC
second access latency | 1&3 ACT — ACT (tRAS+LRP) 52.5ns

Figure 5. Three Phases of DRAM Access
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Why So Many Timing Constraints? (I)

< Activating (tRAS=35ns) > Precharging

Precharged <« tRCD=15ns » <—— READ/WRITE Allowed —> <« tRP=15ns —»
0 V V 0
77@5}3]{}{5@707 B —= T B, B 1 @707 B
g S

N Q|S | ACTIVATE ki) PRECHARGE RS

™ al= o 2 a

O :&:5— 0 O : — 0O ::

BE

Figure 4. DRAM bank operation: Steps involved in serving a memory request [17] (Vpp >Vpp)

Category RowCmd<+RowCmd RowCmd+4+ColCmd ColCmd++ColCmd ColCmd—DATA
Name tRC tRAS tRP tRCD tRTP tWR* tCCD tRTWT tWTR* CL CWL
Commands A—A A—-P P—A A-R/W R—P W*—=P R(W)—=R(W) R—-W W*-=R R—DATA W-=DATA
Scope Bank Bank Bank Bank Bank Bank Channel Rank Rank Bank Bank
Value (ns) ~50 ~35 13-15 13-15 ~7.5 5-7.5 11-15 ~1.5 13-15 10-15
A: ACTIVATE- P: PRECHARGE- R: READ- W: WRITE * Goes into effect after the last write data, not from the WRITE command

1 Not explicitly specified by the JEDEC DDR3 standard [18]. Defined as a function of other timing constraints.

Table 1. Summary of DDR3-SDRAM timing constraints (derived from Micron’s 2Gb DDR3-SDRAM datasheet [33])

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.
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Why So Many Timing Constraints? (1I)

e Q| .
@ 5 @ S ® 5
< Q:: a.
0.75Vpp Voo
G £ £
T Z —>7 T Z —>7

‘IR 3

(
I
!
|
|
|
|
|

T"'T-_—-__-—_-_-_--

|
|
|
Quiescent | Threshold Restored
|
! i 1.1. Charge Sharing | 1.2. Sensing & Amplification
Fully Half '

|
&«——tRCD (15ns)—|
tRAS (37.5ns)

N

tRP (1l5ns)—
tRC (52.5ns) >
Figure 6. Charge Flow Between the Cell Capacitor (C'¢), Bitline Parasitic Capacitor (C'p), and the Sense-Amplifier (C'p ~ 3.5C¢c [39])

1
Charged Charged I[ 1. ACFIVGUOH
|
I
|
I
I

N

Table 2. Timing Constraints (DDR3-1066) [43]

Phase Commands Name Value
— ACT=READ = pepy s
Lee et al., "Tiered-Latency DRAM: A Low Latency 1 ACT— WRITE
and Low Cost DRAM Architecture,” HPCA 2013. ACTPRE  tRAS  375ms
READ — data tCL 15ns
2  WRITE — data tCWL 11.25ns
data burst tBL 7.5n8
3  PRE — ACT tRP 15ns
1&3 ACT — ACT LRC 52.5ns

(tRAS+tRP)




DRAM Controller Design Is Becoming More Ditficult

CPU CPU
GPU
v\
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs
= Many timing constraints for various memory types

= Many goals at the same time: performance, fairness, QoS,
energy efficiency, ...
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Reality and Dream

Reality: It difficult to optimize all these different constraints
while maximizing performance, QoS, energy-efficiency, ...

Dream: Wouldn't it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

03



Selt-Optimizing DRAM Controllers

Problem: DRAM controllers difficult to design - It is difficult for
human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Selt-Optimizing DRAM Controllers

" ENVIRONMENT

*— Reward r(t)
<+ State s(t)

Goal: Learn to choose actions to maximize ry + yr; + yr, + ... (0 <y < 1)

Action a(t+1) Agent

Figure 2: (a) Intelligent agent based on reinforcement learning
principles;


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

" SYSTEM
Data Bus
Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State
Attributes (1)
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Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

State \ Actio’n\
/ / Command

Transaction Queue

&
T 3 :
(ol 8 ) (oo )| &
o
~ O
-~ \\ o
-7 > <
o \\
S i ~~ \ e
Valid [Bank | Row | Col | Data qu';‘:m Rewal\rd/

Figure 4: High-level overview of an RL-based scheduler.


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

% Reward function % State attributes
* +1 for scheduling * Number of reads,
Read and Write writes, and load
commands MIsses in

e 0 at all other transaction queue

times * Number of pending
writes and ROB

Goal is to maximize heads waiting for

long-term referenced row
data bus
utilization * Request’s relative

ROB order

** Actions

Activate

Write

Read - load miss

Read - store miss
Precharge - pending
Precharge - preemptive
NOP
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Performance Results

B0 EORON
Slalelelelelalalel=]

Speedup over FR-FCFS
OO NN

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN
M In-Order WFR-FCFS MWRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Speedup over
1-Channel FR-FCFS

ART CG EQUAKE FFT MG QOCEAN RADIX SCALPARC SWIM G-MEAN
B FR-FCFS - 1 Channel W RL-1Channel M FR-FCFS - 2 Channels B RL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB /s peak
DRAM bandwidth
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Selt Optimizing DRAM Controllers

Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

Disadvantages and Limitations

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
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More on Self-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek’2  Onur Mutlu?  José F. Martinez!  Rich Caruana!

1Cornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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http://isca2008.cs.princeton.edu/

Evaluating New Ideas
for New (Memory) Architectures




Potential Evaluation Methods

How do we assess an idea will improve a target metric X?

A variety of evaluation methods are available:

a Theoretical proof

o Analytical modeling/estimation

o Simulation (at varying degrees of abstraction and accuracy)
o Prototyping with a real system (e.g., FPGAs)

o Real implementation
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The Ditticulty in Architectural Evaluation

The answer is usually workload dependent

o E.g., think caching

o E.g., think pipelining

o E.g., think any idea we talked about (RAIDR, Mem. Sched., ...)

Workloads change

System has many design choices and parameters

o Architect needs to decide many ideas and many parameters
for a design

o Not easy to evaluate all possible combinations!

System parameters may change
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Simulation: The Field of Dreams




Dreaming and Reality

An architect is in part a dreamer, a creator
Simulation is a key tool of the architect

Simulation enables

o The exploration of many dreams
o A reality check of the dreams

o Deciding which dream is better

Simulation also enables
o The ability to fool yourself with false dreams
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Why High-Level Simulation?

Problem: RTL simulation is intractable for design space
exploration - too time consuming to design and evaluate

o Especially over a large number of workloads

o Especially if you want to predict the performance of a good
chunk of a workload on a particular design
o Especially if you want to consider many design choices
Cache size, associativity, block size, algorithms
Memory control and scheduling algorithms
In-order vs. out-of-order execution
Reservation station sizes, Id/st queue size, register file size, ...

Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for
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Different Goals in Stmulation

Explore the design space quickly and see what you want to
o potentially implement in a next-generation platform

o propose as the next big idea to advance the state of the art

o the goal is mainly to see relative effects of design decisions

Match the behavior of an existing system so that you can
o debug and verify it at cycle-level accuracy

o propose small tweaks to the design that can make a difference in
performance or energy

o the goal is very high accuracy

Other goals in-between:

o Refine the explored design space without going into a full
detailed, cycle-accurate design

o Gain confidence in your design decisions made by higher-level

design space exploration
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Tradeoffs in Simulation

Three metrics to evaluate a simulator
o Speed

o Flexibility

o Accuracy

Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

The relative importance of these metrics varies depending

on where you are in the design process (what your goal is)
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Trading Off Speed, Flexibility, Accuracy

Speed & flexibility affect:
o How quickly you can make design tradeoffs

Accuracy affects:
o How good your design tradeoffs may end up being
a How fast you can build your simulator (simulator design time)

Flexibility also affects:

o How much human effort you need to spend modifying the
simulator

You can trade off between the three to achieve design
exploration and decision goals
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High-ILevel Simulation

Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

Advantage
+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

Disadvantage
-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
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Simulation as Progressive Refinement

High-level models (Abstract, C)
Medium-level models (Less abstract)
Low-level models (RTL with everything modeled)

Real design

As you refine (go down the above list)

o Abstraction level reduces

o Accuracy (hopefully) increases (not necessarily, if not careful)
o Flexibility reduces; Speed likely reduces except for real design
Q

You can loop back and fix higher-level models
82



Making The Best of Architecture

A good architect is comfortable at all levels of refinement
o Including the extremes

A good architect knows when to use what type of
simulation

o And, more generally, what type of evaluation method

Recall: A variety of evaluation methods are available:

o Theoretical proof

o Analytical modeling

o Simulation (at varying degrees of abstraction and accuracy)
o Prototyping with a real system (e.g., FPGAs)

o Real implementation
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Ramulator: A Fast and Extensible
DRAM Simulator
[IEEE Comp Arch Letters’15]
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Ramulator Motivation

DRAM and Memory Controller landscape is changing
Many new and upcoming standards

Many new controller designs

A fast and easy-to-extend simulator is very much needed

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]: DDR4 (2012) [15]

Low-Power LPDDR3 (2012) [17]: LPDDR4 (2014) [20]

Graphics GDDRS5 (2009) [15]

Performance eDRAM [25], [*7]: RLDRAM3 (2011) [2Y]

AD-Stacked WIO (2011) [16]: WIO2 (2014) [21]: MCDRAM (2015) [12]:
HBM (2013) [19]: HMC1.0 (2013) [10]; HMCI1.1 (2014) [11]
SBA/SSA (2010) [3%]; Staged Reads (2012) [=]: RAIDR (2012) [27];

Academic SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [27];

Half-DRAM (2014) [*2]; Row-Buffer Decoupling (2014) [33];
SARP (2014) [2]; AL-DRAM (2015) [ 5]

Table 1. Landscape of DRAM-based memory
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Ramulator

Provides out-of-the box support for many DRAM standards:

o DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

~2.5X faster than fastest open-source simulator
Modular and extensible to different standards

Simulator ~ Cvcles (10°)  Runtime (sec)  Regfsec (10%)

Memory
(clang -03) Random Stream Random  Stream Random Stream (MB)
Ramulator 652 411 TH2 249 133 402 2.1
DRAMSim2 645 413 2.030 876 A9 114 1.2
USIMM 661 409 1.880 750 53 133 1.5
DrSim 64T 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20  4.,230.0

Table 3. Comparison of five simulators using two traces
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Case Study: Comparison of DRAM Standards

Rate Timing Data-Bus BW
Standard (7)) (CL-RCD-RP) (Widthx Chan.) @™ Per-Chan Gpy)
DDR3 1,600 11-11-11 64-bit x 1 1 11.9
DDR4 2,400 16-16-16 64-bit x 1 1 17.9
SALPY 1,600 11-11-11 64-bit x 1 1 11.9
LPDDR3 1,600 12-15-15 64-bit x 1 1 11.9
LPDDR4 2,400  22-22-22 32-bit x 2* 1 17.9
GDDR5 [17] 6,000 18-18-18 64-bit x 1 1 44.7
HBM 1,000 7-7-T 128-bit x 8* 1 119.2
WIO 266 7-7-T 128-bit x 4* 1 15.9
WI02 1,066  9-10-10 128-bit x 8* 1 127.2
— 114 119 088 092 109 127 084 1.12
E 2.0
E (]
= ° 150 M Across 22
a8 = I I workloads,
T .
9 N — simple CPU
o8 Yo E" """ R S mocljael
s £ 1
2 0.5

DDR4 SALP LPDDR3 LPDDR4 GDDRS HEM wWIO Wi0o2

— Figure 2. Performance comparison of DRAM standards
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Ramulator Paper and Source Code

= Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"

IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

= Source code is released under the liberal MIT License
o https://qgithub.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang!?  Onur Mutlu!
ICarnegie Mellon University ~ ?Peking University
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Extra Credit Assignment

Review the Ramulator paper
o Online on our review site

Download and run Ramulator

o Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

o Upload your brief report to Moodle

This may become part of a future homework
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Memory Latency:
Fundamental Tradeoffs




DRAM Module and Chip
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Goals

* Cost

* Latency

* Bandwidth
* Parallelism
* Power

* Energy

* Reliability
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DRAM Chip

Row Decoder

Row Decoder

Cell Array

Array of Sense Am|

Cell Array

Cell Array

Array of Sense Amplifiers

Cell Array
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Sense Amplifier

enable

top

A

bottom

~

Inverter
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Sense Amplifier — Two Stable States
0
%
|

VDD

Logical “1” Logical “0”

VDD
|

1
|

0

A

A
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Sense Amplifier Operation
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DRAM Cell — Capacitor

e i

Empty State Fully Charged State

Logical “0” Logical “1”

o Small — Cannot drive circuits

9 Reading destroys the state
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Capacitor to Sense Amplifier

e




DRAM Cell Operation
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DRAM Subarray — Building Block for
DRAM Chip

Cell Array

Array of Sense Amplifiers (Row Buffer) 8Kb
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DRAM Bank

Address

Cell Array

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

Array of Sense Amplifiers

Cell Array

Bank 1/O (64b)

Address

Data
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DRAM Chip

Shared internal bus
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DRAM Operation

_ © renp /e ol
Cell Array

Array of Sense Ampllflers

© ereciiarcE

Bank I/O

S
@
o
O
(S}
@
(o]
3
o
-4

Row Address

Row Decoder

Data

Column Address

103



Memory Latency Lags Behind

1.3X
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Memory latency remains almost constant
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DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’ | 2; [Xu+, ISWC’[2; Umuroglu+, FPL 1 5]
Clapp+ (Intel), ISWC’|5]

e e
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+t (Intel), ISWC’15; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’ 5]
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DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’ 5]
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What Causes
the Long DRAM Latency?




Why the Long Latency?

Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

Reason 2: “One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)

Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels

Same latency parameters for all application data

o oo 0O 0O 0O O

SAFARI 108



What Causes the Long Latency?
DRAM Chip

subarray

!

I/0

3

Subarray Latemoy

Dominant

channelt

DRAM Latency WO latemoy
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Why is the Subarray So Slow?

Subarray Cell
cell |
“ .5 wordline
. = & E
— Q e - -
% 8 b /,, l\\\\ .E
° N ° / N ?l:
% & © | 5 transistor i @ g‘
1 (O 1
3 S - =T |2 S
— ° \ /| Q
2 5 < 2 3
S
Q
------- (V)
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost 2 Small area

— Large bitline capacitance = High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

ATAYAYA
Tra e-Off. Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency

I

32

w

Fancy DRAM
64 Short Bitline

Commodity
DRAM
Long Bitline

128

Cheaper
Normalized DRAM Area
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|

256 512 cells/bitline

o
|

10 20 30 40 50 60 70

o

Latency (ns)
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area )g:e(

/A VA VA VWA

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast
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Approximating the Best of Both Worlds

Long Bitlin Tiered-Latency DRAM \ort Bitline

Small Area  Small Area M

' N7 N/ N/ \

M Low Latency  Low Latency
1) Y

using long

bitline §
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Latency, Power, and Area Evaluation

 Commodity DRAM: 512 cells/bitline

e TL-DRAM: 512 cells/bitline
— Near segment: 32 cells
— Far segment: 480 cells
e Latency Evaluation
— SPICE simulation using circuit-level DRAM model
* Power and Area Evaluation

— DRAM area/power simulator from Rambus
— DDR3 energy calculator from Micron
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Commodity DRAM vs. TL-DRAM [HpPcA 2013]
* DRAM Latency (tRC) - DRAM Power

+49%

150%

100% -

150%

Latency

50% -

0%
Commodity
DRAM

+23%
o 100% -
(V)
S
o
Q. 50%
0%
Near | Far Commodity
TL-DRAM DRAM

e DRAM Area Overhead

~3%: mainly due to the isolation transistors

Near Far
TL-DRAM
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Trade-Off: Area (Die-Area) vs. Latency

I

w

Normalized DRAM Area
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32
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128
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0 10 20 30 40 50 60 /70
Latency (ns)
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Leveraging Tiered-Latency DRAM

 TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

* Many potential uses

‘1. Use near segment as hardware-managed inclusive )
cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

J

118
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Near Segment as Hardware-Managed Cache
TL-DRAM

main
memory
(Ielgd e[l | cache
sense amplifier

far segment

I/0

channel‘

* Challenge 1: How to efficiently migrate a row between
segments?

* Challenge 2: How to efficiently manage the cache?
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Inter-Segment Migration

e Goal: Migrate source row into destination row

* Naive way: Memory controller reads the source row

byte by byte and writes to destination row byte by byte
- High latency

Far Segment

/

Isolation Transistor

Destination

] Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from source to destination across
shared bitlines concurrently

\

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from so
shared bitlines concu

Migration is overlapped with source row access
Additional ~4ns over row access latency

Step 1: Activate source row

Step 2: Activate destination
row to connect cell and bitline

Near Segment

Sense Amplifier
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Near Segment as Hardware-Managed Cache
TL-DRAM

main
memory
(Ielgd e[l | cache
sense amplifier

far segment

I/0

channel‘

* Challenge 1: How to efficiently migrate a row between
segments?

* Challenge 2: How to efficiently manage the cache?
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Performance & Power Consumption

g 120% T124% 11.5% 10.7% 120%
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Using near segment as a cache improves

performance and reduces power consumption
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Single-Core: Varying Near Segment Length

Maximum IPC

14%
~—\I/mprovement

12%
10%
8%

6o Larger cache capacity
o
sl B B EEEEEN

5o Higher cache access latency
(0]

0%

Performance Improvement

1 2 4 8 16 32 64 128 256
Near Segment Length (cells)

By adjusting the near segment length, we can
trade off cache capacity for cache latency
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More on TL-DRAM

= Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture
Donghyuk Lee  Yoongu Kim  Vivek Seshadri  Jamie Liu  Lavanya Subramanian = Onur Mutlu

Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
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We did not cover the following slides in lecture.
These are for your preparation for the next lecture.




Computer Architecture
Lecture 5: DRAM Operation,
Memory Control & Memory Latency

Prof. Onur Mutlu
ETH Zurich
Fall 2017
4 October 2017



Why the Long Latency?

Design of DRAM uArchitecture
o Goal: Maximize capacity/area, not minimize latency

“One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip
Same latency parameters for all supply voltage levels
Same latency parameters for all application data

o oo 0O 0O 0O O
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Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

DRAM A DRAM B DRAM C

l lSlow cells

Low High

DRAM Latency
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What Else Causes the Long Memory Latency?

= Conservative timing margins!

= DRAM timing parameters are set to cover the worst case

= Worst-case temperatures
o 85 degrees vs. common-case
o to enable a wide range of operating conditions
= Worst-case devices
o DRAM cell with smallest charge across any acceptable device
o to tolerate process variation at acceptable yield

= This leads to large timing margins for the common case

SAFARI 131



Understanding and Exploiting
Variation in DRAM Latency




DRAM Stores Data as Charge

DRAM Cell

i

Three steps of
charge movement

NY /N H!H!H /N
! Sense-Amplifier
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1. Sensing
2. Restore
3. Precharge



DRAM Charge over Time

A Cell

@ cei

/\
t

Data 1

-

Sense-Amplifier

charge

Sense-Amplifier Data O
Timing Parameters Sensing ~  Restore time>
In theory|
In practicel

Why does DRAM need the extra timing margin?
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Two Reasons for Timing Margin

1. Process Variation
— DRAM cells are not equal

— Leads to extra timing margin for a cell that can
store a large amount of charge

2. Temperature Dependence

SAFARI 135



DRAM Cells are Not Equal

Ideal Real _ smallest cell

Sam ég}%/gt/on //%%9/795”}65"9')

rent Charge =»
Sam Q@@r%é@”a tion ’D| ncy

Large variation in access /atency
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Process Variation
DRAM Cell

_— @ Cell Capacitance

@ Contact Resistance

e Transistor Performance

Small cell can store small
charge

* Small cell capacitance
* High contact resistance
ACCESS * Slow access transistor

= High access latency

Contact
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Two Reasons for Timing Margin

1. Process Variation

— DRAM cells are not equal

— Leads to extra timing margin for a cell that can
store a large amount of charge

2. lTemperature Dependence
— DRAM leaks more charge at higher temperature

— Leads to extra timing margin for cells that
operate at low temperature
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Char:

oe Leakage Temperature

Hot Temp. (85°C)
OO0

Cells stargllSogdagharge at aige ltemgperature
and large charge at low temperature

- Large variation in access latency
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DRAM Timing Parameters

* DRAM timing parameters are dictated by
the worst-case

— The smallest cell with the smallest charge in
all DRAM products

— Operating at the highest temperature

* Large timing margin for the common-case
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Adaptive-Latency DRAM [HPCA 2015]

Idea: Optimize DRAM timing for the common case
o Current temperature
a Current DRAM module

Why would this reduce latency?

o A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

o More charge in a DRAM cell
—> Faster sensing, charge restoration, precharging
- Faster access (read, write, refresh, ...)

Lee+, “"Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case," 41
SAFARI HPCA 2015.



Extra Charge > Reduced Latency

1. Sensing
Sense cells with extra charge faster
-> Lower sensing latency

2. Restore
No need to fully restore cells with extra charge

> Lower restoration latency

3. Precharge
No need to fully precharge bitlines for cells with

extra charge

—> Lower precharge latency
SAFARI



DRAM Characterization Infrastructure

\—)J_J\J - - JJJJ\_J‘JJ __I-_\‘J

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 43
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



DRAM Characterization Infrastructure

= Hasan Hassan et al., SoftMC: A v HTe*a.t/ .

Flexible and Practical Open- Chamber |

Source Infrastructure for | | ;— |

Enabling Experimental DRAM
Studies, HPCA 2017.

Machme
Flexible =
. R -Eemp ’;
= Easy to Use (C++ API) ' Controller
= Open-source Heater j - ?‘Ei

\‘” '\ >

github.com/CMU-SAFARL/SoftMC
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 OguzErgin? Onur Mutlu!-?

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®? Donghyuk Lee

\ETH Ziirich ~ 2TOBB University of Economics & Technology  3Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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https://github.com/CMU-SAFARI/SoftMC

Observation 1. Faster Sensing

Typical DIMM at 115 DIMM
Low Temperature Characterization
888888 ... Timing
" ore Charge (tRCD)
Strong Charge
% Flow 17% \l/
_ Faster Sensing No Errors

Typical DIMM at Low Temperature

=» More charge = Faster sensing
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Observation 2. Reducing Restore Time

Typical DIMM at 115 DIMM

Low Temperature Characterization
Less Leakage =

Extra Charge Read (tRAS)

37%

No Need to Fully Write (tWR)
Restore Charge
54% J,

No Errors

Typical DIMM at lower temperature

=» More charge = Restore time reduction
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AL-DRAM

e Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters ElReliSg=lal

temperatures for each DIMM

— System monitors [BIVAWRTEIEEINEE & uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 148
2015.



DRAM Temperature

* DRAM temperature measurement
* Server cluster: Operates at under 34°C
e Desktop: Operates at under 50°C
 DRAM standard optimized for 85 C

DRAM operates at low temperatures

in the common-case

* Frevious works — iviaintain low DRAIV emperature
 David+ ICAC 2011
e Liu+ ISCA 2007
e Zhu+ ITHERM 2008
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Latency Reduction Summary of 115 DIMMs

* [atency reduction for read & write (55°C)

— Read Latency: 32.7%
— Write Latency: 55.1%

* [atency reduction for each timing
parameter (55°C)
—Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

Average

O%

libg

s

copy [ras

Performance Improvement
H
-
o\° X
lljlﬂ
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s.cluster
gUups
intensive

~
: : N
non-intensive [

AL-DRAM improves performance on a real system
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AL-DRAM: Multi-Core Evaluation

Average

copy

Performance Improvement
gems

s.cluster
gUups
intensive

non-intensive
all-35-workload

AL-DRAM provides higher performance for

multi-programmed & multi-threaded workloads
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Reducing Latency Also Reduces Energy

AL-DRAM reduces DRAM power consumption by 5.8%

Major reason: reduction in row activation time
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More on AL.-DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu

Carnegie Mellon University

SAFARI 155


http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Heterogeneous Latency within A Chip

[.25

g [ 19.5009.70/0

g ) 17.6

g 115 13.3 |

g B Baseline (DDR3)
T .| mFLY-DRAM (D)
& 105 = FLY-DRAM (D2)
8 m FLY-DRAM (D3)
t_é! ® Upper Bound

« 095

@)

Z 09

40 Workloads
Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Analysts of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.

Slides (pptx) (pdf)]

[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang! Abhijith Kashyap® Hasan Hassan!:2
Saugata Ghose' Kevin Hsieh! Donghyuk Lee' Tianshi Li'?
Gennady Pekhimenko! Samira Khant* Onur Mutlu®*

'Carnegie Mellon University *TOBB ETU *Peking University *University of Virginia SETH Zrich
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

What Is Design-Induced Variation?

fast slow

across column —/—ﬂnherently slow

distance from <=
wordline driver €

@
@
@
@
(
(U
MO|S

dCross row

distance from
sense amplifier

SIDAIIP BUI|p

158

Inherently fast

sense amplifiers

Systematic variation in cell access times

caused by the physical organization of DRAM
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DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9AIIP BUIl|pJOM

sense amplifier

Profile only slow regions to determine min. latency
—> Dynamic & low cost latency optimization
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DIVA Online Profiling

Design-Induced-Variation-Aware

slowcells «§ inherently slow
process g "\‘ design-induced
variation = * variation
random error g 9 localized error
8 : .

error-correcting

code online profiling

sense amplifier

Combine error-correcting codes & online profiling
—> Reliably reduce DRAM latency
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50%

40%

Latency Reduction

0%

30% |-

20% -

10% |-

55°C 85°C
AL-DRAM

55°C 85°C
DIVA Profiling

55°C 85°C
DIVA Profiling

+ Shuffling

40%

30% -

20% -

10% |-

0%

39.4%3g 79+ 1:37040.3%

55°C 85°C
AL-DRAM

55°C 85°C
DIVA Profiling

55°C 85°C
DIVA Profiling

+ Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells

SAFARI
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Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Voltron: Exploiting the

Voltage-Latency-Reliability

Relationshr

D




Executive Summary

 DRAM (memory) power is significant in today’s systems
— Existing low-voltage DRAM reduces voltage conservatively

* Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

* Key experimental observations:

— Huge voltage margin -- Errors occur beyond some voltage
— Errors exhibit spatial locality
— Higher operation latency mitigates voltage-induced errors

* Voltron:A new DRAM energy reduction mechanism

— Reduce DRAM voltage without introducing errors

— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction
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Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutluy,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke' Saugata Ghose”  Aditya Agrawall Niladrish Chatterjeel
Abhijith Kashyap” Donghyuk Lee! =~ Mike O’Connor®* Hasan Hassan®  Onur Mutlu®"

"Carnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?
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Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures
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